2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched/signal.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
23 #include <linux/export.h>
26 #include <asm/cputype.h>
27 #include <asm/system_info.h>
28 #include <asm/thread_notify.h>
35 * Our undef handlers (in entry.S)
37 asmlinkage
void vfp_testing_entry(void);
38 asmlinkage
void vfp_support_entry(void);
39 asmlinkage
void vfp_null_entry(void);
41 asmlinkage
void (*vfp_vector
)(void) = vfp_null_entry
;
45 * Used in startup: set to non-zero if VFP checks fail
46 * After startup, holds VFP architecture
48 unsigned int VFP_arch
;
51 * The pointer to the vfpstate structure of the thread which currently
52 * owns the context held in the VFP hardware, or NULL if the hardware
55 * For UP, this is sufficient to tell which thread owns the VFP context.
56 * However, for SMP, we also need to check the CPU number stored in the
57 * saved state too to catch migrations.
59 union vfp_state
*vfp_current_hw_state
[NR_CPUS
];
62 * Is 'thread's most up to date state stored in this CPUs hardware?
63 * Must be called from non-preemptible context.
65 static bool vfp_state_in_hw(unsigned int cpu
, struct thread_info
*thread
)
68 if (thread
->vfpstate
.hard
.cpu
!= cpu
)
71 return vfp_current_hw_state
[cpu
] == &thread
->vfpstate
;
75 * Force a reload of the VFP context from the thread structure. We do
76 * this by ensuring that access to the VFP hardware is disabled, and
77 * clear vfp_current_hw_state. Must be called from non-preemptible context.
79 static void vfp_force_reload(unsigned int cpu
, struct thread_info
*thread
)
81 if (vfp_state_in_hw(cpu
, thread
)) {
82 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
83 vfp_current_hw_state
[cpu
] = NULL
;
86 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
91 * Per-thread VFP initialization.
93 static void vfp_thread_flush(struct thread_info
*thread
)
95 union vfp_state
*vfp
= &thread
->vfpstate
;
99 * Disable VFP to ensure we initialize it first. We must ensure
100 * that the modification of vfp_current_hw_state[] and hardware
101 * disable are done for the same CPU and without preemption.
103 * Do this first to ensure that preemption won't overwrite our
104 * state saving should access to the VFP be enabled at this point.
107 if (vfp_current_hw_state
[cpu
] == vfp
)
108 vfp_current_hw_state
[cpu
] = NULL
;
109 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
112 memset(vfp
, 0, sizeof(union vfp_state
));
114 vfp
->hard
.fpexc
= FPEXC_EN
;
115 vfp
->hard
.fpscr
= FPSCR_ROUND_NEAREST
;
117 vfp
->hard
.cpu
= NR_CPUS
;
121 static void vfp_thread_exit(struct thread_info
*thread
)
123 /* release case: Per-thread VFP cleanup. */
124 union vfp_state
*vfp
= &thread
->vfpstate
;
125 unsigned int cpu
= get_cpu();
127 if (vfp_current_hw_state
[cpu
] == vfp
)
128 vfp_current_hw_state
[cpu
] = NULL
;
132 static void vfp_thread_copy(struct thread_info
*thread
)
134 struct thread_info
*parent
= current_thread_info();
136 vfp_sync_hwstate(parent
);
137 thread
->vfpstate
= parent
->vfpstate
;
139 thread
->vfpstate
.hard
.cpu
= NR_CPUS
;
144 * When this function is called with the following 'cmd's, the following
145 * is true while this function is being run:
146 * THREAD_NOFTIFY_SWTICH:
147 * - the previously running thread will not be scheduled onto another CPU.
148 * - the next thread to be run (v) will not be running on another CPU.
149 * - thread->cpu is the local CPU number
150 * - not preemptible as we're called in the middle of a thread switch
151 * THREAD_NOTIFY_FLUSH:
152 * - the thread (v) will be running on the local CPU, so
153 * v === current_thread_info()
154 * - thread->cpu is the local CPU number at the time it is accessed,
155 * but may change at any time.
156 * - we could be preempted if tree preempt rcu is enabled, so
157 * it is unsafe to use thread->cpu.
159 * - we could be preempted if tree preempt rcu is enabled, so
160 * it is unsafe to use thread->cpu.
162 static int vfp_notifier(struct notifier_block
*self
, unsigned long cmd
, void *v
)
164 struct thread_info
*thread
= v
;
171 case THREAD_NOTIFY_SWITCH
:
178 * On SMP, if VFP is enabled, save the old state in
179 * case the thread migrates to a different CPU. The
180 * restoring is done lazily.
182 if ((fpexc
& FPEXC_EN
) && vfp_current_hw_state
[cpu
])
183 vfp_save_state(vfp_current_hw_state
[cpu
], fpexc
);
187 * Always disable VFP so we can lazily save/restore the
190 fmxr(FPEXC
, fpexc
& ~FPEXC_EN
);
193 case THREAD_NOTIFY_FLUSH
:
194 vfp_thread_flush(thread
);
197 case THREAD_NOTIFY_EXIT
:
198 vfp_thread_exit(thread
);
201 case THREAD_NOTIFY_COPY
:
202 vfp_thread_copy(thread
);
209 static struct notifier_block vfp_notifier_block
= {
210 .notifier_call
= vfp_notifier
,
214 * Raise a SIGFPE for the current process.
215 * sicode describes the signal being raised.
217 static void vfp_raise_sigfpe(unsigned int sicode
, struct pt_regs
*regs
)
220 * This is the same as NWFPE, because it's not clear what
223 current
->thread
.error_code
= 0;
224 current
->thread
.trap_no
= 6;
226 send_sig_fault(SIGFPE
, sicode
,
227 (void __user
*)(instruction_pointer(regs
) - 4),
231 static void vfp_panic(char *reason
, u32 inst
)
235 pr_err("VFP: Error: %s\n", reason
);
236 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
237 fmrx(FPEXC
), fmrx(FPSCR
), inst
);
238 for (i
= 0; i
< 32; i
+= 2)
239 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
240 i
, vfp_get_float(i
), i
+1, vfp_get_float(i
+1));
244 * Process bitmask of exception conditions.
246 static void vfp_raise_exceptions(u32 exceptions
, u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
250 pr_debug("VFP: raising exceptions %08x\n", exceptions
);
252 if (exceptions
== VFP_EXCEPTION_ERROR
) {
253 vfp_panic("unhandled bounce", inst
);
254 vfp_raise_sigfpe(FPE_FLTINV
, regs
);
259 * If any of the status flags are set, update the FPSCR.
260 * Comparison instructions always return at least one of
263 if (exceptions
& (FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
))
264 fpscr
&= ~(FPSCR_N
|FPSCR_Z
|FPSCR_C
|FPSCR_V
);
270 #define RAISE(stat,en,sig) \
271 if (exceptions & stat && fpscr & en) \
275 * These are arranged in priority order, least to highest.
277 RAISE(FPSCR_DZC
, FPSCR_DZE
, FPE_FLTDIV
);
278 RAISE(FPSCR_IXC
, FPSCR_IXE
, FPE_FLTRES
);
279 RAISE(FPSCR_UFC
, FPSCR_UFE
, FPE_FLTUND
);
280 RAISE(FPSCR_OFC
, FPSCR_OFE
, FPE_FLTOVF
);
281 RAISE(FPSCR_IOC
, FPSCR_IOE
, FPE_FLTINV
);
284 vfp_raise_sigfpe(si_code
, regs
);
288 * Emulate a VFP instruction.
290 static u32
vfp_emulate_instruction(u32 inst
, u32 fpscr
, struct pt_regs
*regs
)
292 u32 exceptions
= VFP_EXCEPTION_ERROR
;
294 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst
, fpscr
);
296 if (INST_CPRTDO(inst
)) {
297 if (!INST_CPRT(inst
)) {
301 if (vfp_single(inst
)) {
302 exceptions
= vfp_single_cpdo(inst
, fpscr
);
304 exceptions
= vfp_double_cpdo(inst
, fpscr
);
308 * A CPRT instruction can not appear in FPINST2, nor
309 * can it cause an exception. Therefore, we do not
310 * have to emulate it.
315 * A CPDT instruction can not appear in FPINST2, nor can
316 * it cause an exception. Therefore, we do not have to
320 return exceptions
& ~VFP_NAN_FLAG
;
324 * Package up a bounce condition.
326 void VFP_bounce(u32 trigger
, u32 fpexc
, struct pt_regs
*regs
)
328 u32 fpscr
, orig_fpscr
, fpsid
, exceptions
;
330 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger
, fpexc
);
333 * At this point, FPEXC can have the following configuration:
336 * 0 1 x - synchronous exception
337 * 1 x 0 - asynchronous exception
338 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
339 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
340 * implementation), undefined otherwise
342 * Clear various bits and enable access to the VFP so we can
345 fmxr(FPEXC
, fpexc
& ~(FPEXC_EX
|FPEXC_DEX
|FPEXC_FP2V
|FPEXC_VV
|FPEXC_TRAP_MASK
));
348 orig_fpscr
= fpscr
= fmrx(FPSCR
);
351 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
353 if ((fpsid
& FPSID_ARCH_MASK
) == (1 << FPSID_ARCH_BIT
)
354 && (fpscr
& FPSCR_IXE
)) {
356 * Synchronous exception, emulate the trigger instruction
361 if (fpexc
& FPEXC_EX
) {
362 #ifndef CONFIG_CPU_FEROCEON
364 * Asynchronous exception. The instruction is read from FPINST
365 * and the interrupted instruction has to be restarted.
367 trigger
= fmrx(FPINST
);
370 } else if (!(fpexc
& FPEXC_DEX
)) {
372 * Illegal combination of bits. It can be caused by an
373 * unallocated VFP instruction but with FPSCR.IXE set and not
376 vfp_raise_exceptions(VFP_EXCEPTION_ERROR
, trigger
, fpscr
, regs
);
381 * Modify fpscr to indicate the number of iterations remaining.
382 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
383 * whether FPEXC.VECITR or FPSCR.LEN is used.
385 if (fpexc
& (FPEXC_EX
| FPEXC_VV
)) {
388 len
= fpexc
+ (1 << FPEXC_LENGTH_BIT
);
390 fpscr
&= ~FPSCR_LENGTH_MASK
;
391 fpscr
|= (len
& FPEXC_LENGTH_MASK
) << (FPSCR_LENGTH_BIT
- FPEXC_LENGTH_BIT
);
395 * Handle the first FP instruction. We used to take note of the
396 * FPEXC bounce reason, but this appears to be unreliable.
397 * Emulate the bounced instruction instead.
399 exceptions
= vfp_emulate_instruction(trigger
, fpscr
, regs
);
401 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
404 * If there isn't a second FP instruction, exit now. Note that
405 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
407 if ((fpexc
& (FPEXC_EX
| FPEXC_FP2V
)) != (FPEXC_EX
| FPEXC_FP2V
))
411 * The barrier() here prevents fpinst2 being read
412 * before the condition above.
415 trigger
= fmrx(FPINST2
);
418 exceptions
= vfp_emulate_instruction(trigger
, orig_fpscr
, regs
);
420 vfp_raise_exceptions(exceptions
, trigger
, orig_fpscr
, regs
);
425 static void vfp_enable(void *unused
)
429 BUG_ON(preemptible());
430 access
= get_copro_access();
433 * Enable full access to VFP (cp10 and cp11)
435 set_copro_access(access
| CPACC_FULL(10) | CPACC_FULL(11));
438 /* Called by platforms on which we want to disable VFP because it may not be
439 * present on all CPUs within a SMP complex. Needs to be called prior to
442 void vfp_disable(void)
445 pr_debug("%s: should be called prior to vfp_init\n", __func__
);
452 static int vfp_pm_suspend(void)
454 struct thread_info
*ti
= current_thread_info();
455 u32 fpexc
= fmrx(FPEXC
);
457 /* if vfp is on, then save state for resumption */
458 if (fpexc
& FPEXC_EN
) {
459 pr_debug("%s: saving vfp state\n", __func__
);
460 vfp_save_state(&ti
->vfpstate
, fpexc
);
462 /* disable, just in case */
463 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
464 } else if (vfp_current_hw_state
[ti
->cpu
]) {
466 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
467 vfp_save_state(vfp_current_hw_state
[ti
->cpu
], fpexc
);
472 /* clear any information we had about last context state */
473 vfp_current_hw_state
[ti
->cpu
] = NULL
;
478 static void vfp_pm_resume(void)
480 /* ensure we have access to the vfp */
483 /* and disable it to ensure the next usage restores the state */
484 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
487 static int vfp_cpu_pm_notifier(struct notifier_block
*self
, unsigned long cmd
,
494 case CPU_PM_ENTER_FAILED
:
502 static struct notifier_block vfp_cpu_pm_notifier_block
= {
503 .notifier_call
= vfp_cpu_pm_notifier
,
506 static void vfp_pm_init(void)
508 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block
);
512 static inline void vfp_pm_init(void) { }
513 #endif /* CONFIG_CPU_PM */
516 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
517 * with the hardware state.
519 void vfp_sync_hwstate(struct thread_info
*thread
)
521 unsigned int cpu
= get_cpu();
523 if (vfp_state_in_hw(cpu
, thread
)) {
524 u32 fpexc
= fmrx(FPEXC
);
527 * Save the last VFP state on this CPU.
529 fmxr(FPEXC
, fpexc
| FPEXC_EN
);
530 vfp_save_state(&thread
->vfpstate
, fpexc
| FPEXC_EN
);
537 /* Ensure that the thread reloads the hardware VFP state on the next use. */
538 void vfp_flush_hwstate(struct thread_info
*thread
)
540 unsigned int cpu
= get_cpu();
542 vfp_force_reload(cpu
, thread
);
548 * Save the current VFP state into the provided structures and prepare
549 * for entry into a new function (signal handler).
551 int vfp_preserve_user_clear_hwstate(struct user_vfp
*ufp
,
552 struct user_vfp_exc
*ufp_exc
)
554 struct thread_info
*thread
= current_thread_info();
555 struct vfp_hard_struct
*hwstate
= &thread
->vfpstate
.hard
;
557 /* Ensure that the saved hwstate is up-to-date. */
558 vfp_sync_hwstate(thread
);
561 * Copy the floating point registers. There can be unused
562 * registers see asm/hwcap.h for details.
564 memcpy(&ufp
->fpregs
, &hwstate
->fpregs
, sizeof(hwstate
->fpregs
));
567 * Copy the status and control register.
569 ufp
->fpscr
= hwstate
->fpscr
;
572 * Copy the exception registers.
574 ufp_exc
->fpexc
= hwstate
->fpexc
;
575 ufp_exc
->fpinst
= hwstate
->fpinst
;
576 ufp_exc
->fpinst2
= hwstate
->fpinst2
;
578 /* Ensure that VFP is disabled. */
579 vfp_flush_hwstate(thread
);
582 * As per the PCS, clear the length and stride bits for function
585 hwstate
->fpscr
&= ~(FPSCR_LENGTH_MASK
| FPSCR_STRIDE_MASK
);
589 /* Sanitise and restore the current VFP state from the provided structures. */
590 int vfp_restore_user_hwstate(struct user_vfp
*ufp
, struct user_vfp_exc
*ufp_exc
)
592 struct thread_info
*thread
= current_thread_info();
593 struct vfp_hard_struct
*hwstate
= &thread
->vfpstate
.hard
;
596 /* Disable VFP to avoid corrupting the new thread state. */
597 vfp_flush_hwstate(thread
);
600 * Copy the floating point registers. There can be unused
601 * registers see asm/hwcap.h for details.
603 memcpy(&hwstate
->fpregs
, &ufp
->fpregs
, sizeof(hwstate
->fpregs
));
605 * Copy the status and control register.
607 hwstate
->fpscr
= ufp
->fpscr
;
610 * Sanitise and restore the exception registers.
612 fpexc
= ufp_exc
->fpexc
;
614 /* Ensure the VFP is enabled. */
617 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
618 fpexc
&= ~(FPEXC_EX
| FPEXC_FP2V
);
619 hwstate
->fpexc
= fpexc
;
621 hwstate
->fpinst
= ufp_exc
->fpinst
;
622 hwstate
->fpinst2
= ufp_exc
->fpinst2
;
628 * VFP hardware can lose all context when a CPU goes offline.
629 * As we will be running in SMP mode with CPU hotplug, we will save the
630 * hardware state at every thread switch. We clear our held state when
631 * a CPU has been killed, indicating that the VFP hardware doesn't contain
632 * a threads VFP state. When a CPU starts up, we re-enable access to the
633 * VFP hardware. The callbacks below are called on the CPU which
634 * is being offlined/onlined.
636 static int vfp_dying_cpu(unsigned int cpu
)
638 vfp_current_hw_state
[cpu
] = NULL
;
642 static int vfp_starting_cpu(unsigned int unused
)
648 void vfp_kmode_exception(void)
651 * If we reach this point, a floating point exception has been raised
652 * while running in kernel mode. If the NEON/VFP unit was enabled at the
653 * time, it means a VFP instruction has been issued that requires
654 * software assistance to complete, something which is not currently
655 * supported in kernel mode.
656 * If the NEON/VFP unit was disabled, and the location pointed to below
657 * is properly preceded by a call to kernel_neon_begin(), something has
658 * caused the task to be scheduled out and back in again. In this case,
659 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
660 * be helpful in localizing the problem.
662 if (fmrx(FPEXC
) & FPEXC_EN
)
663 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
665 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
668 #ifdef CONFIG_KERNEL_MODE_NEON
671 * Kernel-side NEON support functions
673 void kernel_neon_begin(void)
675 struct thread_info
*thread
= current_thread_info();
680 * Kernel mode NEON is only allowed outside of interrupt context
681 * with preemption disabled. This will make sure that the kernel
682 * mode NEON register contents never need to be preserved.
684 BUG_ON(in_interrupt());
687 fpexc
= fmrx(FPEXC
) | FPEXC_EN
;
691 * Save the userland NEON/VFP state. Under UP,
692 * the owner could be a task other than 'current'
694 if (vfp_state_in_hw(cpu
, thread
))
695 vfp_save_state(&thread
->vfpstate
, fpexc
);
697 else if (vfp_current_hw_state
[cpu
] != NULL
)
698 vfp_save_state(vfp_current_hw_state
[cpu
], fpexc
);
700 vfp_current_hw_state
[cpu
] = NULL
;
702 EXPORT_SYMBOL(kernel_neon_begin
);
704 void kernel_neon_end(void)
706 /* Disable the NEON/VFP unit. */
707 fmxr(FPEXC
, fmrx(FPEXC
) & ~FPEXC_EN
);
710 EXPORT_SYMBOL(kernel_neon_end
);
712 #endif /* CONFIG_KERNEL_MODE_NEON */
715 * VFP support code initialisation.
717 static int __init
vfp_init(void)
720 unsigned int cpu_arch
= cpu_architecture();
723 * Enable the access to the VFP on all online CPUs so the
724 * following test on FPSID will succeed.
726 if (cpu_arch
>= CPU_ARCH_ARMv6
)
727 on_each_cpu(vfp_enable
, NULL
, 1);
730 * First check that there is a VFP that we can use.
731 * The handler is already setup to just log calls, so
732 * we just need to read the VFPSID register.
734 vfp_vector
= vfp_testing_entry
;
736 vfpsid
= fmrx(FPSID
);
738 vfp_vector
= vfp_null_entry
;
740 pr_info("VFP support v0.3: ");
742 pr_cont("not present\n");
744 /* Extract the architecture on CPUID scheme */
745 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
746 VFP_arch
= vfpsid
& FPSID_CPUID_ARCH_MASK
;
747 VFP_arch
>>= FPSID_ARCH_BIT
;
749 * Check for the presence of the Advanced SIMD
750 * load/store instructions, integer and single
751 * precision floating point operations. Only check
752 * for NEON if the hardware has the MVFR registers.
754 if (IS_ENABLED(CONFIG_NEON
) &&
755 (fmrx(MVFR1
) & 0x000fff00) == 0x00011100)
756 elf_hwcap
|= HWCAP_NEON
;
758 if (IS_ENABLED(CONFIG_VFPv3
)) {
759 u32 mvfr0
= fmrx(MVFR0
);
760 if (((mvfr0
& MVFR0_DP_MASK
) >> MVFR0_DP_BIT
) == 0x2 ||
761 ((mvfr0
& MVFR0_SP_MASK
) >> MVFR0_SP_BIT
) == 0x2) {
762 elf_hwcap
|= HWCAP_VFPv3
;
764 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
765 * this configuration only have 16 x 64bit
768 if ((mvfr0
& MVFR0_A_SIMD_MASK
) == 1)
770 elf_hwcap
|= HWCAP_VFPv3D16
;
772 elf_hwcap
|= HWCAP_VFPD32
;
775 if ((fmrx(MVFR1
) & 0xf0000000) == 0x10000000)
776 elf_hwcap
|= HWCAP_VFPv4
;
778 /* Extract the architecture version on pre-cpuid scheme */
780 if (vfpsid
& FPSID_NODOUBLE
) {
781 pr_cont("no double precision support\n");
785 VFP_arch
= (vfpsid
& FPSID_ARCH_MASK
) >> FPSID_ARCH_BIT
;
788 cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING
,
789 "arm/vfp:starting", vfp_starting_cpu
,
792 vfp_vector
= vfp_support_entry
;
794 thread_register_notifier(&vfp_notifier_block
);
798 * We detected VFP, and the support code is
799 * in place; report VFP support to userspace.
801 elf_hwcap
|= HWCAP_VFP
;
803 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
804 (vfpsid
& FPSID_IMPLEMENTER_MASK
) >> FPSID_IMPLEMENTER_BIT
,
806 (vfpsid
& FPSID_PART_MASK
) >> FPSID_PART_BIT
,
807 (vfpsid
& FPSID_VARIANT_MASK
) >> FPSID_VARIANT_BIT
,
808 (vfpsid
& FPSID_REV_MASK
) >> FPSID_REV_BIT
);
813 core_initcall(vfp_init
);