rtnetlink: check DO_SETLINK_NOTIFY correctly in do_setlink
[linux/fpc-iii.git] / arch / powerpc / mm / fault.c
blob4797d08581cec347b6cf34a316c1ef585209653c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/mman.h>
27 #include <linux/mm.h>
28 #include <linux/interrupt.h>
29 #include <linux/highmem.h>
30 #include <linux/extable.h>
31 #include <linux/kprobes.h>
32 #include <linux/kdebug.h>
33 #include <linux/perf_event.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
36 #include <linux/hugetlb.h>
37 #include <linux/uaccess.h>
39 #include <asm/firmware.h>
40 #include <asm/page.h>
41 #include <asm/pgtable.h>
42 #include <asm/mmu.h>
43 #include <asm/mmu_context.h>
44 #include <asm/tlbflush.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
48 static inline bool notify_page_fault(struct pt_regs *regs)
50 bool ret = false;
52 #ifdef CONFIG_KPROBES
53 /* kprobe_running() needs smp_processor_id() */
54 if (!user_mode(regs)) {
55 preempt_disable();
56 if (kprobe_running() && kprobe_fault_handler(regs, 11))
57 ret = true;
58 preempt_enable();
60 #endif /* CONFIG_KPROBES */
62 if (unlikely(debugger_fault_handler(regs)))
63 ret = true;
65 return ret;
69 * Check whether the instruction at regs->nip is a store using
70 * an update addressing form which will update r1.
72 static bool store_updates_sp(struct pt_regs *regs)
74 unsigned int inst;
76 if (get_user(inst, (unsigned int __user *)regs->nip))
77 return false;
78 /* check for 1 in the rA field */
79 if (((inst >> 16) & 0x1f) != 1)
80 return false;
81 /* check major opcode */
82 switch (inst >> 26) {
83 case 37: /* stwu */
84 case 39: /* stbu */
85 case 45: /* sthu */
86 case 53: /* stfsu */
87 case 55: /* stfdu */
88 return true;
89 case 62: /* std or stdu */
90 return (inst & 3) == 1;
91 case 31:
92 /* check minor opcode */
93 switch ((inst >> 1) & 0x3ff) {
94 case 181: /* stdux */
95 case 183: /* stwux */
96 case 247: /* stbux */
97 case 439: /* sthux */
98 case 695: /* stfsux */
99 case 759: /* stfdux */
100 return true;
103 return false;
106 * do_page_fault error handling helpers
109 static int
110 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
113 * If we are in kernel mode, bail out with a SEGV, this will
114 * be caught by the assembly which will restore the non-volatile
115 * registers before calling bad_page_fault()
117 if (!user_mode(regs))
118 return SIGSEGV;
120 _exception(SIGSEGV, regs, si_code, address);
122 return 0;
125 static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
127 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
130 static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
132 struct mm_struct *mm = current->mm;
135 * Something tried to access memory that isn't in our memory map..
136 * Fix it, but check if it's kernel or user first..
138 up_read(&mm->mmap_sem);
140 return __bad_area_nosemaphore(regs, address, si_code);
143 static noinline int bad_area(struct pt_regs *regs, unsigned long address)
145 return __bad_area(regs, address, SEGV_MAPERR);
148 static int do_sigbus(struct pt_regs *regs, unsigned long address,
149 unsigned int fault)
151 siginfo_t info;
152 unsigned int lsb = 0;
154 if (!user_mode(regs))
155 return SIGBUS;
157 current->thread.trap_nr = BUS_ADRERR;
158 info.si_signo = SIGBUS;
159 info.si_errno = 0;
160 info.si_code = BUS_ADRERR;
161 info.si_addr = (void __user *)address;
162 #ifdef CONFIG_MEMORY_FAILURE
163 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
164 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
165 current->comm, current->pid, address);
166 info.si_code = BUS_MCEERR_AR;
169 if (fault & VM_FAULT_HWPOISON_LARGE)
170 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
171 if (fault & VM_FAULT_HWPOISON)
172 lsb = PAGE_SHIFT;
173 #endif
174 info.si_addr_lsb = lsb;
175 force_sig_info(SIGBUS, &info, current);
176 return 0;
179 static int mm_fault_error(struct pt_regs *regs, unsigned long addr, int fault)
182 * Kernel page fault interrupted by SIGKILL. We have no reason to
183 * continue processing.
185 if (fatal_signal_pending(current) && !user_mode(regs))
186 return SIGKILL;
188 /* Out of memory */
189 if (fault & VM_FAULT_OOM) {
191 * We ran out of memory, or some other thing happened to us that
192 * made us unable to handle the page fault gracefully.
194 if (!user_mode(regs))
195 return SIGSEGV;
196 pagefault_out_of_memory();
197 } else {
198 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
199 VM_FAULT_HWPOISON_LARGE))
200 return do_sigbus(regs, addr, fault);
201 else if (fault & VM_FAULT_SIGSEGV)
202 return bad_area_nosemaphore(regs, addr);
203 else
204 BUG();
206 return 0;
209 /* Is this a bad kernel fault ? */
210 static bool bad_kernel_fault(bool is_exec, unsigned long error_code,
211 unsigned long address)
213 if (is_exec && (error_code & (DSISR_NOEXEC_OR_G | DSISR_KEYFAULT))) {
214 printk_ratelimited(KERN_CRIT "kernel tried to execute"
215 " exec-protected page (%lx) -"
216 "exploit attempt? (uid: %d)\n",
217 address, from_kuid(&init_user_ns,
218 current_uid()));
220 return is_exec || (address >= TASK_SIZE);
223 static bool bad_stack_expansion(struct pt_regs *regs, unsigned long address,
224 struct vm_area_struct *vma,
225 bool store_update_sp)
228 * N.B. The POWER/Open ABI allows programs to access up to
229 * 288 bytes below the stack pointer.
230 * The kernel signal delivery code writes up to about 1.5kB
231 * below the stack pointer (r1) before decrementing it.
232 * The exec code can write slightly over 640kB to the stack
233 * before setting the user r1. Thus we allow the stack to
234 * expand to 1MB without further checks.
236 if (address + 0x100000 < vma->vm_end) {
237 /* get user regs even if this fault is in kernel mode */
238 struct pt_regs *uregs = current->thread.regs;
239 if (uregs == NULL)
240 return true;
243 * A user-mode access to an address a long way below
244 * the stack pointer is only valid if the instruction
245 * is one which would update the stack pointer to the
246 * address accessed if the instruction completed,
247 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
248 * (or the byte, halfword, float or double forms).
250 * If we don't check this then any write to the area
251 * between the last mapped region and the stack will
252 * expand the stack rather than segfaulting.
254 if (address + 2048 < uregs->gpr[1] && !store_update_sp)
255 return true;
257 return false;
260 static bool access_error(bool is_write, bool is_exec,
261 struct vm_area_struct *vma)
264 * Allow execution from readable areas if the MMU does not
265 * provide separate controls over reading and executing.
267 * Note: That code used to not be enabled for 4xx/BookE.
268 * It is now as I/D cache coherency for these is done at
269 * set_pte_at() time and I see no reason why the test
270 * below wouldn't be valid on those processors. This -may-
271 * break programs compiled with a really old ABI though.
273 if (is_exec) {
274 return !(vma->vm_flags & VM_EXEC) &&
275 (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
276 !(vma->vm_flags & (VM_READ | VM_WRITE)));
279 if (is_write) {
280 if (unlikely(!(vma->vm_flags & VM_WRITE)))
281 return true;
282 return false;
285 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
286 return true;
288 return false;
291 #ifdef CONFIG_PPC_SMLPAR
292 static inline void cmo_account_page_fault(void)
294 if (firmware_has_feature(FW_FEATURE_CMO)) {
295 u32 page_ins;
297 preempt_disable();
298 page_ins = be32_to_cpu(get_lppaca()->page_ins);
299 page_ins += 1 << PAGE_FACTOR;
300 get_lppaca()->page_ins = cpu_to_be32(page_ins);
301 preempt_enable();
304 #else
305 static inline void cmo_account_page_fault(void) { }
306 #endif /* CONFIG_PPC_SMLPAR */
308 #ifdef CONFIG_PPC_STD_MMU
309 static void sanity_check_fault(bool is_write, unsigned long error_code)
312 * For hash translation mode, we should never get a
313 * PROTFAULT. Any update to pte to reduce access will result in us
314 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
315 * fault instead of DSISR_PROTFAULT.
317 * A pte update to relax the access will not result in a hash page table
318 * entry invalidate and hence can result in DSISR_PROTFAULT.
319 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
320 * the special !is_write in the below conditional.
322 * For platforms that doesn't supports coherent icache and do support
323 * per page noexec bit, we do setup things such that we do the
324 * sync between D/I cache via fault. But that is handled via low level
325 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
326 * here in such case.
328 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
329 * check should handle those and hence we should fall to the bad_area
330 * handling correctly.
332 * For embedded with per page exec support that doesn't support coherent
333 * icache we do get PROTFAULT and we handle that D/I cache sync in
334 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
335 * is conditional for server MMU.
337 * For radix, we can get prot fault for autonuma case, because radix
338 * page table will have them marked noaccess for user.
340 if (!radix_enabled() && !is_write)
341 WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
343 #else
344 static void sanity_check_fault(bool is_write, unsigned long error_code) { }
345 #endif /* CONFIG_PPC_STD_MMU */
348 * Define the correct "is_write" bit in error_code based
349 * on the processor family
351 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
352 #define page_fault_is_write(__err) ((__err) & ESR_DST)
353 #define page_fault_is_bad(__err) (0)
354 #else
355 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
356 #if defined(CONFIG_PPC_8xx)
357 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
358 #elif defined(CONFIG_PPC64)
359 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
360 #else
361 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
362 #endif
363 #endif
366 * For 600- and 800-family processors, the error_code parameter is DSISR
367 * for a data fault, SRR1 for an instruction fault. For 400-family processors
368 * the error_code parameter is ESR for a data fault, 0 for an instruction
369 * fault.
370 * For 64-bit processors, the error_code parameter is
371 * - DSISR for a non-SLB data access fault,
372 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
373 * - 0 any SLB fault.
375 * The return value is 0 if the fault was handled, or the signal
376 * number if this is a kernel fault that can't be handled here.
378 static int __do_page_fault(struct pt_regs *regs, unsigned long address,
379 unsigned long error_code)
381 struct vm_area_struct * vma;
382 struct mm_struct *mm = current->mm;
383 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
384 int is_exec = TRAP(regs) == 0x400;
385 int is_user = user_mode(regs);
386 int is_write = page_fault_is_write(error_code);
387 int fault, major = 0;
388 bool store_update_sp = false;
390 if (notify_page_fault(regs))
391 return 0;
393 if (unlikely(page_fault_is_bad(error_code))) {
394 if (is_user) {
395 _exception(SIGBUS, regs, BUS_OBJERR, address);
396 return 0;
398 return SIGBUS;
401 /* Additional sanity check(s) */
402 sanity_check_fault(is_write, error_code);
405 * The kernel should never take an execute fault nor should it
406 * take a page fault to a kernel address.
408 if (unlikely(!is_user && bad_kernel_fault(is_exec, error_code, address)))
409 return SIGSEGV;
412 * If we're in an interrupt, have no user context or are running
413 * in a region with pagefaults disabled then we must not take the fault
415 if (unlikely(faulthandler_disabled() || !mm)) {
416 if (is_user)
417 printk_ratelimited(KERN_ERR "Page fault in user mode"
418 " with faulthandler_disabled()=%d"
419 " mm=%p\n",
420 faulthandler_disabled(), mm);
421 return bad_area_nosemaphore(regs, address);
424 /* We restore the interrupt state now */
425 if (!arch_irq_disabled_regs(regs))
426 local_irq_enable();
428 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
431 * We want to do this outside mmap_sem, because reading code around nip
432 * can result in fault, which will cause a deadlock when called with
433 * mmap_sem held
435 if (is_write && is_user)
436 store_update_sp = store_updates_sp(regs);
438 if (is_user)
439 flags |= FAULT_FLAG_USER;
440 if (is_write)
441 flags |= FAULT_FLAG_WRITE;
442 if (is_exec)
443 flags |= FAULT_FLAG_INSTRUCTION;
445 /* When running in the kernel we expect faults to occur only to
446 * addresses in user space. All other faults represent errors in the
447 * kernel and should generate an OOPS. Unfortunately, in the case of an
448 * erroneous fault occurring in a code path which already holds mmap_sem
449 * we will deadlock attempting to validate the fault against the
450 * address space. Luckily the kernel only validly references user
451 * space from well defined areas of code, which are listed in the
452 * exceptions table.
454 * As the vast majority of faults will be valid we will only perform
455 * the source reference check when there is a possibility of a deadlock.
456 * Attempt to lock the address space, if we cannot we then validate the
457 * source. If this is invalid we can skip the address space check,
458 * thus avoiding the deadlock.
460 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
461 if (!is_user && !search_exception_tables(regs->nip))
462 return bad_area_nosemaphore(regs, address);
464 retry:
465 down_read(&mm->mmap_sem);
466 } else {
468 * The above down_read_trylock() might have succeeded in
469 * which case we'll have missed the might_sleep() from
470 * down_read():
472 might_sleep();
475 vma = find_vma(mm, address);
476 if (unlikely(!vma))
477 return bad_area(regs, address);
478 if (likely(vma->vm_start <= address))
479 goto good_area;
480 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
481 return bad_area(regs, address);
483 /* The stack is being expanded, check if it's valid */
484 if (unlikely(bad_stack_expansion(regs, address, vma, store_update_sp)))
485 return bad_area(regs, address);
487 /* Try to expand it */
488 if (unlikely(expand_stack(vma, address)))
489 return bad_area(regs, address);
491 good_area:
492 if (unlikely(access_error(is_write, is_exec, vma)))
493 return bad_area(regs, address);
496 * If for any reason at all we couldn't handle the fault,
497 * make sure we exit gracefully rather than endlessly redo
498 * the fault.
500 fault = handle_mm_fault(vma, address, flags);
501 major |= fault & VM_FAULT_MAJOR;
504 * Handle the retry right now, the mmap_sem has been released in that
505 * case.
507 if (unlikely(fault & VM_FAULT_RETRY)) {
508 /* We retry only once */
509 if (flags & FAULT_FLAG_ALLOW_RETRY) {
511 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
512 * of starvation.
514 flags &= ~FAULT_FLAG_ALLOW_RETRY;
515 flags |= FAULT_FLAG_TRIED;
516 if (!fatal_signal_pending(current))
517 goto retry;
521 * User mode? Just return to handle the fatal exception otherwise
522 * return to bad_page_fault
524 return is_user ? 0 : SIGBUS;
527 up_read(&current->mm->mmap_sem);
529 if (unlikely(fault & VM_FAULT_ERROR))
530 return mm_fault_error(regs, address, fault);
533 * Major/minor page fault accounting.
535 if (major) {
536 current->maj_flt++;
537 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
538 cmo_account_page_fault();
539 } else {
540 current->min_flt++;
541 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
543 return 0;
545 NOKPROBE_SYMBOL(__do_page_fault);
547 int do_page_fault(struct pt_regs *regs, unsigned long address,
548 unsigned long error_code)
550 enum ctx_state prev_state = exception_enter();
551 int rc = __do_page_fault(regs, address, error_code);
552 exception_exit(prev_state);
553 return rc;
555 NOKPROBE_SYMBOL(do_page_fault);
558 * bad_page_fault is called when we have a bad access from the kernel.
559 * It is called from the DSI and ISI handlers in head.S and from some
560 * of the procedures in traps.c.
562 void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
564 const struct exception_table_entry *entry;
566 /* Are we prepared to handle this fault? */
567 if ((entry = search_exception_tables(regs->nip)) != NULL) {
568 regs->nip = extable_fixup(entry);
569 return;
572 /* kernel has accessed a bad area */
574 switch (regs->trap) {
575 case 0x300:
576 case 0x380:
577 printk(KERN_ALERT "Unable to handle kernel paging request for "
578 "data at address 0x%08lx\n", regs->dar);
579 break;
580 case 0x400:
581 case 0x480:
582 printk(KERN_ALERT "Unable to handle kernel paging request for "
583 "instruction fetch\n");
584 break;
585 case 0x600:
586 printk(KERN_ALERT "Unable to handle kernel paging request for "
587 "unaligned access at address 0x%08lx\n", regs->dar);
588 break;
589 default:
590 printk(KERN_ALERT "Unable to handle kernel paging request for "
591 "unknown fault\n");
592 break;
594 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
595 regs->nip);
597 if (task_stack_end_corrupted(current))
598 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
600 die("Kernel access of bad area", regs, sig);