block: move down direct IO plugging
[linux/fpc-iii.git] / arch / arm / vfp / vfpmodule.c
blobfb849d044bde9b231d481201c985f84cc37c0a3d
1 /*
2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
24 #include <asm/cp15.h>
25 #include <asm/cputype.h>
26 #include <asm/system_info.h>
27 #include <asm/thread_notify.h>
28 #include <asm/vfp.h>
30 #include "vfpinstr.h"
31 #include "vfp.h"
34 * Our undef handlers (in entry.S)
36 void vfp_testing_entry(void);
37 void vfp_support_entry(void);
38 void vfp_null_entry(void);
40 void (*vfp_vector)(void) = vfp_null_entry;
43 * Dual-use variable.
44 * Used in startup: set to non-zero if VFP checks fail
45 * After startup, holds VFP architecture
47 unsigned int VFP_arch;
50 * The pointer to the vfpstate structure of the thread which currently
51 * owns the context held in the VFP hardware, or NULL if the hardware
52 * context is invalid.
54 * For UP, this is sufficient to tell which thread owns the VFP context.
55 * However, for SMP, we also need to check the CPU number stored in the
56 * saved state too to catch migrations.
58 union vfp_state *vfp_current_hw_state[NR_CPUS];
61 * Is 'thread's most up to date state stored in this CPUs hardware?
62 * Must be called from non-preemptible context.
64 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
66 #ifdef CONFIG_SMP
67 if (thread->vfpstate.hard.cpu != cpu)
68 return false;
69 #endif
70 return vfp_current_hw_state[cpu] == &thread->vfpstate;
74 * Force a reload of the VFP context from the thread structure. We do
75 * this by ensuring that access to the VFP hardware is disabled, and
76 * clear vfp_current_hw_state. Must be called from non-preemptible context.
78 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
80 if (vfp_state_in_hw(cpu, thread)) {
81 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
82 vfp_current_hw_state[cpu] = NULL;
84 #ifdef CONFIG_SMP
85 thread->vfpstate.hard.cpu = NR_CPUS;
86 #endif
90 * Per-thread VFP initialization.
92 static void vfp_thread_flush(struct thread_info *thread)
94 union vfp_state *vfp = &thread->vfpstate;
95 unsigned int cpu;
98 * Disable VFP to ensure we initialize it first. We must ensure
99 * that the modification of vfp_current_hw_state[] and hardware
100 * disable are done for the same CPU and without preemption.
102 * Do this first to ensure that preemption won't overwrite our
103 * state saving should access to the VFP be enabled at this point.
105 cpu = get_cpu();
106 if (vfp_current_hw_state[cpu] == vfp)
107 vfp_current_hw_state[cpu] = NULL;
108 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
109 put_cpu();
111 memset(vfp, 0, sizeof(union vfp_state));
113 vfp->hard.fpexc = FPEXC_EN;
114 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
115 #ifdef CONFIG_SMP
116 vfp->hard.cpu = NR_CPUS;
117 #endif
120 static void vfp_thread_exit(struct thread_info *thread)
122 /* release case: Per-thread VFP cleanup. */
123 union vfp_state *vfp = &thread->vfpstate;
124 unsigned int cpu = get_cpu();
126 if (vfp_current_hw_state[cpu] == vfp)
127 vfp_current_hw_state[cpu] = NULL;
128 put_cpu();
131 static void vfp_thread_copy(struct thread_info *thread)
133 struct thread_info *parent = current_thread_info();
135 vfp_sync_hwstate(parent);
136 thread->vfpstate = parent->vfpstate;
137 #ifdef CONFIG_SMP
138 thread->vfpstate.hard.cpu = NR_CPUS;
139 #endif
143 * When this function is called with the following 'cmd's, the following
144 * is true while this function is being run:
145 * THREAD_NOFTIFY_SWTICH:
146 * - the previously running thread will not be scheduled onto another CPU.
147 * - the next thread to be run (v) will not be running on another CPU.
148 * - thread->cpu is the local CPU number
149 * - not preemptible as we're called in the middle of a thread switch
150 * THREAD_NOTIFY_FLUSH:
151 * - the thread (v) will be running on the local CPU, so
152 * v === current_thread_info()
153 * - thread->cpu is the local CPU number at the time it is accessed,
154 * but may change at any time.
155 * - we could be preempted if tree preempt rcu is enabled, so
156 * it is unsafe to use thread->cpu.
157 * THREAD_NOTIFY_EXIT
158 * - the thread (v) will be running on the local CPU, so
159 * v === current_thread_info()
160 * - thread->cpu is the local CPU number at the time it is accessed,
161 * but may change at any time.
162 * - we could be preempted if tree preempt rcu is enabled, so
163 * it is unsafe to use thread->cpu.
165 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
167 struct thread_info *thread = v;
168 u32 fpexc;
169 #ifdef CONFIG_SMP
170 unsigned int cpu;
171 #endif
173 switch (cmd) {
174 case THREAD_NOTIFY_SWITCH:
175 fpexc = fmrx(FPEXC);
177 #ifdef CONFIG_SMP
178 cpu = thread->cpu;
181 * On SMP, if VFP is enabled, save the old state in
182 * case the thread migrates to a different CPU. The
183 * restoring is done lazily.
185 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
186 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
187 #endif
190 * Always disable VFP so we can lazily save/restore the
191 * old state.
193 fmxr(FPEXC, fpexc & ~FPEXC_EN);
194 break;
196 case THREAD_NOTIFY_FLUSH:
197 vfp_thread_flush(thread);
198 break;
200 case THREAD_NOTIFY_EXIT:
201 vfp_thread_exit(thread);
202 break;
204 case THREAD_NOTIFY_COPY:
205 vfp_thread_copy(thread);
206 break;
209 return NOTIFY_DONE;
212 static struct notifier_block vfp_notifier_block = {
213 .notifier_call = vfp_notifier,
217 * Raise a SIGFPE for the current process.
218 * sicode describes the signal being raised.
220 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
222 siginfo_t info;
224 memset(&info, 0, sizeof(info));
226 info.si_signo = SIGFPE;
227 info.si_code = sicode;
228 info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
231 * This is the same as NWFPE, because it's not clear what
232 * this is used for
234 current->thread.error_code = 0;
235 current->thread.trap_no = 6;
237 send_sig_info(SIGFPE, &info, current);
240 static void vfp_panic(char *reason, u32 inst)
242 int i;
244 pr_err("VFP: Error: %s\n", reason);
245 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
246 fmrx(FPEXC), fmrx(FPSCR), inst);
247 for (i = 0; i < 32; i += 2)
248 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
249 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
253 * Process bitmask of exception conditions.
255 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
257 int si_code = 0;
259 pr_debug("VFP: raising exceptions %08x\n", exceptions);
261 if (exceptions == VFP_EXCEPTION_ERROR) {
262 vfp_panic("unhandled bounce", inst);
263 vfp_raise_sigfpe(0, regs);
264 return;
268 * If any of the status flags are set, update the FPSCR.
269 * Comparison instructions always return at least one of
270 * these flags set.
272 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
273 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
275 fpscr |= exceptions;
277 fmxr(FPSCR, fpscr);
279 #define RAISE(stat,en,sig) \
280 if (exceptions & stat && fpscr & en) \
281 si_code = sig;
284 * These are arranged in priority order, least to highest.
286 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
287 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
288 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
289 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
290 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
292 if (si_code)
293 vfp_raise_sigfpe(si_code, regs);
297 * Emulate a VFP instruction.
299 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
301 u32 exceptions = VFP_EXCEPTION_ERROR;
303 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
305 if (INST_CPRTDO(inst)) {
306 if (!INST_CPRT(inst)) {
308 * CPDO
310 if (vfp_single(inst)) {
311 exceptions = vfp_single_cpdo(inst, fpscr);
312 } else {
313 exceptions = vfp_double_cpdo(inst, fpscr);
315 } else {
317 * A CPRT instruction can not appear in FPINST2, nor
318 * can it cause an exception. Therefore, we do not
319 * have to emulate it.
322 } else {
324 * A CPDT instruction can not appear in FPINST2, nor can
325 * it cause an exception. Therefore, we do not have to
326 * emulate it.
329 return exceptions & ~VFP_NAN_FLAG;
333 * Package up a bounce condition.
335 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
337 u32 fpscr, orig_fpscr, fpsid, exceptions;
339 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
342 * At this point, FPEXC can have the following configuration:
344 * EX DEX IXE
345 * 0 1 x - synchronous exception
346 * 1 x 0 - asynchronous exception
347 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
348 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
349 * implementation), undefined otherwise
351 * Clear various bits and enable access to the VFP so we can
352 * handle the bounce.
354 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
356 fpsid = fmrx(FPSID);
357 orig_fpscr = fpscr = fmrx(FPSCR);
360 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
362 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
363 && (fpscr & FPSCR_IXE)) {
365 * Synchronous exception, emulate the trigger instruction
367 goto emulate;
370 if (fpexc & FPEXC_EX) {
371 #ifndef CONFIG_CPU_FEROCEON
373 * Asynchronous exception. The instruction is read from FPINST
374 * and the interrupted instruction has to be restarted.
376 trigger = fmrx(FPINST);
377 regs->ARM_pc -= 4;
378 #endif
379 } else if (!(fpexc & FPEXC_DEX)) {
381 * Illegal combination of bits. It can be caused by an
382 * unallocated VFP instruction but with FPSCR.IXE set and not
383 * on VFP subarch 1.
385 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
386 goto exit;
390 * Modify fpscr to indicate the number of iterations remaining.
391 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
392 * whether FPEXC.VECITR or FPSCR.LEN is used.
394 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
395 u32 len;
397 len = fpexc + (1 << FPEXC_LENGTH_BIT);
399 fpscr &= ~FPSCR_LENGTH_MASK;
400 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
404 * Handle the first FP instruction. We used to take note of the
405 * FPEXC bounce reason, but this appears to be unreliable.
406 * Emulate the bounced instruction instead.
408 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
409 if (exceptions)
410 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
413 * If there isn't a second FP instruction, exit now. Note that
414 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
416 if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
417 goto exit;
420 * The barrier() here prevents fpinst2 being read
421 * before the condition above.
423 barrier();
424 trigger = fmrx(FPINST2);
426 emulate:
427 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
428 if (exceptions)
429 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
430 exit:
431 preempt_enable();
434 static void vfp_enable(void *unused)
436 u32 access;
438 BUG_ON(preemptible());
439 access = get_copro_access();
442 * Enable full access to VFP (cp10 and cp11)
444 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
447 #ifdef CONFIG_CPU_PM
448 static int vfp_pm_suspend(void)
450 struct thread_info *ti = current_thread_info();
451 u32 fpexc = fmrx(FPEXC);
453 /* if vfp is on, then save state for resumption */
454 if (fpexc & FPEXC_EN) {
455 pr_debug("%s: saving vfp state\n", __func__);
456 vfp_save_state(&ti->vfpstate, fpexc);
458 /* disable, just in case */
459 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
460 } else if (vfp_current_hw_state[ti->cpu]) {
461 #ifndef CONFIG_SMP
462 fmxr(FPEXC, fpexc | FPEXC_EN);
463 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
464 fmxr(FPEXC, fpexc);
465 #endif
468 /* clear any information we had about last context state */
469 vfp_current_hw_state[ti->cpu] = NULL;
471 return 0;
474 static void vfp_pm_resume(void)
476 /* ensure we have access to the vfp */
477 vfp_enable(NULL);
479 /* and disable it to ensure the next usage restores the state */
480 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
483 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
484 void *v)
486 switch (cmd) {
487 case CPU_PM_ENTER:
488 vfp_pm_suspend();
489 break;
490 case CPU_PM_ENTER_FAILED:
491 case CPU_PM_EXIT:
492 vfp_pm_resume();
493 break;
495 return NOTIFY_OK;
498 static struct notifier_block vfp_cpu_pm_notifier_block = {
499 .notifier_call = vfp_cpu_pm_notifier,
502 static void vfp_pm_init(void)
504 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
507 #else
508 static inline void vfp_pm_init(void) { }
509 #endif /* CONFIG_CPU_PM */
512 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
513 * with the hardware state.
515 void vfp_sync_hwstate(struct thread_info *thread)
517 unsigned int cpu = get_cpu();
519 if (vfp_state_in_hw(cpu, thread)) {
520 u32 fpexc = fmrx(FPEXC);
523 * Save the last VFP state on this CPU.
525 fmxr(FPEXC, fpexc | FPEXC_EN);
526 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
527 fmxr(FPEXC, fpexc);
530 put_cpu();
533 /* Ensure that the thread reloads the hardware VFP state on the next use. */
534 void vfp_flush_hwstate(struct thread_info *thread)
536 unsigned int cpu = get_cpu();
538 vfp_force_reload(cpu, thread);
540 put_cpu();
544 * Save the current VFP state into the provided structures and prepare
545 * for entry into a new function (signal handler).
547 int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
548 struct user_vfp_exc __user *ufp_exc)
550 struct thread_info *thread = current_thread_info();
551 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
552 int err = 0;
554 /* Ensure that the saved hwstate is up-to-date. */
555 vfp_sync_hwstate(thread);
558 * Copy the floating point registers. There can be unused
559 * registers see asm/hwcap.h for details.
561 err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
562 sizeof(hwstate->fpregs));
564 * Copy the status and control register.
566 __put_user_error(hwstate->fpscr, &ufp->fpscr, err);
569 * Copy the exception registers.
571 __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
572 __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
573 __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
575 if (err)
576 return -EFAULT;
578 /* Ensure that VFP is disabled. */
579 vfp_flush_hwstate(thread);
582 * As per the PCS, clear the length and stride bits for function
583 * entry.
585 hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
586 return 0;
589 /* Sanitise and restore the current VFP state from the provided structures. */
590 int vfp_restore_user_hwstate(struct user_vfp __user *ufp,
591 struct user_vfp_exc __user *ufp_exc)
593 struct thread_info *thread = current_thread_info();
594 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
595 unsigned long fpexc;
596 int err = 0;
598 /* Disable VFP to avoid corrupting the new thread state. */
599 vfp_flush_hwstate(thread);
602 * Copy the floating point registers. There can be unused
603 * registers see asm/hwcap.h for details.
605 err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs,
606 sizeof(hwstate->fpregs));
608 * Copy the status and control register.
610 __get_user_error(hwstate->fpscr, &ufp->fpscr, err);
613 * Sanitise and restore the exception registers.
615 __get_user_error(fpexc, &ufp_exc->fpexc, err);
617 /* Ensure the VFP is enabled. */
618 fpexc |= FPEXC_EN;
620 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
621 fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
622 hwstate->fpexc = fpexc;
624 __get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
625 __get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
627 return err ? -EFAULT : 0;
631 * VFP hardware can lose all context when a CPU goes offline.
632 * As we will be running in SMP mode with CPU hotplug, we will save the
633 * hardware state at every thread switch. We clear our held state when
634 * a CPU has been killed, indicating that the VFP hardware doesn't contain
635 * a threads VFP state. When a CPU starts up, we re-enable access to the
636 * VFP hardware.
638 * Both CPU_DYING and CPU_STARTING are called on the CPU which
639 * is being offlined/onlined.
641 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
642 void *hcpu)
644 if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
645 vfp_force_reload((long)hcpu, current_thread_info());
646 } else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
647 vfp_enable(NULL);
648 return NOTIFY_OK;
652 * VFP support code initialisation.
654 static int __init vfp_init(void)
656 unsigned int vfpsid;
657 unsigned int cpu_arch = cpu_architecture();
659 if (cpu_arch >= CPU_ARCH_ARMv6)
660 on_each_cpu(vfp_enable, NULL, 1);
663 * First check that there is a VFP that we can use.
664 * The handler is already setup to just log calls, so
665 * we just need to read the VFPSID register.
667 vfp_vector = vfp_testing_entry;
668 barrier();
669 vfpsid = fmrx(FPSID);
670 barrier();
671 vfp_vector = vfp_null_entry;
673 pr_info("VFP support v0.3: ");
674 if (VFP_arch)
675 pr_cont("not present\n");
676 else if (vfpsid & FPSID_NODOUBLE) {
677 pr_cont("no double precision support\n");
678 } else {
679 hotcpu_notifier(vfp_hotplug, 0);
681 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
682 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
683 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
684 (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
685 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
686 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
687 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
689 vfp_vector = vfp_support_entry;
691 thread_register_notifier(&vfp_notifier_block);
692 vfp_pm_init();
695 * We detected VFP, and the support code is
696 * in place; report VFP support to userspace.
698 elf_hwcap |= HWCAP_VFP;
699 #ifdef CONFIG_VFPv3
700 if (VFP_arch >= 2) {
701 elf_hwcap |= HWCAP_VFPv3;
704 * Check for VFPv3 D16. CPUs in this configuration
705 * only have 16 x 64bit registers.
707 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
708 elf_hwcap |= HWCAP_VFPv3D16;
710 #endif
712 * Check for the presence of the Advanced SIMD
713 * load/store instructions, integer and single
714 * precision floating point operations. Only check
715 * for NEON if the hardware has the MVFR registers.
717 if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
718 #ifdef CONFIG_NEON
719 if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
720 elf_hwcap |= HWCAP_NEON;
721 #endif
722 if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
723 elf_hwcap |= HWCAP_VFPv4;
726 return 0;
729 late_initcall(vfp_init);