3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/sched/task_stack.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/string.h>
24 #include <linux/types.h>
25 #include <linux/ptrace.h>
26 #include <linux/mman.h>
28 #include <linux/interrupt.h>
29 #include <linux/highmem.h>
30 #include <linux/extable.h>
31 #include <linux/kprobes.h>
32 #include <linux/kdebug.h>
33 #include <linux/perf_event.h>
34 #include <linux/ratelimit.h>
35 #include <linux/context_tracking.h>
36 #include <linux/hugetlb.h>
37 #include <linux/uaccess.h>
39 #include <asm/firmware.h>
41 #include <asm/pgtable.h>
43 #include <asm/mmu_context.h>
44 #include <asm/tlbflush.h>
45 #include <asm/siginfo.h>
46 #include <asm/debug.h>
48 static inline bool notify_page_fault(struct pt_regs
*regs
)
53 /* kprobe_running() needs smp_processor_id() */
54 if (!user_mode(regs
)) {
56 if (kprobe_running() && kprobe_fault_handler(regs
, 11))
60 #endif /* CONFIG_KPROBES */
62 if (unlikely(debugger_fault_handler(regs
)))
69 * Check whether the instruction at regs->nip is a store using
70 * an update addressing form which will update r1.
72 static bool store_updates_sp(struct pt_regs
*regs
)
76 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
78 /* check for 1 in the rA field */
79 if (((inst
>> 16) & 0x1f) != 1)
81 /* check major opcode */
89 case 62: /* std or stdu */
90 return (inst
& 3) == 1;
92 /* check minor opcode */
93 switch ((inst
>> 1) & 0x3ff) {
98 case 695: /* stfsux */
99 case 759: /* stfdux */
106 * do_page_fault error handling helpers
110 __bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long address
, int si_code
)
113 * If we are in kernel mode, bail out with a SEGV, this will
114 * be caught by the assembly which will restore the non-volatile
115 * registers before calling bad_page_fault()
117 if (!user_mode(regs
))
120 _exception(SIGSEGV
, regs
, si_code
, address
);
125 static noinline
int bad_area_nosemaphore(struct pt_regs
*regs
, unsigned long address
)
127 return __bad_area_nosemaphore(regs
, address
, SEGV_MAPERR
);
130 static int __bad_area(struct pt_regs
*regs
, unsigned long address
, int si_code
)
132 struct mm_struct
*mm
= current
->mm
;
135 * Something tried to access memory that isn't in our memory map..
136 * Fix it, but check if it's kernel or user first..
138 up_read(&mm
->mmap_sem
);
140 return __bad_area_nosemaphore(regs
, address
, si_code
);
143 static noinline
int bad_area(struct pt_regs
*regs
, unsigned long address
)
145 return __bad_area(regs
, address
, SEGV_MAPERR
);
148 static int do_sigbus(struct pt_regs
*regs
, unsigned long address
,
152 unsigned int lsb
= 0;
154 if (!user_mode(regs
))
157 current
->thread
.trap_nr
= BUS_ADRERR
;
158 info
.si_signo
= SIGBUS
;
160 info
.si_code
= BUS_ADRERR
;
161 info
.si_addr
= (void __user
*)address
;
162 #ifdef CONFIG_MEMORY_FAILURE
163 if (fault
& (VM_FAULT_HWPOISON
|VM_FAULT_HWPOISON_LARGE
)) {
164 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
165 current
->comm
, current
->pid
, address
);
166 info
.si_code
= BUS_MCEERR_AR
;
169 if (fault
& VM_FAULT_HWPOISON_LARGE
)
170 lsb
= hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault
));
171 if (fault
& VM_FAULT_HWPOISON
)
174 info
.si_addr_lsb
= lsb
;
175 force_sig_info(SIGBUS
, &info
, current
);
179 static int mm_fault_error(struct pt_regs
*regs
, unsigned long addr
, int fault
)
182 * Kernel page fault interrupted by SIGKILL. We have no reason to
183 * continue processing.
185 if (fatal_signal_pending(current
) && !user_mode(regs
))
189 if (fault
& VM_FAULT_OOM
) {
191 * We ran out of memory, or some other thing happened to us that
192 * made us unable to handle the page fault gracefully.
194 if (!user_mode(regs
))
196 pagefault_out_of_memory();
198 if (fault
& (VM_FAULT_SIGBUS
|VM_FAULT_HWPOISON
|
199 VM_FAULT_HWPOISON_LARGE
))
200 return do_sigbus(regs
, addr
, fault
);
201 else if (fault
& VM_FAULT_SIGSEGV
)
202 return bad_area_nosemaphore(regs
, addr
);
209 /* Is this a bad kernel fault ? */
210 static bool bad_kernel_fault(bool is_exec
, unsigned long error_code
,
211 unsigned long address
)
213 if (is_exec
&& (error_code
& (DSISR_NOEXEC_OR_G
| DSISR_KEYFAULT
))) {
214 printk_ratelimited(KERN_CRIT
"kernel tried to execute"
215 " exec-protected page (%lx) -"
216 "exploit attempt? (uid: %d)\n",
217 address
, from_kuid(&init_user_ns
,
220 return is_exec
|| (address
>= TASK_SIZE
);
223 static bool bad_stack_expansion(struct pt_regs
*regs
, unsigned long address
,
224 struct vm_area_struct
*vma
,
225 bool store_update_sp
)
228 * N.B. The POWER/Open ABI allows programs to access up to
229 * 288 bytes below the stack pointer.
230 * The kernel signal delivery code writes up to about 1.5kB
231 * below the stack pointer (r1) before decrementing it.
232 * The exec code can write slightly over 640kB to the stack
233 * before setting the user r1. Thus we allow the stack to
234 * expand to 1MB without further checks.
236 if (address
+ 0x100000 < vma
->vm_end
) {
237 /* get user regs even if this fault is in kernel mode */
238 struct pt_regs
*uregs
= current
->thread
.regs
;
243 * A user-mode access to an address a long way below
244 * the stack pointer is only valid if the instruction
245 * is one which would update the stack pointer to the
246 * address accessed if the instruction completed,
247 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
248 * (or the byte, halfword, float or double forms).
250 * If we don't check this then any write to the area
251 * between the last mapped region and the stack will
252 * expand the stack rather than segfaulting.
254 if (address
+ 2048 < uregs
->gpr
[1] && !store_update_sp
)
260 static bool access_error(bool is_write
, bool is_exec
,
261 struct vm_area_struct
*vma
)
264 * Allow execution from readable areas if the MMU does not
265 * provide separate controls over reading and executing.
267 * Note: That code used to not be enabled for 4xx/BookE.
268 * It is now as I/D cache coherency for these is done at
269 * set_pte_at() time and I see no reason why the test
270 * below wouldn't be valid on those processors. This -may-
271 * break programs compiled with a really old ABI though.
274 return !(vma
->vm_flags
& VM_EXEC
) &&
275 (cpu_has_feature(CPU_FTR_NOEXECUTE
) ||
276 !(vma
->vm_flags
& (VM_READ
| VM_WRITE
)));
280 if (unlikely(!(vma
->vm_flags
& VM_WRITE
)))
285 if (unlikely(!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))))
291 #ifdef CONFIG_PPC_SMLPAR
292 static inline void cmo_account_page_fault(void)
294 if (firmware_has_feature(FW_FEATURE_CMO
)) {
298 page_ins
= be32_to_cpu(get_lppaca()->page_ins
);
299 page_ins
+= 1 << PAGE_FACTOR
;
300 get_lppaca()->page_ins
= cpu_to_be32(page_ins
);
305 static inline void cmo_account_page_fault(void) { }
306 #endif /* CONFIG_PPC_SMLPAR */
308 #ifdef CONFIG_PPC_STD_MMU
309 static void sanity_check_fault(bool is_write
, unsigned long error_code
)
312 * For hash translation mode, we should never get a
313 * PROTFAULT. Any update to pte to reduce access will result in us
314 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
315 * fault instead of DSISR_PROTFAULT.
317 * A pte update to relax the access will not result in a hash page table
318 * entry invalidate and hence can result in DSISR_PROTFAULT.
319 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
320 * the special !is_write in the below conditional.
322 * For platforms that doesn't supports coherent icache and do support
323 * per page noexec bit, we do setup things such that we do the
324 * sync between D/I cache via fault. But that is handled via low level
325 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
328 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
329 * check should handle those and hence we should fall to the bad_area
330 * handling correctly.
332 * For embedded with per page exec support that doesn't support coherent
333 * icache we do get PROTFAULT and we handle that D/I cache sync in
334 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
335 * is conditional for server MMU.
337 * For radix, we can get prot fault for autonuma case, because radix
338 * page table will have them marked noaccess for user.
340 if (!radix_enabled() && !is_write
)
341 WARN_ON_ONCE(error_code
& DSISR_PROTFAULT
);
344 static void sanity_check_fault(bool is_write
, unsigned long error_code
) { }
345 #endif /* CONFIG_PPC_STD_MMU */
348 * Define the correct "is_write" bit in error_code based
349 * on the processor family
351 #if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
352 #define page_fault_is_write(__err) ((__err) & ESR_DST)
353 #define page_fault_is_bad(__err) (0)
355 #define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE)
356 #if defined(CONFIG_PPC_8xx)
357 #define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G)
358 #elif defined(CONFIG_PPC64)
359 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S)
361 #define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S)
366 * For 600- and 800-family processors, the error_code parameter is DSISR
367 * for a data fault, SRR1 for an instruction fault. For 400-family processors
368 * the error_code parameter is ESR for a data fault, 0 for an instruction
370 * For 64-bit processors, the error_code parameter is
371 * - DSISR for a non-SLB data access fault,
372 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
375 * The return value is 0 if the fault was handled, or the signal
376 * number if this is a kernel fault that can't be handled here.
378 static int __do_page_fault(struct pt_regs
*regs
, unsigned long address
,
379 unsigned long error_code
)
381 struct vm_area_struct
* vma
;
382 struct mm_struct
*mm
= current
->mm
;
383 unsigned int flags
= FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_KILLABLE
;
384 int is_exec
= TRAP(regs
) == 0x400;
385 int is_user
= user_mode(regs
);
386 int is_write
= page_fault_is_write(error_code
);
387 int fault
, major
= 0;
388 bool store_update_sp
= false;
390 if (notify_page_fault(regs
))
393 if (unlikely(page_fault_is_bad(error_code
))) {
395 _exception(SIGBUS
, regs
, BUS_OBJERR
, address
);
401 /* Additional sanity check(s) */
402 sanity_check_fault(is_write
, error_code
);
405 * The kernel should never take an execute fault nor should it
406 * take a page fault to a kernel address.
408 if (unlikely(!is_user
&& bad_kernel_fault(is_exec
, error_code
, address
)))
412 * If we're in an interrupt, have no user context or are running
413 * in a region with pagefaults disabled then we must not take the fault
415 if (unlikely(faulthandler_disabled() || !mm
)) {
417 printk_ratelimited(KERN_ERR
"Page fault in user mode"
418 " with faulthandler_disabled()=%d"
420 faulthandler_disabled(), mm
);
421 return bad_area_nosemaphore(regs
, address
);
424 /* We restore the interrupt state now */
425 if (!arch_irq_disabled_regs(regs
))
428 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
431 * We want to do this outside mmap_sem, because reading code around nip
432 * can result in fault, which will cause a deadlock when called with
435 if (is_write
&& is_user
)
436 store_update_sp
= store_updates_sp(regs
);
439 flags
|= FAULT_FLAG_USER
;
441 flags
|= FAULT_FLAG_WRITE
;
443 flags
|= FAULT_FLAG_INSTRUCTION
;
445 /* When running in the kernel we expect faults to occur only to
446 * addresses in user space. All other faults represent errors in the
447 * kernel and should generate an OOPS. Unfortunately, in the case of an
448 * erroneous fault occurring in a code path which already holds mmap_sem
449 * we will deadlock attempting to validate the fault against the
450 * address space. Luckily the kernel only validly references user
451 * space from well defined areas of code, which are listed in the
454 * As the vast majority of faults will be valid we will only perform
455 * the source reference check when there is a possibility of a deadlock.
456 * Attempt to lock the address space, if we cannot we then validate the
457 * source. If this is invalid we can skip the address space check,
458 * thus avoiding the deadlock.
460 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
461 if (!is_user
&& !search_exception_tables(regs
->nip
))
462 return bad_area_nosemaphore(regs
, address
);
465 down_read(&mm
->mmap_sem
);
468 * The above down_read_trylock() might have succeeded in
469 * which case we'll have missed the might_sleep() from
475 vma
= find_vma(mm
, address
);
477 return bad_area(regs
, address
);
478 if (likely(vma
->vm_start
<= address
))
480 if (unlikely(!(vma
->vm_flags
& VM_GROWSDOWN
)))
481 return bad_area(regs
, address
);
483 /* The stack is being expanded, check if it's valid */
484 if (unlikely(bad_stack_expansion(regs
, address
, vma
, store_update_sp
)))
485 return bad_area(regs
, address
);
487 /* Try to expand it */
488 if (unlikely(expand_stack(vma
, address
)))
489 return bad_area(regs
, address
);
492 if (unlikely(access_error(is_write
, is_exec
, vma
)))
493 return bad_area(regs
, address
);
496 * If for any reason at all we couldn't handle the fault,
497 * make sure we exit gracefully rather than endlessly redo
500 fault
= handle_mm_fault(vma
, address
, flags
);
501 major
|= fault
& VM_FAULT_MAJOR
;
504 * Handle the retry right now, the mmap_sem has been released in that
507 if (unlikely(fault
& VM_FAULT_RETRY
)) {
508 /* We retry only once */
509 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
511 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
514 flags
&= ~FAULT_FLAG_ALLOW_RETRY
;
515 flags
|= FAULT_FLAG_TRIED
;
516 if (!fatal_signal_pending(current
))
521 * User mode? Just return to handle the fatal exception otherwise
522 * return to bad_page_fault
524 return is_user
? 0 : SIGBUS
;
527 up_read(¤t
->mm
->mmap_sem
);
529 if (unlikely(fault
& VM_FAULT_ERROR
))
530 return mm_fault_error(regs
, address
, fault
);
533 * Major/minor page fault accounting.
537 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1, regs
, address
);
538 cmo_account_page_fault();
541 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1, regs
, address
);
545 NOKPROBE_SYMBOL(__do_page_fault
);
547 int do_page_fault(struct pt_regs
*regs
, unsigned long address
,
548 unsigned long error_code
)
550 enum ctx_state prev_state
= exception_enter();
551 int rc
= __do_page_fault(regs
, address
, error_code
);
552 exception_exit(prev_state
);
555 NOKPROBE_SYMBOL(do_page_fault
);
558 * bad_page_fault is called when we have a bad access from the kernel.
559 * It is called from the DSI and ISI handlers in head.S and from some
560 * of the procedures in traps.c.
562 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
564 const struct exception_table_entry
*entry
;
566 /* Are we prepared to handle this fault? */
567 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
568 regs
->nip
= extable_fixup(entry
);
572 /* kernel has accessed a bad area */
574 switch (regs
->trap
) {
577 printk(KERN_ALERT
"Unable to handle kernel paging request for "
578 "data at address 0x%08lx\n", regs
->dar
);
582 printk(KERN_ALERT
"Unable to handle kernel paging request for "
583 "instruction fetch\n");
586 printk(KERN_ALERT
"Unable to handle kernel paging request for "
587 "unaligned access at address 0x%08lx\n", regs
->dar
);
590 printk(KERN_ALERT
"Unable to handle kernel paging request for "
594 printk(KERN_ALERT
"Faulting instruction address: 0x%08lx\n",
597 if (task_stack_end_corrupted(current
))
598 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
600 die("Kernel access of bad area", regs
, sig
);