2 * Memory subsystem support
4 * Written by Matt Tolentino <matthew.e.tolentino@intel.com>
5 * Dave Hansen <haveblue@us.ibm.com>
7 * This file provides the necessary infrastructure to represent
8 * a SPARSEMEM-memory-model system's physical memory in /sysfs.
9 * All arch-independent code that assumes MEMORY_HOTPLUG requires
10 * SPARSEMEM should be contained here, or in mm/memory_hotplug.c.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/topology.h>
16 #include <linux/capability.h>
17 #include <linux/device.h>
18 #include <linux/memory.h>
19 #include <linux/kobject.h>
20 #include <linux/memory_hotplug.h>
22 #include <linux/mutex.h>
23 #include <linux/stat.h>
24 #include <linux/slab.h>
26 #include <linux/atomic.h>
27 #include <asm/uaccess.h>
29 static DEFINE_MUTEX(mem_sysfs_mutex
);
31 #define MEMORY_CLASS_NAME "memory"
33 static int sections_per_block
;
35 static inline int base_memory_block_id(int section_nr
)
37 return section_nr
/ sections_per_block
;
40 static struct bus_type memory_subsys
= {
41 .name
= MEMORY_CLASS_NAME
,
42 .dev_name
= MEMORY_CLASS_NAME
,
45 static BLOCKING_NOTIFIER_HEAD(memory_chain
);
47 int register_memory_notifier(struct notifier_block
*nb
)
49 return blocking_notifier_chain_register(&memory_chain
, nb
);
51 EXPORT_SYMBOL(register_memory_notifier
);
53 void unregister_memory_notifier(struct notifier_block
*nb
)
55 blocking_notifier_chain_unregister(&memory_chain
, nb
);
57 EXPORT_SYMBOL(unregister_memory_notifier
);
59 static ATOMIC_NOTIFIER_HEAD(memory_isolate_chain
);
61 int register_memory_isolate_notifier(struct notifier_block
*nb
)
63 return atomic_notifier_chain_register(&memory_isolate_chain
, nb
);
65 EXPORT_SYMBOL(register_memory_isolate_notifier
);
67 void unregister_memory_isolate_notifier(struct notifier_block
*nb
)
69 atomic_notifier_chain_unregister(&memory_isolate_chain
, nb
);
71 EXPORT_SYMBOL(unregister_memory_isolate_notifier
);
74 * register_memory - Setup a sysfs device for a memory block
77 int register_memory(struct memory_block
*memory
)
81 memory
->dev
.bus
= &memory_subsys
;
82 memory
->dev
.id
= memory
->start_section_nr
/ sections_per_block
;
84 error
= device_register(&memory
->dev
);
89 unregister_memory(struct memory_block
*memory
)
91 BUG_ON(memory
->dev
.bus
!= &memory_subsys
);
93 /* drop the ref. we got in remove_memory_block() */
94 kobject_put(&memory
->dev
.kobj
);
95 device_unregister(&memory
->dev
);
98 unsigned long __weak
memory_block_size_bytes(void)
100 return MIN_MEMORY_BLOCK_SIZE
;
103 static unsigned long get_memory_block_size(void)
105 unsigned long block_sz
;
107 block_sz
= memory_block_size_bytes();
109 /* Validate blk_sz is a power of 2 and not less than section size */
110 if ((block_sz
& (block_sz
- 1)) || (block_sz
< MIN_MEMORY_BLOCK_SIZE
)) {
112 block_sz
= MIN_MEMORY_BLOCK_SIZE
;
119 * use this as the physical section index that this memsection
123 static ssize_t
show_mem_start_phys_index(struct device
*dev
,
124 struct device_attribute
*attr
, char *buf
)
126 struct memory_block
*mem
=
127 container_of(dev
, struct memory_block
, dev
);
128 unsigned long phys_index
;
130 phys_index
= mem
->start_section_nr
/ sections_per_block
;
131 return sprintf(buf
, "%08lx\n", phys_index
);
134 static ssize_t
show_mem_end_phys_index(struct device
*dev
,
135 struct device_attribute
*attr
, char *buf
)
137 struct memory_block
*mem
=
138 container_of(dev
, struct memory_block
, dev
);
139 unsigned long phys_index
;
141 phys_index
= mem
->end_section_nr
/ sections_per_block
;
142 return sprintf(buf
, "%08lx\n", phys_index
);
146 * Show whether the section of memory is likely to be hot-removable
148 static ssize_t
show_mem_removable(struct device
*dev
,
149 struct device_attribute
*attr
, char *buf
)
151 unsigned long i
, pfn
;
153 struct memory_block
*mem
=
154 container_of(dev
, struct memory_block
, dev
);
156 for (i
= 0; i
< sections_per_block
; i
++) {
157 pfn
= section_nr_to_pfn(mem
->start_section_nr
+ i
);
158 ret
&= is_mem_section_removable(pfn
, PAGES_PER_SECTION
);
161 return sprintf(buf
, "%d\n", ret
);
165 * online, offline, going offline, etc.
167 static ssize_t
show_mem_state(struct device
*dev
,
168 struct device_attribute
*attr
, char *buf
)
170 struct memory_block
*mem
=
171 container_of(dev
, struct memory_block
, dev
);
175 * We can probably put these states in a nice little array
176 * so that they're not open-coded
178 switch (mem
->state
) {
180 len
= sprintf(buf
, "online\n");
183 len
= sprintf(buf
, "offline\n");
185 case MEM_GOING_OFFLINE
:
186 len
= sprintf(buf
, "going-offline\n");
189 len
= sprintf(buf
, "ERROR-UNKNOWN-%ld\n",
198 int memory_notify(unsigned long val
, void *v
)
200 return blocking_notifier_call_chain(&memory_chain
, val
, v
);
203 int memory_isolate_notify(unsigned long val
, void *v
)
205 return atomic_notifier_call_chain(&memory_isolate_chain
, val
, v
);
209 * The probe routines leave the pages reserved, just as the bootmem code does.
210 * Make sure they're still that way.
212 static bool pages_correctly_reserved(unsigned long start_pfn
,
213 unsigned long nr_pages
)
217 unsigned long pfn
= start_pfn
;
220 * memmap between sections is not contiguous except with
221 * SPARSEMEM_VMEMMAP. We lookup the page once per section
222 * and assume memmap is contiguous within each section
224 for (i
= 0; i
< sections_per_block
; i
++, pfn
+= PAGES_PER_SECTION
) {
225 if (WARN_ON_ONCE(!pfn_valid(pfn
)))
227 page
= pfn_to_page(pfn
);
229 for (j
= 0; j
< PAGES_PER_SECTION
; j
++) {
230 if (PageReserved(page
+ j
))
233 printk(KERN_WARNING
"section number %ld page number %d "
234 "not reserved, was it already online?\n",
235 pfn_to_section_nr(pfn
), j
);
245 * MEMORY_HOTPLUG depends on SPARSEMEM in mm/Kconfig, so it is
246 * OK to have direct references to sparsemem variables in here.
249 memory_block_action(unsigned long phys_index
, unsigned long action
)
251 unsigned long start_pfn
, start_paddr
;
252 unsigned long nr_pages
= PAGES_PER_SECTION
* sections_per_block
;
253 struct page
*first_page
;
256 first_page
= pfn_to_page(phys_index
<< PFN_SECTION_SHIFT
);
260 start_pfn
= page_to_pfn(first_page
);
262 if (!pages_correctly_reserved(start_pfn
, nr_pages
))
265 ret
= online_pages(start_pfn
, nr_pages
);
268 start_paddr
= page_to_pfn(first_page
) << PAGE_SHIFT
;
269 ret
= remove_memory(start_paddr
,
270 nr_pages
<< PAGE_SHIFT
);
273 WARN(1, KERN_WARNING
"%s(%ld, %ld) unknown action: "
274 "%ld\n", __func__
, phys_index
, action
, action
);
281 static int memory_block_change_state(struct memory_block
*mem
,
282 unsigned long to_state
, unsigned long from_state_req
)
286 mutex_lock(&mem
->state_mutex
);
288 if (mem
->state
!= from_state_req
) {
293 if (to_state
== MEM_OFFLINE
)
294 mem
->state
= MEM_GOING_OFFLINE
;
296 ret
= memory_block_action(mem
->start_section_nr
, to_state
);
299 mem
->state
= from_state_req
;
303 mem
->state
= to_state
;
304 switch (mem
->state
) {
306 kobject_uevent(&mem
->dev
.kobj
, KOBJ_OFFLINE
);
309 kobject_uevent(&mem
->dev
.kobj
, KOBJ_ONLINE
);
315 mutex_unlock(&mem
->state_mutex
);
320 store_mem_state(struct device
*dev
,
321 struct device_attribute
*attr
, const char *buf
, size_t count
)
323 struct memory_block
*mem
;
326 mem
= container_of(dev
, struct memory_block
, dev
);
328 if (!strncmp(buf
, "online", min((int)count
, 6)))
329 ret
= memory_block_change_state(mem
, MEM_ONLINE
, MEM_OFFLINE
);
330 else if(!strncmp(buf
, "offline", min((int)count
, 7)))
331 ret
= memory_block_change_state(mem
, MEM_OFFLINE
, MEM_ONLINE
);
339 * phys_device is a bad name for this. What I really want
340 * is a way to differentiate between memory ranges that
341 * are part of physical devices that constitute
342 * a complete removable unit or fru.
343 * i.e. do these ranges belong to the same physical device,
344 * s.t. if I offline all of these sections I can then
345 * remove the physical device?
347 static ssize_t
show_phys_device(struct device
*dev
,
348 struct device_attribute
*attr
, char *buf
)
350 struct memory_block
*mem
=
351 container_of(dev
, struct memory_block
, dev
);
352 return sprintf(buf
, "%d\n", mem
->phys_device
);
355 static DEVICE_ATTR(phys_index
, 0444, show_mem_start_phys_index
, NULL
);
356 static DEVICE_ATTR(end_phys_index
, 0444, show_mem_end_phys_index
, NULL
);
357 static DEVICE_ATTR(state
, 0644, show_mem_state
, store_mem_state
);
358 static DEVICE_ATTR(phys_device
, 0444, show_phys_device
, NULL
);
359 static DEVICE_ATTR(removable
, 0444, show_mem_removable
, NULL
);
361 #define mem_create_simple_file(mem, attr_name) \
362 device_create_file(&mem->dev, &dev_attr_##attr_name)
363 #define mem_remove_simple_file(mem, attr_name) \
364 device_remove_file(&mem->dev, &dev_attr_##attr_name)
367 * Block size attribute stuff
370 print_block_size(struct device
*dev
, struct device_attribute
*attr
,
373 return sprintf(buf
, "%lx\n", get_memory_block_size());
376 static DEVICE_ATTR(block_size_bytes
, 0444, print_block_size
, NULL
);
378 static int block_size_init(void)
380 return device_create_file(memory_subsys
.dev_root
,
381 &dev_attr_block_size_bytes
);
385 * Some architectures will have custom drivers to do this, and
386 * will not need to do it from userspace. The fake hot-add code
387 * as well as ppc64 will do all of their discovery in userspace
388 * and will require this interface.
390 #ifdef CONFIG_ARCH_MEMORY_PROBE
392 memory_probe_store(struct device
*dev
, struct device_attribute
*attr
,
393 const char *buf
, size_t count
)
398 unsigned long pages_per_block
= PAGES_PER_SECTION
* sections_per_block
;
400 phys_addr
= simple_strtoull(buf
, NULL
, 0);
402 if (phys_addr
& ((pages_per_block
<< PAGE_SHIFT
) - 1))
405 for (i
= 0; i
< sections_per_block
; i
++) {
406 nid
= memory_add_physaddr_to_nid(phys_addr
);
407 ret
= add_memory(nid
, phys_addr
,
408 PAGES_PER_SECTION
<< PAGE_SHIFT
);
412 phys_addr
+= MIN_MEMORY_BLOCK_SIZE
;
419 static DEVICE_ATTR(probe
, S_IWUSR
, NULL
, memory_probe_store
);
421 static int memory_probe_init(void)
423 return device_create_file(memory_subsys
.dev_root
, &dev_attr_probe
);
426 static inline int memory_probe_init(void)
432 #ifdef CONFIG_MEMORY_FAILURE
434 * Support for offlining pages of memory
437 /* Soft offline a page */
439 store_soft_offline_page(struct device
*dev
,
440 struct device_attribute
*attr
,
441 const char *buf
, size_t count
)
445 if (!capable(CAP_SYS_ADMIN
))
447 if (strict_strtoull(buf
, 0, &pfn
) < 0)
452 ret
= soft_offline_page(pfn_to_page(pfn
), 0);
453 return ret
== 0 ? count
: ret
;
456 /* Forcibly offline a page, including killing processes. */
458 store_hard_offline_page(struct device
*dev
,
459 struct device_attribute
*attr
,
460 const char *buf
, size_t count
)
464 if (!capable(CAP_SYS_ADMIN
))
466 if (strict_strtoull(buf
, 0, &pfn
) < 0)
469 ret
= memory_failure(pfn
, 0, 0);
470 return ret
? ret
: count
;
473 static DEVICE_ATTR(soft_offline_page
, 0644, NULL
, store_soft_offline_page
);
474 static DEVICE_ATTR(hard_offline_page
, 0644, NULL
, store_hard_offline_page
);
476 static __init
int memory_fail_init(void)
480 err
= device_create_file(memory_subsys
.dev_root
,
481 &dev_attr_soft_offline_page
);
483 err
= device_create_file(memory_subsys
.dev_root
,
484 &dev_attr_hard_offline_page
);
488 static inline int memory_fail_init(void)
495 * Note that phys_device is optional. It is here to allow for
496 * differentiation between which *physical* devices each
497 * section belongs to...
499 int __weak
arch_get_memory_phys_device(unsigned long start_pfn
)
505 * A reference for the returned object is held and the reference for the
506 * hinted object is released.
508 struct memory_block
*find_memory_block_hinted(struct mem_section
*section
,
509 struct memory_block
*hint
)
511 int block_id
= base_memory_block_id(__section_nr(section
));
512 struct device
*hintdev
= hint
? &hint
->dev
: NULL
;
515 dev
= subsys_find_device_by_id(&memory_subsys
, block_id
, hintdev
);
517 put_device(&hint
->dev
);
520 return container_of(dev
, struct memory_block
, dev
);
524 * For now, we have a linear search to go find the appropriate
525 * memory_block corresponding to a particular phys_index. If
526 * this gets to be a real problem, we can always use a radix
527 * tree or something here.
529 * This could be made generic for all device subsystems.
531 struct memory_block
*find_memory_block(struct mem_section
*section
)
533 return find_memory_block_hinted(section
, NULL
);
536 static int init_memory_block(struct memory_block
**memory
,
537 struct mem_section
*section
, unsigned long state
)
539 struct memory_block
*mem
;
540 unsigned long start_pfn
;
544 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
548 scn_nr
= __section_nr(section
);
549 mem
->start_section_nr
=
550 base_memory_block_id(scn_nr
) * sections_per_block
;
551 mem
->end_section_nr
= mem
->start_section_nr
+ sections_per_block
- 1;
553 mem
->section_count
++;
554 mutex_init(&mem
->state_mutex
);
555 start_pfn
= section_nr_to_pfn(mem
->start_section_nr
);
556 mem
->phys_device
= arch_get_memory_phys_device(start_pfn
);
558 ret
= register_memory(mem
);
560 ret
= mem_create_simple_file(mem
, phys_index
);
562 ret
= mem_create_simple_file(mem
, end_phys_index
);
564 ret
= mem_create_simple_file(mem
, state
);
566 ret
= mem_create_simple_file(mem
, phys_device
);
568 ret
= mem_create_simple_file(mem
, removable
);
574 static int add_memory_section(int nid
, struct mem_section
*section
,
575 struct memory_block
**mem_p
,
576 unsigned long state
, enum mem_add_context context
)
578 struct memory_block
*mem
= NULL
;
579 int scn_nr
= __section_nr(section
);
582 mutex_lock(&mem_sysfs_mutex
);
584 if (context
== BOOT
) {
585 /* same memory block ? */
587 if (scn_nr
>= (*mem_p
)->start_section_nr
&&
588 scn_nr
<= (*mem_p
)->end_section_nr
) {
590 kobject_get(&mem
->dev
.kobj
);
593 mem
= find_memory_block(section
);
596 mem
->section_count
++;
597 kobject_put(&mem
->dev
.kobj
);
599 ret
= init_memory_block(&mem
, section
, state
);
600 /* store memory_block pointer for next loop */
601 if (!ret
&& context
== BOOT
)
607 if (context
== HOTPLUG
&&
608 mem
->section_count
== sections_per_block
)
609 ret
= register_mem_sect_under_node(mem
, nid
);
612 mutex_unlock(&mem_sysfs_mutex
);
616 int remove_memory_block(unsigned long node_id
, struct mem_section
*section
,
619 struct memory_block
*mem
;
621 mutex_lock(&mem_sysfs_mutex
);
622 mem
= find_memory_block(section
);
623 unregister_mem_sect_under_nodes(mem
, __section_nr(section
));
625 mem
->section_count
--;
626 if (mem
->section_count
== 0) {
627 mem_remove_simple_file(mem
, phys_index
);
628 mem_remove_simple_file(mem
, end_phys_index
);
629 mem_remove_simple_file(mem
, state
);
630 mem_remove_simple_file(mem
, phys_device
);
631 mem_remove_simple_file(mem
, removable
);
632 unregister_memory(mem
);
635 kobject_put(&mem
->dev
.kobj
);
637 mutex_unlock(&mem_sysfs_mutex
);
642 * need an interface for the VM to add new memory regions,
643 * but without onlining it.
645 int register_new_memory(int nid
, struct mem_section
*section
)
647 return add_memory_section(nid
, section
, NULL
, MEM_OFFLINE
, HOTPLUG
);
650 int unregister_memory_section(struct mem_section
*section
)
652 if (!present_section(section
))
655 return remove_memory_block(0, section
, 0);
659 * Initialize the sysfs support for memory devices...
661 int __init
memory_dev_init(void)
666 unsigned long block_sz
;
667 struct memory_block
*mem
= NULL
;
669 ret
= subsys_system_register(&memory_subsys
, NULL
);
673 block_sz
= get_memory_block_size();
674 sections_per_block
= block_sz
/ MIN_MEMORY_BLOCK_SIZE
;
677 * Create entries for memory sections that were found
678 * during boot and have been initialized
680 for (i
= 0; i
< NR_MEM_SECTIONS
; i
++) {
681 if (!present_section_nr(i
))
683 /* don't need to reuse memory_block if only one per block */
684 err
= add_memory_section(0, __nr_to_section(i
),
685 (sections_per_block
== 1) ? NULL
: &mem
,
692 err
= memory_probe_init();
695 err
= memory_fail_init();
698 err
= block_size_init();
703 printk(KERN_ERR
"%s() failed: %d\n", __func__
, ret
);