1 // SPDX-License-Identifier: GPL-2.0
5 void tcp_mark_skb_lost(struct sock
*sk
, struct sk_buff
*skb
)
7 struct tcp_sock
*tp
= tcp_sk(sk
);
9 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
10 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
11 /* Account for retransmits that are lost again */
12 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
13 tp
->retrans_out
-= tcp_skb_pcount(skb
);
14 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPLOSTRETRANSMIT
,
19 static bool tcp_rack_sent_after(u64 t1
, u64 t2
, u32 seq1
, u32 seq2
)
21 return t1
> t2
|| (t1
== t2
&& after(seq1
, seq2
));
24 static u32
tcp_rack_reo_wnd(const struct sock
*sk
)
26 struct tcp_sock
*tp
= tcp_sk(sk
);
28 if (!tp
->reord_seen
) {
29 /* If reordering has not been observed, be aggressive during
30 * the recovery or starting the recovery by DUPACK threshold.
32 if (inet_csk(sk
)->icsk_ca_state
>= TCP_CA_Recovery
)
35 if (tp
->sacked_out
>= tp
->reordering
&&
36 !(sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_NO_DUPTHRESH
))
40 /* To be more reordering resilient, allow min_rtt/4 settling delay.
41 * Use min_rtt instead of the smoothed RTT because reordering is
42 * often a path property and less related to queuing or delayed ACKs.
43 * Upon receiving DSACKs, linearly increase the window up to the
46 return min((tcp_min_rtt(tp
) >> 2) * tp
->rack
.reo_wnd_steps
,
50 s32
tcp_rack_skb_timeout(struct tcp_sock
*tp
, struct sk_buff
*skb
, u32 reo_wnd
)
52 return tp
->rack
.rtt_us
+ reo_wnd
-
53 tcp_stamp_us_delta(tp
->tcp_mstamp
, tcp_skb_timestamp_us(skb
));
56 /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
58 * Marks a packet lost, if some packet sent later has been (s)acked.
59 * The underlying idea is similar to the traditional dupthresh and FACK
60 * but they look at different metrics:
62 * dupthresh: 3 OOO packets delivered (packet count)
63 * FACK: sequence delta to highest sacked sequence (sequence space)
64 * RACK: sent time delta to the latest delivered packet (time domain)
66 * The advantage of RACK is it applies to both original and retransmitted
67 * packet and therefore is robust against tail losses. Another advantage
68 * is being more resilient to reordering by simply allowing some
69 * "settling delay", instead of tweaking the dupthresh.
71 * When tcp_rack_detect_loss() detects some packets are lost and we
72 * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
73 * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
74 * make us enter the CA_Recovery state.
76 static void tcp_rack_detect_loss(struct sock
*sk
, u32
*reo_timeout
)
78 struct tcp_sock
*tp
= tcp_sk(sk
);
79 struct sk_buff
*skb
, *n
;
83 reo_wnd
= tcp_rack_reo_wnd(sk
);
84 list_for_each_entry_safe(skb
, n
, &tp
->tsorted_sent_queue
,
86 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
89 /* Skip ones marked lost but not yet retransmitted */
90 if ((scb
->sacked
& TCPCB_LOST
) &&
91 !(scb
->sacked
& TCPCB_SACKED_RETRANS
))
94 if (!tcp_rack_sent_after(tp
->rack
.mstamp
,
95 tcp_skb_timestamp_us(skb
),
96 tp
->rack
.end_seq
, scb
->end_seq
))
99 /* A packet is lost if it has not been s/acked beyond
100 * the recent RTT plus the reordering window.
102 remaining
= tcp_rack_skb_timeout(tp
, skb
, reo_wnd
);
103 if (remaining
<= 0) {
104 tcp_mark_skb_lost(sk
, skb
);
105 list_del_init(&skb
->tcp_tsorted_anchor
);
107 /* Record maximum wait time */
108 *reo_timeout
= max_t(u32
, *reo_timeout
, remaining
);
113 void tcp_rack_mark_lost(struct sock
*sk
)
115 struct tcp_sock
*tp
= tcp_sk(sk
);
118 if (!tp
->rack
.advanced
)
121 /* Reset the advanced flag to avoid unnecessary queue scanning */
122 tp
->rack
.advanced
= 0;
123 tcp_rack_detect_loss(sk
, &timeout
);
125 timeout
= usecs_to_jiffies(timeout
) + TCP_TIMEOUT_MIN
;
126 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_REO_TIMEOUT
,
127 timeout
, inet_csk(sk
)->icsk_rto
);
131 /* Record the most recently (re)sent time among the (s)acked packets
132 * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
133 * draft-cheng-tcpm-rack-00.txt
135 void tcp_rack_advance(struct tcp_sock
*tp
, u8 sacked
, u32 end_seq
,
140 rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, xmit_time
);
141 if (rtt_us
< tcp_min_rtt(tp
) && (sacked
& TCPCB_RETRANS
)) {
142 /* If the sacked packet was retransmitted, it's ambiguous
143 * whether the retransmission or the original (or the prior
144 * retransmission) was sacked.
146 * If the original is lost, there is no ambiguity. Otherwise
147 * we assume the original can be delayed up to aRTT + min_rtt.
148 * the aRTT term is bounded by the fast recovery or timeout,
149 * so it's at least one RTT (i.e., retransmission is at least
154 tp
->rack
.advanced
= 1;
155 tp
->rack
.rtt_us
= rtt_us
;
156 if (tcp_rack_sent_after(xmit_time
, tp
->rack
.mstamp
,
157 end_seq
, tp
->rack
.end_seq
)) {
158 tp
->rack
.mstamp
= xmit_time
;
159 tp
->rack
.end_seq
= end_seq
;
163 /* We have waited long enough to accommodate reordering. Mark the expired
164 * packets lost and retransmit them.
166 void tcp_rack_reo_timeout(struct sock
*sk
)
168 struct tcp_sock
*tp
= tcp_sk(sk
);
169 u32 timeout
, prior_inflight
;
171 prior_inflight
= tcp_packets_in_flight(tp
);
172 tcp_rack_detect_loss(sk
, &timeout
);
173 if (prior_inflight
!= tcp_packets_in_flight(tp
)) {
174 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Recovery
) {
175 tcp_enter_recovery(sk
, false);
176 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
177 tcp_cwnd_reduction(sk
, 1, 0);
179 tcp_xmit_retransmit_queue(sk
);
181 if (inet_csk(sk
)->icsk_pending
!= ICSK_TIME_RETRANS
)
185 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
187 * If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded
188 * by srtt), since there is possibility that spurious retransmission was
189 * due to reordering delay longer than reo_wnd.
191 * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
192 * no. of successful recoveries (accounts for full DSACK-based loss
193 * recovery undo). After that, reset it to default (min_rtt/4).
195 * At max, reo_wnd is incremented only once per rtt. So that the new
196 * DSACK on which we are reacting, is due to the spurious retx (approx)
197 * after the reo_wnd has been updated last time.
199 * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
200 * absolute value to account for change in rtt.
202 void tcp_rack_update_reo_wnd(struct sock
*sk
, struct rate_sample
*rs
)
204 struct tcp_sock
*tp
= tcp_sk(sk
);
206 if (sock_net(sk
)->ipv4
.sysctl_tcp_recovery
& TCP_RACK_STATIC_REO_WND
||
207 !rs
->prior_delivered
)
210 /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
211 if (before(rs
->prior_delivered
, tp
->rack
.last_delivered
))
212 tp
->rack
.dsack_seen
= 0;
214 /* Adjust the reo_wnd if update is pending */
215 if (tp
->rack
.dsack_seen
) {
216 tp
->rack
.reo_wnd_steps
= min_t(u32
, 0xFF,
217 tp
->rack
.reo_wnd_steps
+ 1);
218 tp
->rack
.dsack_seen
= 0;
219 tp
->rack
.last_delivered
= tp
->delivered
;
220 tp
->rack
.reo_wnd_persist
= TCP_RACK_RECOVERY_THRESH
;
221 } else if (!tp
->rack
.reo_wnd_persist
) {
222 tp
->rack
.reo_wnd_steps
= 1;
226 /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
227 * the next unacked packet upon receiving
228 * a) three or more DUPACKs to start the fast recovery
229 * b) an ACK acknowledging new data during the fast recovery.
231 void tcp_newreno_mark_lost(struct sock
*sk
, bool snd_una_advanced
)
233 const u8 state
= inet_csk(sk
)->icsk_ca_state
;
234 struct tcp_sock
*tp
= tcp_sk(sk
);
236 if ((state
< TCP_CA_Recovery
&& tp
->sacked_out
>= tp
->reordering
) ||
237 (state
== TCP_CA_Recovery
&& snd_una_advanced
)) {
238 struct sk_buff
*skb
= tcp_rtx_queue_head(sk
);
241 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
244 mss
= tcp_skb_mss(skb
);
245 if (tcp_skb_pcount(skb
) > 1 && skb
->len
> mss
)
246 tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
247 mss
, mss
, GFP_ATOMIC
);
249 tcp_skb_mark_lost_uncond_verify(tp
, skb
);