1 // SPDX-License-Identifier: GPL-2.0-or-later
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
12 * This work is based on the LPC-trie which is originally described in:
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
21 * Code from fib_hash has been reused which includes the following header:
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
27 * IPv4 FIB: lookup engine and maintenance routines.
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
31 * Substantial contributions to this work comes from:
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57 #include <linux/init.h>
58 #include <linux/list.h>
59 #include <linux/slab.h>
60 #include <linux/export.h>
61 #include <linux/vmalloc.h>
62 #include <linux/notifier.h>
63 #include <net/net_namespace.h>
65 #include <net/protocol.h>
66 #include <net/route.h>
69 #include <net/ip_fib.h>
70 #include <net/fib_notifier.h>
71 #include <trace/events/fib.h>
72 #include "fib_lookup.h"
74 static int call_fib_entry_notifier(struct notifier_block
*nb
,
75 enum fib_event_type event_type
, u32 dst
,
76 int dst_len
, struct fib_alias
*fa
,
77 struct netlink_ext_ack
*extack
)
79 struct fib_entry_notifier_info info
= {
80 .info
.extack
= extack
,
88 return call_fib4_notifier(nb
, event_type
, &info
.info
);
91 static int call_fib_entry_notifiers(struct net
*net
,
92 enum fib_event_type event_type
, u32 dst
,
93 int dst_len
, struct fib_alias
*fa
,
94 struct netlink_ext_ack
*extack
)
96 struct fib_entry_notifier_info info
= {
97 .info
.extack
= extack
,
105 return call_fib4_notifiers(net
, event_type
, &info
.info
);
108 #define MAX_STAT_DEPTH 32
110 #define KEYLENGTH (8*sizeof(t_key))
111 #define KEY_MAX ((t_key)~0)
113 typedef unsigned int t_key
;
115 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
116 #define IS_TNODE(n) ((n)->bits)
117 #define IS_LEAF(n) (!(n)->bits)
121 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
122 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
125 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
126 struct hlist_head leaf
;
127 /* This array is valid if (pos | bits) > 0 (TNODE) */
128 struct key_vector __rcu
*tnode
[0];
134 t_key empty_children
; /* KEYLENGTH bits needed */
135 t_key full_children
; /* KEYLENGTH bits needed */
136 struct key_vector __rcu
*parent
;
137 struct key_vector kv
[1];
138 #define tn_bits kv[0].bits
141 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
142 #define LEAF_SIZE TNODE_SIZE(1)
144 #ifdef CONFIG_IP_FIB_TRIE_STATS
145 struct trie_use_stats
{
147 unsigned int backtrack
;
148 unsigned int semantic_match_passed
;
149 unsigned int semantic_match_miss
;
150 unsigned int null_node_hit
;
151 unsigned int resize_node_skipped
;
156 unsigned int totdepth
;
157 unsigned int maxdepth
;
160 unsigned int nullpointers
;
161 unsigned int prefixes
;
162 unsigned int nodesizes
[MAX_STAT_DEPTH
];
166 struct key_vector kv
[1];
167 #ifdef CONFIG_IP_FIB_TRIE_STATS
168 struct trie_use_stats __percpu
*stats
;
172 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
173 static unsigned int tnode_free_size
;
176 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
177 * especially useful before resizing the root node with PREEMPT_NONE configs;
178 * the value was obtained experimentally, aiming to avoid visible slowdown.
180 unsigned int sysctl_fib_sync_mem
= 512 * 1024;
181 unsigned int sysctl_fib_sync_mem_min
= 64 * 1024;
182 unsigned int sysctl_fib_sync_mem_max
= 64 * 1024 * 1024;
184 static struct kmem_cache
*fn_alias_kmem __ro_after_init
;
185 static struct kmem_cache
*trie_leaf_kmem __ro_after_init
;
187 static inline struct tnode
*tn_info(struct key_vector
*kv
)
189 return container_of(kv
, struct tnode
, kv
[0]);
192 /* caller must hold RTNL */
193 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
194 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
196 /* caller must hold RCU read lock or RTNL */
197 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
198 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
200 /* wrapper for rcu_assign_pointer */
201 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
204 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
207 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
209 /* This provides us with the number of children in this node, in the case of a
210 * leaf this will return 0 meaning none of the children are accessible.
212 static inline unsigned long child_length(const struct key_vector
*tn
)
214 return (1ul << tn
->bits
) & ~(1ul);
217 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
219 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
221 unsigned long index
= key
^ kv
->key
;
223 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
226 return index
>> kv
->pos
;
229 /* To understand this stuff, an understanding of keys and all their bits is
230 * necessary. Every node in the trie has a key associated with it, but not
231 * all of the bits in that key are significant.
233 * Consider a node 'n' and its parent 'tp'.
235 * If n is a leaf, every bit in its key is significant. Its presence is
236 * necessitated by path compression, since during a tree traversal (when
237 * searching for a leaf - unless we are doing an insertion) we will completely
238 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
239 * a potentially successful search, that we have indeed been walking the
242 * Note that we can never "miss" the correct key in the tree if present by
243 * following the wrong path. Path compression ensures that segments of the key
244 * that are the same for all keys with a given prefix are skipped, but the
245 * skipped part *is* identical for each node in the subtrie below the skipped
246 * bit! trie_insert() in this implementation takes care of that.
248 * if n is an internal node - a 'tnode' here, the various parts of its key
249 * have many different meanings.
252 * _________________________________________________________________
253 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
254 * -----------------------------------------------------------------
255 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
257 * _________________________________________________________________
258 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
259 * -----------------------------------------------------------------
260 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
267 * First, let's just ignore the bits that come before the parent tp, that is
268 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
269 * point we do not use them for anything.
271 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
272 * index into the parent's child array. That is, they will be used to find
273 * 'n' among tp's children.
275 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
278 * All the bits we have seen so far are significant to the node n. The rest
279 * of the bits are really not needed or indeed known in n->key.
281 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
282 * n's child array, and will of course be different for each child.
284 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
288 static const int halve_threshold
= 25;
289 static const int inflate_threshold
= 50;
290 static const int halve_threshold_root
= 15;
291 static const int inflate_threshold_root
= 30;
293 static void __alias_free_mem(struct rcu_head
*head
)
295 struct fib_alias
*fa
= container_of(head
, struct fib_alias
, rcu
);
296 kmem_cache_free(fn_alias_kmem
, fa
);
299 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
301 call_rcu(&fa
->rcu
, __alias_free_mem
);
304 #define TNODE_VMALLOC_MAX \
305 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307 static void __node_free_rcu(struct rcu_head
*head
)
309 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
312 kmem_cache_free(trie_leaf_kmem
, n
);
317 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
319 static struct tnode
*tnode_alloc(int bits
)
323 /* verify bits is within bounds */
324 if (bits
> TNODE_VMALLOC_MAX
)
327 /* determine size and verify it is non-zero and didn't overflow */
328 size
= TNODE_SIZE(1ul << bits
);
330 if (size
<= PAGE_SIZE
)
331 return kzalloc(size
, GFP_KERNEL
);
333 return vzalloc(size
);
336 static inline void empty_child_inc(struct key_vector
*n
)
338 tn_info(n
)->empty_children
++;
340 if (!tn_info(n
)->empty_children
)
341 tn_info(n
)->full_children
++;
344 static inline void empty_child_dec(struct key_vector
*n
)
346 if (!tn_info(n
)->empty_children
)
347 tn_info(n
)->full_children
--;
349 tn_info(n
)->empty_children
--;
352 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
354 struct key_vector
*l
;
357 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
361 /* initialize key vector */
366 l
->slen
= fa
->fa_slen
;
368 /* link leaf to fib alias */
369 INIT_HLIST_HEAD(&l
->leaf
);
370 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
375 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
377 unsigned int shift
= pos
+ bits
;
378 struct key_vector
*tn
;
381 /* verify bits and pos their msb bits clear and values are valid */
382 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
384 tnode
= tnode_alloc(bits
);
388 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
389 sizeof(struct key_vector
*) << bits
);
391 if (bits
== KEYLENGTH
)
392 tnode
->full_children
= 1;
394 tnode
->empty_children
= 1ul << bits
;
397 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
405 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
406 * and no bits are skipped. See discussion in dyntree paper p. 6
408 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
410 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
413 /* Add a child at position i overwriting the old value.
414 * Update the value of full_children and empty_children.
416 static void put_child(struct key_vector
*tn
, unsigned long i
,
417 struct key_vector
*n
)
419 struct key_vector
*chi
= get_child(tn
, i
);
422 BUG_ON(i
>= child_length(tn
));
424 /* update emptyChildren, overflow into fullChildren */
430 /* update fullChildren */
431 wasfull
= tnode_full(tn
, chi
);
432 isfull
= tnode_full(tn
, n
);
434 if (wasfull
&& !isfull
)
435 tn_info(tn
)->full_children
--;
436 else if (!wasfull
&& isfull
)
437 tn_info(tn
)->full_children
++;
439 if (n
&& (tn
->slen
< n
->slen
))
442 rcu_assign_pointer(tn
->tnode
[i
], n
);
445 static void update_children(struct key_vector
*tn
)
449 /* update all of the child parent pointers */
450 for (i
= child_length(tn
); i
;) {
451 struct key_vector
*inode
= get_child(tn
, --i
);
456 /* Either update the children of a tnode that
457 * already belongs to us or update the child
458 * to point to ourselves.
460 if (node_parent(inode
) == tn
)
461 update_children(inode
);
463 node_set_parent(inode
, tn
);
467 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
468 struct key_vector
*n
)
471 rcu_assign_pointer(tp
->tnode
[0], n
);
473 put_child(tp
, get_index(key
, tp
), n
);
476 static inline void tnode_free_init(struct key_vector
*tn
)
478 tn_info(tn
)->rcu
.next
= NULL
;
481 static inline void tnode_free_append(struct key_vector
*tn
,
482 struct key_vector
*n
)
484 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
485 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
488 static void tnode_free(struct key_vector
*tn
)
490 struct callback_head
*head
= &tn_info(tn
)->rcu
;
494 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
497 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
500 if (tnode_free_size
>= sysctl_fib_sync_mem
) {
506 static struct key_vector
*replace(struct trie
*t
,
507 struct key_vector
*oldtnode
,
508 struct key_vector
*tn
)
510 struct key_vector
*tp
= node_parent(oldtnode
);
513 /* setup the parent pointer out of and back into this node */
514 NODE_INIT_PARENT(tn
, tp
);
515 put_child_root(tp
, tn
->key
, tn
);
517 /* update all of the child parent pointers */
520 /* all pointers should be clean so we are done */
521 tnode_free(oldtnode
);
523 /* resize children now that oldtnode is freed */
524 for (i
= child_length(tn
); i
;) {
525 struct key_vector
*inode
= get_child(tn
, --i
);
527 /* resize child node */
528 if (tnode_full(tn
, inode
))
529 tn
= resize(t
, inode
);
535 static struct key_vector
*inflate(struct trie
*t
,
536 struct key_vector
*oldtnode
)
538 struct key_vector
*tn
;
542 pr_debug("In inflate\n");
544 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
548 /* prepare oldtnode to be freed */
549 tnode_free_init(oldtnode
);
551 /* Assemble all of the pointers in our cluster, in this case that
552 * represents all of the pointers out of our allocated nodes that
553 * point to existing tnodes and the links between our allocated
556 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
557 struct key_vector
*inode
= get_child(oldtnode
, --i
);
558 struct key_vector
*node0
, *node1
;
565 /* A leaf or an internal node with skipped bits */
566 if (!tnode_full(oldtnode
, inode
)) {
567 put_child(tn
, get_index(inode
->key
, tn
), inode
);
571 /* drop the node in the old tnode free list */
572 tnode_free_append(oldtnode
, inode
);
574 /* An internal node with two children */
575 if (inode
->bits
== 1) {
576 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
577 put_child(tn
, 2 * i
, get_child(inode
, 0));
581 /* We will replace this node 'inode' with two new
582 * ones, 'node0' and 'node1', each with half of the
583 * original children. The two new nodes will have
584 * a position one bit further down the key and this
585 * means that the "significant" part of their keys
586 * (see the discussion near the top of this file)
587 * will differ by one bit, which will be "0" in
588 * node0's key and "1" in node1's key. Since we are
589 * moving the key position by one step, the bit that
590 * we are moving away from - the bit at position
591 * (tn->pos) - is the one that will differ between
592 * node0 and node1. So... we synthesize that bit in the
595 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
598 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
600 tnode_free_append(tn
, node1
);
603 tnode_free_append(tn
, node0
);
605 /* populate child pointers in new nodes */
606 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
607 put_child(node1
, --j
, get_child(inode
, --k
));
608 put_child(node0
, j
, get_child(inode
, j
));
609 put_child(node1
, --j
, get_child(inode
, --k
));
610 put_child(node0
, j
, get_child(inode
, j
));
613 /* link new nodes to parent */
614 NODE_INIT_PARENT(node1
, tn
);
615 NODE_INIT_PARENT(node0
, tn
);
617 /* link parent to nodes */
618 put_child(tn
, 2 * i
+ 1, node1
);
619 put_child(tn
, 2 * i
, node0
);
622 /* setup the parent pointers into and out of this node */
623 return replace(t
, oldtnode
, tn
);
625 /* all pointers should be clean so we are done */
631 static struct key_vector
*halve(struct trie
*t
,
632 struct key_vector
*oldtnode
)
634 struct key_vector
*tn
;
637 pr_debug("In halve\n");
639 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
643 /* prepare oldtnode to be freed */
644 tnode_free_init(oldtnode
);
646 /* Assemble all of the pointers in our cluster, in this case that
647 * represents all of the pointers out of our allocated nodes that
648 * point to existing tnodes and the links between our allocated
651 for (i
= child_length(oldtnode
); i
;) {
652 struct key_vector
*node1
= get_child(oldtnode
, --i
);
653 struct key_vector
*node0
= get_child(oldtnode
, --i
);
654 struct key_vector
*inode
;
656 /* At least one of the children is empty */
657 if (!node1
|| !node0
) {
658 put_child(tn
, i
/ 2, node1
? : node0
);
662 /* Two nonempty children */
663 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
666 tnode_free_append(tn
, inode
);
668 /* initialize pointers out of node */
669 put_child(inode
, 1, node1
);
670 put_child(inode
, 0, node0
);
671 NODE_INIT_PARENT(inode
, tn
);
673 /* link parent to node */
674 put_child(tn
, i
/ 2, inode
);
677 /* setup the parent pointers into and out of this node */
678 return replace(t
, oldtnode
, tn
);
680 /* all pointers should be clean so we are done */
686 static struct key_vector
*collapse(struct trie
*t
,
687 struct key_vector
*oldtnode
)
689 struct key_vector
*n
, *tp
;
692 /* scan the tnode looking for that one child that might still exist */
693 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
694 n
= get_child(oldtnode
, --i
);
696 /* compress one level */
697 tp
= node_parent(oldtnode
);
698 put_child_root(tp
, oldtnode
->key
, n
);
699 node_set_parent(n
, tp
);
707 static unsigned char update_suffix(struct key_vector
*tn
)
709 unsigned char slen
= tn
->pos
;
710 unsigned long stride
, i
;
711 unsigned char slen_max
;
713 /* only vector 0 can have a suffix length greater than or equal to
714 * tn->pos + tn->bits, the second highest node will have a suffix
715 * length at most of tn->pos + tn->bits - 1
717 slen_max
= min_t(unsigned char, tn
->pos
+ tn
->bits
- 1, tn
->slen
);
719 /* search though the list of children looking for nodes that might
720 * have a suffix greater than the one we currently have. This is
721 * why we start with a stride of 2 since a stride of 1 would
722 * represent the nodes with suffix length equal to tn->pos
724 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
725 struct key_vector
*n
= get_child(tn
, i
);
727 if (!n
|| (n
->slen
<= slen
))
730 /* update stride and slen based on new value */
731 stride
<<= (n
->slen
- slen
);
735 /* stop searching if we have hit the maximum possible value */
736 if (slen
>= slen_max
)
745 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
746 * the Helsinki University of Technology and Matti Tikkanen of Nokia
747 * Telecommunications, page 6:
748 * "A node is doubled if the ratio of non-empty children to all
749 * children in the *doubled* node is at least 'high'."
751 * 'high' in this instance is the variable 'inflate_threshold'. It
752 * is expressed as a percentage, so we multiply it with
753 * child_length() and instead of multiplying by 2 (since the
754 * child array will be doubled by inflate()) and multiplying
755 * the left-hand side by 100 (to handle the percentage thing) we
756 * multiply the left-hand side by 50.
758 * The left-hand side may look a bit weird: child_length(tn)
759 * - tn->empty_children is of course the number of non-null children
760 * in the current node. tn->full_children is the number of "full"
761 * children, that is non-null tnodes with a skip value of 0.
762 * All of those will be doubled in the resulting inflated tnode, so
763 * we just count them one extra time here.
765 * A clearer way to write this would be:
767 * to_be_doubled = tn->full_children;
768 * not_to_be_doubled = child_length(tn) - tn->empty_children -
771 * new_child_length = child_length(tn) * 2;
773 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
775 * if (new_fill_factor >= inflate_threshold)
777 * ...and so on, tho it would mess up the while () loop.
780 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
784 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
785 * inflate_threshold * new_child_length
787 * expand not_to_be_doubled and to_be_doubled, and shorten:
788 * 100 * (child_length(tn) - tn->empty_children +
789 * tn->full_children) >= inflate_threshold * new_child_length
791 * expand new_child_length:
792 * 100 * (child_length(tn) - tn->empty_children +
793 * tn->full_children) >=
794 * inflate_threshold * child_length(tn) * 2
797 * 50 * (tn->full_children + child_length(tn) -
798 * tn->empty_children) >= inflate_threshold *
802 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
804 unsigned long used
= child_length(tn
);
805 unsigned long threshold
= used
;
807 /* Keep root node larger */
808 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
809 used
-= tn_info(tn
)->empty_children
;
810 used
+= tn_info(tn
)->full_children
;
812 /* if bits == KEYLENGTH then pos = 0, and will fail below */
814 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
817 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
819 unsigned long used
= child_length(tn
);
820 unsigned long threshold
= used
;
822 /* Keep root node larger */
823 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
824 used
-= tn_info(tn
)->empty_children
;
826 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
828 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
831 static inline bool should_collapse(struct key_vector
*tn
)
833 unsigned long used
= child_length(tn
);
835 used
-= tn_info(tn
)->empty_children
;
837 /* account for bits == KEYLENGTH case */
838 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
841 /* One child or none, time to drop us from the trie */
846 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
848 #ifdef CONFIG_IP_FIB_TRIE_STATS
849 struct trie_use_stats __percpu
*stats
= t
->stats
;
851 struct key_vector
*tp
= node_parent(tn
);
852 unsigned long cindex
= get_index(tn
->key
, tp
);
853 int max_work
= MAX_WORK
;
855 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
856 tn
, inflate_threshold
, halve_threshold
);
858 /* track the tnode via the pointer from the parent instead of
859 * doing it ourselves. This way we can let RCU fully do its
860 * thing without us interfering
862 BUG_ON(tn
!= get_child(tp
, cindex
));
864 /* Double as long as the resulting node has a number of
865 * nonempty nodes that are above the threshold.
867 while (should_inflate(tp
, tn
) && max_work
) {
870 #ifdef CONFIG_IP_FIB_TRIE_STATS
871 this_cpu_inc(stats
->resize_node_skipped
);
877 tn
= get_child(tp
, cindex
);
880 /* update parent in case inflate failed */
881 tp
= node_parent(tn
);
883 /* Return if at least one inflate is run */
884 if (max_work
!= MAX_WORK
)
887 /* Halve as long as the number of empty children in this
888 * node is above threshold.
890 while (should_halve(tp
, tn
) && max_work
) {
893 #ifdef CONFIG_IP_FIB_TRIE_STATS
894 this_cpu_inc(stats
->resize_node_skipped
);
900 tn
= get_child(tp
, cindex
);
903 /* Only one child remains */
904 if (should_collapse(tn
))
905 return collapse(t
, tn
);
907 /* update parent in case halve failed */
908 return node_parent(tn
);
911 static void node_pull_suffix(struct key_vector
*tn
, unsigned char slen
)
913 unsigned char node_slen
= tn
->slen
;
915 while ((node_slen
> tn
->pos
) && (node_slen
> slen
)) {
916 slen
= update_suffix(tn
);
917 if (node_slen
== slen
)
920 tn
= node_parent(tn
);
921 node_slen
= tn
->slen
;
925 static void node_push_suffix(struct key_vector
*tn
, unsigned char slen
)
927 while (tn
->slen
< slen
) {
929 tn
= node_parent(tn
);
933 /* rcu_read_lock needs to be hold by caller from readside */
934 static struct key_vector
*fib_find_node(struct trie
*t
,
935 struct key_vector
**tp
, u32 key
)
937 struct key_vector
*pn
, *n
= t
->kv
;
938 unsigned long index
= 0;
942 n
= get_child_rcu(n
, index
);
947 index
= get_cindex(key
, n
);
949 /* This bit of code is a bit tricky but it combines multiple
950 * checks into a single check. The prefix consists of the
951 * prefix plus zeros for the bits in the cindex. The index
952 * is the difference between the key and this value. From
953 * this we can actually derive several pieces of data.
954 * if (index >= (1ul << bits))
955 * we have a mismatch in skip bits and failed
957 * we know the value is cindex
959 * This check is safe even if bits == KEYLENGTH due to the
960 * fact that we can only allocate a node with 32 bits if a
961 * long is greater than 32 bits.
963 if (index
>= (1ul << n
->bits
)) {
968 /* keep searching until we find a perfect match leaf or NULL */
969 } while (IS_TNODE(n
));
976 /* Return the first fib alias matching TOS with
977 * priority less than or equal to PRIO.
978 * If 'find_first' is set, return the first matching
979 * fib alias, regardless of TOS and priority.
981 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
982 u8 tos
, u32 prio
, u32 tb_id
,
985 struct fib_alias
*fa
;
990 hlist_for_each_entry(fa
, fah
, fa_list
) {
991 if (fa
->fa_slen
< slen
)
993 if (fa
->fa_slen
!= slen
)
995 if (fa
->tb_id
> tb_id
)
997 if (fa
->tb_id
!= tb_id
)
1001 if (fa
->fa_tos
> tos
)
1003 if (fa
->fa_info
->fib_priority
>= prio
|| fa
->fa_tos
< tos
)
1010 static struct fib_alias
*
1011 fib_find_matching_alias(struct net
*net
, const struct fib_rt_info
*fri
)
1013 u8 slen
= KEYLENGTH
- fri
->dst_len
;
1014 struct key_vector
*l
, *tp
;
1015 struct fib_table
*tb
;
1016 struct fib_alias
*fa
;
1019 tb
= fib_get_table(net
, fri
->tb_id
);
1023 t
= (struct trie
*)tb
->tb_data
;
1024 l
= fib_find_node(t
, &tp
, be32_to_cpu(fri
->dst
));
1028 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1029 if (fa
->fa_slen
== slen
&& fa
->tb_id
== fri
->tb_id
&&
1030 fa
->fa_tos
== fri
->tos
&& fa
->fa_info
== fri
->fi
&&
1031 fa
->fa_type
== fri
->type
)
1038 void fib_alias_hw_flags_set(struct net
*net
, const struct fib_rt_info
*fri
)
1040 struct fib_alias
*fa_match
;
1044 fa_match
= fib_find_matching_alias(net
, fri
);
1048 fa_match
->offload
= fri
->offload
;
1049 fa_match
->trap
= fri
->trap
;
1054 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set
);
1056 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
1058 while (!IS_TRIE(tn
))
1062 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
1063 struct fib_alias
*new, t_key key
)
1065 struct key_vector
*n
, *l
;
1067 l
= leaf_new(key
, new);
1071 /* retrieve child from parent node */
1072 n
= get_child(tp
, get_index(key
, tp
));
1074 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1076 * Add a new tnode here
1077 * first tnode need some special handling
1078 * leaves us in position for handling as case 3
1081 struct key_vector
*tn
;
1083 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1087 /* initialize routes out of node */
1088 NODE_INIT_PARENT(tn
, tp
);
1089 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1091 /* start adding routes into the node */
1092 put_child_root(tp
, key
, tn
);
1093 node_set_parent(n
, tn
);
1095 /* parent now has a NULL spot where the leaf can go */
1099 /* Case 3: n is NULL, and will just insert a new leaf */
1100 node_push_suffix(tp
, new->fa_slen
);
1101 NODE_INIT_PARENT(l
, tp
);
1102 put_child_root(tp
, key
, l
);
1103 trie_rebalance(t
, tp
);
1112 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1113 struct key_vector
*l
, struct fib_alias
*new,
1114 struct fib_alias
*fa
, t_key key
)
1117 return fib_insert_node(t
, tp
, new, key
);
1120 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1122 struct fib_alias
*last
;
1124 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1125 if (new->fa_slen
< last
->fa_slen
)
1127 if ((new->fa_slen
== last
->fa_slen
) &&
1128 (new->tb_id
> last
->tb_id
))
1134 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1136 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1139 /* if we added to the tail node then we need to update slen */
1140 if (l
->slen
< new->fa_slen
) {
1141 l
->slen
= new->fa_slen
;
1142 node_push_suffix(tp
, new->fa_slen
);
1148 static bool fib_valid_key_len(u32 key
, u8 plen
, struct netlink_ext_ack
*extack
)
1150 if (plen
> KEYLENGTH
) {
1151 NL_SET_ERR_MSG(extack
, "Invalid prefix length");
1155 if ((plen
< KEYLENGTH
) && (key
<< plen
)) {
1156 NL_SET_ERR_MSG(extack
,
1157 "Invalid prefix for given prefix length");
1164 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1165 struct key_vector
*l
, struct fib_alias
*old
);
1167 /* Caller must hold RTNL. */
1168 int fib_table_insert(struct net
*net
, struct fib_table
*tb
,
1169 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1171 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1172 struct fib_alias
*fa
, *new_fa
;
1173 struct key_vector
*l
, *tp
;
1174 u16 nlflags
= NLM_F_EXCL
;
1175 struct fib_info
*fi
;
1176 u8 plen
= cfg
->fc_dst_len
;
1177 u8 slen
= KEYLENGTH
- plen
;
1178 u8 tos
= cfg
->fc_tos
;
1182 key
= ntohl(cfg
->fc_dst
);
1184 if (!fib_valid_key_len(key
, plen
, extack
))
1187 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1189 fi
= fib_create_info(cfg
, extack
);
1195 l
= fib_find_node(t
, &tp
, key
);
1196 fa
= l
? fib_find_alias(&l
->leaf
, slen
, tos
, fi
->fib_priority
,
1197 tb
->tb_id
, false) : NULL
;
1199 /* Now fa, if non-NULL, points to the first fib alias
1200 * with the same keys [prefix,tos,priority], if such key already
1201 * exists or to the node before which we will insert new one.
1203 * If fa is NULL, we will need to allocate a new one and
1204 * insert to the tail of the section matching the suffix length
1208 if (fa
&& fa
->fa_tos
== tos
&&
1209 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1210 struct fib_alias
*fa_first
, *fa_match
;
1213 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1216 nlflags
&= ~NLM_F_EXCL
;
1219 * 1. Find exact match for type, scope, fib_info to avoid
1221 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1225 hlist_for_each_entry_from(fa
, fa_list
) {
1226 if ((fa
->fa_slen
!= slen
) ||
1227 (fa
->tb_id
!= tb
->tb_id
) ||
1228 (fa
->fa_tos
!= tos
))
1230 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1232 if (fa
->fa_type
== cfg
->fc_type
&&
1233 fa
->fa_info
== fi
) {
1239 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1240 struct fib_info
*fi_drop
;
1243 nlflags
|= NLM_F_REPLACE
;
1251 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1255 fi_drop
= fa
->fa_info
;
1256 new_fa
->fa_tos
= fa
->fa_tos
;
1257 new_fa
->fa_info
= fi
;
1258 new_fa
->fa_type
= cfg
->fc_type
;
1259 state
= fa
->fa_state
;
1260 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1261 new_fa
->fa_slen
= fa
->fa_slen
;
1262 new_fa
->tb_id
= tb
->tb_id
;
1263 new_fa
->fa_default
= -1;
1264 new_fa
->offload
= 0;
1267 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1269 if (fib_find_alias(&l
->leaf
, fa
->fa_slen
, 0, 0,
1270 tb
->tb_id
, true) == new_fa
) {
1271 enum fib_event_type fib_event
;
1273 fib_event
= FIB_EVENT_ENTRY_REPLACE
;
1274 err
= call_fib_entry_notifiers(net
, fib_event
,
1278 hlist_replace_rcu(&new_fa
->fa_list
,
1280 goto out_free_new_fa
;
1284 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1285 tb
->tb_id
, &cfg
->fc_nlinfo
, nlflags
);
1287 alias_free_mem_rcu(fa
);
1289 fib_release_info(fi_drop
);
1290 if (state
& FA_S_ACCESSED
)
1291 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1295 /* Error if we find a perfect match which
1296 * uses the same scope, type, and nexthop
1302 if (cfg
->fc_nlflags
& NLM_F_APPEND
)
1303 nlflags
|= NLM_F_APPEND
;
1308 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1311 nlflags
|= NLM_F_CREATE
;
1313 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1317 new_fa
->fa_info
= fi
;
1318 new_fa
->fa_tos
= tos
;
1319 new_fa
->fa_type
= cfg
->fc_type
;
1320 new_fa
->fa_state
= 0;
1321 new_fa
->fa_slen
= slen
;
1322 new_fa
->tb_id
= tb
->tb_id
;
1323 new_fa
->fa_default
= -1;
1324 new_fa
->offload
= 0;
1327 /* Insert new entry to the list. */
1328 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1330 goto out_free_new_fa
;
1332 /* The alias was already inserted, so the node must exist. */
1333 l
= l
? l
: fib_find_node(t
, &tp
, key
);
1334 if (WARN_ON_ONCE(!l
))
1335 goto out_free_new_fa
;
1337 if (fib_find_alias(&l
->leaf
, new_fa
->fa_slen
, 0, 0, tb
->tb_id
, true) ==
1339 enum fib_event_type fib_event
;
1341 fib_event
= FIB_EVENT_ENTRY_REPLACE
;
1342 err
= call_fib_entry_notifiers(net
, fib_event
, key
, plen
,
1345 goto out_remove_new_fa
;
1349 tb
->tb_num_default
++;
1351 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1352 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1353 &cfg
->fc_nlinfo
, nlflags
);
1358 fib_remove_alias(t
, tp
, l
, new_fa
);
1360 kmem_cache_free(fn_alias_kmem
, new_fa
);
1362 fib_release_info(fi
);
1367 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1369 t_key prefix
= n
->key
;
1371 return (key
^ prefix
) & (prefix
| -prefix
);
1374 /* should be called with rcu_read_lock */
1375 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1376 struct fib_result
*res
, int fib_flags
)
1378 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1379 #ifdef CONFIG_IP_FIB_TRIE_STATS
1380 struct trie_use_stats __percpu
*stats
= t
->stats
;
1382 const t_key key
= ntohl(flp
->daddr
);
1383 struct key_vector
*n
, *pn
;
1384 struct fib_alias
*fa
;
1385 unsigned long index
;
1391 n
= get_child_rcu(pn
, cindex
);
1393 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, -EAGAIN
);
1397 #ifdef CONFIG_IP_FIB_TRIE_STATS
1398 this_cpu_inc(stats
->gets
);
1401 /* Step 1: Travel to the longest prefix match in the trie */
1403 index
= get_cindex(key
, n
);
1405 /* This bit of code is a bit tricky but it combines multiple
1406 * checks into a single check. The prefix consists of the
1407 * prefix plus zeros for the "bits" in the prefix. The index
1408 * is the difference between the key and this value. From
1409 * this we can actually derive several pieces of data.
1410 * if (index >= (1ul << bits))
1411 * we have a mismatch in skip bits and failed
1413 * we know the value is cindex
1415 * This check is safe even if bits == KEYLENGTH due to the
1416 * fact that we can only allocate a node with 32 bits if a
1417 * long is greater than 32 bits.
1419 if (index
>= (1ul << n
->bits
))
1422 /* we have found a leaf. Prefixes have already been compared */
1426 /* only record pn and cindex if we are going to be chopping
1427 * bits later. Otherwise we are just wasting cycles.
1429 if (n
->slen
> n
->pos
) {
1434 n
= get_child_rcu(n
, index
);
1439 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1441 /* record the pointer where our next node pointer is stored */
1442 struct key_vector __rcu
**cptr
= n
->tnode
;
1444 /* This test verifies that none of the bits that differ
1445 * between the key and the prefix exist in the region of
1446 * the lsb and higher in the prefix.
1448 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1451 /* exit out and process leaf */
1452 if (unlikely(IS_LEAF(n
)))
1455 /* Don't bother recording parent info. Since we are in
1456 * prefix match mode we will have to come back to wherever
1457 * we started this traversal anyway
1460 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1462 #ifdef CONFIG_IP_FIB_TRIE_STATS
1464 this_cpu_inc(stats
->null_node_hit
);
1466 /* If we are at cindex 0 there are no more bits for
1467 * us to strip at this level so we must ascend back
1468 * up one level to see if there are any more bits to
1469 * be stripped there.
1472 t_key pkey
= pn
->key
;
1474 /* If we don't have a parent then there is
1475 * nothing for us to do as we do not have any
1476 * further nodes to parse.
1479 trace_fib_table_lookup(tb
->tb_id
, flp
,
1483 #ifdef CONFIG_IP_FIB_TRIE_STATS
1484 this_cpu_inc(stats
->backtrack
);
1486 /* Get Child's index */
1487 pn
= node_parent_rcu(pn
);
1488 cindex
= get_index(pkey
, pn
);
1491 /* strip the least significant bit from the cindex */
1492 cindex
&= cindex
- 1;
1494 /* grab pointer for next child node */
1495 cptr
= &pn
->tnode
[cindex
];
1500 /* this line carries forward the xor from earlier in the function */
1501 index
= key
^ n
->key
;
1503 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1504 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1505 struct fib_info
*fi
= fa
->fa_info
;
1508 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1509 if (index
>= (1ul << fa
->fa_slen
))
1512 if (fa
->fa_tos
&& fa
->fa_tos
!= flp
->flowi4_tos
)
1516 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1518 fib_alias_accessed(fa
);
1519 err
= fib_props
[fa
->fa_type
].error
;
1520 if (unlikely(err
< 0)) {
1522 #ifdef CONFIG_IP_FIB_TRIE_STATS
1523 this_cpu_inc(stats
->semantic_match_passed
);
1525 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, err
);
1528 if (fi
->fib_flags
& RTNH_F_DEAD
)
1531 if (unlikely(fi
->nh
&& nexthop_is_blackhole(fi
->nh
))) {
1532 err
= fib_props
[RTN_BLACKHOLE
].error
;
1536 for (nhsel
= 0; nhsel
< fib_info_num_path(fi
); nhsel
++) {
1537 struct fib_nh_common
*nhc
= fib_info_nhc(fi
, nhsel
);
1539 if (nhc
->nhc_flags
& RTNH_F_DEAD
)
1541 if (ip_ignore_linkdown(nhc
->nhc_dev
) &&
1542 nhc
->nhc_flags
& RTNH_F_LINKDOWN
&&
1543 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1545 if (!(flp
->flowi4_flags
& FLOWI_FLAG_SKIP_NH_OIF
)) {
1546 if (flp
->flowi4_oif
&&
1547 flp
->flowi4_oif
!= nhc
->nhc_oif
)
1551 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1552 refcount_inc(&fi
->fib_clntref
);
1554 res
->prefix
= htonl(n
->key
);
1555 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1556 res
->nh_sel
= nhsel
;
1558 res
->type
= fa
->fa_type
;
1559 res
->scope
= fi
->fib_scope
;
1562 res
->fa_head
= &n
->leaf
;
1563 #ifdef CONFIG_IP_FIB_TRIE_STATS
1564 this_cpu_inc(stats
->semantic_match_passed
);
1566 trace_fib_table_lookup(tb
->tb_id
, flp
, nhc
, err
);
1571 #ifdef CONFIG_IP_FIB_TRIE_STATS
1572 this_cpu_inc(stats
->semantic_match_miss
);
1576 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1578 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1579 struct key_vector
*l
, struct fib_alias
*old
)
1581 /* record the location of the previous list_info entry */
1582 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1583 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1585 /* remove the fib_alias from the list */
1586 hlist_del_rcu(&old
->fa_list
);
1588 /* if we emptied the list this leaf will be freed and we can sort
1589 * out parent suffix lengths as a part of trie_rebalance
1591 if (hlist_empty(&l
->leaf
)) {
1592 if (tp
->slen
== l
->slen
)
1593 node_pull_suffix(tp
, tp
->pos
);
1594 put_child_root(tp
, l
->key
, NULL
);
1596 trie_rebalance(t
, tp
);
1600 /* only access fa if it is pointing at the last valid hlist_node */
1604 /* update the trie with the latest suffix length */
1605 l
->slen
= fa
->fa_slen
;
1606 node_pull_suffix(tp
, fa
->fa_slen
);
1609 static void fib_notify_alias_delete(struct net
*net
, u32 key
,
1610 struct hlist_head
*fah
,
1611 struct fib_alias
*fa_to_delete
,
1612 struct netlink_ext_ack
*extack
)
1614 struct fib_alias
*fa_next
, *fa_to_notify
;
1615 u32 tb_id
= fa_to_delete
->tb_id
;
1616 u8 slen
= fa_to_delete
->fa_slen
;
1617 enum fib_event_type fib_event
;
1619 /* Do not notify if we do not care about the route. */
1620 if (fib_find_alias(fah
, slen
, 0, 0, tb_id
, true) != fa_to_delete
)
1623 /* Determine if the route should be replaced by the next route in the
1626 fa_next
= hlist_entry_safe(fa_to_delete
->fa_list
.next
,
1627 struct fib_alias
, fa_list
);
1628 if (fa_next
&& fa_next
->fa_slen
== slen
&& fa_next
->tb_id
== tb_id
) {
1629 fib_event
= FIB_EVENT_ENTRY_REPLACE
;
1630 fa_to_notify
= fa_next
;
1632 fib_event
= FIB_EVENT_ENTRY_DEL
;
1633 fa_to_notify
= fa_to_delete
;
1635 call_fib_entry_notifiers(net
, fib_event
, key
, KEYLENGTH
- slen
,
1636 fa_to_notify
, extack
);
1639 /* Caller must hold RTNL. */
1640 int fib_table_delete(struct net
*net
, struct fib_table
*tb
,
1641 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1643 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1644 struct fib_alias
*fa
, *fa_to_delete
;
1645 struct key_vector
*l
, *tp
;
1646 u8 plen
= cfg
->fc_dst_len
;
1647 u8 slen
= KEYLENGTH
- plen
;
1648 u8 tos
= cfg
->fc_tos
;
1651 key
= ntohl(cfg
->fc_dst
);
1653 if (!fib_valid_key_len(key
, plen
, extack
))
1656 l
= fib_find_node(t
, &tp
, key
);
1660 fa
= fib_find_alias(&l
->leaf
, slen
, tos
, 0, tb
->tb_id
, false);
1664 pr_debug("Deleting %08x/%d tos=%d t=%p\n", key
, plen
, tos
, t
);
1666 fa_to_delete
= NULL
;
1667 hlist_for_each_entry_from(fa
, fa_list
) {
1668 struct fib_info
*fi
= fa
->fa_info
;
1670 if ((fa
->fa_slen
!= slen
) ||
1671 (fa
->tb_id
!= tb
->tb_id
) ||
1672 (fa
->fa_tos
!= tos
))
1675 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1676 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1677 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1678 (!cfg
->fc_prefsrc
||
1679 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1680 (!cfg
->fc_protocol
||
1681 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1682 fib_nh_match(net
, cfg
, fi
, extack
) == 0 &&
1683 fib_metrics_match(cfg
, fi
)) {
1692 fib_notify_alias_delete(net
, key
, &l
->leaf
, fa_to_delete
, extack
);
1693 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1694 &cfg
->fc_nlinfo
, 0);
1697 tb
->tb_num_default
--;
1699 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1701 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1702 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1704 fib_release_info(fa_to_delete
->fa_info
);
1705 alias_free_mem_rcu(fa_to_delete
);
1709 /* Scan for the next leaf starting at the provided key value */
1710 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1712 struct key_vector
*pn
, *n
= *tn
;
1713 unsigned long cindex
;
1715 /* this loop is meant to try and find the key in the trie */
1717 /* record parent and next child index */
1719 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1721 if (cindex
>> pn
->bits
)
1724 /* descend into the next child */
1725 n
= get_child_rcu(pn
, cindex
++);
1729 /* guarantee forward progress on the keys */
1730 if (IS_LEAF(n
) && (n
->key
>= key
))
1732 } while (IS_TNODE(n
));
1734 /* this loop will search for the next leaf with a greater key */
1735 while (!IS_TRIE(pn
)) {
1736 /* if we exhausted the parent node we will need to climb */
1737 if (cindex
>= (1ul << pn
->bits
)) {
1738 t_key pkey
= pn
->key
;
1740 pn
= node_parent_rcu(pn
);
1741 cindex
= get_index(pkey
, pn
) + 1;
1745 /* grab the next available node */
1746 n
= get_child_rcu(pn
, cindex
++);
1750 /* no need to compare keys since we bumped the index */
1754 /* Rescan start scanning in new node */
1760 return NULL
; /* Root of trie */
1762 /* if we are at the limit for keys just return NULL for the tnode */
1767 static void fib_trie_free(struct fib_table
*tb
)
1769 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1770 struct key_vector
*pn
= t
->kv
;
1771 unsigned long cindex
= 1;
1772 struct hlist_node
*tmp
;
1773 struct fib_alias
*fa
;
1775 /* walk trie in reverse order and free everything */
1777 struct key_vector
*n
;
1780 t_key pkey
= pn
->key
;
1786 pn
= node_parent(pn
);
1788 /* drop emptied tnode */
1789 put_child_root(pn
, n
->key
, NULL
);
1792 cindex
= get_index(pkey
, pn
);
1797 /* grab the next available node */
1798 n
= get_child(pn
, cindex
);
1803 /* record pn and cindex for leaf walking */
1805 cindex
= 1ul << n
->bits
;
1810 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1811 hlist_del_rcu(&fa
->fa_list
);
1812 alias_free_mem_rcu(fa
);
1815 put_child_root(pn
, n
->key
, NULL
);
1819 #ifdef CONFIG_IP_FIB_TRIE_STATS
1820 free_percpu(t
->stats
);
1825 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1827 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1828 struct key_vector
*l
, *tp
= ot
->kv
;
1829 struct fib_table
*local_tb
;
1830 struct fib_alias
*fa
;
1834 if (oldtb
->tb_data
== oldtb
->__data
)
1837 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1841 lt
= (struct trie
*)local_tb
->tb_data
;
1843 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1844 struct key_vector
*local_l
= NULL
, *local_tp
;
1846 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1847 struct fib_alias
*new_fa
;
1849 if (local_tb
->tb_id
!= fa
->tb_id
)
1852 /* clone fa for new local table */
1853 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1857 memcpy(new_fa
, fa
, sizeof(*fa
));
1859 /* insert clone into table */
1861 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1863 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1865 kmem_cache_free(fn_alias_kmem
, new_fa
);
1870 /* stop loop if key wrapped back to 0 */
1878 fib_trie_free(local_tb
);
1883 /* Caller must hold RTNL */
1884 void fib_table_flush_external(struct fib_table
*tb
)
1886 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1887 struct key_vector
*pn
= t
->kv
;
1888 unsigned long cindex
= 1;
1889 struct hlist_node
*tmp
;
1890 struct fib_alias
*fa
;
1892 /* walk trie in reverse order */
1894 unsigned char slen
= 0;
1895 struct key_vector
*n
;
1898 t_key pkey
= pn
->key
;
1900 /* cannot resize the trie vector */
1904 /* update the suffix to address pulled leaves */
1905 if (pn
->slen
> pn
->pos
)
1908 /* resize completed node */
1910 cindex
= get_index(pkey
, pn
);
1915 /* grab the next available node */
1916 n
= get_child(pn
, cindex
);
1921 /* record pn and cindex for leaf walking */
1923 cindex
= 1ul << n
->bits
;
1928 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1929 /* if alias was cloned to local then we just
1930 * need to remove the local copy from main
1932 if (tb
->tb_id
!= fa
->tb_id
) {
1933 hlist_del_rcu(&fa
->fa_list
);
1934 alias_free_mem_rcu(fa
);
1938 /* record local slen */
1942 /* update leaf slen */
1945 if (hlist_empty(&n
->leaf
)) {
1946 put_child_root(pn
, n
->key
, NULL
);
1952 /* Caller must hold RTNL. */
1953 int fib_table_flush(struct net
*net
, struct fib_table
*tb
, bool flush_all
)
1955 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1956 struct key_vector
*pn
= t
->kv
;
1957 unsigned long cindex
= 1;
1958 struct hlist_node
*tmp
;
1959 struct fib_alias
*fa
;
1962 /* walk trie in reverse order */
1964 unsigned char slen
= 0;
1965 struct key_vector
*n
;
1968 t_key pkey
= pn
->key
;
1970 /* cannot resize the trie vector */
1974 /* update the suffix to address pulled leaves */
1975 if (pn
->slen
> pn
->pos
)
1978 /* resize completed node */
1980 cindex
= get_index(pkey
, pn
);
1985 /* grab the next available node */
1986 n
= get_child(pn
, cindex
);
1991 /* record pn and cindex for leaf walking */
1993 cindex
= 1ul << n
->bits
;
1998 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1999 struct fib_info
*fi
= fa
->fa_info
;
2001 if (!fi
|| tb
->tb_id
!= fa
->tb_id
||
2002 (!(fi
->fib_flags
& RTNH_F_DEAD
) &&
2003 !fib_props
[fa
->fa_type
].error
)) {
2008 /* Do not flush error routes if network namespace is
2009 * not being dismantled
2011 if (!flush_all
&& fib_props
[fa
->fa_type
].error
) {
2016 fib_notify_alias_delete(net
, n
->key
, &n
->leaf
, fa
,
2018 hlist_del_rcu(&fa
->fa_list
);
2019 fib_release_info(fa
->fa_info
);
2020 alias_free_mem_rcu(fa
);
2024 /* update leaf slen */
2027 if (hlist_empty(&n
->leaf
)) {
2028 put_child_root(pn
, n
->key
, NULL
);
2033 pr_debug("trie_flush found=%d\n", found
);
2037 /* derived from fib_trie_free */
2038 static void __fib_info_notify_update(struct net
*net
, struct fib_table
*tb
,
2039 struct nl_info
*info
)
2041 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2042 struct key_vector
*pn
= t
->kv
;
2043 unsigned long cindex
= 1;
2044 struct fib_alias
*fa
;
2047 struct key_vector
*n
;
2050 t_key pkey
= pn
->key
;
2055 pn
= node_parent(pn
);
2056 cindex
= get_index(pkey
, pn
);
2060 /* grab the next available node */
2061 n
= get_child(pn
, cindex
);
2066 /* record pn and cindex for leaf walking */
2068 cindex
= 1ul << n
->bits
;
2073 hlist_for_each_entry(fa
, &n
->leaf
, fa_list
) {
2074 struct fib_info
*fi
= fa
->fa_info
;
2076 if (!fi
|| !fi
->nh_updated
|| fa
->tb_id
!= tb
->tb_id
)
2079 rtmsg_fib(RTM_NEWROUTE
, htonl(n
->key
), fa
,
2080 KEYLENGTH
- fa
->fa_slen
, tb
->tb_id
,
2081 info
, NLM_F_REPLACE
);
2083 /* call_fib_entry_notifiers will be removed when
2084 * in-kernel notifier is implemented and supported
2085 * for nexthop objects
2087 call_fib_entry_notifiers(net
, FIB_EVENT_ENTRY_REPLACE
,
2089 KEYLENGTH
- fa
->fa_slen
, fa
,
2095 void fib_info_notify_update(struct net
*net
, struct nl_info
*info
)
2099 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2100 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2101 struct fib_table
*tb
;
2103 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
)
2104 __fib_info_notify_update(net
, tb
, info
);
2108 static int fib_leaf_notify(struct key_vector
*l
, struct fib_table
*tb
,
2109 struct notifier_block
*nb
,
2110 struct netlink_ext_ack
*extack
)
2112 struct fib_alias
*fa
;
2116 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2117 struct fib_info
*fi
= fa
->fa_info
;
2122 /* local and main table can share the same trie,
2123 * so don't notify twice for the same entry.
2125 if (tb
->tb_id
!= fa
->tb_id
)
2128 if (fa
->fa_slen
== last_slen
)
2131 last_slen
= fa
->fa_slen
;
2132 err
= call_fib_entry_notifier(nb
, FIB_EVENT_ENTRY_REPLACE
,
2133 l
->key
, KEYLENGTH
- fa
->fa_slen
,
2141 static int fib_table_notify(struct fib_table
*tb
, struct notifier_block
*nb
,
2142 struct netlink_ext_ack
*extack
)
2144 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2145 struct key_vector
*l
, *tp
= t
->kv
;
2149 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2150 err
= fib_leaf_notify(l
, tb
, nb
, extack
);
2155 /* stop in case of wrap around */
2162 int fib_notify(struct net
*net
, struct notifier_block
*nb
,
2163 struct netlink_ext_ack
*extack
)
2168 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2169 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2170 struct fib_table
*tb
;
2172 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2173 err
= fib_table_notify(tb
, nb
, extack
);
2181 static void __trie_free_rcu(struct rcu_head
*head
)
2183 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
2184 #ifdef CONFIG_IP_FIB_TRIE_STATS
2185 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2187 if (tb
->tb_data
== tb
->__data
)
2188 free_percpu(t
->stats
);
2189 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2193 void fib_free_table(struct fib_table
*tb
)
2195 call_rcu(&tb
->rcu
, __trie_free_rcu
);
2198 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
2199 struct sk_buff
*skb
, struct netlink_callback
*cb
,
2200 struct fib_dump_filter
*filter
)
2202 unsigned int flags
= NLM_F_MULTI
;
2203 __be32 xkey
= htonl(l
->key
);
2204 int i
, s_i
, i_fa
, s_fa
, err
;
2205 struct fib_alias
*fa
;
2207 if (filter
->filter_set
||
2208 !filter
->dump_exceptions
|| !filter
->dump_routes
)
2209 flags
|= NLM_F_DUMP_FILTERED
;
2215 /* rcu_read_lock is hold by caller */
2216 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2217 struct fib_info
*fi
= fa
->fa_info
;
2224 if (tb
->tb_id
!= fa
->tb_id
)
2227 if (filter
->filter_set
) {
2228 if (filter
->rt_type
&& fa
->fa_type
!= filter
->rt_type
)
2231 if ((filter
->protocol
&&
2232 fi
->fib_protocol
!= filter
->protocol
))
2236 !fib_info_nh_uses_dev(fi
, filter
->dev
))
2240 if (filter
->dump_routes
) {
2242 struct fib_rt_info fri
;
2245 fri
.tb_id
= tb
->tb_id
;
2247 fri
.dst_len
= KEYLENGTH
- fa
->fa_slen
;
2248 fri
.tos
= fa
->fa_tos
;
2249 fri
.type
= fa
->fa_type
;
2250 fri
.offload
= fa
->offload
;
2251 fri
.trap
= fa
->trap
;
2252 err
= fib_dump_info(skb
,
2253 NETLINK_CB(cb
->skb
).portid
,
2255 RTM_NEWROUTE
, &fri
, flags
);
2263 if (filter
->dump_exceptions
) {
2264 err
= fib_dump_info_fnhe(skb
, cb
, tb
->tb_id
, fi
,
2265 &i_fa
, s_fa
, flags
);
2283 /* rcu_read_lock needs to be hold by caller from readside */
2284 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
2285 struct netlink_callback
*cb
, struct fib_dump_filter
*filter
)
2287 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2288 struct key_vector
*l
, *tp
= t
->kv
;
2289 /* Dump starting at last key.
2290 * Note: 0.0.0.0/0 (ie default) is first key.
2292 int count
= cb
->args
[2];
2293 t_key key
= cb
->args
[3];
2295 /* First time here, count and key are both always 0. Count > 0
2296 * and key == 0 means the dump has wrapped around and we are done.
2301 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2304 err
= fn_trie_dump_leaf(l
, tb
, skb
, cb
, filter
);
2307 cb
->args
[2] = count
;
2314 memset(&cb
->args
[4], 0,
2315 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
2317 /* stop loop if key wrapped back to 0 */
2323 cb
->args
[2] = count
;
2328 void __init
fib_trie_init(void)
2330 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
2331 sizeof(struct fib_alias
),
2332 0, SLAB_PANIC
, NULL
);
2334 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
2336 0, SLAB_PANIC
, NULL
);
2339 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
2341 struct fib_table
*tb
;
2343 size_t sz
= sizeof(*tb
);
2346 sz
+= sizeof(struct trie
);
2348 tb
= kzalloc(sz
, GFP_KERNEL
);
2353 tb
->tb_num_default
= 0;
2354 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2359 t
= (struct trie
*) tb
->tb_data
;
2360 t
->kv
[0].pos
= KEYLENGTH
;
2361 t
->kv
[0].slen
= KEYLENGTH
;
2362 #ifdef CONFIG_IP_FIB_TRIE_STATS
2363 t
->stats
= alloc_percpu(struct trie_use_stats
);
2373 #ifdef CONFIG_PROC_FS
2374 /* Depth first Trie walk iterator */
2375 struct fib_trie_iter
{
2376 struct seq_net_private p
;
2377 struct fib_table
*tb
;
2378 struct key_vector
*tnode
;
2383 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2385 unsigned long cindex
= iter
->index
;
2386 struct key_vector
*pn
= iter
->tnode
;
2389 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2390 iter
->tnode
, iter
->index
, iter
->depth
);
2392 while (!IS_TRIE(pn
)) {
2393 while (cindex
< child_length(pn
)) {
2394 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2401 iter
->index
= cindex
;
2403 /* push down one level */
2412 /* Current node exhausted, pop back up */
2414 pn
= node_parent_rcu(pn
);
2415 cindex
= get_index(pkey
, pn
) + 1;
2419 /* record root node so further searches know we are done */
2426 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2429 struct key_vector
*n
, *pn
;
2435 n
= rcu_dereference(pn
->tnode
[0]);
2452 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2454 struct key_vector
*n
;
2455 struct fib_trie_iter iter
;
2457 memset(s
, 0, sizeof(*s
));
2460 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2462 struct fib_alias
*fa
;
2465 s
->totdepth
+= iter
.depth
;
2466 if (iter
.depth
> s
->maxdepth
)
2467 s
->maxdepth
= iter
.depth
;
2469 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2473 if (n
->bits
< MAX_STAT_DEPTH
)
2474 s
->nodesizes
[n
->bits
]++;
2475 s
->nullpointers
+= tn_info(n
)->empty_children
;
2482 * This outputs /proc/net/fib_triestats
2484 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2486 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2489 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2493 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2494 avdepth
/ 100, avdepth
% 100);
2495 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2497 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2498 bytes
= LEAF_SIZE
* stat
->leaves
;
2500 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2501 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2503 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2504 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2506 max
= MAX_STAT_DEPTH
;
2507 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2511 for (i
= 1; i
< max
; i
++)
2512 if (stat
->nodesizes
[i
] != 0) {
2513 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2514 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2516 seq_putc(seq
, '\n');
2517 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2519 bytes
+= sizeof(struct key_vector
*) * pointers
;
2520 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2521 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2524 #ifdef CONFIG_IP_FIB_TRIE_STATS
2525 static void trie_show_usage(struct seq_file
*seq
,
2526 const struct trie_use_stats __percpu
*stats
)
2528 struct trie_use_stats s
= { 0 };
2531 /* loop through all of the CPUs and gather up the stats */
2532 for_each_possible_cpu(cpu
) {
2533 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2535 s
.gets
+= pcpu
->gets
;
2536 s
.backtrack
+= pcpu
->backtrack
;
2537 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2538 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2539 s
.null_node_hit
+= pcpu
->null_node_hit
;
2540 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2543 seq_printf(seq
, "\nCounters:\n---------\n");
2544 seq_printf(seq
, "gets = %u\n", s
.gets
);
2545 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2546 seq_printf(seq
, "semantic match passed = %u\n",
2547 s
.semantic_match_passed
);
2548 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2549 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2550 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2552 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2554 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2556 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2557 seq_puts(seq
, "Local:\n");
2558 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2559 seq_puts(seq
, "Main:\n");
2561 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2565 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2567 struct net
*net
= (struct net
*)seq
->private;
2571 "Basic info: size of leaf:"
2572 " %zd bytes, size of tnode: %zd bytes.\n",
2573 LEAF_SIZE
, TNODE_SIZE(0));
2576 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2577 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2578 struct fib_table
*tb
;
2580 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2581 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2582 struct trie_stat stat
;
2587 fib_table_print(seq
, tb
);
2589 trie_collect_stats(t
, &stat
);
2590 trie_show_stats(seq
, &stat
);
2591 #ifdef CONFIG_IP_FIB_TRIE_STATS
2592 trie_show_usage(seq
, t
->stats
);
2602 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2604 struct fib_trie_iter
*iter
= seq
->private;
2605 struct net
*net
= seq_file_net(seq
);
2609 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2610 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2611 struct fib_table
*tb
;
2613 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2614 struct key_vector
*n
;
2616 for (n
= fib_trie_get_first(iter
,
2617 (struct trie
*) tb
->tb_data
);
2618 n
; n
= fib_trie_get_next(iter
))
2629 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2633 return fib_trie_get_idx(seq
, *pos
);
2636 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2638 struct fib_trie_iter
*iter
= seq
->private;
2639 struct net
*net
= seq_file_net(seq
);
2640 struct fib_table
*tb
= iter
->tb
;
2641 struct hlist_node
*tb_node
;
2643 struct key_vector
*n
;
2646 /* next node in same table */
2647 n
= fib_trie_get_next(iter
);
2651 /* walk rest of this hash chain */
2652 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2653 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2654 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2655 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2660 /* new hash chain */
2661 while (++h
< FIB_TABLE_HASHSZ
) {
2662 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2663 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2664 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2676 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2682 static void seq_indent(struct seq_file
*seq
, int n
)
2688 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2691 case RT_SCOPE_UNIVERSE
: return "universe";
2692 case RT_SCOPE_SITE
: return "site";
2693 case RT_SCOPE_LINK
: return "link";
2694 case RT_SCOPE_HOST
: return "host";
2695 case RT_SCOPE_NOWHERE
: return "nowhere";
2697 snprintf(buf
, len
, "scope=%d", s
);
2702 static const char *const rtn_type_names
[__RTN_MAX
] = {
2703 [RTN_UNSPEC
] = "UNSPEC",
2704 [RTN_UNICAST
] = "UNICAST",
2705 [RTN_LOCAL
] = "LOCAL",
2706 [RTN_BROADCAST
] = "BROADCAST",
2707 [RTN_ANYCAST
] = "ANYCAST",
2708 [RTN_MULTICAST
] = "MULTICAST",
2709 [RTN_BLACKHOLE
] = "BLACKHOLE",
2710 [RTN_UNREACHABLE
] = "UNREACHABLE",
2711 [RTN_PROHIBIT
] = "PROHIBIT",
2712 [RTN_THROW
] = "THROW",
2714 [RTN_XRESOLVE
] = "XRESOLVE",
2717 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2719 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2720 return rtn_type_names
[t
];
2721 snprintf(buf
, len
, "type %u", t
);
2725 /* Pretty print the trie */
2726 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2728 const struct fib_trie_iter
*iter
= seq
->private;
2729 struct key_vector
*n
= v
;
2731 if (IS_TRIE(node_parent_rcu(n
)))
2732 fib_table_print(seq
, iter
->tb
);
2735 __be32 prf
= htonl(n
->key
);
2737 seq_indent(seq
, iter
->depth
-1);
2738 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2739 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2740 tn_info(n
)->full_children
,
2741 tn_info(n
)->empty_children
);
2743 __be32 val
= htonl(n
->key
);
2744 struct fib_alias
*fa
;
2746 seq_indent(seq
, iter
->depth
);
2747 seq_printf(seq
, " |-- %pI4\n", &val
);
2749 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2750 char buf1
[32], buf2
[32];
2752 seq_indent(seq
, iter
->depth
+ 1);
2753 seq_printf(seq
, " /%zu %s %s",
2754 KEYLENGTH
- fa
->fa_slen
,
2755 rtn_scope(buf1
, sizeof(buf1
),
2756 fa
->fa_info
->fib_scope
),
2757 rtn_type(buf2
, sizeof(buf2
),
2760 seq_printf(seq
, " tos=%d", fa
->fa_tos
);
2761 seq_putc(seq
, '\n');
2768 static const struct seq_operations fib_trie_seq_ops
= {
2769 .start
= fib_trie_seq_start
,
2770 .next
= fib_trie_seq_next
,
2771 .stop
= fib_trie_seq_stop
,
2772 .show
= fib_trie_seq_show
,
2775 struct fib_route_iter
{
2776 struct seq_net_private p
;
2777 struct fib_table
*main_tb
;
2778 struct key_vector
*tnode
;
2783 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2786 struct key_vector
*l
, **tp
= &iter
->tnode
;
2789 /* use cached location of previously found key */
2790 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2799 while ((l
= leaf_walk_rcu(tp
, key
)) && (pos
-- > 0)) {
2804 /* handle unlikely case of a key wrap */
2810 iter
->key
= l
->key
; /* remember it */
2812 iter
->pos
= 0; /* forget it */
2817 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2820 struct fib_route_iter
*iter
= seq
->private;
2821 struct fib_table
*tb
;
2826 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2831 t
= (struct trie
*)tb
->tb_data
;
2832 iter
->tnode
= t
->kv
;
2835 return fib_route_get_idx(iter
, *pos
);
2838 iter
->key
= KEY_MAX
;
2840 return SEQ_START_TOKEN
;
2843 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2845 struct fib_route_iter
*iter
= seq
->private;
2846 struct key_vector
*l
= NULL
;
2847 t_key key
= iter
->key
+ 1;
2851 /* only allow key of 0 for start of sequence */
2852 if ((v
== SEQ_START_TOKEN
) || key
)
2853 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2865 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2871 static unsigned int fib_flag_trans(int type
, __be32 mask
, struct fib_info
*fi
)
2873 unsigned int flags
= 0;
2875 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2878 const struct fib_nh_common
*nhc
= fib_info_nhc(fi
, 0);
2880 if (nhc
->nhc_gw
.ipv4
)
2881 flags
|= RTF_GATEWAY
;
2883 if (mask
== htonl(0xFFFFFFFF))
2890 * This outputs /proc/net/route.
2891 * The format of the file is not supposed to be changed
2892 * and needs to be same as fib_hash output to avoid breaking
2895 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2897 struct fib_route_iter
*iter
= seq
->private;
2898 struct fib_table
*tb
= iter
->main_tb
;
2899 struct fib_alias
*fa
;
2900 struct key_vector
*l
= v
;
2903 if (v
== SEQ_START_TOKEN
) {
2904 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2905 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2910 prefix
= htonl(l
->key
);
2912 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2913 struct fib_info
*fi
= fa
->fa_info
;
2914 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2915 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2917 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2918 (fa
->fa_type
== RTN_MULTICAST
))
2921 if (fa
->tb_id
!= tb
->tb_id
)
2924 seq_setwidth(seq
, 127);
2927 struct fib_nh_common
*nhc
= fib_info_nhc(fi
, 0);
2930 if (nhc
->nhc_gw_family
== AF_INET
)
2931 gw
= nhc
->nhc_gw
.ipv4
;
2934 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2935 "%d\t%08X\t%d\t%u\t%u",
2936 nhc
->nhc_dev
? nhc
->nhc_dev
->name
: "*",
2937 prefix
, gw
, flags
, 0, 0,
2941 fi
->fib_advmss
+ 40 : 0),
2946 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2947 "%d\t%08X\t%d\t%u\t%u",
2948 prefix
, 0, flags
, 0, 0, 0,
2957 static const struct seq_operations fib_route_seq_ops
= {
2958 .start
= fib_route_seq_start
,
2959 .next
= fib_route_seq_next
,
2960 .stop
= fib_route_seq_stop
,
2961 .show
= fib_route_seq_show
,
2964 int __net_init
fib_proc_init(struct net
*net
)
2966 if (!proc_create_net("fib_trie", 0444, net
->proc_net
, &fib_trie_seq_ops
,
2967 sizeof(struct fib_trie_iter
)))
2970 if (!proc_create_net_single("fib_triestat", 0444, net
->proc_net
,
2971 fib_triestat_seq_show
, NULL
))
2974 if (!proc_create_net("route", 0444, net
->proc_net
, &fib_route_seq_ops
,
2975 sizeof(struct fib_route_iter
)))
2981 remove_proc_entry("fib_triestat", net
->proc_net
);
2983 remove_proc_entry("fib_trie", net
->proc_net
);
2988 void __net_exit
fib_proc_exit(struct net
*net
)
2990 remove_proc_entry("fib_trie", net
->proc_net
);
2991 remove_proc_entry("fib_triestat", net
->proc_net
);
2992 remove_proc_entry("route", net
->proc_net
);
2995 #endif /* CONFIG_PROC_FS */