4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
33 * 4MB minimal write chunk size
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_work
{
42 struct super_block
*sb
;
43 unsigned long *older_than_this
;
44 enum writeback_sync_modes sync_mode
;
45 unsigned int tagged_writepages
:1;
46 unsigned int for_kupdate
:1;
47 unsigned int range_cyclic
:1;
48 unsigned int for_background
:1;
49 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason
; /* why was writeback initiated? */
52 struct list_head list
; /* pending work list */
53 struct completion
*done
; /* set if the caller waits */
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
60 * Determine whether there is writeback waiting to be handled against a
63 int writeback_in_progress(struct backing_dev_info
*bdi
)
65 return test_bit(BDI_writeback_running
, &bdi
->state
);
67 EXPORT_SYMBOL(writeback_in_progress
);
69 static inline struct backing_dev_info
*inode_to_bdi(struct inode
*inode
)
71 struct super_block
*sb
= inode
->i_sb
;
73 if (sb_is_blkdev_sb(sb
))
74 return inode
->i_mapping
->backing_dev_info
;
79 static inline struct inode
*wb_inode(struct list_head
*head
)
81 return list_entry(head
, struct inode
, i_wb_list
);
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
92 static void bdi_queue_work(struct backing_dev_info
*bdi
,
93 struct wb_writeback_work
*work
)
95 trace_writeback_queue(bdi
, work
);
97 spin_lock_bh(&bdi
->wb_lock
);
98 list_add_tail(&work
->list
, &bdi
->work_list
);
99 spin_unlock_bh(&bdi
->wb_lock
);
101 mod_delayed_work(bdi_wq
, &bdi
->wb
.dwork
, 0);
105 __bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
106 bool range_cyclic
, enum wb_reason reason
)
108 struct wb_writeback_work
*work
;
111 * This is WB_SYNC_NONE writeback, so if allocation fails just
112 * wakeup the thread for old dirty data writeback
114 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
116 trace_writeback_nowork(bdi
);
117 mod_delayed_work(bdi_wq
, &bdi
->wb
.dwork
, 0);
121 work
->sync_mode
= WB_SYNC_NONE
;
122 work
->nr_pages
= nr_pages
;
123 work
->range_cyclic
= range_cyclic
;
124 work
->reason
= reason
;
126 bdi_queue_work(bdi
, work
);
130 * bdi_start_writeback - start writeback
131 * @bdi: the backing device to write from
132 * @nr_pages: the number of pages to write
133 * @reason: reason why some writeback work was initiated
136 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
137 * started when this function returns, we make no guarantees on
138 * completion. Caller need not hold sb s_umount semaphore.
141 void bdi_start_writeback(struct backing_dev_info
*bdi
, long nr_pages
,
142 enum wb_reason reason
)
144 __bdi_start_writeback(bdi
, nr_pages
, true, reason
);
148 * bdi_start_background_writeback - start background writeback
149 * @bdi: the backing device to write from
152 * This makes sure WB_SYNC_NONE background writeback happens. When
153 * this function returns, it is only guaranteed that for given BDI
154 * some IO is happening if we are over background dirty threshold.
155 * Caller need not hold sb s_umount semaphore.
157 void bdi_start_background_writeback(struct backing_dev_info
*bdi
)
160 * We just wake up the flusher thread. It will perform background
161 * writeback as soon as there is no other work to do.
163 trace_writeback_wake_background(bdi
);
164 mod_delayed_work(bdi_wq
, &bdi
->wb
.dwork
, 0);
168 * Remove the inode from the writeback list it is on.
170 void inode_wb_list_del(struct inode
*inode
)
172 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
174 spin_lock(&bdi
->wb
.list_lock
);
175 list_del_init(&inode
->i_wb_list
);
176 spin_unlock(&bdi
->wb
.list_lock
);
180 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
181 * furthest end of its superblock's dirty-inode list.
183 * Before stamping the inode's ->dirtied_when, we check to see whether it is
184 * already the most-recently-dirtied inode on the b_dirty list. If that is
185 * the case then the inode must have been redirtied while it was being written
186 * out and we don't reset its dirtied_when.
188 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
190 assert_spin_locked(&wb
->list_lock
);
191 if (!list_empty(&wb
->b_dirty
)) {
194 tail
= wb_inode(wb
->b_dirty
.next
);
195 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
196 inode
->dirtied_when
= jiffies
;
198 list_move(&inode
->i_wb_list
, &wb
->b_dirty
);
202 * requeue inode for re-scanning after bdi->b_io list is exhausted.
204 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
206 assert_spin_locked(&wb
->list_lock
);
207 list_move(&inode
->i_wb_list
, &wb
->b_more_io
);
210 static void inode_sync_complete(struct inode
*inode
)
212 inode
->i_state
&= ~I_SYNC
;
213 /* If inode is clean an unused, put it into LRU now... */
214 inode_add_lru(inode
);
215 /* Waiters must see I_SYNC cleared before being woken up */
217 wake_up_bit(&inode
->i_state
, __I_SYNC
);
220 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
222 bool ret
= time_after(inode
->dirtied_when
, t
);
225 * For inodes being constantly redirtied, dirtied_when can get stuck.
226 * It _appears_ to be in the future, but is actually in distant past.
227 * This test is necessary to prevent such wrapped-around relative times
228 * from permanently stopping the whole bdi writeback.
230 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
236 * Move expired (dirtied before work->older_than_this) dirty inodes from
237 * @delaying_queue to @dispatch_queue.
239 static int move_expired_inodes(struct list_head
*delaying_queue
,
240 struct list_head
*dispatch_queue
,
241 struct wb_writeback_work
*work
)
244 struct list_head
*pos
, *node
;
245 struct super_block
*sb
= NULL
;
250 while (!list_empty(delaying_queue
)) {
251 inode
= wb_inode(delaying_queue
->prev
);
252 if (work
->older_than_this
&&
253 inode_dirtied_after(inode
, *work
->older_than_this
))
255 list_move(&inode
->i_wb_list
, &tmp
);
257 if (sb_is_blkdev_sb(inode
->i_sb
))
259 if (sb
&& sb
!= inode
->i_sb
)
264 /* just one sb in list, splice to dispatch_queue and we're done */
266 list_splice(&tmp
, dispatch_queue
);
270 /* Move inodes from one superblock together */
271 while (!list_empty(&tmp
)) {
272 sb
= wb_inode(tmp
.prev
)->i_sb
;
273 list_for_each_prev_safe(pos
, node
, &tmp
) {
274 inode
= wb_inode(pos
);
275 if (inode
->i_sb
== sb
)
276 list_move(&inode
->i_wb_list
, dispatch_queue
);
284 * Queue all expired dirty inodes for io, eldest first.
286 * newly dirtied b_dirty b_io b_more_io
287 * =============> gf edc BA
289 * newly dirtied b_dirty b_io b_more_io
290 * =============> g fBAedc
292 * +--> dequeue for IO
294 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
297 assert_spin_locked(&wb
->list_lock
);
298 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
299 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, work
);
300 trace_writeback_queue_io(wb
, work
, moved
);
303 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
307 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
308 trace_writeback_write_inode_start(inode
, wbc
);
309 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
310 trace_writeback_write_inode(inode
, wbc
);
317 * Wait for writeback on an inode to complete. Called with i_lock held.
318 * Caller must make sure inode cannot go away when we drop i_lock.
320 static void __inode_wait_for_writeback(struct inode
*inode
)
321 __releases(inode
->i_lock
)
322 __acquires(inode
->i_lock
)
324 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
325 wait_queue_head_t
*wqh
;
327 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
328 while (inode
->i_state
& I_SYNC
) {
329 spin_unlock(&inode
->i_lock
);
330 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
331 spin_lock(&inode
->i_lock
);
336 * Wait for writeback on an inode to complete. Caller must have inode pinned.
338 void inode_wait_for_writeback(struct inode
*inode
)
340 spin_lock(&inode
->i_lock
);
341 __inode_wait_for_writeback(inode
);
342 spin_unlock(&inode
->i_lock
);
346 * Sleep until I_SYNC is cleared. This function must be called with i_lock
347 * held and drops it. It is aimed for callers not holding any inode reference
348 * so once i_lock is dropped, inode can go away.
350 static void inode_sleep_on_writeback(struct inode
*inode
)
351 __releases(inode
->i_lock
)
354 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
357 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
358 sleep
= inode
->i_state
& I_SYNC
;
359 spin_unlock(&inode
->i_lock
);
362 finish_wait(wqh
, &wait
);
366 * Find proper writeback list for the inode depending on its current state and
367 * possibly also change of its state while we were doing writeback. Here we
368 * handle things such as livelock prevention or fairness of writeback among
369 * inodes. This function can be called only by flusher thread - noone else
370 * processes all inodes in writeback lists and requeueing inodes behind flusher
371 * thread's back can have unexpected consequences.
373 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
374 struct writeback_control
*wbc
)
376 if (inode
->i_state
& I_FREEING
)
380 * Sync livelock prevention. Each inode is tagged and synced in one
381 * shot. If still dirty, it will be redirty_tail()'ed below. Update
382 * the dirty time to prevent enqueue and sync it again.
384 if ((inode
->i_state
& I_DIRTY
) &&
385 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
386 inode
->dirtied_when
= jiffies
;
388 if (wbc
->pages_skipped
) {
390 * writeback is not making progress due to locked
391 * buffers. Skip this inode for now.
393 redirty_tail(inode
, wb
);
397 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
399 * We didn't write back all the pages. nfs_writepages()
400 * sometimes bales out without doing anything.
402 if (wbc
->nr_to_write
<= 0) {
403 /* Slice used up. Queue for next turn. */
404 requeue_io(inode
, wb
);
407 * Writeback blocked by something other than
408 * congestion. Delay the inode for some time to
409 * avoid spinning on the CPU (100% iowait)
410 * retrying writeback of the dirty page/inode
411 * that cannot be performed immediately.
413 redirty_tail(inode
, wb
);
415 } else if (inode
->i_state
& I_DIRTY
) {
417 * Filesystems can dirty the inode during writeback operations,
418 * such as delayed allocation during submission or metadata
419 * updates after data IO completion.
421 redirty_tail(inode
, wb
);
423 /* The inode is clean. Remove from writeback lists. */
424 list_del_init(&inode
->i_wb_list
);
429 * Write out an inode and its dirty pages. Do not update the writeback list
430 * linkage. That is left to the caller. The caller is also responsible for
431 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
434 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
436 struct address_space
*mapping
= inode
->i_mapping
;
437 long nr_to_write
= wbc
->nr_to_write
;
441 WARN_ON(!(inode
->i_state
& I_SYNC
));
443 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
445 ret
= do_writepages(mapping
, wbc
);
448 * Make sure to wait on the data before writing out the metadata.
449 * This is important for filesystems that modify metadata on data
450 * I/O completion. We don't do it for sync(2) writeback because it has a
451 * separate, external IO completion path and ->sync_fs for guaranteeing
452 * inode metadata is written back correctly.
454 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
455 int err
= filemap_fdatawait(mapping
);
461 * Some filesystems may redirty the inode during the writeback
462 * due to delalloc, clear dirty metadata flags right before
465 spin_lock(&inode
->i_lock
);
466 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
467 if (!mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
468 inode
->i_state
&= ~I_DIRTY_PAGES
;
469 dirty
= inode
->i_state
& I_DIRTY
;
470 inode
->i_state
&= ~(I_DIRTY_SYNC
| I_DIRTY_DATASYNC
);
471 spin_unlock(&inode
->i_lock
);
472 /* Don't write the inode if only I_DIRTY_PAGES was set */
473 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
474 int err
= write_inode(inode
, wbc
);
478 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
483 * Write out an inode's dirty pages. Either the caller has an active reference
484 * on the inode or the inode has I_WILL_FREE set.
486 * This function is designed to be called for writing back one inode which
487 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
488 * and does more profound writeback list handling in writeback_sb_inodes().
491 writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
492 struct writeback_control
*wbc
)
496 spin_lock(&inode
->i_lock
);
497 if (!atomic_read(&inode
->i_count
))
498 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
500 WARN_ON(inode
->i_state
& I_WILL_FREE
);
502 if (inode
->i_state
& I_SYNC
) {
503 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
506 * It's a data-integrity sync. We must wait. Since callers hold
507 * inode reference or inode has I_WILL_FREE set, it cannot go
510 __inode_wait_for_writeback(inode
);
512 WARN_ON(inode
->i_state
& I_SYNC
);
514 * Skip inode if it is clean and we have no outstanding writeback in
515 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
516 * function since flusher thread may be doing for example sync in
517 * parallel and if we move the inode, it could get skipped. So here we
518 * make sure inode is on some writeback list and leave it there unless
519 * we have completely cleaned the inode.
521 if (!(inode
->i_state
& I_DIRTY
) &&
522 (wbc
->sync_mode
!= WB_SYNC_ALL
||
523 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
525 inode
->i_state
|= I_SYNC
;
526 spin_unlock(&inode
->i_lock
);
528 ret
= __writeback_single_inode(inode
, wbc
);
530 spin_lock(&wb
->list_lock
);
531 spin_lock(&inode
->i_lock
);
533 * If inode is clean, remove it from writeback lists. Otherwise don't
534 * touch it. See comment above for explanation.
536 if (!(inode
->i_state
& I_DIRTY
))
537 list_del_init(&inode
->i_wb_list
);
538 spin_unlock(&wb
->list_lock
);
539 inode_sync_complete(inode
);
541 spin_unlock(&inode
->i_lock
);
545 static long writeback_chunk_size(struct backing_dev_info
*bdi
,
546 struct wb_writeback_work
*work
)
551 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
552 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
553 * here avoids calling into writeback_inodes_wb() more than once.
555 * The intended call sequence for WB_SYNC_ALL writeback is:
558 * writeback_sb_inodes() <== called only once
559 * write_cache_pages() <== called once for each inode
560 * (quickly) tag currently dirty pages
561 * (maybe slowly) sync all tagged pages
563 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
566 pages
= min(bdi
->avg_write_bandwidth
/ 2,
567 global_dirty_limit
/ DIRTY_SCOPE
);
568 pages
= min(pages
, work
->nr_pages
);
569 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
570 MIN_WRITEBACK_PAGES
);
577 * Write a portion of b_io inodes which belong to @sb.
579 * Return the number of pages and/or inodes written.
581 static long writeback_sb_inodes(struct super_block
*sb
,
582 struct bdi_writeback
*wb
,
583 struct wb_writeback_work
*work
)
585 struct writeback_control wbc
= {
586 .sync_mode
= work
->sync_mode
,
587 .tagged_writepages
= work
->tagged_writepages
,
588 .for_kupdate
= work
->for_kupdate
,
589 .for_background
= work
->for_background
,
590 .for_sync
= work
->for_sync
,
591 .range_cyclic
= work
->range_cyclic
,
593 .range_end
= LLONG_MAX
,
595 unsigned long start_time
= jiffies
;
597 long wrote
= 0; /* count both pages and inodes */
599 while (!list_empty(&wb
->b_io
)) {
600 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
602 if (inode
->i_sb
!= sb
) {
605 * We only want to write back data for this
606 * superblock, move all inodes not belonging
607 * to it back onto the dirty list.
609 redirty_tail(inode
, wb
);
614 * The inode belongs to a different superblock.
615 * Bounce back to the caller to unpin this and
616 * pin the next superblock.
622 * Don't bother with new inodes or inodes being freed, first
623 * kind does not need periodic writeout yet, and for the latter
624 * kind writeout is handled by the freer.
626 spin_lock(&inode
->i_lock
);
627 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
628 spin_unlock(&inode
->i_lock
);
629 redirty_tail(inode
, wb
);
632 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
634 * If this inode is locked for writeback and we are not
635 * doing writeback-for-data-integrity, move it to
636 * b_more_io so that writeback can proceed with the
637 * other inodes on s_io.
639 * We'll have another go at writing back this inode
640 * when we completed a full scan of b_io.
642 spin_unlock(&inode
->i_lock
);
643 requeue_io(inode
, wb
);
644 trace_writeback_sb_inodes_requeue(inode
);
647 spin_unlock(&wb
->list_lock
);
650 * We already requeued the inode if it had I_SYNC set and we
651 * are doing WB_SYNC_NONE writeback. So this catches only the
654 if (inode
->i_state
& I_SYNC
) {
655 /* Wait for I_SYNC. This function drops i_lock... */
656 inode_sleep_on_writeback(inode
);
657 /* Inode may be gone, start again */
658 spin_lock(&wb
->list_lock
);
661 inode
->i_state
|= I_SYNC
;
662 spin_unlock(&inode
->i_lock
);
664 write_chunk
= writeback_chunk_size(wb
->bdi
, work
);
665 wbc
.nr_to_write
= write_chunk
;
666 wbc
.pages_skipped
= 0;
669 * We use I_SYNC to pin the inode in memory. While it is set
670 * evict_inode() will wait so the inode cannot be freed.
672 __writeback_single_inode(inode
, &wbc
);
674 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
675 wrote
+= write_chunk
- wbc
.nr_to_write
;
676 spin_lock(&wb
->list_lock
);
677 spin_lock(&inode
->i_lock
);
678 if (!(inode
->i_state
& I_DIRTY
))
680 requeue_inode(inode
, wb
, &wbc
);
681 inode_sync_complete(inode
);
682 spin_unlock(&inode
->i_lock
);
683 cond_resched_lock(&wb
->list_lock
);
685 * bail out to wb_writeback() often enough to check
686 * background threshold and other termination conditions.
689 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
691 if (work
->nr_pages
<= 0)
698 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
699 struct wb_writeback_work
*work
)
701 unsigned long start_time
= jiffies
;
704 while (!list_empty(&wb
->b_io
)) {
705 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
706 struct super_block
*sb
= inode
->i_sb
;
708 if (!grab_super_passive(sb
)) {
710 * grab_super_passive() may fail consistently due to
711 * s_umount being grabbed by someone else. Don't use
712 * requeue_io() to avoid busy retrying the inode/sb.
714 redirty_tail(inode
, wb
);
717 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
720 /* refer to the same tests at the end of writeback_sb_inodes */
722 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
724 if (work
->nr_pages
<= 0)
728 /* Leave any unwritten inodes on b_io */
732 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
733 enum wb_reason reason
)
735 struct wb_writeback_work work
= {
736 .nr_pages
= nr_pages
,
737 .sync_mode
= WB_SYNC_NONE
,
742 spin_lock(&wb
->list_lock
);
743 if (list_empty(&wb
->b_io
))
745 __writeback_inodes_wb(wb
, &work
);
746 spin_unlock(&wb
->list_lock
);
748 return nr_pages
- work
.nr_pages
;
751 static bool over_bground_thresh(struct backing_dev_info
*bdi
)
753 unsigned long background_thresh
, dirty_thresh
;
755 global_dirty_limits(&background_thresh
, &dirty_thresh
);
757 if (global_page_state(NR_FILE_DIRTY
) +
758 global_page_state(NR_UNSTABLE_NFS
) > background_thresh
)
761 if (bdi_stat(bdi
, BDI_RECLAIMABLE
) >
762 bdi_dirty_limit(bdi
, background_thresh
))
769 * Called under wb->list_lock. If there are multiple wb per bdi,
770 * only the flusher working on the first wb should do it.
772 static void wb_update_bandwidth(struct bdi_writeback
*wb
,
773 unsigned long start_time
)
775 __bdi_update_bandwidth(wb
->bdi
, 0, 0, 0, 0, 0, start_time
);
779 * Explicit flushing or periodic writeback of "old" data.
781 * Define "old": the first time one of an inode's pages is dirtied, we mark the
782 * dirtying-time in the inode's address_space. So this periodic writeback code
783 * just walks the superblock inode list, writing back any inodes which are
784 * older than a specific point in time.
786 * Try to run once per dirty_writeback_interval. But if a writeback event
787 * takes longer than a dirty_writeback_interval interval, then leave a
790 * older_than_this takes precedence over nr_to_write. So we'll only write back
791 * all dirty pages if they are all attached to "old" mappings.
793 static long wb_writeback(struct bdi_writeback
*wb
,
794 struct wb_writeback_work
*work
)
796 unsigned long wb_start
= jiffies
;
797 long nr_pages
= work
->nr_pages
;
798 unsigned long oldest_jif
;
802 oldest_jif
= jiffies
;
803 work
->older_than_this
= &oldest_jif
;
805 spin_lock(&wb
->list_lock
);
808 * Stop writeback when nr_pages has been consumed
810 if (work
->nr_pages
<= 0)
814 * Background writeout and kupdate-style writeback may
815 * run forever. Stop them if there is other work to do
816 * so that e.g. sync can proceed. They'll be restarted
817 * after the other works are all done.
819 if ((work
->for_background
|| work
->for_kupdate
) &&
820 !list_empty(&wb
->bdi
->work_list
))
824 * For background writeout, stop when we are below the
825 * background dirty threshold
827 if (work
->for_background
&& !over_bground_thresh(wb
->bdi
))
831 * Kupdate and background works are special and we want to
832 * include all inodes that need writing. Livelock avoidance is
833 * handled by these works yielding to any other work so we are
836 if (work
->for_kupdate
) {
837 oldest_jif
= jiffies
-
838 msecs_to_jiffies(dirty_expire_interval
* 10);
839 } else if (work
->for_background
)
840 oldest_jif
= jiffies
;
842 trace_writeback_start(wb
->bdi
, work
);
843 if (list_empty(&wb
->b_io
))
846 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
848 progress
= __writeback_inodes_wb(wb
, work
);
849 trace_writeback_written(wb
->bdi
, work
);
851 wb_update_bandwidth(wb
, wb_start
);
854 * Did we write something? Try for more
856 * Dirty inodes are moved to b_io for writeback in batches.
857 * The completion of the current batch does not necessarily
858 * mean the overall work is done. So we keep looping as long
859 * as made some progress on cleaning pages or inodes.
864 * No more inodes for IO, bail
866 if (list_empty(&wb
->b_more_io
))
869 * Nothing written. Wait for some inode to
870 * become available for writeback. Otherwise
871 * we'll just busyloop.
873 if (!list_empty(&wb
->b_more_io
)) {
874 trace_writeback_wait(wb
->bdi
, work
);
875 inode
= wb_inode(wb
->b_more_io
.prev
);
876 spin_lock(&inode
->i_lock
);
877 spin_unlock(&wb
->list_lock
);
878 /* This function drops i_lock... */
879 inode_sleep_on_writeback(inode
);
880 spin_lock(&wb
->list_lock
);
883 spin_unlock(&wb
->list_lock
);
885 return nr_pages
- work
->nr_pages
;
889 * Return the next wb_writeback_work struct that hasn't been processed yet.
891 static struct wb_writeback_work
*
892 get_next_work_item(struct backing_dev_info
*bdi
)
894 struct wb_writeback_work
*work
= NULL
;
896 spin_lock_bh(&bdi
->wb_lock
);
897 if (!list_empty(&bdi
->work_list
)) {
898 work
= list_entry(bdi
->work_list
.next
,
899 struct wb_writeback_work
, list
);
900 list_del_init(&work
->list
);
902 spin_unlock_bh(&bdi
->wb_lock
);
907 * Add in the number of potentially dirty inodes, because each inode
908 * write can dirty pagecache in the underlying blockdev.
910 static unsigned long get_nr_dirty_pages(void)
912 return global_page_state(NR_FILE_DIRTY
) +
913 global_page_state(NR_UNSTABLE_NFS
) +
914 get_nr_dirty_inodes();
917 static long wb_check_background_flush(struct bdi_writeback
*wb
)
919 if (over_bground_thresh(wb
->bdi
)) {
921 struct wb_writeback_work work
= {
922 .nr_pages
= LONG_MAX
,
923 .sync_mode
= WB_SYNC_NONE
,
926 .reason
= WB_REASON_BACKGROUND
,
929 return wb_writeback(wb
, &work
);
935 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
937 unsigned long expired
;
941 * When set to zero, disable periodic writeback
943 if (!dirty_writeback_interval
)
946 expired
= wb
->last_old_flush
+
947 msecs_to_jiffies(dirty_writeback_interval
* 10);
948 if (time_before(jiffies
, expired
))
951 wb
->last_old_flush
= jiffies
;
952 nr_pages
= get_nr_dirty_pages();
955 struct wb_writeback_work work
= {
956 .nr_pages
= nr_pages
,
957 .sync_mode
= WB_SYNC_NONE
,
960 .reason
= WB_REASON_PERIODIC
,
963 return wb_writeback(wb
, &work
);
970 * Retrieve work items and do the writeback they describe
972 static long wb_do_writeback(struct bdi_writeback
*wb
)
974 struct backing_dev_info
*bdi
= wb
->bdi
;
975 struct wb_writeback_work
*work
;
978 set_bit(BDI_writeback_running
, &wb
->bdi
->state
);
979 while ((work
= get_next_work_item(bdi
)) != NULL
) {
981 trace_writeback_exec(bdi
, work
);
983 wrote
+= wb_writeback(wb
, work
);
986 * Notify the caller of completion if this is a synchronous
987 * work item, otherwise just free it.
990 complete(work
->done
);
996 * Check for periodic writeback, kupdated() style
998 wrote
+= wb_check_old_data_flush(wb
);
999 wrote
+= wb_check_background_flush(wb
);
1000 clear_bit(BDI_writeback_running
, &wb
->bdi
->state
);
1006 * Handle writeback of dirty data for the device backed by this bdi. Also
1007 * reschedules periodically and does kupdated style flushing.
1009 void bdi_writeback_workfn(struct work_struct
*work
)
1011 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1012 struct bdi_writeback
, dwork
);
1013 struct backing_dev_info
*bdi
= wb
->bdi
;
1016 set_worker_desc("flush-%s", dev_name(bdi
->dev
));
1017 current
->flags
|= PF_SWAPWRITE
;
1019 if (likely(!current_is_workqueue_rescuer() ||
1020 list_empty(&bdi
->bdi_list
))) {
1022 * The normal path. Keep writing back @bdi until its
1023 * work_list is empty. Note that this path is also taken
1024 * if @bdi is shutting down even when we're running off the
1025 * rescuer as work_list needs to be drained.
1028 pages_written
= wb_do_writeback(wb
);
1029 trace_writeback_pages_written(pages_written
);
1030 } while (!list_empty(&bdi
->work_list
));
1033 * bdi_wq can't get enough workers and we're running off
1034 * the emergency worker. Don't hog it. Hopefully, 1024 is
1035 * enough for efficient IO.
1037 pages_written
= writeback_inodes_wb(&bdi
->wb
, 1024,
1038 WB_REASON_FORKER_THREAD
);
1039 trace_writeback_pages_written(pages_written
);
1042 if (!list_empty(&bdi
->work_list
) ||
1043 (wb_has_dirty_io(wb
) && dirty_writeback_interval
))
1044 queue_delayed_work(bdi_wq
, &wb
->dwork
,
1045 msecs_to_jiffies(dirty_writeback_interval
* 10));
1047 current
->flags
&= ~PF_SWAPWRITE
;
1051 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1054 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1056 struct backing_dev_info
*bdi
;
1059 nr_pages
= get_nr_dirty_pages();
1062 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1063 if (!bdi_has_dirty_io(bdi
))
1065 __bdi_start_writeback(bdi
, nr_pages
, false, reason
);
1070 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1072 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1073 struct dentry
*dentry
;
1074 const char *name
= "?";
1076 dentry
= d_find_alias(inode
);
1078 spin_lock(&dentry
->d_lock
);
1079 name
= (const char *) dentry
->d_name
.name
;
1082 "%s(%d): dirtied inode %lu (%s) on %s\n",
1083 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1084 name
, inode
->i_sb
->s_id
);
1086 spin_unlock(&dentry
->d_lock
);
1093 * __mark_inode_dirty - internal function
1094 * @inode: inode to mark
1095 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1096 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1097 * mark_inode_dirty_sync.
1099 * Put the inode on the super block's dirty list.
1101 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1102 * dirty list only if it is hashed or if it refers to a blockdev.
1103 * If it was not hashed, it will never be added to the dirty list
1104 * even if it is later hashed, as it will have been marked dirty already.
1106 * In short, make sure you hash any inodes _before_ you start marking
1109 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1110 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1111 * the kernel-internal blockdev inode represents the dirtying time of the
1112 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1113 * page->mapping->host, so the page-dirtying time is recorded in the internal
1116 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1118 struct super_block
*sb
= inode
->i_sb
;
1119 struct backing_dev_info
*bdi
= NULL
;
1122 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1123 * dirty the inode itself
1125 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1126 trace_writeback_dirty_inode_start(inode
, flags
);
1128 if (sb
->s_op
->dirty_inode
)
1129 sb
->s_op
->dirty_inode(inode
, flags
);
1131 trace_writeback_dirty_inode(inode
, flags
);
1135 * make sure that changes are seen by all cpus before we test i_state
1140 /* avoid the locking if we can */
1141 if ((inode
->i_state
& flags
) == flags
)
1144 if (unlikely(block_dump
))
1145 block_dump___mark_inode_dirty(inode
);
1147 spin_lock(&inode
->i_lock
);
1148 if ((inode
->i_state
& flags
) != flags
) {
1149 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1151 inode
->i_state
|= flags
;
1154 * If the inode is being synced, just update its dirty state.
1155 * The unlocker will place the inode on the appropriate
1156 * superblock list, based upon its state.
1158 if (inode
->i_state
& I_SYNC
)
1159 goto out_unlock_inode
;
1162 * Only add valid (hashed) inodes to the superblock's
1163 * dirty list. Add blockdev inodes as well.
1165 if (!S_ISBLK(inode
->i_mode
)) {
1166 if (inode_unhashed(inode
))
1167 goto out_unlock_inode
;
1169 if (inode
->i_state
& I_FREEING
)
1170 goto out_unlock_inode
;
1173 * If the inode was already on b_dirty/b_io/b_more_io, don't
1174 * reposition it (that would break b_dirty time-ordering).
1177 bool wakeup_bdi
= false;
1178 bdi
= inode_to_bdi(inode
);
1180 spin_unlock(&inode
->i_lock
);
1181 spin_lock(&bdi
->wb
.list_lock
);
1182 if (bdi_cap_writeback_dirty(bdi
)) {
1183 WARN(!test_bit(BDI_registered
, &bdi
->state
),
1184 "bdi-%s not registered\n", bdi
->name
);
1187 * If this is the first dirty inode for this
1188 * bdi, we have to wake-up the corresponding
1189 * bdi thread to make sure background
1190 * write-back happens later.
1192 if (!wb_has_dirty_io(&bdi
->wb
))
1196 inode
->dirtied_when
= jiffies
;
1197 list_move(&inode
->i_wb_list
, &bdi
->wb
.b_dirty
);
1198 spin_unlock(&bdi
->wb
.list_lock
);
1201 bdi_wakeup_thread_delayed(bdi
);
1206 spin_unlock(&inode
->i_lock
);
1209 EXPORT_SYMBOL(__mark_inode_dirty
);
1211 static void wait_sb_inodes(struct super_block
*sb
)
1213 struct inode
*inode
, *old_inode
= NULL
;
1216 * We need to be protected against the filesystem going from
1217 * r/o to r/w or vice versa.
1219 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1221 spin_lock(&inode_sb_list_lock
);
1224 * Data integrity sync. Must wait for all pages under writeback,
1225 * because there may have been pages dirtied before our sync
1226 * call, but which had writeout started before we write it out.
1227 * In which case, the inode may not be on the dirty list, but
1228 * we still have to wait for that writeout.
1230 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1231 struct address_space
*mapping
= inode
->i_mapping
;
1233 spin_lock(&inode
->i_lock
);
1234 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
1235 (mapping
->nrpages
== 0)) {
1236 spin_unlock(&inode
->i_lock
);
1240 spin_unlock(&inode
->i_lock
);
1241 spin_unlock(&inode_sb_list_lock
);
1244 * We hold a reference to 'inode' so it couldn't have been
1245 * removed from s_inodes list while we dropped the
1246 * inode_sb_list_lock. We cannot iput the inode now as we can
1247 * be holding the last reference and we cannot iput it under
1248 * inode_sb_list_lock. So we keep the reference and iput it
1254 filemap_fdatawait(mapping
);
1258 spin_lock(&inode_sb_list_lock
);
1260 spin_unlock(&inode_sb_list_lock
);
1265 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1266 * @sb: the superblock
1267 * @nr: the number of pages to write
1268 * @reason: reason why some writeback work initiated
1270 * Start writeback on some inodes on this super_block. No guarantees are made
1271 * on how many (if any) will be written, and this function does not wait
1272 * for IO completion of submitted IO.
1274 void writeback_inodes_sb_nr(struct super_block
*sb
,
1276 enum wb_reason reason
)
1278 DECLARE_COMPLETION_ONSTACK(done
);
1279 struct wb_writeback_work work
= {
1281 .sync_mode
= WB_SYNC_NONE
,
1282 .tagged_writepages
= 1,
1288 if (sb
->s_bdi
== &noop_backing_dev_info
)
1290 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1291 bdi_queue_work(sb
->s_bdi
, &work
);
1292 wait_for_completion(&done
);
1294 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
1297 * writeback_inodes_sb - writeback dirty inodes from given super_block
1298 * @sb: the superblock
1299 * @reason: reason why some writeback work was initiated
1301 * Start writeback on some inodes on this super_block. No guarantees are made
1302 * on how many (if any) will be written, and this function does not wait
1303 * for IO completion of submitted IO.
1305 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
1307 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
1309 EXPORT_SYMBOL(writeback_inodes_sb
);
1312 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1313 * @sb: the superblock
1314 * @nr: the number of pages to write
1315 * @reason: the reason of writeback
1317 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1318 * Returns 1 if writeback was started, 0 if not.
1320 int try_to_writeback_inodes_sb_nr(struct super_block
*sb
,
1322 enum wb_reason reason
)
1324 if (writeback_in_progress(sb
->s_bdi
))
1327 if (!down_read_trylock(&sb
->s_umount
))
1330 writeback_inodes_sb_nr(sb
, nr
, reason
);
1331 up_read(&sb
->s_umount
);
1334 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr
);
1337 * try_to_writeback_inodes_sb - try to start writeback if none underway
1338 * @sb: the superblock
1339 * @reason: reason why some writeback work was initiated
1341 * Implement by try_to_writeback_inodes_sb_nr()
1342 * Returns 1 if writeback was started, 0 if not.
1344 int try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
1346 return try_to_writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
1348 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
1351 * sync_inodes_sb - sync sb inode pages
1352 * @sb: the superblock
1354 * This function writes and waits on any dirty inode belonging to this
1357 void sync_inodes_sb(struct super_block
*sb
)
1359 DECLARE_COMPLETION_ONSTACK(done
);
1360 struct wb_writeback_work work
= {
1362 .sync_mode
= WB_SYNC_ALL
,
1363 .nr_pages
= LONG_MAX
,
1366 .reason
= WB_REASON_SYNC
,
1370 /* Nothing to do? */
1371 if (sb
->s_bdi
== &noop_backing_dev_info
)
1373 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1375 bdi_queue_work(sb
->s_bdi
, &work
);
1376 wait_for_completion(&done
);
1380 EXPORT_SYMBOL(sync_inodes_sb
);
1383 * write_inode_now - write an inode to disk
1384 * @inode: inode to write to disk
1385 * @sync: whether the write should be synchronous or not
1387 * This function commits an inode to disk immediately if it is dirty. This is
1388 * primarily needed by knfsd.
1390 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1392 int write_inode_now(struct inode
*inode
, int sync
)
1394 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1395 struct writeback_control wbc
= {
1396 .nr_to_write
= LONG_MAX
,
1397 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1399 .range_end
= LLONG_MAX
,
1402 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1403 wbc
.nr_to_write
= 0;
1406 return writeback_single_inode(inode
, wb
, &wbc
);
1408 EXPORT_SYMBOL(write_inode_now
);
1411 * sync_inode - write an inode and its pages to disk.
1412 * @inode: the inode to sync
1413 * @wbc: controls the writeback mode
1415 * sync_inode() will write an inode and its pages to disk. It will also
1416 * correctly update the inode on its superblock's dirty inode lists and will
1417 * update inode->i_state.
1419 * The caller must have a ref on the inode.
1421 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1423 return writeback_single_inode(inode
, &inode_to_bdi(inode
)->wb
, wbc
);
1425 EXPORT_SYMBOL(sync_inode
);
1428 * sync_inode_metadata - write an inode to disk
1429 * @inode: the inode to sync
1430 * @wait: wait for I/O to complete.
1432 * Write an inode to disk and adjust its dirty state after completion.
1434 * Note: only writes the actual inode, no associated data or other metadata.
1436 int sync_inode_metadata(struct inode
*inode
, int wait
)
1438 struct writeback_control wbc
= {
1439 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1440 .nr_to_write
= 0, /* metadata-only */
1443 return sync_inode(inode
, &wbc
);
1445 EXPORT_SYMBOL(sync_inode_metadata
);