xtensa: implement jump_label support
[linux/fpc-iii.git] / arch / arm / vfp / vfpmodule.c
blobee7b07938dd59311f47fe5b385bcc27bfa4878f8
1 /*
2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched/signal.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
23 #include <linux/export.h>
25 #include <asm/cp15.h>
26 #include <asm/cputype.h>
27 #include <asm/system_info.h>
28 #include <asm/thread_notify.h>
29 #include <asm/vfp.h>
31 #include "vfpinstr.h"
32 #include "vfp.h"
35 * Our undef handlers (in entry.S)
37 asmlinkage void vfp_testing_entry(void);
38 asmlinkage void vfp_support_entry(void);
39 asmlinkage void vfp_null_entry(void);
41 asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
44 * Dual-use variable.
45 * Used in startup: set to non-zero if VFP checks fail
46 * After startup, holds VFP architecture
48 unsigned int VFP_arch;
51 * The pointer to the vfpstate structure of the thread which currently
52 * owns the context held in the VFP hardware, or NULL if the hardware
53 * context is invalid.
55 * For UP, this is sufficient to tell which thread owns the VFP context.
56 * However, for SMP, we also need to check the CPU number stored in the
57 * saved state too to catch migrations.
59 union vfp_state *vfp_current_hw_state[NR_CPUS];
62 * Is 'thread's most up to date state stored in this CPUs hardware?
63 * Must be called from non-preemptible context.
65 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
67 #ifdef CONFIG_SMP
68 if (thread->vfpstate.hard.cpu != cpu)
69 return false;
70 #endif
71 return vfp_current_hw_state[cpu] == &thread->vfpstate;
75 * Force a reload of the VFP context from the thread structure. We do
76 * this by ensuring that access to the VFP hardware is disabled, and
77 * clear vfp_current_hw_state. Must be called from non-preemptible context.
79 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
81 if (vfp_state_in_hw(cpu, thread)) {
82 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
83 vfp_current_hw_state[cpu] = NULL;
85 #ifdef CONFIG_SMP
86 thread->vfpstate.hard.cpu = NR_CPUS;
87 #endif
91 * Per-thread VFP initialization.
93 static void vfp_thread_flush(struct thread_info *thread)
95 union vfp_state *vfp = &thread->vfpstate;
96 unsigned int cpu;
99 * Disable VFP to ensure we initialize it first. We must ensure
100 * that the modification of vfp_current_hw_state[] and hardware
101 * disable are done for the same CPU and without preemption.
103 * Do this first to ensure that preemption won't overwrite our
104 * state saving should access to the VFP be enabled at this point.
106 cpu = get_cpu();
107 if (vfp_current_hw_state[cpu] == vfp)
108 vfp_current_hw_state[cpu] = NULL;
109 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
110 put_cpu();
112 memset(vfp, 0, sizeof(union vfp_state));
114 vfp->hard.fpexc = FPEXC_EN;
115 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
116 #ifdef CONFIG_SMP
117 vfp->hard.cpu = NR_CPUS;
118 #endif
121 static void vfp_thread_exit(struct thread_info *thread)
123 /* release case: Per-thread VFP cleanup. */
124 union vfp_state *vfp = &thread->vfpstate;
125 unsigned int cpu = get_cpu();
127 if (vfp_current_hw_state[cpu] == vfp)
128 vfp_current_hw_state[cpu] = NULL;
129 put_cpu();
132 static void vfp_thread_copy(struct thread_info *thread)
134 struct thread_info *parent = current_thread_info();
136 vfp_sync_hwstate(parent);
137 thread->vfpstate = parent->vfpstate;
138 #ifdef CONFIG_SMP
139 thread->vfpstate.hard.cpu = NR_CPUS;
140 #endif
144 * When this function is called with the following 'cmd's, the following
145 * is true while this function is being run:
146 * THREAD_NOFTIFY_SWTICH:
147 * - the previously running thread will not be scheduled onto another CPU.
148 * - the next thread to be run (v) will not be running on another CPU.
149 * - thread->cpu is the local CPU number
150 * - not preemptible as we're called in the middle of a thread switch
151 * THREAD_NOTIFY_FLUSH:
152 * - the thread (v) will be running on the local CPU, so
153 * v === current_thread_info()
154 * - thread->cpu is the local CPU number at the time it is accessed,
155 * but may change at any time.
156 * - we could be preempted if tree preempt rcu is enabled, so
157 * it is unsafe to use thread->cpu.
158 * THREAD_NOTIFY_EXIT
159 * - we could be preempted if tree preempt rcu is enabled, so
160 * it is unsafe to use thread->cpu.
162 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
164 struct thread_info *thread = v;
165 u32 fpexc;
166 #ifdef CONFIG_SMP
167 unsigned int cpu;
168 #endif
170 switch (cmd) {
171 case THREAD_NOTIFY_SWITCH:
172 fpexc = fmrx(FPEXC);
174 #ifdef CONFIG_SMP
175 cpu = thread->cpu;
178 * On SMP, if VFP is enabled, save the old state in
179 * case the thread migrates to a different CPU. The
180 * restoring is done lazily.
182 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
183 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
184 #endif
187 * Always disable VFP so we can lazily save/restore the
188 * old state.
190 fmxr(FPEXC, fpexc & ~FPEXC_EN);
191 break;
193 case THREAD_NOTIFY_FLUSH:
194 vfp_thread_flush(thread);
195 break;
197 case THREAD_NOTIFY_EXIT:
198 vfp_thread_exit(thread);
199 break;
201 case THREAD_NOTIFY_COPY:
202 vfp_thread_copy(thread);
203 break;
206 return NOTIFY_DONE;
209 static struct notifier_block vfp_notifier_block = {
210 .notifier_call = vfp_notifier,
214 * Raise a SIGFPE for the current process.
215 * sicode describes the signal being raised.
217 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
220 * This is the same as NWFPE, because it's not clear what
221 * this is used for
223 current->thread.error_code = 0;
224 current->thread.trap_no = 6;
226 send_sig_fault(SIGFPE, sicode,
227 (void __user *)(instruction_pointer(regs) - 4),
228 current);
231 static void vfp_panic(char *reason, u32 inst)
233 int i;
235 pr_err("VFP: Error: %s\n", reason);
236 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
237 fmrx(FPEXC), fmrx(FPSCR), inst);
238 for (i = 0; i < 32; i += 2)
239 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
240 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
244 * Process bitmask of exception conditions.
246 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
248 int si_code = 0;
250 pr_debug("VFP: raising exceptions %08x\n", exceptions);
252 if (exceptions == VFP_EXCEPTION_ERROR) {
253 vfp_panic("unhandled bounce", inst);
254 vfp_raise_sigfpe(FPE_FLTINV, regs);
255 return;
259 * If any of the status flags are set, update the FPSCR.
260 * Comparison instructions always return at least one of
261 * these flags set.
263 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
264 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
266 fpscr |= exceptions;
268 fmxr(FPSCR, fpscr);
270 #define RAISE(stat,en,sig) \
271 if (exceptions & stat && fpscr & en) \
272 si_code = sig;
275 * These are arranged in priority order, least to highest.
277 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
278 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
279 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
280 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
281 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
283 if (si_code)
284 vfp_raise_sigfpe(si_code, regs);
288 * Emulate a VFP instruction.
290 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
292 u32 exceptions = VFP_EXCEPTION_ERROR;
294 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
296 if (INST_CPRTDO(inst)) {
297 if (!INST_CPRT(inst)) {
299 * CPDO
301 if (vfp_single(inst)) {
302 exceptions = vfp_single_cpdo(inst, fpscr);
303 } else {
304 exceptions = vfp_double_cpdo(inst, fpscr);
306 } else {
308 * A CPRT instruction can not appear in FPINST2, nor
309 * can it cause an exception. Therefore, we do not
310 * have to emulate it.
313 } else {
315 * A CPDT instruction can not appear in FPINST2, nor can
316 * it cause an exception. Therefore, we do not have to
317 * emulate it.
320 return exceptions & ~VFP_NAN_FLAG;
324 * Package up a bounce condition.
326 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
328 u32 fpscr, orig_fpscr, fpsid, exceptions;
330 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
333 * At this point, FPEXC can have the following configuration:
335 * EX DEX IXE
336 * 0 1 x - synchronous exception
337 * 1 x 0 - asynchronous exception
338 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
339 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
340 * implementation), undefined otherwise
342 * Clear various bits and enable access to the VFP so we can
343 * handle the bounce.
345 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
347 fpsid = fmrx(FPSID);
348 orig_fpscr = fpscr = fmrx(FPSCR);
351 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
353 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
354 && (fpscr & FPSCR_IXE)) {
356 * Synchronous exception, emulate the trigger instruction
358 goto emulate;
361 if (fpexc & FPEXC_EX) {
362 #ifndef CONFIG_CPU_FEROCEON
364 * Asynchronous exception. The instruction is read from FPINST
365 * and the interrupted instruction has to be restarted.
367 trigger = fmrx(FPINST);
368 regs->ARM_pc -= 4;
369 #endif
370 } else if (!(fpexc & FPEXC_DEX)) {
372 * Illegal combination of bits. It can be caused by an
373 * unallocated VFP instruction but with FPSCR.IXE set and not
374 * on VFP subarch 1.
376 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
377 goto exit;
381 * Modify fpscr to indicate the number of iterations remaining.
382 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
383 * whether FPEXC.VECITR or FPSCR.LEN is used.
385 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
386 u32 len;
388 len = fpexc + (1 << FPEXC_LENGTH_BIT);
390 fpscr &= ~FPSCR_LENGTH_MASK;
391 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
395 * Handle the first FP instruction. We used to take note of the
396 * FPEXC bounce reason, but this appears to be unreliable.
397 * Emulate the bounced instruction instead.
399 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
400 if (exceptions)
401 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
404 * If there isn't a second FP instruction, exit now. Note that
405 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
407 if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
408 goto exit;
411 * The barrier() here prevents fpinst2 being read
412 * before the condition above.
414 barrier();
415 trigger = fmrx(FPINST2);
417 emulate:
418 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
419 if (exceptions)
420 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
421 exit:
422 preempt_enable();
425 static void vfp_enable(void *unused)
427 u32 access;
429 BUG_ON(preemptible());
430 access = get_copro_access();
433 * Enable full access to VFP (cp10 and cp11)
435 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
438 /* Called by platforms on which we want to disable VFP because it may not be
439 * present on all CPUs within a SMP complex. Needs to be called prior to
440 * vfp_init().
442 void vfp_disable(void)
444 if (VFP_arch) {
445 pr_debug("%s: should be called prior to vfp_init\n", __func__);
446 return;
448 VFP_arch = 1;
451 #ifdef CONFIG_CPU_PM
452 static int vfp_pm_suspend(void)
454 struct thread_info *ti = current_thread_info();
455 u32 fpexc = fmrx(FPEXC);
457 /* if vfp is on, then save state for resumption */
458 if (fpexc & FPEXC_EN) {
459 pr_debug("%s: saving vfp state\n", __func__);
460 vfp_save_state(&ti->vfpstate, fpexc);
462 /* disable, just in case */
463 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
464 } else if (vfp_current_hw_state[ti->cpu]) {
465 #ifndef CONFIG_SMP
466 fmxr(FPEXC, fpexc | FPEXC_EN);
467 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
468 fmxr(FPEXC, fpexc);
469 #endif
472 /* clear any information we had about last context state */
473 vfp_current_hw_state[ti->cpu] = NULL;
475 return 0;
478 static void vfp_pm_resume(void)
480 /* ensure we have access to the vfp */
481 vfp_enable(NULL);
483 /* and disable it to ensure the next usage restores the state */
484 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
487 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
488 void *v)
490 switch (cmd) {
491 case CPU_PM_ENTER:
492 vfp_pm_suspend();
493 break;
494 case CPU_PM_ENTER_FAILED:
495 case CPU_PM_EXIT:
496 vfp_pm_resume();
497 break;
499 return NOTIFY_OK;
502 static struct notifier_block vfp_cpu_pm_notifier_block = {
503 .notifier_call = vfp_cpu_pm_notifier,
506 static void vfp_pm_init(void)
508 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
511 #else
512 static inline void vfp_pm_init(void) { }
513 #endif /* CONFIG_CPU_PM */
516 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
517 * with the hardware state.
519 void vfp_sync_hwstate(struct thread_info *thread)
521 unsigned int cpu = get_cpu();
523 if (vfp_state_in_hw(cpu, thread)) {
524 u32 fpexc = fmrx(FPEXC);
527 * Save the last VFP state on this CPU.
529 fmxr(FPEXC, fpexc | FPEXC_EN);
530 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
531 fmxr(FPEXC, fpexc);
534 put_cpu();
537 /* Ensure that the thread reloads the hardware VFP state on the next use. */
538 void vfp_flush_hwstate(struct thread_info *thread)
540 unsigned int cpu = get_cpu();
542 vfp_force_reload(cpu, thread);
544 put_cpu();
548 * Save the current VFP state into the provided structures and prepare
549 * for entry into a new function (signal handler).
551 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
552 struct user_vfp_exc *ufp_exc)
554 struct thread_info *thread = current_thread_info();
555 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
557 /* Ensure that the saved hwstate is up-to-date. */
558 vfp_sync_hwstate(thread);
561 * Copy the floating point registers. There can be unused
562 * registers see asm/hwcap.h for details.
564 memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
567 * Copy the status and control register.
569 ufp->fpscr = hwstate->fpscr;
572 * Copy the exception registers.
574 ufp_exc->fpexc = hwstate->fpexc;
575 ufp_exc->fpinst = hwstate->fpinst;
576 ufp_exc->fpinst2 = hwstate->fpinst2;
578 /* Ensure that VFP is disabled. */
579 vfp_flush_hwstate(thread);
582 * As per the PCS, clear the length and stride bits for function
583 * entry.
585 hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
586 return 0;
589 /* Sanitise and restore the current VFP state from the provided structures. */
590 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
592 struct thread_info *thread = current_thread_info();
593 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
594 unsigned long fpexc;
596 /* Disable VFP to avoid corrupting the new thread state. */
597 vfp_flush_hwstate(thread);
600 * Copy the floating point registers. There can be unused
601 * registers see asm/hwcap.h for details.
603 memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
605 * Copy the status and control register.
607 hwstate->fpscr = ufp->fpscr;
610 * Sanitise and restore the exception registers.
612 fpexc = ufp_exc->fpexc;
614 /* Ensure the VFP is enabled. */
615 fpexc |= FPEXC_EN;
617 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
618 fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
619 hwstate->fpexc = fpexc;
621 hwstate->fpinst = ufp_exc->fpinst;
622 hwstate->fpinst2 = ufp_exc->fpinst2;
624 return 0;
628 * VFP hardware can lose all context when a CPU goes offline.
629 * As we will be running in SMP mode with CPU hotplug, we will save the
630 * hardware state at every thread switch. We clear our held state when
631 * a CPU has been killed, indicating that the VFP hardware doesn't contain
632 * a threads VFP state. When a CPU starts up, we re-enable access to the
633 * VFP hardware. The callbacks below are called on the CPU which
634 * is being offlined/onlined.
636 static int vfp_dying_cpu(unsigned int cpu)
638 vfp_current_hw_state[cpu] = NULL;
639 return 0;
642 static int vfp_starting_cpu(unsigned int unused)
644 vfp_enable(NULL);
645 return 0;
648 void vfp_kmode_exception(void)
651 * If we reach this point, a floating point exception has been raised
652 * while running in kernel mode. If the NEON/VFP unit was enabled at the
653 * time, it means a VFP instruction has been issued that requires
654 * software assistance to complete, something which is not currently
655 * supported in kernel mode.
656 * If the NEON/VFP unit was disabled, and the location pointed to below
657 * is properly preceded by a call to kernel_neon_begin(), something has
658 * caused the task to be scheduled out and back in again. In this case,
659 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
660 * be helpful in localizing the problem.
662 if (fmrx(FPEXC) & FPEXC_EN)
663 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
664 else
665 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
668 #ifdef CONFIG_KERNEL_MODE_NEON
671 * Kernel-side NEON support functions
673 void kernel_neon_begin(void)
675 struct thread_info *thread = current_thread_info();
676 unsigned int cpu;
677 u32 fpexc;
680 * Kernel mode NEON is only allowed outside of interrupt context
681 * with preemption disabled. This will make sure that the kernel
682 * mode NEON register contents never need to be preserved.
684 BUG_ON(in_interrupt());
685 cpu = get_cpu();
687 fpexc = fmrx(FPEXC) | FPEXC_EN;
688 fmxr(FPEXC, fpexc);
691 * Save the userland NEON/VFP state. Under UP,
692 * the owner could be a task other than 'current'
694 if (vfp_state_in_hw(cpu, thread))
695 vfp_save_state(&thread->vfpstate, fpexc);
696 #ifndef CONFIG_SMP
697 else if (vfp_current_hw_state[cpu] != NULL)
698 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
699 #endif
700 vfp_current_hw_state[cpu] = NULL;
702 EXPORT_SYMBOL(kernel_neon_begin);
704 void kernel_neon_end(void)
706 /* Disable the NEON/VFP unit. */
707 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
708 put_cpu();
710 EXPORT_SYMBOL(kernel_neon_end);
712 #endif /* CONFIG_KERNEL_MODE_NEON */
715 * VFP support code initialisation.
717 static int __init vfp_init(void)
719 unsigned int vfpsid;
720 unsigned int cpu_arch = cpu_architecture();
723 * Enable the access to the VFP on all online CPUs so the
724 * following test on FPSID will succeed.
726 if (cpu_arch >= CPU_ARCH_ARMv6)
727 on_each_cpu(vfp_enable, NULL, 1);
730 * First check that there is a VFP that we can use.
731 * The handler is already setup to just log calls, so
732 * we just need to read the VFPSID register.
734 vfp_vector = vfp_testing_entry;
735 barrier();
736 vfpsid = fmrx(FPSID);
737 barrier();
738 vfp_vector = vfp_null_entry;
740 pr_info("VFP support v0.3: ");
741 if (VFP_arch) {
742 pr_cont("not present\n");
743 return 0;
744 /* Extract the architecture on CPUID scheme */
745 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
746 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
747 VFP_arch >>= FPSID_ARCH_BIT;
749 * Check for the presence of the Advanced SIMD
750 * load/store instructions, integer and single
751 * precision floating point operations. Only check
752 * for NEON if the hardware has the MVFR registers.
754 if (IS_ENABLED(CONFIG_NEON) &&
755 (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
756 elf_hwcap |= HWCAP_NEON;
758 if (IS_ENABLED(CONFIG_VFPv3)) {
759 u32 mvfr0 = fmrx(MVFR0);
760 if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
761 ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
762 elf_hwcap |= HWCAP_VFPv3;
764 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
765 * this configuration only have 16 x 64bit
766 * registers.
768 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
769 /* also v4-D16 */
770 elf_hwcap |= HWCAP_VFPv3D16;
771 else
772 elf_hwcap |= HWCAP_VFPD32;
775 if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
776 elf_hwcap |= HWCAP_VFPv4;
778 /* Extract the architecture version on pre-cpuid scheme */
779 } else {
780 if (vfpsid & FPSID_NODOUBLE) {
781 pr_cont("no double precision support\n");
782 return 0;
785 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
788 cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
789 "arm/vfp:starting", vfp_starting_cpu,
790 vfp_dying_cpu);
792 vfp_vector = vfp_support_entry;
794 thread_register_notifier(&vfp_notifier_block);
795 vfp_pm_init();
798 * We detected VFP, and the support code is
799 * in place; report VFP support to userspace.
801 elf_hwcap |= HWCAP_VFP;
803 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
804 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
805 VFP_arch,
806 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
807 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
808 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
810 return 0;
813 core_initcall(vfp_init);