1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
56 static struct workqueue_struct
*target_completion_wq
;
57 static struct kmem_cache
*se_sess_cache
;
58 struct kmem_cache
*se_ua_cache
;
59 struct kmem_cache
*t10_pr_reg_cache
;
60 struct kmem_cache
*t10_alua_lu_gp_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
62 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
63 struct kmem_cache
*t10_alua_lba_map_cache
;
64 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
66 static void transport_complete_task_attr(struct se_cmd
*cmd
);
67 static void transport_handle_queue_full(struct se_cmd
*cmd
,
68 struct se_device
*dev
);
69 static int transport_put_cmd(struct se_cmd
*cmd
);
70 static void target_complete_ok_work(struct work_struct
*work
);
72 int init_se_kmem_caches(void)
74 se_sess_cache
= kmem_cache_create("se_sess_cache",
75 sizeof(struct se_session
), __alignof__(struct se_session
),
78 pr_err("kmem_cache_create() for struct se_session"
82 se_ua_cache
= kmem_cache_create("se_ua_cache",
83 sizeof(struct se_ua
), __alignof__(struct se_ua
),
86 pr_err("kmem_cache_create() for struct se_ua failed\n");
87 goto out_free_sess_cache
;
89 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
90 sizeof(struct t10_pr_registration
),
91 __alignof__(struct t10_pr_registration
), 0, NULL
);
92 if (!t10_pr_reg_cache
) {
93 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 goto out_free_ua_cache
;
97 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
98 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
100 if (!t10_alua_lu_gp_cache
) {
101 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 goto out_free_pr_reg_cache
;
105 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
106 sizeof(struct t10_alua_lu_gp_member
),
107 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
108 if (!t10_alua_lu_gp_mem_cache
) {
109 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 goto out_free_lu_gp_cache
;
113 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
114 sizeof(struct t10_alua_tg_pt_gp
),
115 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
116 if (!t10_alua_tg_pt_gp_cache
) {
117 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 goto out_free_lu_gp_mem_cache
;
121 t10_alua_lba_map_cache
= kmem_cache_create(
122 "t10_alua_lba_map_cache",
123 sizeof(struct t10_alua_lba_map
),
124 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
125 if (!t10_alua_lba_map_cache
) {
126 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128 goto out_free_tg_pt_gp_cache
;
130 t10_alua_lba_map_mem_cache
= kmem_cache_create(
131 "t10_alua_lba_map_mem_cache",
132 sizeof(struct t10_alua_lba_map_member
),
133 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
134 if (!t10_alua_lba_map_mem_cache
) {
135 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137 goto out_free_lba_map_cache
;
140 target_completion_wq
= alloc_workqueue("target_completion",
142 if (!target_completion_wq
)
143 goto out_free_lba_map_mem_cache
;
147 out_free_lba_map_mem_cache
:
148 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
149 out_free_lba_map_cache
:
150 kmem_cache_destroy(t10_alua_lba_map_cache
);
151 out_free_tg_pt_gp_cache
:
152 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
153 out_free_lu_gp_mem_cache
:
154 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
155 out_free_lu_gp_cache
:
156 kmem_cache_destroy(t10_alua_lu_gp_cache
);
157 out_free_pr_reg_cache
:
158 kmem_cache_destroy(t10_pr_reg_cache
);
160 kmem_cache_destroy(se_ua_cache
);
162 kmem_cache_destroy(se_sess_cache
);
167 void release_se_kmem_caches(void)
169 destroy_workqueue(target_completion_wq
);
170 kmem_cache_destroy(se_sess_cache
);
171 kmem_cache_destroy(se_ua_cache
);
172 kmem_cache_destroy(t10_pr_reg_cache
);
173 kmem_cache_destroy(t10_alua_lu_gp_cache
);
174 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
175 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
176 kmem_cache_destroy(t10_alua_lba_map_cache
);
177 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
180 /* This code ensures unique mib indexes are handed out. */
181 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
182 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
185 * Allocate a new row index for the entry type specified
187 u32
scsi_get_new_index(scsi_index_t type
)
191 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
193 spin_lock(&scsi_mib_index_lock
);
194 new_index
= ++scsi_mib_index
[type
];
195 spin_unlock(&scsi_mib_index_lock
);
200 void transport_subsystem_check_init(void)
203 static int sub_api_initialized
;
205 if (sub_api_initialized
)
208 ret
= request_module("target_core_iblock");
210 pr_err("Unable to load target_core_iblock\n");
212 ret
= request_module("target_core_file");
214 pr_err("Unable to load target_core_file\n");
216 ret
= request_module("target_core_pscsi");
218 pr_err("Unable to load target_core_pscsi\n");
220 ret
= request_module("target_core_user");
222 pr_err("Unable to load target_core_user\n");
224 sub_api_initialized
= 1;
227 struct se_session
*transport_init_session(enum target_prot_op sup_prot_ops
)
229 struct se_session
*se_sess
;
231 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
233 pr_err("Unable to allocate struct se_session from"
235 return ERR_PTR(-ENOMEM
);
237 INIT_LIST_HEAD(&se_sess
->sess_list
);
238 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
239 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
240 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
241 spin_lock_init(&se_sess
->sess_cmd_lock
);
242 kref_init(&se_sess
->sess_kref
);
243 se_sess
->sup_prot_ops
= sup_prot_ops
;
247 EXPORT_SYMBOL(transport_init_session
);
249 int transport_alloc_session_tags(struct se_session
*se_sess
,
250 unsigned int tag_num
, unsigned int tag_size
)
254 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
255 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
256 if (!se_sess
->sess_cmd_map
) {
257 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
258 if (!se_sess
->sess_cmd_map
) {
259 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
264 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
266 pr_err("Unable to init se_sess->sess_tag_pool,"
267 " tag_num: %u\n", tag_num
);
268 kvfree(se_sess
->sess_cmd_map
);
269 se_sess
->sess_cmd_map
= NULL
;
275 EXPORT_SYMBOL(transport_alloc_session_tags
);
277 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
278 unsigned int tag_size
,
279 enum target_prot_op sup_prot_ops
)
281 struct se_session
*se_sess
;
284 se_sess
= transport_init_session(sup_prot_ops
);
288 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
290 transport_free_session(se_sess
);
291 return ERR_PTR(-ENOMEM
);
296 EXPORT_SYMBOL(transport_init_session_tags
);
299 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
301 void __transport_register_session(
302 struct se_portal_group
*se_tpg
,
303 struct se_node_acl
*se_nacl
,
304 struct se_session
*se_sess
,
305 void *fabric_sess_ptr
)
307 const struct target_core_fabric_ops
*tfo
= se_tpg
->se_tpg_tfo
;
308 unsigned char buf
[PR_REG_ISID_LEN
];
310 se_sess
->se_tpg
= se_tpg
;
311 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
313 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
315 * Only set for struct se_session's that will actually be moving I/O.
316 * eg: *NOT* discovery sessions.
321 * Determine if fabric allows for T10-PI feature bits exposed to
322 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
324 * If so, then always save prot_type on a per se_node_acl node
325 * basis and re-instate the previous sess_prot_type to avoid
326 * disabling PI from below any previously initiator side
329 if (se_nacl
->saved_prot_type
)
330 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
;
331 else if (tfo
->tpg_check_prot_fabric_only
)
332 se_sess
->sess_prot_type
= se_nacl
->saved_prot_type
=
333 tfo
->tpg_check_prot_fabric_only(se_tpg
);
335 * If the fabric module supports an ISID based TransportID,
336 * save this value in binary from the fabric I_T Nexus now.
338 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
339 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
340 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
341 &buf
[0], PR_REG_ISID_LEN
);
342 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
344 kref_get(&se_nacl
->acl_kref
);
346 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
348 * The se_nacl->nacl_sess pointer will be set to the
349 * last active I_T Nexus for each struct se_node_acl.
351 se_nacl
->nacl_sess
= se_sess
;
353 list_add_tail(&se_sess
->sess_acl_list
,
354 &se_nacl
->acl_sess_list
);
355 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
357 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
359 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
360 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
362 EXPORT_SYMBOL(__transport_register_session
);
364 void transport_register_session(
365 struct se_portal_group
*se_tpg
,
366 struct se_node_acl
*se_nacl
,
367 struct se_session
*se_sess
,
368 void *fabric_sess_ptr
)
372 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
373 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
374 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
376 EXPORT_SYMBOL(transport_register_session
);
378 static void target_release_session(struct kref
*kref
)
380 struct se_session
*se_sess
= container_of(kref
,
381 struct se_session
, sess_kref
);
382 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
384 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
387 void target_get_session(struct se_session
*se_sess
)
389 kref_get(&se_sess
->sess_kref
);
391 EXPORT_SYMBOL(target_get_session
);
393 void target_put_session(struct se_session
*se_sess
)
395 kref_put(&se_sess
->sess_kref
, target_release_session
);
397 EXPORT_SYMBOL(target_put_session
);
399 ssize_t
target_show_dynamic_sessions(struct se_portal_group
*se_tpg
, char *page
)
401 struct se_session
*se_sess
;
404 spin_lock_bh(&se_tpg
->session_lock
);
405 list_for_each_entry(se_sess
, &se_tpg
->tpg_sess_list
, sess_list
) {
406 if (!se_sess
->se_node_acl
)
408 if (!se_sess
->se_node_acl
->dynamic_node_acl
)
410 if (strlen(se_sess
->se_node_acl
->initiatorname
) + 1 + len
> PAGE_SIZE
)
413 len
+= snprintf(page
+ len
, PAGE_SIZE
- len
, "%s\n",
414 se_sess
->se_node_acl
->initiatorname
);
415 len
+= 1; /* Include NULL terminator */
417 spin_unlock_bh(&se_tpg
->session_lock
);
421 EXPORT_SYMBOL(target_show_dynamic_sessions
);
423 static void target_complete_nacl(struct kref
*kref
)
425 struct se_node_acl
*nacl
= container_of(kref
,
426 struct se_node_acl
, acl_kref
);
428 complete(&nacl
->acl_free_comp
);
431 void target_put_nacl(struct se_node_acl
*nacl
)
433 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
436 void transport_deregister_session_configfs(struct se_session
*se_sess
)
438 struct se_node_acl
*se_nacl
;
441 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
443 se_nacl
= se_sess
->se_node_acl
;
445 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
446 if (se_nacl
->acl_stop
== 0)
447 list_del(&se_sess
->sess_acl_list
);
449 * If the session list is empty, then clear the pointer.
450 * Otherwise, set the struct se_session pointer from the tail
451 * element of the per struct se_node_acl active session list.
453 if (list_empty(&se_nacl
->acl_sess_list
))
454 se_nacl
->nacl_sess
= NULL
;
456 se_nacl
->nacl_sess
= container_of(
457 se_nacl
->acl_sess_list
.prev
,
458 struct se_session
, sess_acl_list
);
460 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
463 EXPORT_SYMBOL(transport_deregister_session_configfs
);
465 void transport_free_session(struct se_session
*se_sess
)
467 if (se_sess
->sess_cmd_map
) {
468 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
469 kvfree(se_sess
->sess_cmd_map
);
471 kmem_cache_free(se_sess_cache
, se_sess
);
473 EXPORT_SYMBOL(transport_free_session
);
475 void transport_deregister_session(struct se_session
*se_sess
)
477 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
478 const struct target_core_fabric_ops
*se_tfo
;
479 struct se_node_acl
*se_nacl
;
481 bool comp_nacl
= true, drop_nacl
= false;
484 transport_free_session(se_sess
);
487 se_tfo
= se_tpg
->se_tpg_tfo
;
489 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
490 list_del(&se_sess
->sess_list
);
491 se_sess
->se_tpg
= NULL
;
492 se_sess
->fabric_sess_ptr
= NULL
;
493 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
496 * Determine if we need to do extra work for this initiator node's
497 * struct se_node_acl if it had been previously dynamically generated.
499 se_nacl
= se_sess
->se_node_acl
;
501 mutex_lock(&se_tpg
->acl_node_mutex
);
502 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
503 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
504 list_del(&se_nacl
->acl_list
);
505 se_tpg
->num_node_acls
--;
509 mutex_unlock(&se_tpg
->acl_node_mutex
);
512 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
513 core_free_device_list_for_node(se_nacl
, se_tpg
);
517 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
518 se_tpg
->se_tpg_tfo
->get_fabric_name());
520 * If last kref is dropping now for an explicit NodeACL, awake sleeping
521 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
524 if (se_nacl
&& comp_nacl
)
525 target_put_nacl(se_nacl
);
527 transport_free_session(se_sess
);
529 EXPORT_SYMBOL(transport_deregister_session
);
532 * Called with cmd->t_state_lock held.
534 static void target_remove_from_state_list(struct se_cmd
*cmd
)
536 struct se_device
*dev
= cmd
->se_dev
;
542 if (cmd
->transport_state
& CMD_T_BUSY
)
545 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
546 if (cmd
->state_active
) {
547 list_del(&cmd
->state_list
);
548 cmd
->state_active
= false;
550 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
553 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
558 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
560 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
562 if (remove_from_lists
) {
563 target_remove_from_state_list(cmd
);
566 * Clear struct se_cmd->se_lun before the handoff to FE.
572 * Determine if frontend context caller is requesting the stopping of
573 * this command for frontend exceptions.
575 if (cmd
->transport_state
& CMD_T_STOP
) {
576 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
577 __func__
, __LINE__
, cmd
->tag
);
579 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
581 complete_all(&cmd
->t_transport_stop_comp
);
585 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
586 if (remove_from_lists
) {
588 * Some fabric modules like tcm_loop can release
589 * their internally allocated I/O reference now and
592 * Fabric modules are expected to return '1' here if the
593 * se_cmd being passed is released at this point,
594 * or zero if not being released.
596 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
597 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
598 return cmd
->se_tfo
->check_stop_free(cmd
);
602 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
606 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
608 return transport_cmd_check_stop(cmd
, true, false);
611 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
613 struct se_lun
*lun
= cmd
->se_lun
;
618 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
619 percpu_ref_put(&lun
->lun_ref
);
622 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
624 if (cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)
625 transport_lun_remove_cmd(cmd
);
627 * Allow the fabric driver to unmap any resources before
628 * releasing the descriptor via TFO->release_cmd()
631 cmd
->se_tfo
->aborted_task(cmd
);
633 if (transport_cmd_check_stop_to_fabric(cmd
))
636 transport_put_cmd(cmd
);
639 static void target_complete_failure_work(struct work_struct
*work
)
641 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
643 transport_generic_request_failure(cmd
,
644 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
648 * Used when asking transport to copy Sense Data from the underlying
649 * Linux/SCSI struct scsi_cmnd
651 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
653 struct se_device
*dev
= cmd
->se_dev
;
655 WARN_ON(!cmd
->se_lun
);
660 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
663 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
665 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
666 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
667 return cmd
->sense_buffer
;
670 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
672 struct se_device
*dev
= cmd
->se_dev
;
673 int success
= scsi_status
== GOOD
;
676 cmd
->scsi_status
= scsi_status
;
679 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
680 cmd
->transport_state
&= ~CMD_T_BUSY
;
682 if (dev
&& dev
->transport
->transport_complete
) {
683 dev
->transport
->transport_complete(cmd
,
685 transport_get_sense_buffer(cmd
));
686 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
691 * See if we are waiting to complete for an exception condition.
693 if (cmd
->transport_state
& CMD_T_REQUEST_STOP
) {
694 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
695 complete(&cmd
->task_stop_comp
);
700 * Check for case where an explicit ABORT_TASK has been received
701 * and transport_wait_for_tasks() will be waiting for completion..
703 if (cmd
->transport_state
& CMD_T_ABORTED
&&
704 cmd
->transport_state
& CMD_T_STOP
) {
705 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
706 complete_all(&cmd
->t_transport_stop_comp
);
708 } else if (!success
) {
709 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
711 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
714 cmd
->t_state
= TRANSPORT_COMPLETE
;
715 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
716 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
718 queue_work(target_completion_wq
, &cmd
->work
);
720 EXPORT_SYMBOL(target_complete_cmd
);
722 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
724 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
725 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
726 cmd
->residual_count
+= cmd
->data_length
- length
;
728 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
729 cmd
->residual_count
= cmd
->data_length
- length
;
732 cmd
->data_length
= length
;
735 target_complete_cmd(cmd
, scsi_status
);
737 EXPORT_SYMBOL(target_complete_cmd_with_length
);
739 static void target_add_to_state_list(struct se_cmd
*cmd
)
741 struct se_device
*dev
= cmd
->se_dev
;
744 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
745 if (!cmd
->state_active
) {
746 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
747 cmd
->state_active
= true;
749 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
753 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
755 static void transport_write_pending_qf(struct se_cmd
*cmd
);
756 static void transport_complete_qf(struct se_cmd
*cmd
);
758 void target_qf_do_work(struct work_struct
*work
)
760 struct se_device
*dev
= container_of(work
, struct se_device
,
762 LIST_HEAD(qf_cmd_list
);
763 struct se_cmd
*cmd
, *cmd_tmp
;
765 spin_lock_irq(&dev
->qf_cmd_lock
);
766 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
767 spin_unlock_irq(&dev
->qf_cmd_lock
);
769 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
770 list_del(&cmd
->se_qf_node
);
771 atomic_dec_mb(&dev
->dev_qf_count
);
773 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
774 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
775 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
776 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
779 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
780 transport_write_pending_qf(cmd
);
781 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
782 transport_complete_qf(cmd
);
786 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
788 switch (cmd
->data_direction
) {
791 case DMA_FROM_DEVICE
:
795 case DMA_BIDIRECTIONAL
:
804 void transport_dump_dev_state(
805 struct se_device
*dev
,
809 *bl
+= sprintf(b
+ *bl
, "Status: ");
810 if (dev
->export_count
)
811 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
813 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
815 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
816 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
817 dev
->dev_attrib
.block_size
,
818 dev
->dev_attrib
.hw_max_sectors
);
819 *bl
+= sprintf(b
+ *bl
, " ");
822 void transport_dump_vpd_proto_id(
824 unsigned char *p_buf
,
827 unsigned char buf
[VPD_TMP_BUF_SIZE
];
830 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
831 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
833 switch (vpd
->protocol_identifier
) {
835 sprintf(buf
+len
, "Fibre Channel\n");
838 sprintf(buf
+len
, "Parallel SCSI\n");
841 sprintf(buf
+len
, "SSA\n");
844 sprintf(buf
+len
, "IEEE 1394\n");
847 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
851 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
854 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
857 sprintf(buf
+len
, "Automation/Drive Interface Transport"
861 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
864 sprintf(buf
+len
, "Unknown 0x%02x\n",
865 vpd
->protocol_identifier
);
870 strncpy(p_buf
, buf
, p_buf_len
);
876 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
879 * Check if the Protocol Identifier Valid (PIV) bit is set..
881 * from spc3r23.pdf section 7.5.1
883 if (page_83
[1] & 0x80) {
884 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
885 vpd
->protocol_identifier_set
= 1;
886 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
889 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
891 int transport_dump_vpd_assoc(
893 unsigned char *p_buf
,
896 unsigned char buf
[VPD_TMP_BUF_SIZE
];
900 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
901 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
903 switch (vpd
->association
) {
905 sprintf(buf
+len
, "addressed logical unit\n");
908 sprintf(buf
+len
, "target port\n");
911 sprintf(buf
+len
, "SCSI target device\n");
914 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
920 strncpy(p_buf
, buf
, p_buf_len
);
927 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
930 * The VPD identification association..
932 * from spc3r23.pdf Section 7.6.3.1 Table 297
934 vpd
->association
= (page_83
[1] & 0x30);
935 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
937 EXPORT_SYMBOL(transport_set_vpd_assoc
);
939 int transport_dump_vpd_ident_type(
941 unsigned char *p_buf
,
944 unsigned char buf
[VPD_TMP_BUF_SIZE
];
948 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
949 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
951 switch (vpd
->device_identifier_type
) {
953 sprintf(buf
+len
, "Vendor specific\n");
956 sprintf(buf
+len
, "T10 Vendor ID based\n");
959 sprintf(buf
+len
, "EUI-64 based\n");
962 sprintf(buf
+len
, "NAA\n");
965 sprintf(buf
+len
, "Relative target port identifier\n");
968 sprintf(buf
+len
, "SCSI name string\n");
971 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
972 vpd
->device_identifier_type
);
978 if (p_buf_len
< strlen(buf
)+1)
980 strncpy(p_buf
, buf
, p_buf_len
);
988 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
991 * The VPD identifier type..
993 * from spc3r23.pdf Section 7.6.3.1 Table 298
995 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
996 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
998 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1000 int transport_dump_vpd_ident(
1001 struct t10_vpd
*vpd
,
1002 unsigned char *p_buf
,
1005 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1008 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1010 switch (vpd
->device_identifier_code_set
) {
1011 case 0x01: /* Binary */
1012 snprintf(buf
, sizeof(buf
),
1013 "T10 VPD Binary Device Identifier: %s\n",
1014 &vpd
->device_identifier
[0]);
1016 case 0x02: /* ASCII */
1017 snprintf(buf
, sizeof(buf
),
1018 "T10 VPD ASCII Device Identifier: %s\n",
1019 &vpd
->device_identifier
[0]);
1021 case 0x03: /* UTF-8 */
1022 snprintf(buf
, sizeof(buf
),
1023 "T10 VPD UTF-8 Device Identifier: %s\n",
1024 &vpd
->device_identifier
[0]);
1027 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1028 " 0x%02x", vpd
->device_identifier_code_set
);
1034 strncpy(p_buf
, buf
, p_buf_len
);
1036 pr_debug("%s", buf
);
1042 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1044 static const char hex_str
[] = "0123456789abcdef";
1045 int j
= 0, i
= 4; /* offset to start of the identifier */
1048 * The VPD Code Set (encoding)
1050 * from spc3r23.pdf Section 7.6.3.1 Table 296
1052 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1053 switch (vpd
->device_identifier_code_set
) {
1054 case 0x01: /* Binary */
1055 vpd
->device_identifier
[j
++] =
1056 hex_str
[vpd
->device_identifier_type
];
1057 while (i
< (4 + page_83
[3])) {
1058 vpd
->device_identifier
[j
++] =
1059 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1060 vpd
->device_identifier
[j
++] =
1061 hex_str
[page_83
[i
] & 0x0f];
1065 case 0x02: /* ASCII */
1066 case 0x03: /* UTF-8 */
1067 while (i
< (4 + page_83
[3]))
1068 vpd
->device_identifier
[j
++] = page_83
[i
++];
1074 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1076 EXPORT_SYMBOL(transport_set_vpd_ident
);
1078 static sense_reason_t
1079 target_check_max_data_sg_nents(struct se_cmd
*cmd
, struct se_device
*dev
,
1084 if (!cmd
->se_tfo
->max_data_sg_nents
)
1085 return TCM_NO_SENSE
;
1087 * Check if fabric enforced maximum SGL entries per I/O descriptor
1088 * exceeds se_cmd->data_length. If true, set SCF_UNDERFLOW_BIT +
1089 * residual_count and reduce original cmd->data_length to maximum
1090 * length based on single PAGE_SIZE entry scatter-lists.
1092 mtl
= (cmd
->se_tfo
->max_data_sg_nents
* PAGE_SIZE
);
1093 if (cmd
->data_length
> mtl
) {
1095 * If an existing CDB overflow is present, calculate new residual
1096 * based on CDB size minus fabric maximum transfer length.
1098 * If an existing CDB underflow is present, calculate new residual
1099 * based on original cmd->data_length minus fabric maximum transfer
1102 * Otherwise, set the underflow residual based on cmd->data_length
1103 * minus fabric maximum transfer length.
1105 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1106 cmd
->residual_count
= (size
- mtl
);
1107 } else if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
1108 u32 orig_dl
= size
+ cmd
->residual_count
;
1109 cmd
->residual_count
= (orig_dl
- mtl
);
1111 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1112 cmd
->residual_count
= (cmd
->data_length
- mtl
);
1114 cmd
->data_length
= mtl
;
1116 * Reset sbc_check_prot() calculated protection payload
1117 * length based upon the new smaller MTL.
1119 if (cmd
->prot_length
) {
1120 u32 sectors
= (mtl
/ dev
->dev_attrib
.block_size
);
1121 cmd
->prot_length
= dev
->prot_length
* sectors
;
1124 return TCM_NO_SENSE
;
1128 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1130 struct se_device
*dev
= cmd
->se_dev
;
1132 if (cmd
->unknown_data_length
) {
1133 cmd
->data_length
= size
;
1134 } else if (size
!= cmd
->data_length
) {
1135 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1136 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1137 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1138 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1140 if (cmd
->data_direction
== DMA_TO_DEVICE
&&
1141 cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) {
1142 pr_err("Rejecting underflow/overflow WRITE data\n");
1143 return TCM_INVALID_CDB_FIELD
;
1146 * Reject READ_* or WRITE_* with overflow/underflow for
1147 * type SCF_SCSI_DATA_CDB.
1149 if (dev
->dev_attrib
.block_size
!= 512) {
1150 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1151 " CDB on non 512-byte sector setup subsystem"
1152 " plugin: %s\n", dev
->transport
->name
);
1153 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1154 return TCM_INVALID_CDB_FIELD
;
1157 * For the overflow case keep the existing fabric provided
1158 * ->data_length. Otherwise for the underflow case, reset
1159 * ->data_length to the smaller SCSI expected data transfer
1162 if (size
> cmd
->data_length
) {
1163 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1164 cmd
->residual_count
= (size
- cmd
->data_length
);
1166 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1167 cmd
->residual_count
= (cmd
->data_length
- size
);
1168 cmd
->data_length
= size
;
1172 return target_check_max_data_sg_nents(cmd
, dev
, size
);
1177 * Used by fabric modules containing a local struct se_cmd within their
1178 * fabric dependent per I/O descriptor.
1180 * Preserves the value of @cmd->tag.
1182 void transport_init_se_cmd(
1184 const struct target_core_fabric_ops
*tfo
,
1185 struct se_session
*se_sess
,
1189 unsigned char *sense_buffer
)
1191 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1192 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1193 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1194 INIT_LIST_HEAD(&cmd
->state_list
);
1195 init_completion(&cmd
->t_transport_stop_comp
);
1196 init_completion(&cmd
->cmd_wait_comp
);
1197 init_completion(&cmd
->task_stop_comp
);
1198 spin_lock_init(&cmd
->t_state_lock
);
1199 kref_init(&cmd
->cmd_kref
);
1200 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1203 cmd
->se_sess
= se_sess
;
1204 cmd
->data_length
= data_length
;
1205 cmd
->data_direction
= data_direction
;
1206 cmd
->sam_task_attr
= task_attr
;
1207 cmd
->sense_buffer
= sense_buffer
;
1209 cmd
->state_active
= false;
1211 EXPORT_SYMBOL(transport_init_se_cmd
);
1213 static sense_reason_t
1214 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1216 struct se_device
*dev
= cmd
->se_dev
;
1219 * Check if SAM Task Attribute emulation is enabled for this
1220 * struct se_device storage object
1222 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1225 if (cmd
->sam_task_attr
== TCM_ACA_TAG
) {
1226 pr_debug("SAM Task Attribute ACA"
1227 " emulation is not supported\n");
1228 return TCM_INVALID_CDB_FIELD
;
1235 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1237 struct se_device
*dev
= cmd
->se_dev
;
1241 * Ensure that the received CDB is less than the max (252 + 8) bytes
1242 * for VARIABLE_LENGTH_CMD
1244 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1245 pr_err("Received SCSI CDB with command_size: %d that"
1246 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1247 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1248 return TCM_INVALID_CDB_FIELD
;
1251 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1252 * allocate the additional extended CDB buffer now.. Otherwise
1253 * setup the pointer from __t_task_cdb to t_task_cdb.
1255 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1256 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1258 if (!cmd
->t_task_cdb
) {
1259 pr_err("Unable to allocate cmd->t_task_cdb"
1260 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1261 scsi_command_size(cdb
),
1262 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1263 return TCM_OUT_OF_RESOURCES
;
1266 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1268 * Copy the original CDB into cmd->
1270 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1272 trace_target_sequencer_start(cmd
);
1275 * Check for an existing UNIT ATTENTION condition
1277 ret
= target_scsi3_ua_check(cmd
);
1281 ret
= target_alua_state_check(cmd
);
1285 ret
= target_check_reservation(cmd
);
1287 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1291 ret
= dev
->transport
->parse_cdb(cmd
);
1292 if (ret
== TCM_UNSUPPORTED_SCSI_OPCODE
)
1293 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1294 cmd
->se_tfo
->get_fabric_name(),
1295 cmd
->se_sess
->se_node_acl
->initiatorname
,
1296 cmd
->t_task_cdb
[0]);
1300 ret
= transport_check_alloc_task_attr(cmd
);
1304 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1305 atomic_long_inc(&cmd
->se_lun
->lun_stats
.cmd_pdus
);
1308 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1311 * Used by fabric module frontends to queue tasks directly.
1312 * Many only be used from process context only
1314 int transport_handle_cdb_direct(
1321 pr_err("cmd->se_lun is NULL\n");
1324 if (in_interrupt()) {
1326 pr_err("transport_generic_handle_cdb cannot be called"
1327 " from interrupt context\n");
1331 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1332 * outstanding descriptors are handled correctly during shutdown via
1333 * transport_wait_for_tasks()
1335 * Also, we don't take cmd->t_state_lock here as we only expect
1336 * this to be called for initial descriptor submission.
1338 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1339 cmd
->transport_state
|= CMD_T_ACTIVE
;
1342 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1343 * so follow TRANSPORT_NEW_CMD processing thread context usage
1344 * and call transport_generic_request_failure() if necessary..
1346 ret
= transport_generic_new_cmd(cmd
);
1348 transport_generic_request_failure(cmd
, ret
);
1351 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1354 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1355 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1357 if (!sgl
|| !sgl_count
)
1361 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1362 * scatterlists already have been set to follow what the fabric
1363 * passes for the original expected data transfer length.
1365 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1366 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1367 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1368 return TCM_INVALID_CDB_FIELD
;
1371 cmd
->t_data_sg
= sgl
;
1372 cmd
->t_data_nents
= sgl_count
;
1373 cmd
->t_bidi_data_sg
= sgl_bidi
;
1374 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1376 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1381 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1382 * se_cmd + use pre-allocated SGL memory.
1384 * @se_cmd: command descriptor to submit
1385 * @se_sess: associated se_sess for endpoint
1386 * @cdb: pointer to SCSI CDB
1387 * @sense: pointer to SCSI sense buffer
1388 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1389 * @data_length: fabric expected data transfer length
1390 * @task_addr: SAM task attribute
1391 * @data_dir: DMA data direction
1392 * @flags: flags for command submission from target_sc_flags_tables
1393 * @sgl: struct scatterlist memory for unidirectional mapping
1394 * @sgl_count: scatterlist count for unidirectional mapping
1395 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1396 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1397 * @sgl_prot: struct scatterlist memory protection information
1398 * @sgl_prot_count: scatterlist count for protection information
1400 * Task tags are supported if the caller has set @se_cmd->tag.
1402 * Returns non zero to signal active I/O shutdown failure. All other
1403 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1404 * but still return zero here.
1406 * This may only be called from process context, and also currently
1407 * assumes internal allocation of fabric payload buffer by target-core.
1409 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1410 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1411 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1412 struct scatterlist
*sgl
, u32 sgl_count
,
1413 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1414 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1416 struct se_portal_group
*se_tpg
;
1420 se_tpg
= se_sess
->se_tpg
;
1422 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1423 BUG_ON(in_interrupt());
1425 * Initialize se_cmd for target operation. From this point
1426 * exceptions are handled by sending exception status via
1427 * target_core_fabric_ops->queue_status() callback
1429 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1430 data_length
, data_dir
, task_attr
, sense
);
1431 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1432 se_cmd
->unknown_data_length
= 1;
1434 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1435 * se_sess->sess_cmd_list. A second kref_get here is necessary
1436 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1437 * kref_put() to happen during fabric packet acknowledgement.
1439 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1443 * Signal bidirectional data payloads to target-core
1445 if (flags
& TARGET_SCF_BIDI_OP
)
1446 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1448 * Locate se_lun pointer and attach it to struct se_cmd
1450 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1452 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1453 target_put_sess_cmd(se_cmd
);
1457 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1459 transport_generic_request_failure(se_cmd
, rc
);
1464 * Save pointers for SGLs containing protection information,
1467 if (sgl_prot_count
) {
1468 se_cmd
->t_prot_sg
= sgl_prot
;
1469 se_cmd
->t_prot_nents
= sgl_prot_count
;
1470 se_cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
;
1474 * When a non zero sgl_count has been passed perform SGL passthrough
1475 * mapping for pre-allocated fabric memory instead of having target
1476 * core perform an internal SGL allocation..
1478 if (sgl_count
!= 0) {
1482 * A work-around for tcm_loop as some userspace code via
1483 * scsi-generic do not memset their associated read buffers,
1484 * so go ahead and do that here for type non-data CDBs. Also
1485 * note that this is currently guaranteed to be a single SGL
1486 * for this case by target core in target_setup_cmd_from_cdb()
1487 * -> transport_generic_cmd_sequencer().
1489 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1490 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1491 unsigned char *buf
= NULL
;
1494 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1497 memset(buf
, 0, sgl
->length
);
1498 kunmap(sg_page(sgl
));
1502 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1503 sgl_bidi
, sgl_bidi_count
);
1505 transport_generic_request_failure(se_cmd
, rc
);
1511 * Check if we need to delay processing because of ALUA
1512 * Active/NonOptimized primary access state..
1514 core_alua_check_nonop_delay(se_cmd
);
1516 transport_handle_cdb_direct(se_cmd
);
1519 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1522 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1524 * @se_cmd: command descriptor to submit
1525 * @se_sess: associated se_sess for endpoint
1526 * @cdb: pointer to SCSI CDB
1527 * @sense: pointer to SCSI sense buffer
1528 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1529 * @data_length: fabric expected data transfer length
1530 * @task_addr: SAM task attribute
1531 * @data_dir: DMA data direction
1532 * @flags: flags for command submission from target_sc_flags_tables
1534 * Task tags are supported if the caller has set @se_cmd->tag.
1536 * Returns non zero to signal active I/O shutdown failure. All other
1537 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1538 * but still return zero here.
1540 * This may only be called from process context, and also currently
1541 * assumes internal allocation of fabric payload buffer by target-core.
1543 * It also assumes interal target core SGL memory allocation.
1545 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1546 unsigned char *cdb
, unsigned char *sense
, u64 unpacked_lun
,
1547 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1549 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1550 unpacked_lun
, data_length
, task_attr
, data_dir
,
1551 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1553 EXPORT_SYMBOL(target_submit_cmd
);
1555 static void target_complete_tmr_failure(struct work_struct
*work
)
1557 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1559 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1560 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1562 transport_cmd_check_stop_to_fabric(se_cmd
);
1566 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1569 * @se_cmd: command descriptor to submit
1570 * @se_sess: associated se_sess for endpoint
1571 * @sense: pointer to SCSI sense buffer
1572 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1573 * @fabric_context: fabric context for TMR req
1574 * @tm_type: Type of TM request
1575 * @gfp: gfp type for caller
1576 * @tag: referenced task tag for TMR_ABORT_TASK
1577 * @flags: submit cmd flags
1579 * Callable from all contexts.
1582 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1583 unsigned char *sense
, u64 unpacked_lun
,
1584 void *fabric_tmr_ptr
, unsigned char tm_type
,
1585 gfp_t gfp
, unsigned int tag
, int flags
)
1587 struct se_portal_group
*se_tpg
;
1590 se_tpg
= se_sess
->se_tpg
;
1593 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1594 0, DMA_NONE
, TCM_SIMPLE_TAG
, sense
);
1596 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1597 * allocation failure.
1599 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1603 if (tm_type
== TMR_ABORT_TASK
)
1604 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1606 /* See target_submit_cmd for commentary */
1607 ret
= target_get_sess_cmd(se_cmd
, flags
& TARGET_SCF_ACK_KREF
);
1609 core_tmr_release_req(se_cmd
->se_tmr_req
);
1613 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1616 * For callback during failure handling, push this work off
1617 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1619 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1620 schedule_work(&se_cmd
->work
);
1623 transport_generic_handle_tmr(se_cmd
);
1626 EXPORT_SYMBOL(target_submit_tmr
);
1629 * If the cmd is active, request it to be stopped and sleep until it
1632 bool target_stop_cmd(struct se_cmd
*cmd
, unsigned long *flags
)
1633 __releases(&cmd
->t_state_lock
)
1634 __acquires(&cmd
->t_state_lock
)
1636 bool was_active
= false;
1638 if (cmd
->transport_state
& CMD_T_BUSY
) {
1639 cmd
->transport_state
|= CMD_T_REQUEST_STOP
;
1640 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1642 pr_debug("cmd %p waiting to complete\n", cmd
);
1643 wait_for_completion(&cmd
->task_stop_comp
);
1644 pr_debug("cmd %p stopped successfully\n", cmd
);
1646 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1647 cmd
->transport_state
&= ~CMD_T_REQUEST_STOP
;
1648 cmd
->transport_state
&= ~CMD_T_BUSY
;
1656 * Handle SAM-esque emulation for generic transport request failures.
1658 void transport_generic_request_failure(struct se_cmd
*cmd
,
1659 sense_reason_t sense_reason
)
1661 int ret
= 0, post_ret
= 0;
1663 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08llx"
1664 " CDB: 0x%02x\n", cmd
, cmd
->tag
, cmd
->t_task_cdb
[0]);
1665 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1666 cmd
->se_tfo
->get_cmd_state(cmd
),
1667 cmd
->t_state
, sense_reason
);
1668 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1669 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1670 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1671 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1674 * For SAM Task Attribute emulation for failed struct se_cmd
1676 transport_complete_task_attr(cmd
);
1678 * Handle special case for COMPARE_AND_WRITE failure, where the
1679 * callback is expected to drop the per device ->caw_sem.
1681 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1682 cmd
->transport_complete_callback
)
1683 cmd
->transport_complete_callback(cmd
, false, &post_ret
);
1685 switch (sense_reason
) {
1686 case TCM_NON_EXISTENT_LUN
:
1687 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1688 case TCM_INVALID_CDB_FIELD
:
1689 case TCM_INVALID_PARAMETER_LIST
:
1690 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1691 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1692 case TCM_UNKNOWN_MODE_PAGE
:
1693 case TCM_WRITE_PROTECTED
:
1694 case TCM_ADDRESS_OUT_OF_RANGE
:
1695 case TCM_CHECK_CONDITION_ABORT_CMD
:
1696 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1697 case TCM_CHECK_CONDITION_NOT_READY
:
1698 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1699 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1700 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1702 case TCM_OUT_OF_RESOURCES
:
1703 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1705 case TCM_RESERVATION_CONFLICT
:
1707 * No SENSE Data payload for this case, set SCSI Status
1708 * and queue the response to $FABRIC_MOD.
1710 * Uses linux/include/scsi/scsi.h SAM status codes defs
1712 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1714 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1715 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1718 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1721 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2) {
1722 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
1723 cmd
->orig_fe_lun
, 0x2C,
1724 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1726 trace_target_cmd_complete(cmd
);
1727 ret
= cmd
->se_tfo
->queue_status(cmd
);
1728 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1732 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1733 cmd
->t_task_cdb
[0], sense_reason
);
1734 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1738 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1739 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1743 transport_lun_remove_cmd(cmd
);
1744 transport_cmd_check_stop_to_fabric(cmd
);
1748 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1749 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1751 EXPORT_SYMBOL(transport_generic_request_failure
);
1753 void __target_execute_cmd(struct se_cmd
*cmd
)
1757 if (cmd
->execute_cmd
) {
1758 ret
= cmd
->execute_cmd(cmd
);
1760 spin_lock_irq(&cmd
->t_state_lock
);
1761 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1762 spin_unlock_irq(&cmd
->t_state_lock
);
1764 transport_generic_request_failure(cmd
, ret
);
1769 static int target_write_prot_action(struct se_cmd
*cmd
)
1773 * Perform WRITE_INSERT of PI using software emulation when backend
1774 * device has PI enabled, if the transport has not already generated
1775 * PI using hardware WRITE_INSERT offload.
1777 switch (cmd
->prot_op
) {
1778 case TARGET_PROT_DOUT_INSERT
:
1779 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_INSERT
))
1780 sbc_dif_generate(cmd
);
1782 case TARGET_PROT_DOUT_STRIP
:
1783 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DOUT_STRIP
)
1786 sectors
= cmd
->data_length
>> ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
1787 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
1788 sectors
, 0, cmd
->t_prot_sg
, 0);
1789 if (unlikely(cmd
->pi_err
)) {
1790 spin_lock_irq(&cmd
->t_state_lock
);
1791 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1792 spin_unlock_irq(&cmd
->t_state_lock
);
1793 transport_generic_request_failure(cmd
, cmd
->pi_err
);
1804 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1806 struct se_device
*dev
= cmd
->se_dev
;
1808 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1812 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1813 * to allow the passed struct se_cmd list of tasks to the front of the list.
1815 switch (cmd
->sam_task_attr
) {
1817 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1818 cmd
->t_task_cdb
[0]);
1820 case TCM_ORDERED_TAG
:
1821 atomic_inc_mb(&dev
->dev_ordered_sync
);
1823 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1824 cmd
->t_task_cdb
[0]);
1827 * Execute an ORDERED command if no other older commands
1828 * exist that need to be completed first.
1830 if (!atomic_read(&dev
->simple_cmds
))
1835 * For SIMPLE and UNTAGGED Task Attribute commands
1837 atomic_inc_mb(&dev
->simple_cmds
);
1841 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1844 spin_lock(&dev
->delayed_cmd_lock
);
1845 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1846 spin_unlock(&dev
->delayed_cmd_lock
);
1848 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1849 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
);
1853 void target_execute_cmd(struct se_cmd
*cmd
)
1856 * If the received CDB has aleady been aborted stop processing it here.
1858 if (transport_check_aborted_status(cmd
, 1))
1862 * Determine if frontend context caller is requesting the stopping of
1863 * this command for frontend exceptions.
1865 spin_lock_irq(&cmd
->t_state_lock
);
1866 if (cmd
->transport_state
& CMD_T_STOP
) {
1867 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1868 __func__
, __LINE__
, cmd
->tag
);
1870 spin_unlock_irq(&cmd
->t_state_lock
);
1871 complete_all(&cmd
->t_transport_stop_comp
);
1875 cmd
->t_state
= TRANSPORT_PROCESSING
;
1876 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1877 spin_unlock_irq(&cmd
->t_state_lock
);
1879 if (target_write_prot_action(cmd
))
1882 if (target_handle_task_attr(cmd
)) {
1883 spin_lock_irq(&cmd
->t_state_lock
);
1884 cmd
->transport_state
&= ~(CMD_T_BUSY
| CMD_T_SENT
);
1885 spin_unlock_irq(&cmd
->t_state_lock
);
1889 __target_execute_cmd(cmd
);
1891 EXPORT_SYMBOL(target_execute_cmd
);
1894 * Process all commands up to the last received ORDERED task attribute which
1895 * requires another blocking boundary
1897 static void target_restart_delayed_cmds(struct se_device
*dev
)
1902 spin_lock(&dev
->delayed_cmd_lock
);
1903 if (list_empty(&dev
->delayed_cmd_list
)) {
1904 spin_unlock(&dev
->delayed_cmd_lock
);
1908 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1909 struct se_cmd
, se_delayed_node
);
1910 list_del(&cmd
->se_delayed_node
);
1911 spin_unlock(&dev
->delayed_cmd_lock
);
1913 __target_execute_cmd(cmd
);
1915 if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
)
1921 * Called from I/O completion to determine which dormant/delayed
1922 * and ordered cmds need to have their tasks added to the execution queue.
1924 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1926 struct se_device
*dev
= cmd
->se_dev
;
1928 if (dev
->transport
->transport_flags
& TRANSPORT_FLAG_PASSTHROUGH
)
1931 if (cmd
->sam_task_attr
== TCM_SIMPLE_TAG
) {
1932 atomic_dec_mb(&dev
->simple_cmds
);
1933 dev
->dev_cur_ordered_id
++;
1934 pr_debug("Incremented dev->dev_cur_ordered_id: %u for SIMPLE\n",
1935 dev
->dev_cur_ordered_id
);
1936 } else if (cmd
->sam_task_attr
== TCM_HEAD_TAG
) {
1937 dev
->dev_cur_ordered_id
++;
1938 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
1939 dev
->dev_cur_ordered_id
);
1940 } else if (cmd
->sam_task_attr
== TCM_ORDERED_TAG
) {
1941 atomic_dec_mb(&dev
->dev_ordered_sync
);
1943 dev
->dev_cur_ordered_id
++;
1944 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
1945 dev
->dev_cur_ordered_id
);
1948 target_restart_delayed_cmds(dev
);
1951 static void transport_complete_qf(struct se_cmd
*cmd
)
1955 transport_complete_task_attr(cmd
);
1957 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1958 trace_target_cmd_complete(cmd
);
1959 ret
= cmd
->se_tfo
->queue_status(cmd
);
1963 switch (cmd
->data_direction
) {
1964 case DMA_FROM_DEVICE
:
1965 trace_target_cmd_complete(cmd
);
1966 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1969 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1970 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1973 /* Fall through for DMA_TO_DEVICE */
1975 trace_target_cmd_complete(cmd
);
1976 ret
= cmd
->se_tfo
->queue_status(cmd
);
1984 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1987 transport_lun_remove_cmd(cmd
);
1988 transport_cmd_check_stop_to_fabric(cmd
);
1991 static void transport_handle_queue_full(
1993 struct se_device
*dev
)
1995 spin_lock_irq(&dev
->qf_cmd_lock
);
1996 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
1997 atomic_inc_mb(&dev
->dev_qf_count
);
1998 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
2000 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2003 static bool target_read_prot_action(struct se_cmd
*cmd
)
2005 switch (cmd
->prot_op
) {
2006 case TARGET_PROT_DIN_STRIP
:
2007 if (!(cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_STRIP
)) {
2008 u32 sectors
= cmd
->data_length
>>
2009 ilog2(cmd
->se_dev
->dev_attrib
.block_size
);
2011 cmd
->pi_err
= sbc_dif_verify(cmd
, cmd
->t_task_lba
,
2012 sectors
, 0, cmd
->t_prot_sg
,
2018 case TARGET_PROT_DIN_INSERT
:
2019 if (cmd
->se_sess
->sup_prot_ops
& TARGET_PROT_DIN_INSERT
)
2022 sbc_dif_generate(cmd
);
2031 static void target_complete_ok_work(struct work_struct
*work
)
2033 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2037 * Check if we need to move delayed/dormant tasks from cmds on the
2038 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2041 transport_complete_task_attr(cmd
);
2044 * Check to schedule QUEUE_FULL work, or execute an existing
2045 * cmd->transport_qf_callback()
2047 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
2048 schedule_work(&cmd
->se_dev
->qf_work_queue
);
2051 * Check if we need to send a sense buffer from
2052 * the struct se_cmd in question.
2054 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
2055 WARN_ON(!cmd
->scsi_status
);
2056 ret
= transport_send_check_condition_and_sense(
2058 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2061 transport_lun_remove_cmd(cmd
);
2062 transport_cmd_check_stop_to_fabric(cmd
);
2066 * Check for a callback, used by amongst other things
2067 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2069 if (cmd
->transport_complete_callback
) {
2071 bool caw
= (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
);
2072 bool zero_dl
= !(cmd
->data_length
);
2075 rc
= cmd
->transport_complete_callback(cmd
, true, &post_ret
);
2076 if (!rc
&& !post_ret
) {
2082 ret
= transport_send_check_condition_and_sense(cmd
,
2084 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2087 transport_lun_remove_cmd(cmd
);
2088 transport_cmd_check_stop_to_fabric(cmd
);
2094 switch (cmd
->data_direction
) {
2095 case DMA_FROM_DEVICE
:
2096 atomic_long_add(cmd
->data_length
,
2097 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2099 * Perform READ_STRIP of PI using software emulation when
2100 * backend had PI enabled, if the transport will not be
2101 * performing hardware READ_STRIP offload.
2103 if (target_read_prot_action(cmd
)) {
2104 ret
= transport_send_check_condition_and_sense(cmd
,
2106 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2109 transport_lun_remove_cmd(cmd
);
2110 transport_cmd_check_stop_to_fabric(cmd
);
2114 trace_target_cmd_complete(cmd
);
2115 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2116 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2120 atomic_long_add(cmd
->data_length
,
2121 &cmd
->se_lun
->lun_stats
.rx_data_octets
);
2123 * Check if we need to send READ payload for BIDI-COMMAND
2125 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
2126 atomic_long_add(cmd
->data_length
,
2127 &cmd
->se_lun
->lun_stats
.tx_data_octets
);
2128 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
2129 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2133 /* Fall through for DMA_TO_DEVICE */
2135 trace_target_cmd_complete(cmd
);
2136 ret
= cmd
->se_tfo
->queue_status(cmd
);
2137 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2144 transport_lun_remove_cmd(cmd
);
2145 transport_cmd_check_stop_to_fabric(cmd
);
2149 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2150 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2151 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2152 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2155 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
2157 struct scatterlist
*sg
;
2160 for_each_sg(sgl
, sg
, nents
, count
)
2161 __free_page(sg_page(sg
));
2166 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2169 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2170 * emulation, and free + reset pointers if necessary..
2172 if (!cmd
->t_data_sg_orig
)
2175 kfree(cmd
->t_data_sg
);
2176 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2177 cmd
->t_data_sg_orig
= NULL
;
2178 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2179 cmd
->t_data_nents_orig
= 0;
2182 static inline void transport_free_pages(struct se_cmd
*cmd
)
2184 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2185 transport_free_sgl(cmd
->t_prot_sg
, cmd
->t_prot_nents
);
2186 cmd
->t_prot_sg
= NULL
;
2187 cmd
->t_prot_nents
= 0;
2190 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2192 * Release special case READ buffer payload required for
2193 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2195 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2196 transport_free_sgl(cmd
->t_bidi_data_sg
,
2197 cmd
->t_bidi_data_nents
);
2198 cmd
->t_bidi_data_sg
= NULL
;
2199 cmd
->t_bidi_data_nents
= 0;
2201 transport_reset_sgl_orig(cmd
);
2204 transport_reset_sgl_orig(cmd
);
2206 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2207 cmd
->t_data_sg
= NULL
;
2208 cmd
->t_data_nents
= 0;
2210 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2211 cmd
->t_bidi_data_sg
= NULL
;
2212 cmd
->t_bidi_data_nents
= 0;
2216 * transport_release_cmd - free a command
2217 * @cmd: command to free
2219 * This routine unconditionally frees a command, and reference counting
2220 * or list removal must be done in the caller.
2222 static int transport_release_cmd(struct se_cmd
*cmd
)
2224 BUG_ON(!cmd
->se_tfo
);
2226 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2227 core_tmr_release_req(cmd
->se_tmr_req
);
2228 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2229 kfree(cmd
->t_task_cdb
);
2231 * If this cmd has been setup with target_get_sess_cmd(), drop
2232 * the kref and call ->release_cmd() in kref callback.
2234 return target_put_sess_cmd(cmd
);
2238 * transport_put_cmd - release a reference to a command
2239 * @cmd: command to release
2241 * This routine releases our reference to the command and frees it if possible.
2243 static int transport_put_cmd(struct se_cmd
*cmd
)
2245 transport_free_pages(cmd
);
2246 return transport_release_cmd(cmd
);
2249 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2251 struct scatterlist
*sg
= cmd
->t_data_sg
;
2252 struct page
**pages
;
2256 * We need to take into account a possible offset here for fabrics like
2257 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2258 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2260 if (!cmd
->t_data_nents
)
2264 if (cmd
->t_data_nents
== 1)
2265 return kmap(sg_page(sg
)) + sg
->offset
;
2267 /* >1 page. use vmap */
2268 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2272 /* convert sg[] to pages[] */
2273 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2274 pages
[i
] = sg_page(sg
);
2277 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2279 if (!cmd
->t_data_vmap
)
2282 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2284 EXPORT_SYMBOL(transport_kmap_data_sg
);
2286 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2288 if (!cmd
->t_data_nents
) {
2290 } else if (cmd
->t_data_nents
== 1) {
2291 kunmap(sg_page(cmd
->t_data_sg
));
2295 vunmap(cmd
->t_data_vmap
);
2296 cmd
->t_data_vmap
= NULL
;
2298 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2301 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2304 struct scatterlist
*sg
;
2306 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2310 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2311 sg
= kmalloc(sizeof(struct scatterlist
) * nent
, GFP_KERNEL
);
2315 sg_init_table(sg
, nent
);
2318 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2319 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2323 sg_set_page(&sg
[i
], page
, page_len
, 0);
2334 __free_page(sg_page(&sg
[i
]));
2341 * Allocate any required resources to execute the command. For writes we
2342 * might not have the payload yet, so notify the fabric via a call to
2343 * ->write_pending instead. Otherwise place it on the execution queue.
2346 transport_generic_new_cmd(struct se_cmd
*cmd
)
2349 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2351 if (cmd
->prot_op
!= TARGET_PROT_NORMAL
&&
2352 !(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC
)) {
2353 ret
= target_alloc_sgl(&cmd
->t_prot_sg
, &cmd
->t_prot_nents
,
2354 cmd
->prot_length
, true);
2356 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2360 * Determine is the TCM fabric module has already allocated physical
2361 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2364 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2367 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2368 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2371 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2372 bidi_length
= cmd
->t_task_nolb
*
2373 cmd
->se_dev
->dev_attrib
.block_size
;
2375 bidi_length
= cmd
->data_length
;
2377 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2378 &cmd
->t_bidi_data_nents
,
2379 bidi_length
, zero_flag
);
2381 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2384 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2385 cmd
->data_length
, zero_flag
);
2387 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2388 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2391 * Special case for COMPARE_AND_WRITE with fabrics
2392 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2394 u32 caw_length
= cmd
->t_task_nolb
*
2395 cmd
->se_dev
->dev_attrib
.block_size
;
2397 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2398 &cmd
->t_bidi_data_nents
,
2399 caw_length
, zero_flag
);
2401 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2404 * If this command is not a write we can execute it right here,
2405 * for write buffers we need to notify the fabric driver first
2406 * and let it call back once the write buffers are ready.
2408 target_add_to_state_list(cmd
);
2409 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2410 target_execute_cmd(cmd
);
2413 transport_cmd_check_stop(cmd
, false, true);
2415 ret
= cmd
->se_tfo
->write_pending(cmd
);
2416 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2419 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2422 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2425 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2426 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2427 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2430 EXPORT_SYMBOL(transport_generic_new_cmd
);
2432 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2436 ret
= cmd
->se_tfo
->write_pending(cmd
);
2437 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2438 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2440 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2444 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2446 unsigned long flags
;
2449 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2450 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2451 transport_wait_for_tasks(cmd
);
2453 ret
= transport_release_cmd(cmd
);
2456 transport_wait_for_tasks(cmd
);
2458 * Handle WRITE failure case where transport_generic_new_cmd()
2459 * has already added se_cmd to state_list, but fabric has
2460 * failed command before I/O submission.
2462 if (cmd
->state_active
) {
2463 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2464 target_remove_from_state_list(cmd
);
2465 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2469 transport_lun_remove_cmd(cmd
);
2471 ret
= transport_put_cmd(cmd
);
2475 EXPORT_SYMBOL(transport_generic_free_cmd
);
2477 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2478 * @se_cmd: command descriptor to add
2479 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2481 int target_get_sess_cmd(struct se_cmd
*se_cmd
, bool ack_kref
)
2483 struct se_session
*se_sess
= se_cmd
->se_sess
;
2484 unsigned long flags
;
2488 * Add a second kref if the fabric caller is expecting to handle
2489 * fabric acknowledgement that requires two target_put_sess_cmd()
2490 * invocations before se_cmd descriptor release.
2493 kref_get(&se_cmd
->cmd_kref
);
2495 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2496 if (se_sess
->sess_tearing_down
) {
2500 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2502 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2504 if (ret
&& ack_kref
)
2505 target_put_sess_cmd(se_cmd
);
2509 EXPORT_SYMBOL(target_get_sess_cmd
);
2511 static void target_release_cmd_kref(struct kref
*kref
)
2513 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2514 struct se_session
*se_sess
= se_cmd
->se_sess
;
2515 unsigned long flags
;
2517 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2518 if (list_empty(&se_cmd
->se_cmd_list
)) {
2519 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2520 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2523 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
2524 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2525 complete(&se_cmd
->cmd_wait_comp
);
2528 list_del(&se_cmd
->se_cmd_list
);
2529 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2531 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2534 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2535 * @se_cmd: command descriptor to drop
2537 int target_put_sess_cmd(struct se_cmd
*se_cmd
)
2539 struct se_session
*se_sess
= se_cmd
->se_sess
;
2542 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2545 return kref_put(&se_cmd
->cmd_kref
, target_release_cmd_kref
);
2547 EXPORT_SYMBOL(target_put_sess_cmd
);
2549 /* target_sess_cmd_list_set_waiting - Flag all commands in
2550 * sess_cmd_list to complete cmd_wait_comp. Set
2551 * sess_tearing_down so no more commands are queued.
2552 * @se_sess: session to flag
2554 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2556 struct se_cmd
*se_cmd
;
2557 unsigned long flags
;
2559 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2560 if (se_sess
->sess_tearing_down
) {
2561 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2564 se_sess
->sess_tearing_down
= 1;
2565 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2567 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
2568 se_cmd
->cmd_wait_set
= 1;
2570 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2572 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2574 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2575 * @se_sess: session to wait for active I/O
2577 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2579 struct se_cmd
*se_cmd
, *tmp_cmd
;
2580 unsigned long flags
;
2582 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2583 &se_sess
->sess_wait_list
, se_cmd_list
) {
2584 list_del(&se_cmd
->se_cmd_list
);
2586 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2587 " %d\n", se_cmd
, se_cmd
->t_state
,
2588 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2590 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2591 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2592 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2593 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2595 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2598 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2599 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2600 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2603 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2605 void transport_clear_lun_ref(struct se_lun
*lun
)
2607 percpu_ref_kill(&lun
->lun_ref
);
2608 wait_for_completion(&lun
->lun_ref_comp
);
2612 * transport_wait_for_tasks - wait for completion to occur
2613 * @cmd: command to wait
2615 * Called from frontend fabric context to wait for storage engine
2616 * to pause and/or release frontend generated struct se_cmd.
2618 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2620 unsigned long flags
;
2622 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2623 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2624 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2625 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2629 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2630 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2631 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2635 if (!(cmd
->transport_state
& CMD_T_ACTIVE
)) {
2636 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2640 cmd
->transport_state
|= CMD_T_STOP
;
2642 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08llx i_state: %d, t_state: %d, CMD_T_STOP\n",
2643 cmd
, cmd
->tag
, cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2645 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2647 wait_for_completion(&cmd
->t_transport_stop_comp
);
2649 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2650 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2652 pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->t_transport_stop_comp) for ITT: 0x%08llx\n",
2655 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2659 EXPORT_SYMBOL(transport_wait_for_tasks
);
2665 bool add_sector_info
;
2668 static const struct sense_info sense_info_table
[] = {
2672 [TCM_NON_EXISTENT_LUN
] = {
2673 .key
= ILLEGAL_REQUEST
,
2674 .asc
= 0x25 /* LOGICAL UNIT NOT SUPPORTED */
2676 [TCM_UNSUPPORTED_SCSI_OPCODE
] = {
2677 .key
= ILLEGAL_REQUEST
,
2678 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2680 [TCM_SECTOR_COUNT_TOO_MANY
] = {
2681 .key
= ILLEGAL_REQUEST
,
2682 .asc
= 0x20, /* INVALID COMMAND OPERATION CODE */
2684 [TCM_UNKNOWN_MODE_PAGE
] = {
2685 .key
= ILLEGAL_REQUEST
,
2686 .asc
= 0x24, /* INVALID FIELD IN CDB */
2688 [TCM_CHECK_CONDITION_ABORT_CMD
] = {
2689 .key
= ABORTED_COMMAND
,
2690 .asc
= 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
2693 [TCM_INCORRECT_AMOUNT_OF_DATA
] = {
2694 .key
= ABORTED_COMMAND
,
2695 .asc
= 0x0c, /* WRITE ERROR */
2696 .ascq
= 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
2698 [TCM_INVALID_CDB_FIELD
] = {
2699 .key
= ILLEGAL_REQUEST
,
2700 .asc
= 0x24, /* INVALID FIELD IN CDB */
2702 [TCM_INVALID_PARAMETER_LIST
] = {
2703 .key
= ILLEGAL_REQUEST
,
2704 .asc
= 0x26, /* INVALID FIELD IN PARAMETER LIST */
2706 [TCM_PARAMETER_LIST_LENGTH_ERROR
] = {
2707 .key
= ILLEGAL_REQUEST
,
2708 .asc
= 0x1a, /* PARAMETER LIST LENGTH ERROR */
2710 [TCM_UNEXPECTED_UNSOLICITED_DATA
] = {
2711 .key
= ILLEGAL_REQUEST
,
2712 .asc
= 0x0c, /* WRITE ERROR */
2713 .ascq
= 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
2715 [TCM_SERVICE_CRC_ERROR
] = {
2716 .key
= ABORTED_COMMAND
,
2717 .asc
= 0x47, /* PROTOCOL SERVICE CRC ERROR */
2718 .ascq
= 0x05, /* N/A */
2720 [TCM_SNACK_REJECTED
] = {
2721 .key
= ABORTED_COMMAND
,
2722 .asc
= 0x11, /* READ ERROR */
2723 .ascq
= 0x13, /* FAILED RETRANSMISSION REQUEST */
2725 [TCM_WRITE_PROTECTED
] = {
2726 .key
= DATA_PROTECT
,
2727 .asc
= 0x27, /* WRITE PROTECTED */
2729 [TCM_ADDRESS_OUT_OF_RANGE
] = {
2730 .key
= ILLEGAL_REQUEST
,
2731 .asc
= 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2733 [TCM_CHECK_CONDITION_UNIT_ATTENTION
] = {
2734 .key
= UNIT_ATTENTION
,
2736 [TCM_CHECK_CONDITION_NOT_READY
] = {
2739 [TCM_MISCOMPARE_VERIFY
] = {
2741 .asc
= 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
2744 [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
] = {
2745 .key
= ABORTED_COMMAND
,
2747 .ascq
= 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
2748 .add_sector_info
= true,
2750 [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
] = {
2751 .key
= ABORTED_COMMAND
,
2753 .ascq
= 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2754 .add_sector_info
= true,
2756 [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
] = {
2757 .key
= ABORTED_COMMAND
,
2759 .ascq
= 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2760 .add_sector_info
= true,
2762 [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
] = {
2764 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2765 * Solaris initiators. Returning NOT READY instead means the
2766 * operations will be retried a finite number of times and we
2767 * can survive intermittent errors.
2770 .asc
= 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
2774 static int translate_sense_reason(struct se_cmd
*cmd
, sense_reason_t reason
)
2776 const struct sense_info
*si
;
2777 u8
*buffer
= cmd
->sense_buffer
;
2778 int r
= (__force
int)reason
;
2780 bool desc_format
= target_sense_desc_format(cmd
->se_dev
);
2782 if (r
< ARRAY_SIZE(sense_info_table
) && sense_info_table
[r
].key
)
2783 si
= &sense_info_table
[r
];
2785 si
= &sense_info_table
[(__force
int)
2786 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
];
2788 if (reason
== TCM_CHECK_CONDITION_UNIT_ATTENTION
) {
2789 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2790 WARN_ON_ONCE(asc
== 0);
2791 } else if (si
->asc
== 0) {
2792 WARN_ON_ONCE(cmd
->scsi_asc
== 0);
2793 asc
= cmd
->scsi_asc
;
2794 ascq
= cmd
->scsi_ascq
;
2800 scsi_build_sense_buffer(desc_format
, buffer
, si
->key
, asc
, ascq
);
2801 if (si
->add_sector_info
)
2802 return scsi_set_sense_information(buffer
,
2803 cmd
->scsi_sense_length
,
2810 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2811 sense_reason_t reason
, int from_transport
)
2813 unsigned long flags
;
2815 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2816 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2817 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2820 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2821 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2823 if (!from_transport
) {
2826 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2827 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2828 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2829 rc
= translate_sense_reason(cmd
, reason
);
2834 trace_target_cmd_complete(cmd
);
2835 return cmd
->se_tfo
->queue_status(cmd
);
2837 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2839 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2841 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2845 * If cmd has been aborted but either no status is to be sent or it has
2846 * already been sent, just return
2848 if (!send_status
|| !(cmd
->se_cmd_flags
& SCF_SEND_DELAYED_TAS
))
2851 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08llx\n",
2852 cmd
->t_task_cdb
[0], cmd
->tag
);
2854 cmd
->se_cmd_flags
&= ~SCF_SEND_DELAYED_TAS
;
2855 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2856 trace_target_cmd_complete(cmd
);
2857 cmd
->se_tfo
->queue_status(cmd
);
2861 EXPORT_SYMBOL(transport_check_aborted_status
);
2863 void transport_send_task_abort(struct se_cmd
*cmd
)
2865 unsigned long flags
;
2867 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2868 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
)) {
2869 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2872 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2875 * If there are still expected incoming fabric WRITEs, we wait
2876 * until until they have completed before sending a TASK_ABORTED
2877 * response. This response with TASK_ABORTED status will be
2878 * queued back to fabric module by transport_check_aborted_status().
2880 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
2881 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
2882 cmd
->transport_state
|= CMD_T_ABORTED
;
2883 cmd
->se_cmd_flags
|= SCF_SEND_DELAYED_TAS
;
2887 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2889 transport_lun_remove_cmd(cmd
);
2891 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
2892 cmd
->t_task_cdb
[0], cmd
->tag
);
2894 trace_target_cmd_complete(cmd
);
2895 cmd
->se_tfo
->queue_status(cmd
);
2898 static void target_tmr_work(struct work_struct
*work
)
2900 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2901 struct se_device
*dev
= cmd
->se_dev
;
2902 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
2905 switch (tmr
->function
) {
2906 case TMR_ABORT_TASK
:
2907 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
2909 case TMR_ABORT_TASK_SET
:
2911 case TMR_CLEAR_TASK_SET
:
2912 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
2915 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
2916 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
2917 TMR_FUNCTION_REJECTED
;
2918 if (tmr
->response
== TMR_FUNCTION_COMPLETE
) {
2919 target_ua_allocate_lun(cmd
->se_sess
->se_node_acl
,
2920 cmd
->orig_fe_lun
, 0x29,
2921 ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED
);
2924 case TMR_TARGET_WARM_RESET
:
2925 tmr
->response
= TMR_FUNCTION_REJECTED
;
2927 case TMR_TARGET_COLD_RESET
:
2928 tmr
->response
= TMR_FUNCTION_REJECTED
;
2931 pr_err("Uknown TMR function: 0x%02x.\n",
2933 tmr
->response
= TMR_FUNCTION_REJECTED
;
2937 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
2938 cmd
->se_tfo
->queue_tm_rsp(cmd
);
2940 transport_cmd_check_stop_to_fabric(cmd
);
2943 int transport_generic_handle_tmr(
2946 unsigned long flags
;
2948 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2949 cmd
->transport_state
|= CMD_T_ACTIVE
;
2950 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2952 INIT_WORK(&cmd
->work
, target_tmr_work
);
2953 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
2956 EXPORT_SYMBOL(transport_generic_handle_tmr
);
2959 target_check_wce(struct se_device
*dev
)
2963 if (dev
->transport
->get_write_cache
)
2964 wce
= dev
->transport
->get_write_cache(dev
);
2965 else if (dev
->dev_attrib
.emulate_write_cache
> 0)
2972 target_check_fua(struct se_device
*dev
)
2974 return target_check_wce(dev
) && dev
->dev_attrib
.emulate_fua_write
> 0;