2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
75 __le32 branch_address
;
77 __le16 transfer_status
;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
96 struct page
*pages
[AR_BUFFERS
];
98 struct descriptor
*descriptors
;
99 dma_addr_t descriptors_bus
;
101 unsigned int last_buffer_index
;
103 struct tasklet_struct tasklet
;
108 typedef int (*descriptor_callback_t
)(struct context
*ctx
,
109 struct descriptor
*d
,
110 struct descriptor
*last
);
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
116 struct descriptor_buffer
{
117 struct list_head list
;
118 dma_addr_t buffer_bus
;
121 struct descriptor buffer
[0];
125 struct fw_ohci
*ohci
;
127 int total_allocation
;
133 * List of page-sized buffers for storing DMA descriptors.
134 * Head of list contains buffers in use and tail of list contains
137 struct list_head buffer_list
;
140 * Pointer to a buffer inside buffer_list that contains the tail
141 * end of the current DMA program.
143 struct descriptor_buffer
*buffer_tail
;
146 * The descriptor containing the branch address of the first
147 * descriptor that has not yet been filled by the device.
149 struct descriptor
*last
;
152 * The last descriptor in the DMA program. It contains the branch
153 * address that must be updated upon appending a new descriptor.
155 struct descriptor
*prev
;
157 descriptor_callback_t callback
;
159 struct tasklet_struct tasklet
;
162 #define IT_HEADER_SY(v) ((v) << 0)
163 #define IT_HEADER_TCODE(v) ((v) << 4)
164 #define IT_HEADER_CHANNEL(v) ((v) << 8)
165 #define IT_HEADER_TAG(v) ((v) << 14)
166 #define IT_HEADER_SPEED(v) ((v) << 16)
167 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
170 struct fw_iso_context base
;
171 struct context context
;
173 size_t header_length
;
174 unsigned long flushing_completions
;
182 #define CONFIG_ROM_SIZE 1024
187 __iomem
char *registers
;
190 int request_generation
; /* for timestamping incoming requests */
192 unsigned int pri_req_max
;
195 bool csr_state_setclear_abdicate
;
199 * Spinlock for accessing fw_ohci data. Never call out of
200 * this driver with this lock held.
204 struct mutex phy_reg_mutex
;
207 dma_addr_t misc_buffer_bus
;
209 struct ar_context ar_request_ctx
;
210 struct ar_context ar_response_ctx
;
211 struct context at_request_ctx
;
212 struct context at_response_ctx
;
214 u32 it_context_support
;
215 u32 it_context_mask
; /* unoccupied IT contexts */
216 struct iso_context
*it_context_list
;
217 u64 ir_context_channels
; /* unoccupied channels */
218 u32 ir_context_support
;
219 u32 ir_context_mask
; /* unoccupied IR contexts */
220 struct iso_context
*ir_context_list
;
221 u64 mc_channels
; /* channels in use by the multichannel IR context */
225 dma_addr_t config_rom_bus
;
226 __be32
*next_config_rom
;
227 dma_addr_t next_config_rom_bus
;
231 dma_addr_t self_id_bus
;
232 struct work_struct bus_reset_work
;
234 u32 self_id_buffer
[512];
237 static inline struct fw_ohci
*fw_ohci(struct fw_card
*card
)
239 return container_of(card
, struct fw_ohci
, card
);
242 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
243 #define IR_CONTEXT_BUFFER_FILL 0x80000000
244 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
245 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
246 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
247 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
249 #define CONTEXT_RUN 0x8000
250 #define CONTEXT_WAKE 0x1000
251 #define CONTEXT_DEAD 0x0800
252 #define CONTEXT_ACTIVE 0x0400
254 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
255 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
256 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
258 #define OHCI1394_REGISTER_SIZE 0x800
259 #define OHCI1394_PCI_HCI_Control 0x40
260 #define SELF_ID_BUF_SIZE 0x800
261 #define OHCI_TCODE_PHY_PACKET 0x0e
262 #define OHCI_VERSION_1_1 0x010010
264 static char ohci_driver_name
[] = KBUILD_MODNAME
;
266 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
267 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
268 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
269 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
270 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
271 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
272 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
274 #define QUIRK_CYCLE_TIMER 1
275 #define QUIRK_RESET_PACKET 2
276 #define QUIRK_BE_HEADERS 4
277 #define QUIRK_NO_1394A 8
278 #define QUIRK_NO_MSI 16
279 #define QUIRK_TI_SLLZ059 32
281 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
282 static const struct {
283 unsigned short vendor
, device
, revision
, flags
;
285 {PCI_VENDOR_ID_AL
, PCI_ANY_ID
, PCI_ANY_ID
,
288 {PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_FW
, PCI_ANY_ID
,
291 {PCI_VENDOR_ID_ATT
, PCI_DEVICE_ID_AGERE_FW643
, 6,
294 {PCI_VENDOR_ID_CREATIVE
, PCI_DEVICE_ID_CREATIVE_SB1394
, PCI_ANY_ID
,
297 {PCI_VENDOR_ID_JMICRON
, PCI_DEVICE_ID_JMICRON_JMB38X_FW
, PCI_ANY_ID
,
300 {PCI_VENDOR_ID_NEC
, PCI_ANY_ID
, PCI_ANY_ID
,
303 {PCI_VENDOR_ID_O2
, PCI_ANY_ID
, PCI_ANY_ID
,
306 {PCI_VENDOR_ID_RICOH
, PCI_ANY_ID
, PCI_ANY_ID
,
307 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
309 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV22
, PCI_ANY_ID
,
310 QUIRK_CYCLE_TIMER
| QUIRK_RESET_PACKET
| QUIRK_NO_1394A
},
312 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB12LV26
, PCI_ANY_ID
,
313 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
315 {PCI_VENDOR_ID_TI
, PCI_DEVICE_ID_TI_TSB82AA2
, PCI_ANY_ID
,
316 QUIRK_RESET_PACKET
| QUIRK_TI_SLLZ059
},
318 {PCI_VENDOR_ID_TI
, PCI_ANY_ID
, PCI_ANY_ID
,
321 {PCI_VENDOR_ID_VIA
, PCI_ANY_ID
, PCI_ANY_ID
,
322 QUIRK_CYCLE_TIMER
| QUIRK_NO_MSI
},
325 /* This overrides anything that was found in ohci_quirks[]. */
326 static int param_quirks
;
327 module_param_named(quirks
, param_quirks
, int, 0644);
328 MODULE_PARM_DESC(quirks
, "Chip quirks (default = 0"
329 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER
)
330 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET
)
331 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS
)
332 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A
)
333 ", disable MSI = " __stringify(QUIRK_NO_MSI
)
334 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059
)
337 #define OHCI_PARAM_DEBUG_AT_AR 1
338 #define OHCI_PARAM_DEBUG_SELFIDS 2
339 #define OHCI_PARAM_DEBUG_IRQS 4
340 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
342 static int param_debug
;
343 module_param_named(debug
, param_debug
, int, 0644);
344 MODULE_PARM_DESC(debug
, "Verbose logging (default = 0"
345 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR
)
346 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS
)
347 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS
)
348 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS
)
349 ", or a combination, or all = -1)");
351 static void log_irqs(struct fw_ohci
*ohci
, u32 evt
)
353 if (likely(!(param_debug
&
354 (OHCI_PARAM_DEBUG_IRQS
| OHCI_PARAM_DEBUG_BUSRESETS
))))
357 if (!(param_debug
& OHCI_PARAM_DEBUG_IRQS
) &&
358 !(evt
& OHCI1394_busReset
))
361 dev_notice(ohci
->card
.device
,
362 "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt
,
363 evt
& OHCI1394_selfIDComplete
? " selfID" : "",
364 evt
& OHCI1394_RQPkt
? " AR_req" : "",
365 evt
& OHCI1394_RSPkt
? " AR_resp" : "",
366 evt
& OHCI1394_reqTxComplete
? " AT_req" : "",
367 evt
& OHCI1394_respTxComplete
? " AT_resp" : "",
368 evt
& OHCI1394_isochRx
? " IR" : "",
369 evt
& OHCI1394_isochTx
? " IT" : "",
370 evt
& OHCI1394_postedWriteErr
? " postedWriteErr" : "",
371 evt
& OHCI1394_cycleTooLong
? " cycleTooLong" : "",
372 evt
& OHCI1394_cycle64Seconds
? " cycle64Seconds" : "",
373 evt
& OHCI1394_cycleInconsistent
? " cycleInconsistent" : "",
374 evt
& OHCI1394_regAccessFail
? " regAccessFail" : "",
375 evt
& OHCI1394_unrecoverableError
? " unrecoverableError" : "",
376 evt
& OHCI1394_busReset
? " busReset" : "",
377 evt
& ~(OHCI1394_selfIDComplete
| OHCI1394_RQPkt
|
378 OHCI1394_RSPkt
| OHCI1394_reqTxComplete
|
379 OHCI1394_respTxComplete
| OHCI1394_isochRx
|
380 OHCI1394_isochTx
| OHCI1394_postedWriteErr
|
381 OHCI1394_cycleTooLong
| OHCI1394_cycle64Seconds
|
382 OHCI1394_cycleInconsistent
|
383 OHCI1394_regAccessFail
| OHCI1394_busReset
)
387 static const char *speed
[] = {
388 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
390 static const char *power
[] = {
391 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
392 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
394 static const char port
[] = { '.', '-', 'p', 'c', };
396 static char _p(u32
*s
, int shift
)
398 return port
[*s
>> shift
& 3];
401 static void log_selfids(struct fw_ohci
*ohci
, int generation
, int self_id_count
)
405 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_SELFIDS
)))
408 dev_notice(ohci
->card
.device
,
409 "%d selfIDs, generation %d, local node ID %04x\n",
410 self_id_count
, generation
, ohci
->node_id
);
412 for (s
= ohci
->self_id_buffer
; self_id_count
--; ++s
)
413 if ((*s
& 1 << 23) == 0)
414 dev_notice(ohci
->card
.device
,
415 "selfID 0: %08x, phy %d [%c%c%c] "
416 "%s gc=%d %s %s%s%s\n",
417 *s
, *s
>> 24 & 63, _p(s
, 6), _p(s
, 4), _p(s
, 2),
418 speed
[*s
>> 14 & 3], *s
>> 16 & 63,
419 power
[*s
>> 8 & 7], *s
>> 22 & 1 ? "L" : "",
420 *s
>> 11 & 1 ? "c" : "", *s
& 2 ? "i" : "");
422 dev_notice(ohci
->card
.device
,
423 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
425 _p(s
, 16), _p(s
, 14), _p(s
, 12), _p(s
, 10),
426 _p(s
, 8), _p(s
, 6), _p(s
, 4), _p(s
, 2));
429 static const char *evts
[] = {
430 [0x00] = "evt_no_status", [0x01] = "-reserved-",
431 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
432 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
433 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
434 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
435 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
436 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
437 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
438 [0x10] = "-reserved-", [0x11] = "ack_complete",
439 [0x12] = "ack_pending ", [0x13] = "-reserved-",
440 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
441 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
442 [0x18] = "-reserved-", [0x19] = "-reserved-",
443 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
444 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
445 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
446 [0x20] = "pending/cancelled",
448 static const char *tcodes
[] = {
449 [0x0] = "QW req", [0x1] = "BW req",
450 [0x2] = "W resp", [0x3] = "-reserved-",
451 [0x4] = "QR req", [0x5] = "BR req",
452 [0x6] = "QR resp", [0x7] = "BR resp",
453 [0x8] = "cycle start", [0x9] = "Lk req",
454 [0xa] = "async stream packet", [0xb] = "Lk resp",
455 [0xc] = "-reserved-", [0xd] = "-reserved-",
456 [0xe] = "link internal", [0xf] = "-reserved-",
459 static void log_ar_at_event(struct fw_ohci
*ohci
,
460 char dir
, int speed
, u32
*header
, int evt
)
462 int tcode
= header
[0] >> 4 & 0xf;
465 if (likely(!(param_debug
& OHCI_PARAM_DEBUG_AT_AR
)))
468 if (unlikely(evt
>= ARRAY_SIZE(evts
)))
471 if (evt
== OHCI1394_evt_bus_reset
) {
472 dev_notice(ohci
->card
.device
,
473 "A%c evt_bus_reset, generation %d\n",
474 dir
, (header
[2] >> 16) & 0xff);
479 case 0x0: case 0x6: case 0x8:
480 snprintf(specific
, sizeof(specific
), " = %08x",
481 be32_to_cpu((__force __be32
)header
[3]));
483 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
484 snprintf(specific
, sizeof(specific
), " %x,%x",
485 header
[3] >> 16, header
[3] & 0xffff);
493 dev_notice(ohci
->card
.device
,
495 dir
, evts
[evt
], tcodes
[tcode
]);
498 dev_notice(ohci
->card
.device
,
499 "A%c %s, PHY %08x %08x\n",
500 dir
, evts
[evt
], header
[1], header
[2]);
502 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
503 dev_notice(ohci
->card
.device
,
504 "A%c spd %x tl %02x, "
507 dir
, speed
, header
[0] >> 10 & 0x3f,
508 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
509 tcodes
[tcode
], header
[1] & 0xffff, header
[2], specific
);
512 dev_notice(ohci
->card
.device
,
513 "A%c spd %x tl %02x, "
516 dir
, speed
, header
[0] >> 10 & 0x3f,
517 header
[1] >> 16, header
[0] >> 16, evts
[evt
],
518 tcodes
[tcode
], specific
);
522 static inline void reg_write(const struct fw_ohci
*ohci
, int offset
, u32 data
)
524 writel(data
, ohci
->registers
+ offset
);
527 static inline u32
reg_read(const struct fw_ohci
*ohci
, int offset
)
529 return readl(ohci
->registers
+ offset
);
532 static inline void flush_writes(const struct fw_ohci
*ohci
)
534 /* Do a dummy read to flush writes. */
535 reg_read(ohci
, OHCI1394_Version
);
539 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
540 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
541 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
542 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
544 static int read_phy_reg(struct fw_ohci
*ohci
, int addr
)
549 reg_write(ohci
, OHCI1394_PhyControl
, OHCI1394_PhyControl_Read(addr
));
550 for (i
= 0; i
< 3 + 100; i
++) {
551 val
= reg_read(ohci
, OHCI1394_PhyControl
);
553 return -ENODEV
; /* Card was ejected. */
555 if (val
& OHCI1394_PhyControl_ReadDone
)
556 return OHCI1394_PhyControl_ReadData(val
);
559 * Try a few times without waiting. Sleeping is necessary
560 * only when the link/PHY interface is busy.
565 dev_err(ohci
->card
.device
, "failed to read phy reg\n");
570 static int write_phy_reg(const struct fw_ohci
*ohci
, int addr
, u32 val
)
574 reg_write(ohci
, OHCI1394_PhyControl
,
575 OHCI1394_PhyControl_Write(addr
, val
));
576 for (i
= 0; i
< 3 + 100; i
++) {
577 val
= reg_read(ohci
, OHCI1394_PhyControl
);
579 return -ENODEV
; /* Card was ejected. */
581 if (!(val
& OHCI1394_PhyControl_WritePending
))
587 dev_err(ohci
->card
.device
, "failed to write phy reg\n");
592 static int update_phy_reg(struct fw_ohci
*ohci
, int addr
,
593 int clear_bits
, int set_bits
)
595 int ret
= read_phy_reg(ohci
, addr
);
600 * The interrupt status bits are cleared by writing a one bit.
601 * Avoid clearing them unless explicitly requested in set_bits.
604 clear_bits
|= PHY_INT_STATUS_BITS
;
606 return write_phy_reg(ohci
, addr
, (ret
& ~clear_bits
) | set_bits
);
609 static int read_paged_phy_reg(struct fw_ohci
*ohci
, int page
, int addr
)
613 ret
= update_phy_reg(ohci
, 7, PHY_PAGE_SELECT
, page
<< 5);
617 return read_phy_reg(ohci
, addr
);
620 static int ohci_read_phy_reg(struct fw_card
*card
, int addr
)
622 struct fw_ohci
*ohci
= fw_ohci(card
);
625 mutex_lock(&ohci
->phy_reg_mutex
);
626 ret
= read_phy_reg(ohci
, addr
);
627 mutex_unlock(&ohci
->phy_reg_mutex
);
632 static int ohci_update_phy_reg(struct fw_card
*card
, int addr
,
633 int clear_bits
, int set_bits
)
635 struct fw_ohci
*ohci
= fw_ohci(card
);
638 mutex_lock(&ohci
->phy_reg_mutex
);
639 ret
= update_phy_reg(ohci
, addr
, clear_bits
, set_bits
);
640 mutex_unlock(&ohci
->phy_reg_mutex
);
645 static inline dma_addr_t
ar_buffer_bus(struct ar_context
*ctx
, unsigned int i
)
647 return page_private(ctx
->pages
[i
]);
650 static void ar_context_link_page(struct ar_context
*ctx
, unsigned int index
)
652 struct descriptor
*d
;
654 d
= &ctx
->descriptors
[index
];
655 d
->branch_address
&= cpu_to_le32(~0xf);
656 d
->res_count
= cpu_to_le16(PAGE_SIZE
);
657 d
->transfer_status
= 0;
659 wmb(); /* finish init of new descriptors before branch_address update */
660 d
= &ctx
->descriptors
[ctx
->last_buffer_index
];
661 d
->branch_address
|= cpu_to_le32(1);
663 ctx
->last_buffer_index
= index
;
665 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
668 static void ar_context_release(struct ar_context
*ctx
)
673 vm_unmap_ram(ctx
->buffer
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
);
675 for (i
= 0; i
< AR_BUFFERS
; i
++)
677 dma_unmap_page(ctx
->ohci
->card
.device
,
678 ar_buffer_bus(ctx
, i
),
679 PAGE_SIZE
, DMA_FROM_DEVICE
);
680 __free_page(ctx
->pages
[i
]);
684 static void ar_context_abort(struct ar_context
*ctx
, const char *error_msg
)
686 struct fw_ohci
*ohci
= ctx
->ohci
;
688 if (reg_read(ohci
, CONTROL_CLEAR(ctx
->regs
)) & CONTEXT_RUN
) {
689 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
692 dev_err(ohci
->card
.device
, "AR error: %s; DMA stopped\n",
695 /* FIXME: restart? */
698 static inline unsigned int ar_next_buffer_index(unsigned int index
)
700 return (index
+ 1) % AR_BUFFERS
;
703 static inline unsigned int ar_prev_buffer_index(unsigned int index
)
705 return (index
- 1 + AR_BUFFERS
) % AR_BUFFERS
;
708 static inline unsigned int ar_first_buffer_index(struct ar_context
*ctx
)
710 return ar_next_buffer_index(ctx
->last_buffer_index
);
714 * We search for the buffer that contains the last AR packet DMA data written
717 static unsigned int ar_search_last_active_buffer(struct ar_context
*ctx
,
718 unsigned int *buffer_offset
)
720 unsigned int i
, next_i
, last
= ctx
->last_buffer_index
;
721 __le16 res_count
, next_res_count
;
723 i
= ar_first_buffer_index(ctx
);
724 res_count
= ACCESS_ONCE(ctx
->descriptors
[i
].res_count
);
726 /* A buffer that is not yet completely filled must be the last one. */
727 while (i
!= last
&& res_count
== 0) {
729 /* Peek at the next descriptor. */
730 next_i
= ar_next_buffer_index(i
);
731 rmb(); /* read descriptors in order */
732 next_res_count
= ACCESS_ONCE(
733 ctx
->descriptors
[next_i
].res_count
);
735 * If the next descriptor is still empty, we must stop at this
738 if (next_res_count
== cpu_to_le16(PAGE_SIZE
)) {
740 * The exception is when the DMA data for one packet is
741 * split over three buffers; in this case, the middle
742 * buffer's descriptor might be never updated by the
743 * controller and look still empty, and we have to peek
746 if (MAX_AR_PACKET_SIZE
> PAGE_SIZE
&& i
!= last
) {
747 next_i
= ar_next_buffer_index(next_i
);
749 next_res_count
= ACCESS_ONCE(
750 ctx
->descriptors
[next_i
].res_count
);
751 if (next_res_count
!= cpu_to_le16(PAGE_SIZE
))
752 goto next_buffer_is_active
;
758 next_buffer_is_active
:
760 res_count
= next_res_count
;
763 rmb(); /* read res_count before the DMA data */
765 *buffer_offset
= PAGE_SIZE
- le16_to_cpu(res_count
);
766 if (*buffer_offset
> PAGE_SIZE
) {
768 ar_context_abort(ctx
, "corrupted descriptor");
774 static void ar_sync_buffers_for_cpu(struct ar_context
*ctx
,
775 unsigned int end_buffer_index
,
776 unsigned int end_buffer_offset
)
780 i
= ar_first_buffer_index(ctx
);
781 while (i
!= end_buffer_index
) {
782 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
783 ar_buffer_bus(ctx
, i
),
784 PAGE_SIZE
, DMA_FROM_DEVICE
);
785 i
= ar_next_buffer_index(i
);
787 if (end_buffer_offset
> 0)
788 dma_sync_single_for_cpu(ctx
->ohci
->card
.device
,
789 ar_buffer_bus(ctx
, i
),
790 end_buffer_offset
, DMA_FROM_DEVICE
);
793 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
794 #define cond_le32_to_cpu(v) \
795 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
797 #define cond_le32_to_cpu(v) le32_to_cpu(v)
800 static __le32
*handle_ar_packet(struct ar_context
*ctx
, __le32
*buffer
)
802 struct fw_ohci
*ohci
= ctx
->ohci
;
804 u32 status
, length
, tcode
;
807 p
.header
[0] = cond_le32_to_cpu(buffer
[0]);
808 p
.header
[1] = cond_le32_to_cpu(buffer
[1]);
809 p
.header
[2] = cond_le32_to_cpu(buffer
[2]);
811 tcode
= (p
.header
[0] >> 4) & 0x0f;
813 case TCODE_WRITE_QUADLET_REQUEST
:
814 case TCODE_READ_QUADLET_RESPONSE
:
815 p
.header
[3] = (__force __u32
) buffer
[3];
816 p
.header_length
= 16;
817 p
.payload_length
= 0;
820 case TCODE_READ_BLOCK_REQUEST
:
821 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
822 p
.header_length
= 16;
823 p
.payload_length
= 0;
826 case TCODE_WRITE_BLOCK_REQUEST
:
827 case TCODE_READ_BLOCK_RESPONSE
:
828 case TCODE_LOCK_REQUEST
:
829 case TCODE_LOCK_RESPONSE
:
830 p
.header
[3] = cond_le32_to_cpu(buffer
[3]);
831 p
.header_length
= 16;
832 p
.payload_length
= p
.header
[3] >> 16;
833 if (p
.payload_length
> MAX_ASYNC_PAYLOAD
) {
834 ar_context_abort(ctx
, "invalid packet length");
839 case TCODE_WRITE_RESPONSE
:
840 case TCODE_READ_QUADLET_REQUEST
:
841 case OHCI_TCODE_PHY_PACKET
:
842 p
.header_length
= 12;
843 p
.payload_length
= 0;
847 ar_context_abort(ctx
, "invalid tcode");
851 p
.payload
= (void *) buffer
+ p
.header_length
;
853 /* FIXME: What to do about evt_* errors? */
854 length
= (p
.header_length
+ p
.payload_length
+ 3) / 4;
855 status
= cond_le32_to_cpu(buffer
[length
]);
856 evt
= (status
>> 16) & 0x1f;
859 p
.speed
= (status
>> 21) & 0x7;
860 p
.timestamp
= status
& 0xffff;
861 p
.generation
= ohci
->request_generation
;
863 log_ar_at_event(ohci
, 'R', p
.speed
, p
.header
, evt
);
866 * Several controllers, notably from NEC and VIA, forget to
867 * write ack_complete status at PHY packet reception.
869 if (evt
== OHCI1394_evt_no_status
&&
870 (p
.header
[0] & 0xff) == (OHCI1394_phy_tcode
<< 4))
871 p
.ack
= ACK_COMPLETE
;
874 * The OHCI bus reset handler synthesizes a PHY packet with
875 * the new generation number when a bus reset happens (see
876 * section 8.4.2.3). This helps us determine when a request
877 * was received and make sure we send the response in the same
878 * generation. We only need this for requests; for responses
879 * we use the unique tlabel for finding the matching
882 * Alas some chips sometimes emit bus reset packets with a
883 * wrong generation. We set the correct generation for these
884 * at a slightly incorrect time (in bus_reset_work).
886 if (evt
== OHCI1394_evt_bus_reset
) {
887 if (!(ohci
->quirks
& QUIRK_RESET_PACKET
))
888 ohci
->request_generation
= (p
.header
[2] >> 16) & 0xff;
889 } else if (ctx
== &ohci
->ar_request_ctx
) {
890 fw_core_handle_request(&ohci
->card
, &p
);
892 fw_core_handle_response(&ohci
->card
, &p
);
895 return buffer
+ length
+ 1;
898 static void *handle_ar_packets(struct ar_context
*ctx
, void *p
, void *end
)
903 next
= handle_ar_packet(ctx
, p
);
912 static void ar_recycle_buffers(struct ar_context
*ctx
, unsigned int end_buffer
)
916 i
= ar_first_buffer_index(ctx
);
917 while (i
!= end_buffer
) {
918 dma_sync_single_for_device(ctx
->ohci
->card
.device
,
919 ar_buffer_bus(ctx
, i
),
920 PAGE_SIZE
, DMA_FROM_DEVICE
);
921 ar_context_link_page(ctx
, i
);
922 i
= ar_next_buffer_index(i
);
926 static void ar_context_tasklet(unsigned long data
)
928 struct ar_context
*ctx
= (struct ar_context
*)data
;
929 unsigned int end_buffer_index
, end_buffer_offset
;
936 end_buffer_index
= ar_search_last_active_buffer(ctx
,
938 ar_sync_buffers_for_cpu(ctx
, end_buffer_index
, end_buffer_offset
);
939 end
= ctx
->buffer
+ end_buffer_index
* PAGE_SIZE
+ end_buffer_offset
;
941 if (end_buffer_index
< ar_first_buffer_index(ctx
)) {
943 * The filled part of the overall buffer wraps around; handle
944 * all packets up to the buffer end here. If the last packet
945 * wraps around, its tail will be visible after the buffer end
946 * because the buffer start pages are mapped there again.
948 void *buffer_end
= ctx
->buffer
+ AR_BUFFERS
* PAGE_SIZE
;
949 p
= handle_ar_packets(ctx
, p
, buffer_end
);
952 /* adjust p to point back into the actual buffer */
953 p
-= AR_BUFFERS
* PAGE_SIZE
;
956 p
= handle_ar_packets(ctx
, p
, end
);
959 ar_context_abort(ctx
, "inconsistent descriptor");
964 ar_recycle_buffers(ctx
, end_buffer_index
);
972 static int ar_context_init(struct ar_context
*ctx
, struct fw_ohci
*ohci
,
973 unsigned int descriptors_offset
, u32 regs
)
977 struct page
*pages
[AR_BUFFERS
+ AR_WRAPAROUND_PAGES
];
978 struct descriptor
*d
;
982 tasklet_init(&ctx
->tasklet
, ar_context_tasklet
, (unsigned long)ctx
);
984 for (i
= 0; i
< AR_BUFFERS
; i
++) {
985 ctx
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
);
988 dma_addr
= dma_map_page(ohci
->card
.device
, ctx
->pages
[i
],
989 0, PAGE_SIZE
, DMA_FROM_DEVICE
);
990 if (dma_mapping_error(ohci
->card
.device
, dma_addr
)) {
991 __free_page(ctx
->pages
[i
]);
992 ctx
->pages
[i
] = NULL
;
995 set_page_private(ctx
->pages
[i
], dma_addr
);
998 for (i
= 0; i
< AR_BUFFERS
; i
++)
999 pages
[i
] = ctx
->pages
[i
];
1000 for (i
= 0; i
< AR_WRAPAROUND_PAGES
; i
++)
1001 pages
[AR_BUFFERS
+ i
] = ctx
->pages
[i
];
1002 ctx
->buffer
= vm_map_ram(pages
, AR_BUFFERS
+ AR_WRAPAROUND_PAGES
,
1007 ctx
->descriptors
= ohci
->misc_buffer
+ descriptors_offset
;
1008 ctx
->descriptors_bus
= ohci
->misc_buffer_bus
+ descriptors_offset
;
1010 for (i
= 0; i
< AR_BUFFERS
; i
++) {
1011 d
= &ctx
->descriptors
[i
];
1012 d
->req_count
= cpu_to_le16(PAGE_SIZE
);
1013 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
1015 DESCRIPTOR_BRANCH_ALWAYS
);
1016 d
->data_address
= cpu_to_le32(ar_buffer_bus(ctx
, i
));
1017 d
->branch_address
= cpu_to_le32(ctx
->descriptors_bus
+
1018 ar_next_buffer_index(i
) * sizeof(struct descriptor
));
1024 ar_context_release(ctx
);
1029 static void ar_context_run(struct ar_context
*ctx
)
1033 for (i
= 0; i
< AR_BUFFERS
; i
++)
1034 ar_context_link_page(ctx
, i
);
1036 ctx
->pointer
= ctx
->buffer
;
1038 reg_write(ctx
->ohci
, COMMAND_PTR(ctx
->regs
), ctx
->descriptors_bus
| 1);
1039 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
);
1042 static struct descriptor
*find_branch_descriptor(struct descriptor
*d
, int z
)
1046 branch
= d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
);
1048 /* figure out which descriptor the branch address goes in */
1049 if (z
== 2 && branch
== cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
1055 static void context_tasklet(unsigned long data
)
1057 struct context
*ctx
= (struct context
*) data
;
1058 struct descriptor
*d
, *last
;
1061 struct descriptor_buffer
*desc
;
1063 desc
= list_entry(ctx
->buffer_list
.next
,
1064 struct descriptor_buffer
, list
);
1066 while (last
->branch_address
!= 0) {
1067 struct descriptor_buffer
*old_desc
= desc
;
1068 address
= le32_to_cpu(last
->branch_address
);
1071 ctx
->current_bus
= address
;
1073 /* If the branch address points to a buffer outside of the
1074 * current buffer, advance to the next buffer. */
1075 if (address
< desc
->buffer_bus
||
1076 address
>= desc
->buffer_bus
+ desc
->used
)
1077 desc
= list_entry(desc
->list
.next
,
1078 struct descriptor_buffer
, list
);
1079 d
= desc
->buffer
+ (address
- desc
->buffer_bus
) / sizeof(*d
);
1080 last
= find_branch_descriptor(d
, z
);
1082 if (!ctx
->callback(ctx
, d
, last
))
1085 if (old_desc
!= desc
) {
1086 /* If we've advanced to the next buffer, move the
1087 * previous buffer to the free list. */
1088 unsigned long flags
;
1090 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1091 list_move_tail(&old_desc
->list
, &ctx
->buffer_list
);
1092 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1099 * Allocate a new buffer and add it to the list of free buffers for this
1100 * context. Must be called with ohci->lock held.
1102 static int context_add_buffer(struct context
*ctx
)
1104 struct descriptor_buffer
*desc
;
1105 dma_addr_t
uninitialized_var(bus_addr
);
1109 * 16MB of descriptors should be far more than enough for any DMA
1110 * program. This will catch run-away userspace or DoS attacks.
1112 if (ctx
->total_allocation
>= 16*1024*1024)
1115 desc
= dma_alloc_coherent(ctx
->ohci
->card
.device
, PAGE_SIZE
,
1116 &bus_addr
, GFP_ATOMIC
);
1120 offset
= (void *)&desc
->buffer
- (void *)desc
;
1121 desc
->buffer_size
= PAGE_SIZE
- offset
;
1122 desc
->buffer_bus
= bus_addr
+ offset
;
1125 list_add_tail(&desc
->list
, &ctx
->buffer_list
);
1126 ctx
->total_allocation
+= PAGE_SIZE
;
1131 static int context_init(struct context
*ctx
, struct fw_ohci
*ohci
,
1132 u32 regs
, descriptor_callback_t callback
)
1136 ctx
->total_allocation
= 0;
1138 INIT_LIST_HEAD(&ctx
->buffer_list
);
1139 if (context_add_buffer(ctx
) < 0)
1142 ctx
->buffer_tail
= list_entry(ctx
->buffer_list
.next
,
1143 struct descriptor_buffer
, list
);
1145 tasklet_init(&ctx
->tasklet
, context_tasklet
, (unsigned long)ctx
);
1146 ctx
->callback
= callback
;
1149 * We put a dummy descriptor in the buffer that has a NULL
1150 * branch address and looks like it's been sent. That way we
1151 * have a descriptor to append DMA programs to.
1153 memset(ctx
->buffer_tail
->buffer
, 0, sizeof(*ctx
->buffer_tail
->buffer
));
1154 ctx
->buffer_tail
->buffer
->control
= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
);
1155 ctx
->buffer_tail
->buffer
->transfer_status
= cpu_to_le16(0x8011);
1156 ctx
->buffer_tail
->used
+= sizeof(*ctx
->buffer_tail
->buffer
);
1157 ctx
->last
= ctx
->buffer_tail
->buffer
;
1158 ctx
->prev
= ctx
->buffer_tail
->buffer
;
1163 static void context_release(struct context
*ctx
)
1165 struct fw_card
*card
= &ctx
->ohci
->card
;
1166 struct descriptor_buffer
*desc
, *tmp
;
1168 list_for_each_entry_safe(desc
, tmp
, &ctx
->buffer_list
, list
)
1169 dma_free_coherent(card
->device
, PAGE_SIZE
, desc
,
1171 ((void *)&desc
->buffer
- (void *)desc
));
1174 /* Must be called with ohci->lock held */
1175 static struct descriptor
*context_get_descriptors(struct context
*ctx
,
1176 int z
, dma_addr_t
*d_bus
)
1178 struct descriptor
*d
= NULL
;
1179 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1181 if (z
* sizeof(*d
) > desc
->buffer_size
)
1184 if (z
* sizeof(*d
) > desc
->buffer_size
- desc
->used
) {
1185 /* No room for the descriptor in this buffer, so advance to the
1188 if (desc
->list
.next
== &ctx
->buffer_list
) {
1189 /* If there is no free buffer next in the list,
1191 if (context_add_buffer(ctx
) < 0)
1194 desc
= list_entry(desc
->list
.next
,
1195 struct descriptor_buffer
, list
);
1196 ctx
->buffer_tail
= desc
;
1199 d
= desc
->buffer
+ desc
->used
/ sizeof(*d
);
1200 memset(d
, 0, z
* sizeof(*d
));
1201 *d_bus
= desc
->buffer_bus
+ desc
->used
;
1206 static void context_run(struct context
*ctx
, u32 extra
)
1208 struct fw_ohci
*ohci
= ctx
->ohci
;
1210 reg_write(ohci
, COMMAND_PTR(ctx
->regs
),
1211 le32_to_cpu(ctx
->last
->branch_address
));
1212 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), ~0);
1213 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_RUN
| extra
);
1214 ctx
->running
= true;
1218 static void context_append(struct context
*ctx
,
1219 struct descriptor
*d
, int z
, int extra
)
1222 struct descriptor_buffer
*desc
= ctx
->buffer_tail
;
1224 d_bus
= desc
->buffer_bus
+ (d
- desc
->buffer
) * sizeof(*d
);
1226 desc
->used
+= (z
+ extra
) * sizeof(*d
);
1228 wmb(); /* finish init of new descriptors before branch_address update */
1229 ctx
->prev
->branch_address
= cpu_to_le32(d_bus
| z
);
1230 ctx
->prev
= find_branch_descriptor(d
, z
);
1233 static void context_stop(struct context
*ctx
)
1235 struct fw_ohci
*ohci
= ctx
->ohci
;
1239 reg_write(ohci
, CONTROL_CLEAR(ctx
->regs
), CONTEXT_RUN
);
1240 ctx
->running
= false;
1242 for (i
= 0; i
< 1000; i
++) {
1243 reg
= reg_read(ohci
, CONTROL_SET(ctx
->regs
));
1244 if ((reg
& CONTEXT_ACTIVE
) == 0)
1250 dev_err(ohci
->card
.device
, "DMA context still active (0x%08x)\n", reg
);
1253 struct driver_data
{
1255 struct fw_packet
*packet
;
1259 * This function apppends a packet to the DMA queue for transmission.
1260 * Must always be called with the ochi->lock held to ensure proper
1261 * generation handling and locking around packet queue manipulation.
1263 static int at_context_queue_packet(struct context
*ctx
,
1264 struct fw_packet
*packet
)
1266 struct fw_ohci
*ohci
= ctx
->ohci
;
1267 dma_addr_t d_bus
, uninitialized_var(payload_bus
);
1268 struct driver_data
*driver_data
;
1269 struct descriptor
*d
, *last
;
1273 d
= context_get_descriptors(ctx
, 4, &d_bus
);
1275 packet
->ack
= RCODE_SEND_ERROR
;
1279 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
1280 d
[0].res_count
= cpu_to_le16(packet
->timestamp
);
1283 * The DMA format for asyncronous link packets is different
1284 * from the IEEE1394 layout, so shift the fields around
1288 tcode
= (packet
->header
[0] >> 4) & 0x0f;
1289 header
= (__le32
*) &d
[1];
1291 case TCODE_WRITE_QUADLET_REQUEST
:
1292 case TCODE_WRITE_BLOCK_REQUEST
:
1293 case TCODE_WRITE_RESPONSE
:
1294 case TCODE_READ_QUADLET_REQUEST
:
1295 case TCODE_READ_BLOCK_REQUEST
:
1296 case TCODE_READ_QUADLET_RESPONSE
:
1297 case TCODE_READ_BLOCK_RESPONSE
:
1298 case TCODE_LOCK_REQUEST
:
1299 case TCODE_LOCK_RESPONSE
:
1300 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1301 (packet
->speed
<< 16));
1302 header
[1] = cpu_to_le32((packet
->header
[1] & 0xffff) |
1303 (packet
->header
[0] & 0xffff0000));
1304 header
[2] = cpu_to_le32(packet
->header
[2]);
1306 if (TCODE_IS_BLOCK_PACKET(tcode
))
1307 header
[3] = cpu_to_le32(packet
->header
[3]);
1309 header
[3] = (__force __le32
) packet
->header
[3];
1311 d
[0].req_count
= cpu_to_le16(packet
->header_length
);
1314 case TCODE_LINK_INTERNAL
:
1315 header
[0] = cpu_to_le32((OHCI1394_phy_tcode
<< 4) |
1316 (packet
->speed
<< 16));
1317 header
[1] = cpu_to_le32(packet
->header
[1]);
1318 header
[2] = cpu_to_le32(packet
->header
[2]);
1319 d
[0].req_count
= cpu_to_le16(12);
1321 if (is_ping_packet(&packet
->header
[1]))
1322 d
[0].control
|= cpu_to_le16(DESCRIPTOR_PING
);
1325 case TCODE_STREAM_DATA
:
1326 header
[0] = cpu_to_le32((packet
->header
[0] & 0xffff) |
1327 (packet
->speed
<< 16));
1328 header
[1] = cpu_to_le32(packet
->header
[0] & 0xffff0000);
1329 d
[0].req_count
= cpu_to_le16(8);
1334 packet
->ack
= RCODE_SEND_ERROR
;
1338 BUILD_BUG_ON(sizeof(struct driver_data
) > sizeof(struct descriptor
));
1339 driver_data
= (struct driver_data
*) &d
[3];
1340 driver_data
->packet
= packet
;
1341 packet
->driver_data
= driver_data
;
1343 if (packet
->payload_length
> 0) {
1344 if (packet
->payload_length
> sizeof(driver_data
->inline_data
)) {
1345 payload_bus
= dma_map_single(ohci
->card
.device
,
1347 packet
->payload_length
,
1349 if (dma_mapping_error(ohci
->card
.device
, payload_bus
)) {
1350 packet
->ack
= RCODE_SEND_ERROR
;
1353 packet
->payload_bus
= payload_bus
;
1354 packet
->payload_mapped
= true;
1356 memcpy(driver_data
->inline_data
, packet
->payload
,
1357 packet
->payload_length
);
1358 payload_bus
= d_bus
+ 3 * sizeof(*d
);
1361 d
[2].req_count
= cpu_to_le16(packet
->payload_length
);
1362 d
[2].data_address
= cpu_to_le32(payload_bus
);
1370 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
1371 DESCRIPTOR_IRQ_ALWAYS
|
1372 DESCRIPTOR_BRANCH_ALWAYS
);
1374 /* FIXME: Document how the locking works. */
1375 if (ohci
->generation
!= packet
->generation
) {
1376 if (packet
->payload_mapped
)
1377 dma_unmap_single(ohci
->card
.device
, payload_bus
,
1378 packet
->payload_length
, DMA_TO_DEVICE
);
1379 packet
->ack
= RCODE_GENERATION
;
1383 context_append(ctx
, d
, z
, 4 - z
);
1386 reg_write(ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
1388 context_run(ctx
, 0);
1393 static void at_context_flush(struct context
*ctx
)
1395 tasklet_disable(&ctx
->tasklet
);
1397 ctx
->flushing
= true;
1398 context_tasklet((unsigned long)ctx
);
1399 ctx
->flushing
= false;
1401 tasklet_enable(&ctx
->tasklet
);
1404 static int handle_at_packet(struct context
*context
,
1405 struct descriptor
*d
,
1406 struct descriptor
*last
)
1408 struct driver_data
*driver_data
;
1409 struct fw_packet
*packet
;
1410 struct fw_ohci
*ohci
= context
->ohci
;
1413 if (last
->transfer_status
== 0 && !context
->flushing
)
1414 /* This descriptor isn't done yet, stop iteration. */
1417 driver_data
= (struct driver_data
*) &d
[3];
1418 packet
= driver_data
->packet
;
1420 /* This packet was cancelled, just continue. */
1423 if (packet
->payload_mapped
)
1424 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
1425 packet
->payload_length
, DMA_TO_DEVICE
);
1427 evt
= le16_to_cpu(last
->transfer_status
) & 0x1f;
1428 packet
->timestamp
= le16_to_cpu(last
->res_count
);
1430 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, evt
);
1433 case OHCI1394_evt_timeout
:
1434 /* Async response transmit timed out. */
1435 packet
->ack
= RCODE_CANCELLED
;
1438 case OHCI1394_evt_flushed
:
1440 * The packet was flushed should give same error as
1441 * when we try to use a stale generation count.
1443 packet
->ack
= RCODE_GENERATION
;
1446 case OHCI1394_evt_missing_ack
:
1447 if (context
->flushing
)
1448 packet
->ack
= RCODE_GENERATION
;
1451 * Using a valid (current) generation count, but the
1452 * node is not on the bus or not sending acks.
1454 packet
->ack
= RCODE_NO_ACK
;
1458 case ACK_COMPLETE
+ 0x10:
1459 case ACK_PENDING
+ 0x10:
1460 case ACK_BUSY_X
+ 0x10:
1461 case ACK_BUSY_A
+ 0x10:
1462 case ACK_BUSY_B
+ 0x10:
1463 case ACK_DATA_ERROR
+ 0x10:
1464 case ACK_TYPE_ERROR
+ 0x10:
1465 packet
->ack
= evt
- 0x10;
1468 case OHCI1394_evt_no_status
:
1469 if (context
->flushing
) {
1470 packet
->ack
= RCODE_GENERATION
;
1476 packet
->ack
= RCODE_SEND_ERROR
;
1480 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
1485 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1486 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1487 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1488 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1489 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1491 static void handle_local_rom(struct fw_ohci
*ohci
,
1492 struct fw_packet
*packet
, u32 csr
)
1494 struct fw_packet response
;
1495 int tcode
, length
, i
;
1497 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1498 if (TCODE_IS_BLOCK_PACKET(tcode
))
1499 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1503 i
= csr
- CSR_CONFIG_ROM
;
1504 if (i
+ length
> CONFIG_ROM_SIZE
) {
1505 fw_fill_response(&response
, packet
->header
,
1506 RCODE_ADDRESS_ERROR
, NULL
, 0);
1507 } else if (!TCODE_IS_READ_REQUEST(tcode
)) {
1508 fw_fill_response(&response
, packet
->header
,
1509 RCODE_TYPE_ERROR
, NULL
, 0);
1511 fw_fill_response(&response
, packet
->header
, RCODE_COMPLETE
,
1512 (void *) ohci
->config_rom
+ i
, length
);
1515 fw_core_handle_response(&ohci
->card
, &response
);
1518 static void handle_local_lock(struct fw_ohci
*ohci
,
1519 struct fw_packet
*packet
, u32 csr
)
1521 struct fw_packet response
;
1522 int tcode
, length
, ext_tcode
, sel
, try;
1523 __be32
*payload
, lock_old
;
1524 u32 lock_arg
, lock_data
;
1526 tcode
= HEADER_GET_TCODE(packet
->header
[0]);
1527 length
= HEADER_GET_DATA_LENGTH(packet
->header
[3]);
1528 payload
= packet
->payload
;
1529 ext_tcode
= HEADER_GET_EXTENDED_TCODE(packet
->header
[3]);
1531 if (tcode
== TCODE_LOCK_REQUEST
&&
1532 ext_tcode
== EXTCODE_COMPARE_SWAP
&& length
== 8) {
1533 lock_arg
= be32_to_cpu(payload
[0]);
1534 lock_data
= be32_to_cpu(payload
[1]);
1535 } else if (tcode
== TCODE_READ_QUADLET_REQUEST
) {
1539 fw_fill_response(&response
, packet
->header
,
1540 RCODE_TYPE_ERROR
, NULL
, 0);
1544 sel
= (csr
- CSR_BUS_MANAGER_ID
) / 4;
1545 reg_write(ohci
, OHCI1394_CSRData
, lock_data
);
1546 reg_write(ohci
, OHCI1394_CSRCompareData
, lock_arg
);
1547 reg_write(ohci
, OHCI1394_CSRControl
, sel
);
1549 for (try = 0; try < 20; try++)
1550 if (reg_read(ohci
, OHCI1394_CSRControl
) & 0x80000000) {
1551 lock_old
= cpu_to_be32(reg_read(ohci
,
1553 fw_fill_response(&response
, packet
->header
,
1555 &lock_old
, sizeof(lock_old
));
1559 dev_err(ohci
->card
.device
, "swap not done (CSR lock timeout)\n");
1560 fw_fill_response(&response
, packet
->header
, RCODE_BUSY
, NULL
, 0);
1563 fw_core_handle_response(&ohci
->card
, &response
);
1566 static void handle_local_request(struct context
*ctx
, struct fw_packet
*packet
)
1570 if (ctx
== &ctx
->ohci
->at_request_ctx
) {
1571 packet
->ack
= ACK_PENDING
;
1572 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1576 ((unsigned long long)
1577 HEADER_GET_OFFSET_HIGH(packet
->header
[1]) << 32) |
1579 csr
= offset
- CSR_REGISTER_BASE
;
1581 /* Handle config rom reads. */
1582 if (csr
>= CSR_CONFIG_ROM
&& csr
< CSR_CONFIG_ROM_END
)
1583 handle_local_rom(ctx
->ohci
, packet
, csr
);
1585 case CSR_BUS_MANAGER_ID
:
1586 case CSR_BANDWIDTH_AVAILABLE
:
1587 case CSR_CHANNELS_AVAILABLE_HI
:
1588 case CSR_CHANNELS_AVAILABLE_LO
:
1589 handle_local_lock(ctx
->ohci
, packet
, csr
);
1592 if (ctx
== &ctx
->ohci
->at_request_ctx
)
1593 fw_core_handle_request(&ctx
->ohci
->card
, packet
);
1595 fw_core_handle_response(&ctx
->ohci
->card
, packet
);
1599 if (ctx
== &ctx
->ohci
->at_response_ctx
) {
1600 packet
->ack
= ACK_COMPLETE
;
1601 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1605 static void at_context_transmit(struct context
*ctx
, struct fw_packet
*packet
)
1607 unsigned long flags
;
1610 spin_lock_irqsave(&ctx
->ohci
->lock
, flags
);
1612 if (HEADER_GET_DESTINATION(packet
->header
[0]) == ctx
->ohci
->node_id
&&
1613 ctx
->ohci
->generation
== packet
->generation
) {
1614 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1615 handle_local_request(ctx
, packet
);
1619 ret
= at_context_queue_packet(ctx
, packet
);
1620 spin_unlock_irqrestore(&ctx
->ohci
->lock
, flags
);
1623 packet
->callback(packet
, &ctx
->ohci
->card
, packet
->ack
);
1627 static void detect_dead_context(struct fw_ohci
*ohci
,
1628 const char *name
, unsigned int regs
)
1632 ctl
= reg_read(ohci
, CONTROL_SET(regs
));
1633 if (ctl
& CONTEXT_DEAD
)
1634 dev_err(ohci
->card
.device
,
1635 "DMA context %s has stopped, error code: %s\n",
1636 name
, evts
[ctl
& 0x1f]);
1639 static void handle_dead_contexts(struct fw_ohci
*ohci
)
1644 detect_dead_context(ohci
, "ATReq", OHCI1394_AsReqTrContextBase
);
1645 detect_dead_context(ohci
, "ATRsp", OHCI1394_AsRspTrContextBase
);
1646 detect_dead_context(ohci
, "ARReq", OHCI1394_AsReqRcvContextBase
);
1647 detect_dead_context(ohci
, "ARRsp", OHCI1394_AsRspRcvContextBase
);
1648 for (i
= 0; i
< 32; ++i
) {
1649 if (!(ohci
->it_context_support
& (1 << i
)))
1651 sprintf(name
, "IT%u", i
);
1652 detect_dead_context(ohci
, name
, OHCI1394_IsoXmitContextBase(i
));
1654 for (i
= 0; i
< 32; ++i
) {
1655 if (!(ohci
->ir_context_support
& (1 << i
)))
1657 sprintf(name
, "IR%u", i
);
1658 detect_dead_context(ohci
, name
, OHCI1394_IsoRcvContextBase(i
));
1660 /* TODO: maybe try to flush and restart the dead contexts */
1663 static u32
cycle_timer_ticks(u32 cycle_timer
)
1667 ticks
= cycle_timer
& 0xfff;
1668 ticks
+= 3072 * ((cycle_timer
>> 12) & 0x1fff);
1669 ticks
+= (3072 * 8000) * (cycle_timer
>> 25);
1675 * Some controllers exhibit one or more of the following bugs when updating the
1676 * iso cycle timer register:
1677 * - When the lowest six bits are wrapping around to zero, a read that happens
1678 * at the same time will return garbage in the lowest ten bits.
1679 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1680 * not incremented for about 60 ns.
1681 * - Occasionally, the entire register reads zero.
1683 * To catch these, we read the register three times and ensure that the
1684 * difference between each two consecutive reads is approximately the same, i.e.
1685 * less than twice the other. Furthermore, any negative difference indicates an
1686 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1687 * execute, so we have enough precision to compute the ratio of the differences.)
1689 static u32
get_cycle_time(struct fw_ohci
*ohci
)
1696 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1698 if (ohci
->quirks
& QUIRK_CYCLE_TIMER
) {
1701 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1705 c2
= reg_read(ohci
, OHCI1394_IsochronousCycleTimer
);
1706 t0
= cycle_timer_ticks(c0
);
1707 t1
= cycle_timer_ticks(c1
);
1708 t2
= cycle_timer_ticks(c2
);
1711 } while ((diff01
<= 0 || diff12
<= 0 ||
1712 diff01
/ diff12
>= 2 || diff12
/ diff01
>= 2)
1720 * This function has to be called at least every 64 seconds. The bus_time
1721 * field stores not only the upper 25 bits of the BUS_TIME register but also
1722 * the most significant bit of the cycle timer in bit 6 so that we can detect
1723 * changes in this bit.
1725 static u32
update_bus_time(struct fw_ohci
*ohci
)
1727 u32 cycle_time_seconds
= get_cycle_time(ohci
) >> 25;
1729 if ((ohci
->bus_time
& 0x40) != (cycle_time_seconds
& 0x40))
1730 ohci
->bus_time
+= 0x40;
1732 return ohci
->bus_time
| cycle_time_seconds
;
1735 static int get_status_for_port(struct fw_ohci
*ohci
, int port_index
)
1739 mutex_lock(&ohci
->phy_reg_mutex
);
1740 reg
= write_phy_reg(ohci
, 7, port_index
);
1742 reg
= read_phy_reg(ohci
, 8);
1743 mutex_unlock(&ohci
->phy_reg_mutex
);
1747 switch (reg
& 0x0f) {
1749 return 2; /* is child node (connected to parent node) */
1751 return 3; /* is parent node (connected to child node) */
1753 return 1; /* not connected */
1756 static int get_self_id_pos(struct fw_ohci
*ohci
, u32 self_id
,
1762 for (i
= 0; i
< self_id_count
; i
++) {
1763 entry
= ohci
->self_id_buffer
[i
];
1764 if ((self_id
& 0xff000000) == (entry
& 0xff000000))
1766 if ((self_id
& 0xff000000) < (entry
& 0xff000000))
1773 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1774 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1775 * Construct the selfID from phy register contents.
1776 * FIXME: How to determine the selfID.i flag?
1778 static int find_and_insert_self_id(struct fw_ohci
*ohci
, int self_id_count
)
1780 int reg
, i
, pos
, status
;
1781 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1782 u32 self_id
= 0x8040c800;
1784 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1785 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1786 dev_notice(ohci
->card
.device
,
1787 "node ID not valid, new bus reset in progress\n");
1790 self_id
|= ((reg
& 0x3f) << 24); /* phy ID */
1792 reg
= ohci_read_phy_reg(&ohci
->card
, 4);
1795 self_id
|= ((reg
& 0x07) << 8); /* power class */
1797 reg
= ohci_read_phy_reg(&ohci
->card
, 1);
1800 self_id
|= ((reg
& 0x3f) << 16); /* gap count */
1802 for (i
= 0; i
< 3; i
++) {
1803 status
= get_status_for_port(ohci
, i
);
1806 self_id
|= ((status
& 0x3) << (6 - (i
* 2)));
1809 pos
= get_self_id_pos(ohci
, self_id
, self_id_count
);
1811 memmove(&(ohci
->self_id_buffer
[pos
+1]),
1812 &(ohci
->self_id_buffer
[pos
]),
1813 (self_id_count
- pos
) * sizeof(*ohci
->self_id_buffer
));
1814 ohci
->self_id_buffer
[pos
] = self_id
;
1817 return self_id_count
;
1820 static void bus_reset_work(struct work_struct
*work
)
1822 struct fw_ohci
*ohci
=
1823 container_of(work
, struct fw_ohci
, bus_reset_work
);
1824 int self_id_count
, i
, j
, reg
;
1825 int generation
, new_generation
;
1826 unsigned long flags
;
1827 void *free_rom
= NULL
;
1828 dma_addr_t free_rom_bus
= 0;
1831 reg
= reg_read(ohci
, OHCI1394_NodeID
);
1832 if (!(reg
& OHCI1394_NodeID_idValid
)) {
1833 dev_notice(ohci
->card
.device
,
1834 "node ID not valid, new bus reset in progress\n");
1837 if ((reg
& OHCI1394_NodeID_nodeNumber
) == 63) {
1838 dev_notice(ohci
->card
.device
, "malconfigured bus\n");
1841 ohci
->node_id
= reg
& (OHCI1394_NodeID_busNumber
|
1842 OHCI1394_NodeID_nodeNumber
);
1844 is_new_root
= (reg
& OHCI1394_NodeID_root
) != 0;
1845 if (!(ohci
->is_root
&& is_new_root
))
1846 reg_write(ohci
, OHCI1394_LinkControlSet
,
1847 OHCI1394_LinkControl_cycleMaster
);
1848 ohci
->is_root
= is_new_root
;
1850 reg
= reg_read(ohci
, OHCI1394_SelfIDCount
);
1851 if (reg
& OHCI1394_SelfIDCount_selfIDError
) {
1852 dev_notice(ohci
->card
.device
, "inconsistent self IDs\n");
1856 * The count in the SelfIDCount register is the number of
1857 * bytes in the self ID receive buffer. Since we also receive
1858 * the inverted quadlets and a header quadlet, we shift one
1859 * bit extra to get the actual number of self IDs.
1861 self_id_count
= (reg
>> 3) & 0xff;
1863 if (self_id_count
> 252) {
1864 dev_notice(ohci
->card
.device
, "inconsistent self IDs\n");
1868 generation
= (cond_le32_to_cpu(ohci
->self_id_cpu
[0]) >> 16) & 0xff;
1871 for (i
= 1, j
= 0; j
< self_id_count
; i
+= 2, j
++) {
1872 if (ohci
->self_id_cpu
[i
] != ~ohci
->self_id_cpu
[i
+ 1]) {
1874 * If the invalid data looks like a cycle start packet,
1875 * it's likely to be the result of the cycle master
1876 * having a wrong gap count. In this case, the self IDs
1877 * so far are valid and should be processed so that the
1878 * bus manager can then correct the gap count.
1880 if (cond_le32_to_cpu(ohci
->self_id_cpu
[i
])
1882 dev_notice(ohci
->card
.device
,
1883 "ignoring spurious self IDs\n");
1887 dev_notice(ohci
->card
.device
,
1888 "inconsistent self IDs\n");
1892 ohci
->self_id_buffer
[j
] =
1893 cond_le32_to_cpu(ohci
->self_id_cpu
[i
]);
1896 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
1897 self_id_count
= find_and_insert_self_id(ohci
, self_id_count
);
1898 if (self_id_count
< 0) {
1899 dev_notice(ohci
->card
.device
,
1900 "could not construct local self ID\n");
1905 if (self_id_count
== 0) {
1906 dev_notice(ohci
->card
.device
, "inconsistent self IDs\n");
1912 * Check the consistency of the self IDs we just read. The
1913 * problem we face is that a new bus reset can start while we
1914 * read out the self IDs from the DMA buffer. If this happens,
1915 * the DMA buffer will be overwritten with new self IDs and we
1916 * will read out inconsistent data. The OHCI specification
1917 * (section 11.2) recommends a technique similar to
1918 * linux/seqlock.h, where we remember the generation of the
1919 * self IDs in the buffer before reading them out and compare
1920 * it to the current generation after reading them out. If
1921 * the two generations match we know we have a consistent set
1925 new_generation
= (reg_read(ohci
, OHCI1394_SelfIDCount
) >> 16) & 0xff;
1926 if (new_generation
!= generation
) {
1927 dev_notice(ohci
->card
.device
,
1928 "new bus reset, discarding self ids\n");
1932 /* FIXME: Document how the locking works. */
1933 spin_lock_irqsave(&ohci
->lock
, flags
);
1935 ohci
->generation
= -1; /* prevent AT packet queueing */
1936 context_stop(&ohci
->at_request_ctx
);
1937 context_stop(&ohci
->at_response_ctx
);
1939 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1942 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1943 * packets in the AT queues and software needs to drain them.
1944 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1946 at_context_flush(&ohci
->at_request_ctx
);
1947 at_context_flush(&ohci
->at_response_ctx
);
1949 spin_lock_irqsave(&ohci
->lock
, flags
);
1951 ohci
->generation
= generation
;
1952 reg_write(ohci
, OHCI1394_IntEventClear
, OHCI1394_busReset
);
1954 if (ohci
->quirks
& QUIRK_RESET_PACKET
)
1955 ohci
->request_generation
= generation
;
1958 * This next bit is unrelated to the AT context stuff but we
1959 * have to do it under the spinlock also. If a new config rom
1960 * was set up before this reset, the old one is now no longer
1961 * in use and we can free it. Update the config rom pointers
1962 * to point to the current config rom and clear the
1963 * next_config_rom pointer so a new update can take place.
1966 if (ohci
->next_config_rom
!= NULL
) {
1967 if (ohci
->next_config_rom
!= ohci
->config_rom
) {
1968 free_rom
= ohci
->config_rom
;
1969 free_rom_bus
= ohci
->config_rom_bus
;
1971 ohci
->config_rom
= ohci
->next_config_rom
;
1972 ohci
->config_rom_bus
= ohci
->next_config_rom_bus
;
1973 ohci
->next_config_rom
= NULL
;
1976 * Restore config_rom image and manually update
1977 * config_rom registers. Writing the header quadlet
1978 * will indicate that the config rom is ready, so we
1981 reg_write(ohci
, OHCI1394_BusOptions
,
1982 be32_to_cpu(ohci
->config_rom
[2]));
1983 ohci
->config_rom
[0] = ohci
->next_header
;
1984 reg_write(ohci
, OHCI1394_ConfigROMhdr
,
1985 be32_to_cpu(ohci
->next_header
));
1988 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1989 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, ~0);
1990 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, ~0);
1993 spin_unlock_irqrestore(&ohci
->lock
, flags
);
1996 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
1997 free_rom
, free_rom_bus
);
1999 log_selfids(ohci
, generation
, self_id_count
);
2001 fw_core_handle_bus_reset(&ohci
->card
, ohci
->node_id
, generation
,
2002 self_id_count
, ohci
->self_id_buffer
,
2003 ohci
->csr_state_setclear_abdicate
);
2004 ohci
->csr_state_setclear_abdicate
= false;
2007 static irqreturn_t
irq_handler(int irq
, void *data
)
2009 struct fw_ohci
*ohci
= data
;
2010 u32 event
, iso_event
;
2013 event
= reg_read(ohci
, OHCI1394_IntEventClear
);
2015 if (!event
|| !~event
)
2019 * busReset and postedWriteErr must not be cleared yet
2020 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2022 reg_write(ohci
, OHCI1394_IntEventClear
,
2023 event
& ~(OHCI1394_busReset
| OHCI1394_postedWriteErr
));
2024 log_irqs(ohci
, event
);
2026 if (event
& OHCI1394_selfIDComplete
)
2027 queue_work(fw_workqueue
, &ohci
->bus_reset_work
);
2029 if (event
& OHCI1394_RQPkt
)
2030 tasklet_schedule(&ohci
->ar_request_ctx
.tasklet
);
2032 if (event
& OHCI1394_RSPkt
)
2033 tasklet_schedule(&ohci
->ar_response_ctx
.tasklet
);
2035 if (event
& OHCI1394_reqTxComplete
)
2036 tasklet_schedule(&ohci
->at_request_ctx
.tasklet
);
2038 if (event
& OHCI1394_respTxComplete
)
2039 tasklet_schedule(&ohci
->at_response_ctx
.tasklet
);
2041 if (event
& OHCI1394_isochRx
) {
2042 iso_event
= reg_read(ohci
, OHCI1394_IsoRecvIntEventClear
);
2043 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, iso_event
);
2046 i
= ffs(iso_event
) - 1;
2048 &ohci
->ir_context_list
[i
].context
.tasklet
);
2049 iso_event
&= ~(1 << i
);
2053 if (event
& OHCI1394_isochTx
) {
2054 iso_event
= reg_read(ohci
, OHCI1394_IsoXmitIntEventClear
);
2055 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, iso_event
);
2058 i
= ffs(iso_event
) - 1;
2060 &ohci
->it_context_list
[i
].context
.tasklet
);
2061 iso_event
&= ~(1 << i
);
2065 if (unlikely(event
& OHCI1394_regAccessFail
))
2066 dev_err(ohci
->card
.device
, "register access failure\n");
2068 if (unlikely(event
& OHCI1394_postedWriteErr
)) {
2069 reg_read(ohci
, OHCI1394_PostedWriteAddressHi
);
2070 reg_read(ohci
, OHCI1394_PostedWriteAddressLo
);
2071 reg_write(ohci
, OHCI1394_IntEventClear
,
2072 OHCI1394_postedWriteErr
);
2073 if (printk_ratelimit())
2074 dev_err(ohci
->card
.device
, "PCI posted write error\n");
2077 if (unlikely(event
& OHCI1394_cycleTooLong
)) {
2078 if (printk_ratelimit())
2079 dev_notice(ohci
->card
.device
,
2080 "isochronous cycle too long\n");
2081 reg_write(ohci
, OHCI1394_LinkControlSet
,
2082 OHCI1394_LinkControl_cycleMaster
);
2085 if (unlikely(event
& OHCI1394_cycleInconsistent
)) {
2087 * We need to clear this event bit in order to make
2088 * cycleMatch isochronous I/O work. In theory we should
2089 * stop active cycleMatch iso contexts now and restart
2090 * them at least two cycles later. (FIXME?)
2092 if (printk_ratelimit())
2093 dev_notice(ohci
->card
.device
,
2094 "isochronous cycle inconsistent\n");
2097 if (unlikely(event
& OHCI1394_unrecoverableError
))
2098 handle_dead_contexts(ohci
);
2100 if (event
& OHCI1394_cycle64Seconds
) {
2101 spin_lock(&ohci
->lock
);
2102 update_bus_time(ohci
);
2103 spin_unlock(&ohci
->lock
);
2110 static int software_reset(struct fw_ohci
*ohci
)
2115 reg_write(ohci
, OHCI1394_HCControlSet
, OHCI1394_HCControl_softReset
);
2116 for (i
= 0; i
< 500; i
++) {
2117 val
= reg_read(ohci
, OHCI1394_HCControlSet
);
2119 return -ENODEV
; /* Card was ejected. */
2121 if (!(val
& OHCI1394_HCControl_softReset
))
2130 static void copy_config_rom(__be32
*dest
, const __be32
*src
, size_t length
)
2132 size_t size
= length
* 4;
2134 memcpy(dest
, src
, size
);
2135 if (size
< CONFIG_ROM_SIZE
)
2136 memset(&dest
[length
], 0, CONFIG_ROM_SIZE
- size
);
2139 static int configure_1394a_enhancements(struct fw_ohci
*ohci
)
2142 int ret
, clear
, set
, offset
;
2144 /* Check if the driver should configure link and PHY. */
2145 if (!(reg_read(ohci
, OHCI1394_HCControlSet
) &
2146 OHCI1394_HCControl_programPhyEnable
))
2149 /* Paranoia: check whether the PHY supports 1394a, too. */
2150 enable_1394a
= false;
2151 ret
= read_phy_reg(ohci
, 2);
2154 if ((ret
& PHY_EXTENDED_REGISTERS
) == PHY_EXTENDED_REGISTERS
) {
2155 ret
= read_paged_phy_reg(ohci
, 1, 8);
2159 enable_1394a
= true;
2162 if (ohci
->quirks
& QUIRK_NO_1394A
)
2163 enable_1394a
= false;
2165 /* Configure PHY and link consistently. */
2168 set
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2170 clear
= PHY_ENABLE_ACCEL
| PHY_ENABLE_MULTI
;
2173 ret
= update_phy_reg(ohci
, 5, clear
, set
);
2178 offset
= OHCI1394_HCControlSet
;
2180 offset
= OHCI1394_HCControlClear
;
2181 reg_write(ohci
, offset
, OHCI1394_HCControl_aPhyEnhanceEnable
);
2183 /* Clean up: configuration has been taken care of. */
2184 reg_write(ohci
, OHCI1394_HCControlClear
,
2185 OHCI1394_HCControl_programPhyEnable
);
2190 static int probe_tsb41ba3d(struct fw_ohci
*ohci
)
2192 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2193 static const u8 id
[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2196 reg
= read_phy_reg(ohci
, 2);
2199 if ((reg
& PHY_EXTENDED_REGISTERS
) != PHY_EXTENDED_REGISTERS
)
2202 for (i
= ARRAY_SIZE(id
) - 1; i
>= 0; i
--) {
2203 reg
= read_paged_phy_reg(ohci
, 1, i
+ 10);
2212 static int ohci_enable(struct fw_card
*card
,
2213 const __be32
*config_rom
, size_t length
)
2215 struct fw_ohci
*ohci
= fw_ohci(card
);
2216 struct pci_dev
*dev
= to_pci_dev(card
->device
);
2217 u32 lps
, seconds
, version
, irqs
;
2220 if (software_reset(ohci
)) {
2221 dev_err(card
->device
, "failed to reset ohci card\n");
2226 * Now enable LPS, which we need in order to start accessing
2227 * most of the registers. In fact, on some cards (ALI M5251),
2228 * accessing registers in the SClk domain without LPS enabled
2229 * will lock up the machine. Wait 50msec to make sure we have
2230 * full link enabled. However, with some cards (well, at least
2231 * a JMicron PCIe card), we have to try again sometimes.
2233 reg_write(ohci
, OHCI1394_HCControlSet
,
2234 OHCI1394_HCControl_LPS
|
2235 OHCI1394_HCControl_postedWriteEnable
);
2238 for (lps
= 0, i
= 0; !lps
&& i
< 3; i
++) {
2240 lps
= reg_read(ohci
, OHCI1394_HCControlSet
) &
2241 OHCI1394_HCControl_LPS
;
2245 dev_err(card
->device
, "failed to set Link Power Status\n");
2249 if (ohci
->quirks
& QUIRK_TI_SLLZ059
) {
2250 ret
= probe_tsb41ba3d(ohci
);
2254 dev_notice(card
->device
, "local TSB41BA3D phy\n");
2256 ohci
->quirks
&= ~QUIRK_TI_SLLZ059
;
2259 reg_write(ohci
, OHCI1394_HCControlClear
,
2260 OHCI1394_HCControl_noByteSwapData
);
2262 reg_write(ohci
, OHCI1394_SelfIDBuffer
, ohci
->self_id_bus
);
2263 reg_write(ohci
, OHCI1394_LinkControlSet
,
2264 OHCI1394_LinkControl_cycleTimerEnable
|
2265 OHCI1394_LinkControl_cycleMaster
);
2267 reg_write(ohci
, OHCI1394_ATRetries
,
2268 OHCI1394_MAX_AT_REQ_RETRIES
|
2269 (OHCI1394_MAX_AT_RESP_RETRIES
<< 4) |
2270 (OHCI1394_MAX_PHYS_RESP_RETRIES
<< 8) |
2273 seconds
= lower_32_bits(get_seconds());
2274 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, seconds
<< 25);
2275 ohci
->bus_time
= seconds
& ~0x3f;
2277 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
2278 if (version
>= OHCI_VERSION_1_1
) {
2279 reg_write(ohci
, OHCI1394_InitialChannelsAvailableHi
,
2281 card
->broadcast_channel_auto_allocated
= true;
2284 /* Get implemented bits of the priority arbitration request counter. */
2285 reg_write(ohci
, OHCI1394_FairnessControl
, 0x3f);
2286 ohci
->pri_req_max
= reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f;
2287 reg_write(ohci
, OHCI1394_FairnessControl
, 0);
2288 card
->priority_budget_implemented
= ohci
->pri_req_max
!= 0;
2290 reg_write(ohci
, OHCI1394_PhyUpperBound
, 0x00010000);
2291 reg_write(ohci
, OHCI1394_IntEventClear
, ~0);
2292 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
2294 ret
= configure_1394a_enhancements(ohci
);
2298 /* Activate link_on bit and contender bit in our self ID packets.*/
2299 ret
= ohci_update_phy_reg(card
, 4, 0, PHY_LINK_ACTIVE
| PHY_CONTENDER
);
2304 * When the link is not yet enabled, the atomic config rom
2305 * update mechanism described below in ohci_set_config_rom()
2306 * is not active. We have to update ConfigRomHeader and
2307 * BusOptions manually, and the write to ConfigROMmap takes
2308 * effect immediately. We tie this to the enabling of the
2309 * link, so we have a valid config rom before enabling - the
2310 * OHCI requires that ConfigROMhdr and BusOptions have valid
2311 * values before enabling.
2313 * However, when the ConfigROMmap is written, some controllers
2314 * always read back quadlets 0 and 2 from the config rom to
2315 * the ConfigRomHeader and BusOptions registers on bus reset.
2316 * They shouldn't do that in this initial case where the link
2317 * isn't enabled. This means we have to use the same
2318 * workaround here, setting the bus header to 0 and then write
2319 * the right values in the bus reset tasklet.
2323 ohci
->next_config_rom
=
2324 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2325 &ohci
->next_config_rom_bus
,
2327 if (ohci
->next_config_rom
== NULL
)
2330 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2333 * In the suspend case, config_rom is NULL, which
2334 * means that we just reuse the old config rom.
2336 ohci
->next_config_rom
= ohci
->config_rom
;
2337 ohci
->next_config_rom_bus
= ohci
->config_rom_bus
;
2340 ohci
->next_header
= ohci
->next_config_rom
[0];
2341 ohci
->next_config_rom
[0] = 0;
2342 reg_write(ohci
, OHCI1394_ConfigROMhdr
, 0);
2343 reg_write(ohci
, OHCI1394_BusOptions
,
2344 be32_to_cpu(ohci
->next_config_rom
[2]));
2345 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2347 reg_write(ohci
, OHCI1394_AsReqFilterHiSet
, 0x80000000);
2349 if (!(ohci
->quirks
& QUIRK_NO_MSI
))
2350 pci_enable_msi(dev
);
2351 if (request_irq(dev
->irq
, irq_handler
,
2352 pci_dev_msi_enabled(dev
) ? 0 : IRQF_SHARED
,
2353 ohci_driver_name
, ohci
)) {
2354 dev_err(card
->device
, "failed to allocate interrupt %d\n",
2356 pci_disable_msi(dev
);
2359 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2360 ohci
->next_config_rom
,
2361 ohci
->next_config_rom_bus
);
2362 ohci
->next_config_rom
= NULL
;
2367 irqs
= OHCI1394_reqTxComplete
| OHCI1394_respTxComplete
|
2368 OHCI1394_RQPkt
| OHCI1394_RSPkt
|
2369 OHCI1394_isochTx
| OHCI1394_isochRx
|
2370 OHCI1394_postedWriteErr
|
2371 OHCI1394_selfIDComplete
|
2372 OHCI1394_regAccessFail
|
2373 OHCI1394_cycle64Seconds
|
2374 OHCI1394_cycleInconsistent
|
2375 OHCI1394_unrecoverableError
|
2376 OHCI1394_cycleTooLong
|
2377 OHCI1394_masterIntEnable
;
2378 if (param_debug
& OHCI_PARAM_DEBUG_BUSRESETS
)
2379 irqs
|= OHCI1394_busReset
;
2380 reg_write(ohci
, OHCI1394_IntMaskSet
, irqs
);
2382 reg_write(ohci
, OHCI1394_HCControlSet
,
2383 OHCI1394_HCControl_linkEnable
|
2384 OHCI1394_HCControl_BIBimageValid
);
2386 reg_write(ohci
, OHCI1394_LinkControlSet
,
2387 OHCI1394_LinkControl_rcvSelfID
|
2388 OHCI1394_LinkControl_rcvPhyPkt
);
2390 ar_context_run(&ohci
->ar_request_ctx
);
2391 ar_context_run(&ohci
->ar_response_ctx
);
2395 /* We are ready to go, reset bus to finish initialization. */
2396 fw_schedule_bus_reset(&ohci
->card
, false, true);
2401 static int ohci_set_config_rom(struct fw_card
*card
,
2402 const __be32
*config_rom
, size_t length
)
2404 struct fw_ohci
*ohci
;
2405 unsigned long flags
;
2406 __be32
*next_config_rom
;
2407 dma_addr_t
uninitialized_var(next_config_rom_bus
);
2409 ohci
= fw_ohci(card
);
2412 * When the OHCI controller is enabled, the config rom update
2413 * mechanism is a bit tricky, but easy enough to use. See
2414 * section 5.5.6 in the OHCI specification.
2416 * The OHCI controller caches the new config rom address in a
2417 * shadow register (ConfigROMmapNext) and needs a bus reset
2418 * for the changes to take place. When the bus reset is
2419 * detected, the controller loads the new values for the
2420 * ConfigRomHeader and BusOptions registers from the specified
2421 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2422 * shadow register. All automatically and atomically.
2424 * Now, there's a twist to this story. The automatic load of
2425 * ConfigRomHeader and BusOptions doesn't honor the
2426 * noByteSwapData bit, so with a be32 config rom, the
2427 * controller will load be32 values in to these registers
2428 * during the atomic update, even on litte endian
2429 * architectures. The workaround we use is to put a 0 in the
2430 * header quadlet; 0 is endian agnostic and means that the
2431 * config rom isn't ready yet. In the bus reset tasklet we
2432 * then set up the real values for the two registers.
2434 * We use ohci->lock to avoid racing with the code that sets
2435 * ohci->next_config_rom to NULL (see bus_reset_work).
2439 dma_alloc_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2440 &next_config_rom_bus
, GFP_KERNEL
);
2441 if (next_config_rom
== NULL
)
2444 spin_lock_irqsave(&ohci
->lock
, flags
);
2447 * If there is not an already pending config_rom update,
2448 * push our new allocation into the ohci->next_config_rom
2449 * and then mark the local variable as null so that we
2450 * won't deallocate the new buffer.
2452 * OTOH, if there is a pending config_rom update, just
2453 * use that buffer with the new config_rom data, and
2454 * let this routine free the unused DMA allocation.
2457 if (ohci
->next_config_rom
== NULL
) {
2458 ohci
->next_config_rom
= next_config_rom
;
2459 ohci
->next_config_rom_bus
= next_config_rom_bus
;
2460 next_config_rom
= NULL
;
2463 copy_config_rom(ohci
->next_config_rom
, config_rom
, length
);
2465 ohci
->next_header
= config_rom
[0];
2466 ohci
->next_config_rom
[0] = 0;
2468 reg_write(ohci
, OHCI1394_ConfigROMmap
, ohci
->next_config_rom_bus
);
2470 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2472 /* If we didn't use the DMA allocation, delete it. */
2473 if (next_config_rom
!= NULL
)
2474 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
2475 next_config_rom
, next_config_rom_bus
);
2478 * Now initiate a bus reset to have the changes take
2479 * effect. We clean up the old config rom memory and DMA
2480 * mappings in the bus reset tasklet, since the OHCI
2481 * controller could need to access it before the bus reset
2485 fw_schedule_bus_reset(&ohci
->card
, true, true);
2490 static void ohci_send_request(struct fw_card
*card
, struct fw_packet
*packet
)
2492 struct fw_ohci
*ohci
= fw_ohci(card
);
2494 at_context_transmit(&ohci
->at_request_ctx
, packet
);
2497 static void ohci_send_response(struct fw_card
*card
, struct fw_packet
*packet
)
2499 struct fw_ohci
*ohci
= fw_ohci(card
);
2501 at_context_transmit(&ohci
->at_response_ctx
, packet
);
2504 static int ohci_cancel_packet(struct fw_card
*card
, struct fw_packet
*packet
)
2506 struct fw_ohci
*ohci
= fw_ohci(card
);
2507 struct context
*ctx
= &ohci
->at_request_ctx
;
2508 struct driver_data
*driver_data
= packet
->driver_data
;
2511 tasklet_disable(&ctx
->tasklet
);
2513 if (packet
->ack
!= 0)
2516 if (packet
->payload_mapped
)
2517 dma_unmap_single(ohci
->card
.device
, packet
->payload_bus
,
2518 packet
->payload_length
, DMA_TO_DEVICE
);
2520 log_ar_at_event(ohci
, 'T', packet
->speed
, packet
->header
, 0x20);
2521 driver_data
->packet
= NULL
;
2522 packet
->ack
= RCODE_CANCELLED
;
2523 packet
->callback(packet
, &ohci
->card
, packet
->ack
);
2526 tasklet_enable(&ctx
->tasklet
);
2531 static int ohci_enable_phys_dma(struct fw_card
*card
,
2532 int node_id
, int generation
)
2534 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2537 struct fw_ohci
*ohci
= fw_ohci(card
);
2538 unsigned long flags
;
2542 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2543 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2546 spin_lock_irqsave(&ohci
->lock
, flags
);
2548 if (ohci
->generation
!= generation
) {
2554 * Note, if the node ID contains a non-local bus ID, physical DMA is
2555 * enabled for _all_ nodes on remote buses.
2558 n
= (node_id
& 0xffc0) == LOCAL_BUS
? node_id
& 0x3f : 63;
2560 reg_write(ohci
, OHCI1394_PhyReqFilterLoSet
, 1 << n
);
2562 reg_write(ohci
, OHCI1394_PhyReqFilterHiSet
, 1 << (n
- 32));
2566 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2569 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2572 static u32
ohci_read_csr(struct fw_card
*card
, int csr_offset
)
2574 struct fw_ohci
*ohci
= fw_ohci(card
);
2575 unsigned long flags
;
2578 switch (csr_offset
) {
2579 case CSR_STATE_CLEAR
:
2581 if (ohci
->is_root
&&
2582 (reg_read(ohci
, OHCI1394_LinkControlSet
) &
2583 OHCI1394_LinkControl_cycleMaster
))
2584 value
= CSR_STATE_BIT_CMSTR
;
2587 if (ohci
->csr_state_setclear_abdicate
)
2588 value
|= CSR_STATE_BIT_ABDICATE
;
2593 return reg_read(ohci
, OHCI1394_NodeID
) << 16;
2595 case CSR_CYCLE_TIME
:
2596 return get_cycle_time(ohci
);
2600 * We might be called just after the cycle timer has wrapped
2601 * around but just before the cycle64Seconds handler, so we
2602 * better check here, too, if the bus time needs to be updated.
2604 spin_lock_irqsave(&ohci
->lock
, flags
);
2605 value
= update_bus_time(ohci
);
2606 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2609 case CSR_BUSY_TIMEOUT
:
2610 value
= reg_read(ohci
, OHCI1394_ATRetries
);
2611 return (value
>> 4) & 0x0ffff00f;
2613 case CSR_PRIORITY_BUDGET
:
2614 return (reg_read(ohci
, OHCI1394_FairnessControl
) & 0x3f) |
2615 (ohci
->pri_req_max
<< 8);
2623 static void ohci_write_csr(struct fw_card
*card
, int csr_offset
, u32 value
)
2625 struct fw_ohci
*ohci
= fw_ohci(card
);
2626 unsigned long flags
;
2628 switch (csr_offset
) {
2629 case CSR_STATE_CLEAR
:
2630 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2631 reg_write(ohci
, OHCI1394_LinkControlClear
,
2632 OHCI1394_LinkControl_cycleMaster
);
2635 if (value
& CSR_STATE_BIT_ABDICATE
)
2636 ohci
->csr_state_setclear_abdicate
= false;
2640 if ((value
& CSR_STATE_BIT_CMSTR
) && ohci
->is_root
) {
2641 reg_write(ohci
, OHCI1394_LinkControlSet
,
2642 OHCI1394_LinkControl_cycleMaster
);
2645 if (value
& CSR_STATE_BIT_ABDICATE
)
2646 ohci
->csr_state_setclear_abdicate
= true;
2650 reg_write(ohci
, OHCI1394_NodeID
, value
>> 16);
2654 case CSR_CYCLE_TIME
:
2655 reg_write(ohci
, OHCI1394_IsochronousCycleTimer
, value
);
2656 reg_write(ohci
, OHCI1394_IntEventSet
,
2657 OHCI1394_cycleInconsistent
);
2662 spin_lock_irqsave(&ohci
->lock
, flags
);
2663 ohci
->bus_time
= (ohci
->bus_time
& 0x7f) | (value
& ~0x7f);
2664 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2667 case CSR_BUSY_TIMEOUT
:
2668 value
= (value
& 0xf) | ((value
& 0xf) << 4) |
2669 ((value
& 0xf) << 8) | ((value
& 0x0ffff000) << 4);
2670 reg_write(ohci
, OHCI1394_ATRetries
, value
);
2674 case CSR_PRIORITY_BUDGET
:
2675 reg_write(ohci
, OHCI1394_FairnessControl
, value
& 0x3f);
2685 static void flush_iso_completions(struct iso_context
*ctx
)
2687 ctx
->base
.callback
.sc(&ctx
->base
, ctx
->last_timestamp
,
2688 ctx
->header_length
, ctx
->header
,
2689 ctx
->base
.callback_data
);
2690 ctx
->header_length
= 0;
2693 static void copy_iso_headers(struct iso_context
*ctx
, const u32
*dma_hdr
)
2697 if (ctx
->header_length
+ ctx
->base
.header_size
> PAGE_SIZE
)
2698 flush_iso_completions(ctx
);
2700 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2701 ctx
->last_timestamp
= (u16
)le32_to_cpu((__force __le32
)dma_hdr
[0]);
2704 * The two iso header quadlets are byteswapped to little
2705 * endian by the controller, but we want to present them
2706 * as big endian for consistency with the bus endianness.
2708 if (ctx
->base
.header_size
> 0)
2709 ctx_hdr
[0] = swab32(dma_hdr
[1]); /* iso packet header */
2710 if (ctx
->base
.header_size
> 4)
2711 ctx_hdr
[1] = swab32(dma_hdr
[0]); /* timestamp */
2712 if (ctx
->base
.header_size
> 8)
2713 memcpy(&ctx_hdr
[2], &dma_hdr
[2], ctx
->base
.header_size
- 8);
2714 ctx
->header_length
+= ctx
->base
.header_size
;
2717 static int handle_ir_packet_per_buffer(struct context
*context
,
2718 struct descriptor
*d
,
2719 struct descriptor
*last
)
2721 struct iso_context
*ctx
=
2722 container_of(context
, struct iso_context
, context
);
2723 struct descriptor
*pd
;
2726 for (pd
= d
; pd
<= last
; pd
++)
2727 if (pd
->transfer_status
)
2730 /* Descriptor(s) not done yet, stop iteration */
2733 while (!(d
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))) {
2735 buffer_dma
= le32_to_cpu(d
->data_address
);
2736 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2737 buffer_dma
& PAGE_MASK
,
2738 buffer_dma
& ~PAGE_MASK
,
2739 le16_to_cpu(d
->req_count
),
2743 copy_iso_headers(ctx
, (u32
*) (last
+ 1));
2745 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2746 flush_iso_completions(ctx
);
2751 /* d == last because each descriptor block is only a single descriptor. */
2752 static int handle_ir_buffer_fill(struct context
*context
,
2753 struct descriptor
*d
,
2754 struct descriptor
*last
)
2756 struct iso_context
*ctx
=
2757 container_of(context
, struct iso_context
, context
);
2758 unsigned int req_count
, res_count
, completed
;
2761 req_count
= le16_to_cpu(last
->req_count
);
2762 res_count
= le16_to_cpu(ACCESS_ONCE(last
->res_count
));
2763 completed
= req_count
- res_count
;
2764 buffer_dma
= le32_to_cpu(last
->data_address
);
2766 if (completed
> 0) {
2767 ctx
->mc_buffer_bus
= buffer_dma
;
2768 ctx
->mc_completed
= completed
;
2772 /* Descriptor(s) not done yet, stop iteration */
2775 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2776 buffer_dma
& PAGE_MASK
,
2777 buffer_dma
& ~PAGE_MASK
,
2778 completed
, DMA_FROM_DEVICE
);
2780 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
)) {
2781 ctx
->base
.callback
.mc(&ctx
->base
,
2782 buffer_dma
+ completed
,
2783 ctx
->base
.callback_data
);
2784 ctx
->mc_completed
= 0;
2790 static void flush_ir_buffer_fill(struct iso_context
*ctx
)
2792 dma_sync_single_range_for_cpu(ctx
->context
.ohci
->card
.device
,
2793 ctx
->mc_buffer_bus
& PAGE_MASK
,
2794 ctx
->mc_buffer_bus
& ~PAGE_MASK
,
2795 ctx
->mc_completed
, DMA_FROM_DEVICE
);
2797 ctx
->base
.callback
.mc(&ctx
->base
,
2798 ctx
->mc_buffer_bus
+ ctx
->mc_completed
,
2799 ctx
->base
.callback_data
);
2800 ctx
->mc_completed
= 0;
2803 static inline void sync_it_packet_for_cpu(struct context
*context
,
2804 struct descriptor
*pd
)
2809 /* only packets beginning with OUTPUT_MORE* have data buffers */
2810 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2813 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2817 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2818 * data buffer is in the context program's coherent page and must not
2821 if ((le32_to_cpu(pd
->data_address
) & PAGE_MASK
) ==
2822 (context
->current_bus
& PAGE_MASK
)) {
2823 if (pd
->control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
))
2829 buffer_dma
= le32_to_cpu(pd
->data_address
);
2830 dma_sync_single_range_for_cpu(context
->ohci
->card
.device
,
2831 buffer_dma
& PAGE_MASK
,
2832 buffer_dma
& ~PAGE_MASK
,
2833 le16_to_cpu(pd
->req_count
),
2835 control
= pd
->control
;
2837 } while (!(control
& cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS
)));
2840 static int handle_it_packet(struct context
*context
,
2841 struct descriptor
*d
,
2842 struct descriptor
*last
)
2844 struct iso_context
*ctx
=
2845 container_of(context
, struct iso_context
, context
);
2846 struct descriptor
*pd
;
2849 for (pd
= d
; pd
<= last
; pd
++)
2850 if (pd
->transfer_status
)
2853 /* Descriptor(s) not done yet, stop iteration */
2856 sync_it_packet_for_cpu(context
, d
);
2858 if (ctx
->header_length
+ 4 > PAGE_SIZE
)
2859 flush_iso_completions(ctx
);
2861 ctx_hdr
= ctx
->header
+ ctx
->header_length
;
2862 ctx
->last_timestamp
= le16_to_cpu(last
->res_count
);
2863 /* Present this value as big-endian to match the receive code */
2864 *ctx_hdr
= cpu_to_be32((le16_to_cpu(pd
->transfer_status
) << 16) |
2865 le16_to_cpu(pd
->res_count
));
2866 ctx
->header_length
+= 4;
2868 if (last
->control
& cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
))
2869 flush_iso_completions(ctx
);
2874 static void set_multichannel_mask(struct fw_ohci
*ohci
, u64 channels
)
2876 u32 hi
= channels
>> 32, lo
= channels
;
2878 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiClear
, ~hi
);
2879 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoClear
, ~lo
);
2880 reg_write(ohci
, OHCI1394_IRMultiChanMaskHiSet
, hi
);
2881 reg_write(ohci
, OHCI1394_IRMultiChanMaskLoSet
, lo
);
2883 ohci
->mc_channels
= channels
;
2886 static struct fw_iso_context
*ohci_allocate_iso_context(struct fw_card
*card
,
2887 int type
, int channel
, size_t header_size
)
2889 struct fw_ohci
*ohci
= fw_ohci(card
);
2890 struct iso_context
*uninitialized_var(ctx
);
2891 descriptor_callback_t
uninitialized_var(callback
);
2892 u64
*uninitialized_var(channels
);
2893 u32
*uninitialized_var(mask
), uninitialized_var(regs
);
2894 unsigned long flags
;
2895 int index
, ret
= -EBUSY
;
2897 spin_lock_irqsave(&ohci
->lock
, flags
);
2900 case FW_ISO_CONTEXT_TRANSMIT
:
2901 mask
= &ohci
->it_context_mask
;
2902 callback
= handle_it_packet
;
2903 index
= ffs(*mask
) - 1;
2905 *mask
&= ~(1 << index
);
2906 regs
= OHCI1394_IsoXmitContextBase(index
);
2907 ctx
= &ohci
->it_context_list
[index
];
2911 case FW_ISO_CONTEXT_RECEIVE
:
2912 channels
= &ohci
->ir_context_channels
;
2913 mask
= &ohci
->ir_context_mask
;
2914 callback
= handle_ir_packet_per_buffer
;
2915 index
= *channels
& 1ULL << channel
? ffs(*mask
) - 1 : -1;
2917 *channels
&= ~(1ULL << channel
);
2918 *mask
&= ~(1 << index
);
2919 regs
= OHCI1394_IsoRcvContextBase(index
);
2920 ctx
= &ohci
->ir_context_list
[index
];
2924 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2925 mask
= &ohci
->ir_context_mask
;
2926 callback
= handle_ir_buffer_fill
;
2927 index
= !ohci
->mc_allocated
? ffs(*mask
) - 1 : -1;
2929 ohci
->mc_allocated
= true;
2930 *mask
&= ~(1 << index
);
2931 regs
= OHCI1394_IsoRcvContextBase(index
);
2932 ctx
= &ohci
->ir_context_list
[index
];
2941 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2944 return ERR_PTR(ret
);
2946 memset(ctx
, 0, sizeof(*ctx
));
2947 ctx
->header_length
= 0;
2948 ctx
->header
= (void *) __get_free_page(GFP_KERNEL
);
2949 if (ctx
->header
== NULL
) {
2953 ret
= context_init(&ctx
->context
, ohci
, regs
, callback
);
2955 goto out_with_header
;
2957 if (type
== FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
) {
2958 set_multichannel_mask(ohci
, 0);
2959 ctx
->mc_completed
= 0;
2965 free_page((unsigned long)ctx
->header
);
2967 spin_lock_irqsave(&ohci
->lock
, flags
);
2970 case FW_ISO_CONTEXT_RECEIVE
:
2971 *channels
|= 1ULL << channel
;
2974 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
2975 ohci
->mc_allocated
= false;
2978 *mask
|= 1 << index
;
2980 spin_unlock_irqrestore(&ohci
->lock
, flags
);
2982 return ERR_PTR(ret
);
2985 static int ohci_start_iso(struct fw_iso_context
*base
,
2986 s32 cycle
, u32 sync
, u32 tags
)
2988 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
2989 struct fw_ohci
*ohci
= ctx
->context
.ohci
;
2990 u32 control
= IR_CONTEXT_ISOCH_HEADER
, match
;
2993 /* the controller cannot start without any queued packets */
2994 if (ctx
->context
.last
->branch_address
== 0)
2997 switch (ctx
->base
.type
) {
2998 case FW_ISO_CONTEXT_TRANSMIT
:
2999 index
= ctx
- ohci
->it_context_list
;
3002 match
= IT_CONTEXT_CYCLE_MATCH_ENABLE
|
3003 (cycle
& 0x7fff) << 16;
3005 reg_write(ohci
, OHCI1394_IsoXmitIntEventClear
, 1 << index
);
3006 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, 1 << index
);
3007 context_run(&ctx
->context
, match
);
3010 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3011 control
|= IR_CONTEXT_BUFFER_FILL
|IR_CONTEXT_MULTI_CHANNEL_MODE
;
3013 case FW_ISO_CONTEXT_RECEIVE
:
3014 index
= ctx
- ohci
->ir_context_list
;
3015 match
= (tags
<< 28) | (sync
<< 8) | ctx
->base
.channel
;
3017 match
|= (cycle
& 0x07fff) << 12;
3018 control
|= IR_CONTEXT_CYCLE_MATCH_ENABLE
;
3021 reg_write(ohci
, OHCI1394_IsoRecvIntEventClear
, 1 << index
);
3022 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, 1 << index
);
3023 reg_write(ohci
, CONTEXT_MATCH(ctx
->context
.regs
), match
);
3024 context_run(&ctx
->context
, control
);
3035 static int ohci_stop_iso(struct fw_iso_context
*base
)
3037 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3038 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3041 switch (ctx
->base
.type
) {
3042 case FW_ISO_CONTEXT_TRANSMIT
:
3043 index
= ctx
- ohci
->it_context_list
;
3044 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, 1 << index
);
3047 case FW_ISO_CONTEXT_RECEIVE
:
3048 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3049 index
= ctx
- ohci
->ir_context_list
;
3050 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, 1 << index
);
3054 context_stop(&ctx
->context
);
3055 tasklet_kill(&ctx
->context
.tasklet
);
3060 static void ohci_free_iso_context(struct fw_iso_context
*base
)
3062 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3063 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3064 unsigned long flags
;
3067 ohci_stop_iso(base
);
3068 context_release(&ctx
->context
);
3069 free_page((unsigned long)ctx
->header
);
3071 spin_lock_irqsave(&ohci
->lock
, flags
);
3073 switch (base
->type
) {
3074 case FW_ISO_CONTEXT_TRANSMIT
:
3075 index
= ctx
- ohci
->it_context_list
;
3076 ohci
->it_context_mask
|= 1 << index
;
3079 case FW_ISO_CONTEXT_RECEIVE
:
3080 index
= ctx
- ohci
->ir_context_list
;
3081 ohci
->ir_context_mask
|= 1 << index
;
3082 ohci
->ir_context_channels
|= 1ULL << base
->channel
;
3085 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3086 index
= ctx
- ohci
->ir_context_list
;
3087 ohci
->ir_context_mask
|= 1 << index
;
3088 ohci
->ir_context_channels
|= ohci
->mc_channels
;
3089 ohci
->mc_channels
= 0;
3090 ohci
->mc_allocated
= false;
3094 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3097 static int ohci_set_iso_channels(struct fw_iso_context
*base
, u64
*channels
)
3099 struct fw_ohci
*ohci
= fw_ohci(base
->card
);
3100 unsigned long flags
;
3103 switch (base
->type
) {
3104 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3106 spin_lock_irqsave(&ohci
->lock
, flags
);
3108 /* Don't allow multichannel to grab other contexts' channels. */
3109 if (~ohci
->ir_context_channels
& ~ohci
->mc_channels
& *channels
) {
3110 *channels
= ohci
->ir_context_channels
;
3113 set_multichannel_mask(ohci
, *channels
);
3117 spin_unlock_irqrestore(&ohci
->lock
, flags
);
3128 static void ohci_resume_iso_dma(struct fw_ohci
*ohci
)
3131 struct iso_context
*ctx
;
3133 for (i
= 0 ; i
< ohci
->n_ir
; i
++) {
3134 ctx
= &ohci
->ir_context_list
[i
];
3135 if (ctx
->context
.running
)
3136 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3139 for (i
= 0 ; i
< ohci
->n_it
; i
++) {
3140 ctx
= &ohci
->it_context_list
[i
];
3141 if (ctx
->context
.running
)
3142 ohci_start_iso(&ctx
->base
, 0, ctx
->sync
, ctx
->tags
);
3147 static int queue_iso_transmit(struct iso_context
*ctx
,
3148 struct fw_iso_packet
*packet
,
3149 struct fw_iso_buffer
*buffer
,
3150 unsigned long payload
)
3152 struct descriptor
*d
, *last
, *pd
;
3153 struct fw_iso_packet
*p
;
3155 dma_addr_t d_bus
, page_bus
;
3156 u32 z
, header_z
, payload_z
, irq
;
3157 u32 payload_index
, payload_end_index
, next_page_index
;
3158 int page
, end_page
, i
, length
, offset
;
3161 payload_index
= payload
;
3167 if (p
->header_length
> 0)
3170 /* Determine the first page the payload isn't contained in. */
3171 end_page
= PAGE_ALIGN(payload_index
+ p
->payload_length
) >> PAGE_SHIFT
;
3172 if (p
->payload_length
> 0)
3173 payload_z
= end_page
- (payload_index
>> PAGE_SHIFT
);
3179 /* Get header size in number of descriptors. */
3180 header_z
= DIV_ROUND_UP(p
->header_length
, sizeof(*d
));
3182 d
= context_get_descriptors(&ctx
->context
, z
+ header_z
, &d_bus
);
3187 d
[0].control
= cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE
);
3188 d
[0].req_count
= cpu_to_le16(8);
3190 * Link the skip address to this descriptor itself. This causes
3191 * a context to skip a cycle whenever lost cycles or FIFO
3192 * overruns occur, without dropping the data. The application
3193 * should then decide whether this is an error condition or not.
3194 * FIXME: Make the context's cycle-lost behaviour configurable?
3196 d
[0].branch_address
= cpu_to_le32(d_bus
| z
);
3198 header
= (__le32
*) &d
[1];
3199 header
[0] = cpu_to_le32(IT_HEADER_SY(p
->sy
) |
3200 IT_HEADER_TAG(p
->tag
) |
3201 IT_HEADER_TCODE(TCODE_STREAM_DATA
) |
3202 IT_HEADER_CHANNEL(ctx
->base
.channel
) |
3203 IT_HEADER_SPEED(ctx
->base
.speed
));
3205 cpu_to_le32(IT_HEADER_DATA_LENGTH(p
->header_length
+
3206 p
->payload_length
));
3209 if (p
->header_length
> 0) {
3210 d
[2].req_count
= cpu_to_le16(p
->header_length
);
3211 d
[2].data_address
= cpu_to_le32(d_bus
+ z
* sizeof(*d
));
3212 memcpy(&d
[z
], p
->header
, p
->header_length
);
3215 pd
= d
+ z
- payload_z
;
3216 payload_end_index
= payload_index
+ p
->payload_length
;
3217 for (i
= 0; i
< payload_z
; i
++) {
3218 page
= payload_index
>> PAGE_SHIFT
;
3219 offset
= payload_index
& ~PAGE_MASK
;
3220 next_page_index
= (page
+ 1) << PAGE_SHIFT
;
3222 min(next_page_index
, payload_end_index
) - payload_index
;
3223 pd
[i
].req_count
= cpu_to_le16(length
);
3225 page_bus
= page_private(buffer
->pages
[page
]);
3226 pd
[i
].data_address
= cpu_to_le32(page_bus
+ offset
);
3228 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3229 page_bus
, offset
, length
,
3232 payload_index
+= length
;
3236 irq
= DESCRIPTOR_IRQ_ALWAYS
;
3238 irq
= DESCRIPTOR_NO_IRQ
;
3240 last
= z
== 2 ? d
: d
+ z
- 1;
3241 last
->control
|= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST
|
3243 DESCRIPTOR_BRANCH_ALWAYS
|
3246 context_append(&ctx
->context
, d
, z
, header_z
);
3251 static int queue_iso_packet_per_buffer(struct iso_context
*ctx
,
3252 struct fw_iso_packet
*packet
,
3253 struct fw_iso_buffer
*buffer
,
3254 unsigned long payload
)
3256 struct device
*device
= ctx
->context
.ohci
->card
.device
;
3257 struct descriptor
*d
, *pd
;
3258 dma_addr_t d_bus
, page_bus
;
3259 u32 z
, header_z
, rest
;
3261 int page
, offset
, packet_count
, header_size
, payload_per_buffer
;
3264 * The OHCI controller puts the isochronous header and trailer in the
3265 * buffer, so we need at least 8 bytes.
3267 packet_count
= packet
->header_length
/ ctx
->base
.header_size
;
3268 header_size
= max(ctx
->base
.header_size
, (size_t)8);
3270 /* Get header size in number of descriptors. */
3271 header_z
= DIV_ROUND_UP(header_size
, sizeof(*d
));
3272 page
= payload
>> PAGE_SHIFT
;
3273 offset
= payload
& ~PAGE_MASK
;
3274 payload_per_buffer
= packet
->payload_length
/ packet_count
;
3276 for (i
= 0; i
< packet_count
; i
++) {
3277 /* d points to the header descriptor */
3278 z
= DIV_ROUND_UP(payload_per_buffer
+ offset
, PAGE_SIZE
) + 1;
3279 d
= context_get_descriptors(&ctx
->context
,
3280 z
+ header_z
, &d_bus
);
3284 d
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3285 DESCRIPTOR_INPUT_MORE
);
3286 if (packet
->skip
&& i
== 0)
3287 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3288 d
->req_count
= cpu_to_le16(header_size
);
3289 d
->res_count
= d
->req_count
;
3290 d
->transfer_status
= 0;
3291 d
->data_address
= cpu_to_le32(d_bus
+ (z
* sizeof(*d
)));
3293 rest
= payload_per_buffer
;
3295 for (j
= 1; j
< z
; j
++) {
3297 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3298 DESCRIPTOR_INPUT_MORE
);
3300 if (offset
+ rest
< PAGE_SIZE
)
3303 length
= PAGE_SIZE
- offset
;
3304 pd
->req_count
= cpu_to_le16(length
);
3305 pd
->res_count
= pd
->req_count
;
3306 pd
->transfer_status
= 0;
3308 page_bus
= page_private(buffer
->pages
[page
]);
3309 pd
->data_address
= cpu_to_le32(page_bus
+ offset
);
3311 dma_sync_single_range_for_device(device
, page_bus
,
3315 offset
= (offset
+ length
) & ~PAGE_MASK
;
3320 pd
->control
= cpu_to_le16(DESCRIPTOR_STATUS
|
3321 DESCRIPTOR_INPUT_LAST
|
3322 DESCRIPTOR_BRANCH_ALWAYS
);
3323 if (packet
->interrupt
&& i
== packet_count
- 1)
3324 pd
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3326 context_append(&ctx
->context
, d
, z
, header_z
);
3332 static int queue_iso_buffer_fill(struct iso_context
*ctx
,
3333 struct fw_iso_packet
*packet
,
3334 struct fw_iso_buffer
*buffer
,
3335 unsigned long payload
)
3337 struct descriptor
*d
;
3338 dma_addr_t d_bus
, page_bus
;
3339 int page
, offset
, rest
, z
, i
, length
;
3341 page
= payload
>> PAGE_SHIFT
;
3342 offset
= payload
& ~PAGE_MASK
;
3343 rest
= packet
->payload_length
;
3345 /* We need one descriptor for each page in the buffer. */
3346 z
= DIV_ROUND_UP(offset
+ rest
, PAGE_SIZE
);
3348 if (WARN_ON(offset
& 3 || rest
& 3 || page
+ z
> buffer
->page_count
))
3351 for (i
= 0; i
< z
; i
++) {
3352 d
= context_get_descriptors(&ctx
->context
, 1, &d_bus
);
3356 d
->control
= cpu_to_le16(DESCRIPTOR_INPUT_MORE
|
3357 DESCRIPTOR_BRANCH_ALWAYS
);
3358 if (packet
->skip
&& i
== 0)
3359 d
->control
|= cpu_to_le16(DESCRIPTOR_WAIT
);
3360 if (packet
->interrupt
&& i
== z
- 1)
3361 d
->control
|= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS
);
3363 if (offset
+ rest
< PAGE_SIZE
)
3366 length
= PAGE_SIZE
- offset
;
3367 d
->req_count
= cpu_to_le16(length
);
3368 d
->res_count
= d
->req_count
;
3369 d
->transfer_status
= 0;
3371 page_bus
= page_private(buffer
->pages
[page
]);
3372 d
->data_address
= cpu_to_le32(page_bus
+ offset
);
3374 dma_sync_single_range_for_device(ctx
->context
.ohci
->card
.device
,
3375 page_bus
, offset
, length
,
3382 context_append(&ctx
->context
, d
, 1, 0);
3388 static int ohci_queue_iso(struct fw_iso_context
*base
,
3389 struct fw_iso_packet
*packet
,
3390 struct fw_iso_buffer
*buffer
,
3391 unsigned long payload
)
3393 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3394 unsigned long flags
;
3397 spin_lock_irqsave(&ctx
->context
.ohci
->lock
, flags
);
3398 switch (base
->type
) {
3399 case FW_ISO_CONTEXT_TRANSMIT
:
3400 ret
= queue_iso_transmit(ctx
, packet
, buffer
, payload
);
3402 case FW_ISO_CONTEXT_RECEIVE
:
3403 ret
= queue_iso_packet_per_buffer(ctx
, packet
, buffer
, payload
);
3405 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3406 ret
= queue_iso_buffer_fill(ctx
, packet
, buffer
, payload
);
3409 spin_unlock_irqrestore(&ctx
->context
.ohci
->lock
, flags
);
3414 static void ohci_flush_queue_iso(struct fw_iso_context
*base
)
3416 struct context
*ctx
=
3417 &container_of(base
, struct iso_context
, base
)->context
;
3419 reg_write(ctx
->ohci
, CONTROL_SET(ctx
->regs
), CONTEXT_WAKE
);
3422 static int ohci_flush_iso_completions(struct fw_iso_context
*base
)
3424 struct iso_context
*ctx
= container_of(base
, struct iso_context
, base
);
3427 tasklet_disable(&ctx
->context
.tasklet
);
3429 if (!test_and_set_bit_lock(0, &ctx
->flushing_completions
)) {
3430 context_tasklet((unsigned long)&ctx
->context
);
3432 switch (base
->type
) {
3433 case FW_ISO_CONTEXT_TRANSMIT
:
3434 case FW_ISO_CONTEXT_RECEIVE
:
3435 if (ctx
->header_length
!= 0)
3436 flush_iso_completions(ctx
);
3438 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL
:
3439 if (ctx
->mc_completed
!= 0)
3440 flush_ir_buffer_fill(ctx
);
3446 clear_bit_unlock(0, &ctx
->flushing_completions
);
3447 smp_mb__after_clear_bit();
3450 tasklet_enable(&ctx
->context
.tasklet
);
3455 static const struct fw_card_driver ohci_driver
= {
3456 .enable
= ohci_enable
,
3457 .read_phy_reg
= ohci_read_phy_reg
,
3458 .update_phy_reg
= ohci_update_phy_reg
,
3459 .set_config_rom
= ohci_set_config_rom
,
3460 .send_request
= ohci_send_request
,
3461 .send_response
= ohci_send_response
,
3462 .cancel_packet
= ohci_cancel_packet
,
3463 .enable_phys_dma
= ohci_enable_phys_dma
,
3464 .read_csr
= ohci_read_csr
,
3465 .write_csr
= ohci_write_csr
,
3467 .allocate_iso_context
= ohci_allocate_iso_context
,
3468 .free_iso_context
= ohci_free_iso_context
,
3469 .set_iso_channels
= ohci_set_iso_channels
,
3470 .queue_iso
= ohci_queue_iso
,
3471 .flush_queue_iso
= ohci_flush_queue_iso
,
3472 .flush_iso_completions
= ohci_flush_iso_completions
,
3473 .start_iso
= ohci_start_iso
,
3474 .stop_iso
= ohci_stop_iso
,
3477 #ifdef CONFIG_PPC_PMAC
3478 static void pmac_ohci_on(struct pci_dev
*dev
)
3480 if (machine_is(powermac
)) {
3481 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3484 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 1);
3485 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 1);
3490 static void pmac_ohci_off(struct pci_dev
*dev
)
3492 if (machine_is(powermac
)) {
3493 struct device_node
*ofn
= pci_device_to_OF_node(dev
);
3496 pmac_call_feature(PMAC_FTR_1394_ENABLE
, ofn
, 0, 0);
3497 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER
, ofn
, 0, 0);
3502 static inline void pmac_ohci_on(struct pci_dev
*dev
) {}
3503 static inline void pmac_ohci_off(struct pci_dev
*dev
) {}
3504 #endif /* CONFIG_PPC_PMAC */
3506 static int __devinit
pci_probe(struct pci_dev
*dev
,
3507 const struct pci_device_id
*ent
)
3509 struct fw_ohci
*ohci
;
3510 u32 bus_options
, max_receive
, link_speed
, version
;
3515 if (dev
->vendor
== PCI_VENDOR_ID_PINNACLE_SYSTEMS
) {
3516 dev_err(&dev
->dev
, "Pinnacle MovieBoard is not yet supported\n");
3520 ohci
= kzalloc(sizeof(*ohci
), GFP_KERNEL
);
3526 fw_card_initialize(&ohci
->card
, &ohci_driver
, &dev
->dev
);
3530 err
= pci_enable_device(dev
);
3532 dev_err(&dev
->dev
, "failed to enable OHCI hardware\n");
3536 pci_set_master(dev
);
3537 pci_write_config_dword(dev
, OHCI1394_PCI_HCI_Control
, 0);
3538 pci_set_drvdata(dev
, ohci
);
3540 spin_lock_init(&ohci
->lock
);
3541 mutex_init(&ohci
->phy_reg_mutex
);
3543 INIT_WORK(&ohci
->bus_reset_work
, bus_reset_work
);
3545 err
= pci_request_region(dev
, 0, ohci_driver_name
);
3547 dev_err(&dev
->dev
, "MMIO resource unavailable\n");
3551 ohci
->registers
= pci_iomap(dev
, 0, OHCI1394_REGISTER_SIZE
);
3552 if (ohci
->registers
== NULL
) {
3553 dev_err(&dev
->dev
, "failed to remap registers\n");
3558 for (i
= 0; i
< ARRAY_SIZE(ohci_quirks
); i
++)
3559 if ((ohci_quirks
[i
].vendor
== dev
->vendor
) &&
3560 (ohci_quirks
[i
].device
== (unsigned short)PCI_ANY_ID
||
3561 ohci_quirks
[i
].device
== dev
->device
) &&
3562 (ohci_quirks
[i
].revision
== (unsigned short)PCI_ANY_ID
||
3563 ohci_quirks
[i
].revision
>= dev
->revision
)) {
3564 ohci
->quirks
= ohci_quirks
[i
].flags
;
3568 ohci
->quirks
= param_quirks
;
3571 * Because dma_alloc_coherent() allocates at least one page,
3572 * we save space by using a common buffer for the AR request/
3573 * response descriptors and the self IDs buffer.
3575 BUILD_BUG_ON(AR_BUFFERS
* sizeof(struct descriptor
) > PAGE_SIZE
/4);
3576 BUILD_BUG_ON(SELF_ID_BUF_SIZE
> PAGE_SIZE
/2);
3577 ohci
->misc_buffer
= dma_alloc_coherent(ohci
->card
.device
,
3579 &ohci
->misc_buffer_bus
,
3581 if (!ohci
->misc_buffer
) {
3586 err
= ar_context_init(&ohci
->ar_request_ctx
, ohci
, 0,
3587 OHCI1394_AsReqRcvContextControlSet
);
3591 err
= ar_context_init(&ohci
->ar_response_ctx
, ohci
, PAGE_SIZE
/4,
3592 OHCI1394_AsRspRcvContextControlSet
);
3594 goto fail_arreq_ctx
;
3596 err
= context_init(&ohci
->at_request_ctx
, ohci
,
3597 OHCI1394_AsReqTrContextControlSet
, handle_at_packet
);
3599 goto fail_arrsp_ctx
;
3601 err
= context_init(&ohci
->at_response_ctx
, ohci
,
3602 OHCI1394_AsRspTrContextControlSet
, handle_at_packet
);
3604 goto fail_atreq_ctx
;
3606 reg_write(ohci
, OHCI1394_IsoRecvIntMaskSet
, ~0);
3607 ohci
->ir_context_channels
= ~0ULL;
3608 ohci
->ir_context_support
= reg_read(ohci
, OHCI1394_IsoRecvIntMaskSet
);
3609 reg_write(ohci
, OHCI1394_IsoRecvIntMaskClear
, ~0);
3610 ohci
->ir_context_mask
= ohci
->ir_context_support
;
3611 ohci
->n_ir
= hweight32(ohci
->ir_context_mask
);
3612 size
= sizeof(struct iso_context
) * ohci
->n_ir
;
3613 ohci
->ir_context_list
= kzalloc(size
, GFP_KERNEL
);
3615 reg_write(ohci
, OHCI1394_IsoXmitIntMaskSet
, ~0);
3616 ohci
->it_context_support
= reg_read(ohci
, OHCI1394_IsoXmitIntMaskSet
);
3617 reg_write(ohci
, OHCI1394_IsoXmitIntMaskClear
, ~0);
3618 ohci
->it_context_mask
= ohci
->it_context_support
;
3619 ohci
->n_it
= hweight32(ohci
->it_context_mask
);
3620 size
= sizeof(struct iso_context
) * ohci
->n_it
;
3621 ohci
->it_context_list
= kzalloc(size
, GFP_KERNEL
);
3623 if (ohci
->it_context_list
== NULL
|| ohci
->ir_context_list
== NULL
) {
3628 ohci
->self_id_cpu
= ohci
->misc_buffer
+ PAGE_SIZE
/2;
3629 ohci
->self_id_bus
= ohci
->misc_buffer_bus
+ PAGE_SIZE
/2;
3631 bus_options
= reg_read(ohci
, OHCI1394_BusOptions
);
3632 max_receive
= (bus_options
>> 12) & 0xf;
3633 link_speed
= bus_options
& 0x7;
3634 guid
= ((u64
) reg_read(ohci
, OHCI1394_GUIDHi
) << 32) |
3635 reg_read(ohci
, OHCI1394_GUIDLo
);
3637 err
= fw_card_add(&ohci
->card
, max_receive
, link_speed
, guid
);
3641 version
= reg_read(ohci
, OHCI1394_Version
) & 0x00ff00ff;
3642 dev_notice(&dev
->dev
,
3643 "added OHCI v%x.%x device as card %d, "
3644 "%d IR + %d IT contexts, quirks 0x%x\n",
3645 version
>> 16, version
& 0xff, ohci
->card
.index
,
3646 ohci
->n_ir
, ohci
->n_it
, ohci
->quirks
);
3651 kfree(ohci
->ir_context_list
);
3652 kfree(ohci
->it_context_list
);
3653 context_release(&ohci
->at_response_ctx
);
3655 context_release(&ohci
->at_request_ctx
);
3657 ar_context_release(&ohci
->ar_response_ctx
);
3659 ar_context_release(&ohci
->ar_request_ctx
);
3661 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3662 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3664 pci_iounmap(dev
, ohci
->registers
);
3666 pci_release_region(dev
, 0);
3668 pci_disable_device(dev
);
3674 dev_err(&dev
->dev
, "out of memory\n");
3679 static void pci_remove(struct pci_dev
*dev
)
3681 struct fw_ohci
*ohci
;
3683 ohci
= pci_get_drvdata(dev
);
3684 reg_write(ohci
, OHCI1394_IntMaskClear
, ~0);
3686 cancel_work_sync(&ohci
->bus_reset_work
);
3687 fw_core_remove_card(&ohci
->card
);
3690 * FIXME: Fail all pending packets here, now that the upper
3691 * layers can't queue any more.
3694 software_reset(ohci
);
3695 free_irq(dev
->irq
, ohci
);
3697 if (ohci
->next_config_rom
&& ohci
->next_config_rom
!= ohci
->config_rom
)
3698 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3699 ohci
->next_config_rom
, ohci
->next_config_rom_bus
);
3700 if (ohci
->config_rom
)
3701 dma_free_coherent(ohci
->card
.device
, CONFIG_ROM_SIZE
,
3702 ohci
->config_rom
, ohci
->config_rom_bus
);
3703 ar_context_release(&ohci
->ar_request_ctx
);
3704 ar_context_release(&ohci
->ar_response_ctx
);
3705 dma_free_coherent(ohci
->card
.device
, PAGE_SIZE
,
3706 ohci
->misc_buffer
, ohci
->misc_buffer_bus
);
3707 context_release(&ohci
->at_request_ctx
);
3708 context_release(&ohci
->at_response_ctx
);
3709 kfree(ohci
->it_context_list
);
3710 kfree(ohci
->ir_context_list
);
3711 pci_disable_msi(dev
);
3712 pci_iounmap(dev
, ohci
->registers
);
3713 pci_release_region(dev
, 0);
3714 pci_disable_device(dev
);
3718 dev_notice(&dev
->dev
, "removed fw-ohci device\n");
3722 static int pci_suspend(struct pci_dev
*dev
, pm_message_t state
)
3724 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3727 software_reset(ohci
);
3728 free_irq(dev
->irq
, ohci
);
3729 pci_disable_msi(dev
);
3730 err
= pci_save_state(dev
);
3732 dev_err(&dev
->dev
, "pci_save_state failed\n");
3735 err
= pci_set_power_state(dev
, pci_choose_state(dev
, state
));
3737 dev_err(&dev
->dev
, "pci_set_power_state failed with %d\n", err
);
3743 static int pci_resume(struct pci_dev
*dev
)
3745 struct fw_ohci
*ohci
= pci_get_drvdata(dev
);
3749 pci_set_power_state(dev
, PCI_D0
);
3750 pci_restore_state(dev
);
3751 err
= pci_enable_device(dev
);
3753 dev_err(&dev
->dev
, "pci_enable_device failed\n");
3757 /* Some systems don't setup GUID register on resume from ram */
3758 if (!reg_read(ohci
, OHCI1394_GUIDLo
) &&
3759 !reg_read(ohci
, OHCI1394_GUIDHi
)) {
3760 reg_write(ohci
, OHCI1394_GUIDLo
, (u32
)ohci
->card
.guid
);
3761 reg_write(ohci
, OHCI1394_GUIDHi
, (u32
)(ohci
->card
.guid
>> 32));
3764 err
= ohci_enable(&ohci
->card
, NULL
, 0);
3768 ohci_resume_iso_dma(ohci
);
3774 static const struct pci_device_id pci_table
[] = {
3775 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI
, ~0) },
3779 MODULE_DEVICE_TABLE(pci
, pci_table
);
3781 static struct pci_driver fw_ohci_pci_driver
= {
3782 .name
= ohci_driver_name
,
3783 .id_table
= pci_table
,
3785 .remove
= pci_remove
,
3787 .resume
= pci_resume
,
3788 .suspend
= pci_suspend
,
3792 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3793 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3794 MODULE_LICENSE("GPL");
3796 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3797 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3798 MODULE_ALIAS("ohci1394");
3801 static int __init
fw_ohci_init(void)
3803 return pci_register_driver(&fw_ohci_pci_driver
);
3806 static void __exit
fw_ohci_cleanup(void)
3808 pci_unregister_driver(&fw_ohci_pci_driver
);
3811 module_init(fw_ohci_init
);
3812 module_exit(fw_ohci_cleanup
);