2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 #include <linux/bitmap.h>
26 #include <linux/bitops.h>
27 #include <linux/bug.h>
28 #include <linux/cpu.h>
29 #include <linux/errno.h>
30 #include <linux/export.h>
31 #include <linux/idr.h>
32 #include <linux/init.h>
33 #include <linux/kernel.h>
34 #include <linux/kmemleak.h>
35 #include <linux/percpu.h>
36 #include <linux/preempt.h> /* in_interrupt() */
37 #include <linux/radix-tree.h>
38 #include <linux/rcupdate.h>
39 #include <linux/slab.h>
40 #include <linux/string.h>
43 /* Number of nodes in fully populated tree of given height */
44 static unsigned long height_to_maxnodes
[RADIX_TREE_MAX_PATH
+ 1] __read_mostly
;
47 * Radix tree node cache.
49 static struct kmem_cache
*radix_tree_node_cachep
;
52 * The radix tree is variable-height, so an insert operation not only has
53 * to build the branch to its corresponding item, it also has to build the
54 * branch to existing items if the size has to be increased (by
57 * The worst case is a zero height tree with just a single item at index 0,
58 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
59 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
62 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
65 * The IDR does not have to be as high as the radix tree since it uses
66 * signed integers, not unsigned longs.
68 #define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
69 #define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
70 RADIX_TREE_MAP_SHIFT))
71 #define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
74 * The IDA is even shorter since it uses a bitmap at the last level.
76 #define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
77 #define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
78 RADIX_TREE_MAP_SHIFT))
79 #define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
82 * Per-cpu pool of preloaded nodes
84 struct radix_tree_preload
{
86 /* nodes->parent points to next preallocated node */
87 struct radix_tree_node
*nodes
;
89 static DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = { 0, };
91 static inline struct radix_tree_node
*entry_to_node(void *ptr
)
93 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INTERNAL_NODE
);
96 static inline void *node_to_entry(void *ptr
)
98 return (void *)((unsigned long)ptr
| RADIX_TREE_INTERNAL_NODE
);
101 #define RADIX_TREE_RETRY node_to_entry(NULL)
103 #ifdef CONFIG_RADIX_TREE_MULTIORDER
104 /* Sibling slots point directly to another slot in the same node */
106 bool is_sibling_entry(const struct radix_tree_node
*parent
, void *node
)
108 void __rcu
**ptr
= node
;
109 return (parent
->slots
<= ptr
) &&
110 (ptr
< parent
->slots
+ RADIX_TREE_MAP_SIZE
);
114 bool is_sibling_entry(const struct radix_tree_node
*parent
, void *node
)
120 static inline unsigned long
121 get_slot_offset(const struct radix_tree_node
*parent
, void __rcu
**slot
)
123 return slot
- parent
->slots
;
126 static unsigned int radix_tree_descend(const struct radix_tree_node
*parent
,
127 struct radix_tree_node
**nodep
, unsigned long index
)
129 unsigned int offset
= (index
>> parent
->shift
) & RADIX_TREE_MAP_MASK
;
130 void __rcu
**entry
= rcu_dereference_raw(parent
->slots
[offset
]);
132 #ifdef CONFIG_RADIX_TREE_MULTIORDER
133 if (radix_tree_is_internal_node(entry
)) {
134 if (is_sibling_entry(parent
, entry
)) {
135 void __rcu
**sibentry
;
136 sibentry
= (void __rcu
**) entry_to_node(entry
);
137 offset
= get_slot_offset(parent
, sibentry
);
138 entry
= rcu_dereference_raw(*sibentry
);
143 *nodep
= (void *)entry
;
147 static inline gfp_t
root_gfp_mask(const struct radix_tree_root
*root
)
149 return root
->gfp_mask
& __GFP_BITS_MASK
;
152 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
155 __set_bit(offset
, node
->tags
[tag
]);
158 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
161 __clear_bit(offset
, node
->tags
[tag
]);
164 static inline int tag_get(const struct radix_tree_node
*node
, unsigned int tag
,
167 return test_bit(offset
, node
->tags
[tag
]);
170 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned tag
)
172 root
->gfp_mask
|= (__force gfp_t
)(1 << (tag
+ ROOT_TAG_SHIFT
));
175 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned tag
)
177 root
->gfp_mask
&= (__force gfp_t
)~(1 << (tag
+ ROOT_TAG_SHIFT
));
180 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
182 root
->gfp_mask
&= (1 << ROOT_TAG_SHIFT
) - 1;
185 static inline int root_tag_get(const struct radix_tree_root
*root
, unsigned tag
)
187 return (__force
int)root
->gfp_mask
& (1 << (tag
+ ROOT_TAG_SHIFT
));
190 static inline unsigned root_tags_get(const struct radix_tree_root
*root
)
192 return (__force
unsigned)root
->gfp_mask
>> ROOT_TAG_SHIFT
;
195 static inline bool is_idr(const struct radix_tree_root
*root
)
197 return !!(root
->gfp_mask
& ROOT_IS_IDR
);
201 * Returns 1 if any slot in the node has this tag set.
202 * Otherwise returns 0.
204 static inline int any_tag_set(const struct radix_tree_node
*node
,
208 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
209 if (node
->tags
[tag
][idx
])
215 static inline void all_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
217 bitmap_fill(node
->tags
[tag
], RADIX_TREE_MAP_SIZE
);
221 * radix_tree_find_next_bit - find the next set bit in a memory region
223 * @addr: The address to base the search on
224 * @size: The bitmap size in bits
225 * @offset: The bitnumber to start searching at
227 * Unrollable variant of find_next_bit() for constant size arrays.
228 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
229 * Returns next bit offset, or size if nothing found.
231 static __always_inline
unsigned long
232 radix_tree_find_next_bit(struct radix_tree_node
*node
, unsigned int tag
,
233 unsigned long offset
)
235 const unsigned long *addr
= node
->tags
[tag
];
237 if (offset
< RADIX_TREE_MAP_SIZE
) {
240 addr
+= offset
/ BITS_PER_LONG
;
241 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
243 return __ffs(tmp
) + offset
;
244 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
245 while (offset
< RADIX_TREE_MAP_SIZE
) {
248 return __ffs(tmp
) + offset
;
249 offset
+= BITS_PER_LONG
;
252 return RADIX_TREE_MAP_SIZE
;
255 static unsigned int iter_offset(const struct radix_tree_iter
*iter
)
257 return (iter
->index
>> iter_shift(iter
)) & RADIX_TREE_MAP_MASK
;
261 * The maximum index which can be stored in a radix tree
263 static inline unsigned long shift_maxindex(unsigned int shift
)
265 return (RADIX_TREE_MAP_SIZE
<< shift
) - 1;
268 static inline unsigned long node_maxindex(const struct radix_tree_node
*node
)
270 return shift_maxindex(node
->shift
);
273 static unsigned long next_index(unsigned long index
,
274 const struct radix_tree_node
*node
,
275 unsigned long offset
)
277 return (index
& ~node_maxindex(node
)) + (offset
<< node
->shift
);
281 static void dump_node(struct radix_tree_node
*node
, unsigned long index
)
285 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
286 node
, node
->offset
, index
, index
| node_maxindex(node
),
288 node
->tags
[0][0], node
->tags
[1][0], node
->tags
[2][0],
289 node
->shift
, node
->count
, node
->exceptional
);
291 for (i
= 0; i
< RADIX_TREE_MAP_SIZE
; i
++) {
292 unsigned long first
= index
| (i
<< node
->shift
);
293 unsigned long last
= first
| ((1UL << node
->shift
) - 1);
294 void *entry
= node
->slots
[i
];
297 if (entry
== RADIX_TREE_RETRY
) {
298 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
299 i
, first
, last
, node
);
300 } else if (!radix_tree_is_internal_node(entry
)) {
301 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
302 entry
, i
, first
, last
, node
);
303 } else if (is_sibling_entry(node
, entry
)) {
304 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
305 entry
, i
, first
, last
, node
,
306 *(void **)entry_to_node(entry
));
308 dump_node(entry_to_node(entry
), first
);
314 static void radix_tree_dump(struct radix_tree_root
*root
)
316 pr_debug("radix root: %p rnode %p tags %x\n",
318 root
->gfp_mask
>> ROOT_TAG_SHIFT
);
319 if (!radix_tree_is_internal_node(root
->rnode
))
321 dump_node(entry_to_node(root
->rnode
), 0);
324 static void dump_ida_node(void *entry
, unsigned long index
)
331 if (radix_tree_is_internal_node(entry
)) {
332 struct radix_tree_node
*node
= entry_to_node(entry
);
334 pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
335 node
, node
->offset
, index
* IDA_BITMAP_BITS
,
336 ((index
| node_maxindex(node
)) + 1) *
338 node
->parent
, node
->tags
[0][0], node
->shift
,
340 for (i
= 0; i
< RADIX_TREE_MAP_SIZE
; i
++)
341 dump_ida_node(node
->slots
[i
],
342 index
| (i
<< node
->shift
));
343 } else if (radix_tree_exceptional_entry(entry
)) {
344 pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
345 entry
, (int)(index
& RADIX_TREE_MAP_MASK
),
346 index
* IDA_BITMAP_BITS
,
347 index
* IDA_BITMAP_BITS
+ BITS_PER_LONG
-
348 RADIX_TREE_EXCEPTIONAL_SHIFT
,
349 (unsigned long)entry
>>
350 RADIX_TREE_EXCEPTIONAL_SHIFT
);
352 struct ida_bitmap
*bitmap
= entry
;
354 pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap
,
355 (int)(index
& RADIX_TREE_MAP_MASK
),
356 index
* IDA_BITMAP_BITS
,
357 (index
+ 1) * IDA_BITMAP_BITS
- 1);
358 for (i
= 0; i
< IDA_BITMAP_LONGS
; i
++)
359 pr_cont(" %lx", bitmap
->bitmap
[i
]);
364 static void ida_dump(struct ida
*ida
)
366 struct radix_tree_root
*root
= &ida
->ida_rt
;
367 pr_debug("ida: %p node %p free %d\n", ida
, root
->rnode
,
368 root
->gfp_mask
>> ROOT_TAG_SHIFT
);
369 dump_ida_node(root
->rnode
, 0);
374 * This assumes that the caller has performed appropriate preallocation, and
375 * that the caller has pinned this thread of control to the current CPU.
377 static struct radix_tree_node
*
378 radix_tree_node_alloc(gfp_t gfp_mask
, struct radix_tree_node
*parent
,
379 struct radix_tree_root
*root
,
380 unsigned int shift
, unsigned int offset
,
381 unsigned int count
, unsigned int exceptional
)
383 struct radix_tree_node
*ret
= NULL
;
386 * Preload code isn't irq safe and it doesn't make sense to use
387 * preloading during an interrupt anyway as all the allocations have
388 * to be atomic. So just do normal allocation when in interrupt.
390 if (!gfpflags_allow_blocking(gfp_mask
) && !in_interrupt()) {
391 struct radix_tree_preload
*rtp
;
394 * Even if the caller has preloaded, try to allocate from the
395 * cache first for the new node to get accounted to the memory
398 ret
= kmem_cache_alloc(radix_tree_node_cachep
,
399 gfp_mask
| __GFP_NOWARN
);
404 * Provided the caller has preloaded here, we will always
405 * succeed in getting a node here (and never reach
408 rtp
= this_cpu_ptr(&radix_tree_preloads
);
411 rtp
->nodes
= ret
->parent
;
415 * Update the allocation stack trace as this is more useful
418 kmemleak_update_trace(ret
);
421 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
423 BUG_ON(radix_tree_is_internal_node(ret
));
426 ret
->offset
= offset
;
428 ret
->exceptional
= exceptional
;
429 ret
->parent
= parent
;
435 static void radix_tree_node_rcu_free(struct rcu_head
*head
)
437 struct radix_tree_node
*node
=
438 container_of(head
, struct radix_tree_node
, rcu_head
);
441 * Must only free zeroed nodes into the slab. We can be left with
442 * non-NULL entries by radix_tree_free_nodes, so clear the entries
445 memset(node
->slots
, 0, sizeof(node
->slots
));
446 memset(node
->tags
, 0, sizeof(node
->tags
));
447 INIT_LIST_HEAD(&node
->private_list
);
449 kmem_cache_free(radix_tree_node_cachep
, node
);
453 radix_tree_node_free(struct radix_tree_node
*node
)
455 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
459 * Load up this CPU's radix_tree_node buffer with sufficient objects to
460 * ensure that the addition of a single element in the tree cannot fail. On
461 * success, return zero, with preemption disabled. On error, return -ENOMEM
462 * with preemption not disabled.
464 * To make use of this facility, the radix tree must be initialised without
465 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
467 static __must_check
int __radix_tree_preload(gfp_t gfp_mask
, unsigned nr
)
469 struct radix_tree_preload
*rtp
;
470 struct radix_tree_node
*node
;
474 * Nodes preloaded by one cgroup can be be used by another cgroup, so
475 * they should never be accounted to any particular memory cgroup.
477 gfp_mask
&= ~__GFP_ACCOUNT
;
480 rtp
= this_cpu_ptr(&radix_tree_preloads
);
481 while (rtp
->nr
< nr
) {
483 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
487 rtp
= this_cpu_ptr(&radix_tree_preloads
);
489 node
->parent
= rtp
->nodes
;
493 kmem_cache_free(radix_tree_node_cachep
, node
);
502 * Load up this CPU's radix_tree_node buffer with sufficient objects to
503 * ensure that the addition of a single element in the tree cannot fail. On
504 * success, return zero, with preemption disabled. On error, return -ENOMEM
505 * with preemption not disabled.
507 * To make use of this facility, the radix tree must be initialised without
508 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
510 int radix_tree_preload(gfp_t gfp_mask
)
512 /* Warn on non-sensical use... */
513 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
514 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
516 EXPORT_SYMBOL(radix_tree_preload
);
519 * The same as above function, except we don't guarantee preloading happens.
520 * We do it, if we decide it helps. On success, return zero with preemption
521 * disabled. On error, return -ENOMEM with preemption not disabled.
523 int radix_tree_maybe_preload(gfp_t gfp_mask
)
525 if (gfpflags_allow_blocking(gfp_mask
))
526 return __radix_tree_preload(gfp_mask
, RADIX_TREE_PRELOAD_SIZE
);
527 /* Preloading doesn't help anything with this gfp mask, skip it */
531 EXPORT_SYMBOL(radix_tree_maybe_preload
);
533 #ifdef CONFIG_RADIX_TREE_MULTIORDER
535 * Preload with enough objects to ensure that we can split a single entry
536 * of order @old_order into many entries of size @new_order
538 int radix_tree_split_preload(unsigned int old_order
, unsigned int new_order
,
541 unsigned top
= 1 << (old_order
% RADIX_TREE_MAP_SHIFT
);
542 unsigned layers
= (old_order
/ RADIX_TREE_MAP_SHIFT
) -
543 (new_order
/ RADIX_TREE_MAP_SHIFT
);
546 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
547 BUG_ON(new_order
>= old_order
);
550 nr
= nr
* RADIX_TREE_MAP_SIZE
+ 1;
551 return __radix_tree_preload(gfp_mask
, top
* nr
);
556 * The same as function above, but preload number of nodes required to insert
557 * (1 << order) continuous naturally-aligned elements.
559 int radix_tree_maybe_preload_order(gfp_t gfp_mask
, int order
)
561 unsigned long nr_subtrees
;
562 int nr_nodes
, subtree_height
;
564 /* Preloading doesn't help anything with this gfp mask, skip it */
565 if (!gfpflags_allow_blocking(gfp_mask
)) {
571 * Calculate number and height of fully populated subtrees it takes to
572 * store (1 << order) elements.
574 nr_subtrees
= 1 << order
;
575 for (subtree_height
= 0; nr_subtrees
> RADIX_TREE_MAP_SIZE
;
577 nr_subtrees
>>= RADIX_TREE_MAP_SHIFT
;
580 * The worst case is zero height tree with a single item at index 0 and
581 * then inserting items starting at ULONG_MAX - (1 << order).
583 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
586 nr_nodes
= RADIX_TREE_MAX_PATH
;
588 /* Plus branch to fully populated subtrees. */
589 nr_nodes
+= RADIX_TREE_MAX_PATH
- subtree_height
;
591 /* Root node is shared. */
594 /* Plus nodes required to build subtrees. */
595 nr_nodes
+= nr_subtrees
* height_to_maxnodes
[subtree_height
];
597 return __radix_tree_preload(gfp_mask
, nr_nodes
);
600 static unsigned radix_tree_load_root(const struct radix_tree_root
*root
,
601 struct radix_tree_node
**nodep
, unsigned long *maxindex
)
603 struct radix_tree_node
*node
= rcu_dereference_raw(root
->rnode
);
607 if (likely(radix_tree_is_internal_node(node
))) {
608 node
= entry_to_node(node
);
609 *maxindex
= node_maxindex(node
);
610 return node
->shift
+ RADIX_TREE_MAP_SHIFT
;
618 * Extend a radix tree so it can store key @index.
620 static int radix_tree_extend(struct radix_tree_root
*root
, gfp_t gfp
,
621 unsigned long index
, unsigned int shift
)
624 unsigned int maxshift
;
627 /* Figure out what the shift should be. */
629 while (index
> shift_maxindex(maxshift
))
630 maxshift
+= RADIX_TREE_MAP_SHIFT
;
632 entry
= rcu_dereference_raw(root
->rnode
);
633 if (!entry
&& (!is_idr(root
) || root_tag_get(root
, IDR_FREE
)))
637 struct radix_tree_node
*node
= radix_tree_node_alloc(gfp
, NULL
,
638 root
, shift
, 0, 1, 0);
643 all_tag_set(node
, IDR_FREE
);
644 if (!root_tag_get(root
, IDR_FREE
)) {
645 tag_clear(node
, IDR_FREE
, 0);
646 root_tag_set(root
, IDR_FREE
);
649 /* Propagate the aggregated tag info to the new child */
650 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
651 if (root_tag_get(root
, tag
))
652 tag_set(node
, tag
, 0);
656 BUG_ON(shift
> BITS_PER_LONG
);
657 if (radix_tree_is_internal_node(entry
)) {
658 entry_to_node(entry
)->parent
= node
;
659 } else if (radix_tree_exceptional_entry(entry
)) {
660 /* Moving an exceptional root->rnode to a node */
661 node
->exceptional
= 1;
664 * entry was already in the radix tree, so we do not need
665 * rcu_assign_pointer here
667 node
->slots
[0] = (void __rcu
*)entry
;
668 entry
= node_to_entry(node
);
669 rcu_assign_pointer(root
->rnode
, entry
);
670 shift
+= RADIX_TREE_MAP_SHIFT
;
671 } while (shift
<= maxshift
);
673 return maxshift
+ RADIX_TREE_MAP_SHIFT
;
677 * radix_tree_shrink - shrink radix tree to minimum height
678 * @root radix tree root
680 static inline bool radix_tree_shrink(struct radix_tree_root
*root
,
681 radix_tree_update_node_t update_node
)
686 struct radix_tree_node
*node
= rcu_dereference_raw(root
->rnode
);
687 struct radix_tree_node
*child
;
689 if (!radix_tree_is_internal_node(node
))
691 node
= entry_to_node(node
);
694 * The candidate node has more than one child, or its child
695 * is not at the leftmost slot, or the child is a multiorder
696 * entry, we cannot shrink.
698 if (node
->count
!= 1)
700 child
= rcu_dereference_raw(node
->slots
[0]);
703 if (!radix_tree_is_internal_node(child
) && node
->shift
)
706 if (radix_tree_is_internal_node(child
))
707 entry_to_node(child
)->parent
= NULL
;
710 * We don't need rcu_assign_pointer(), since we are simply
711 * moving the node from one part of the tree to another: if it
712 * was safe to dereference the old pointer to it
713 * (node->slots[0]), it will be safe to dereference the new
714 * one (root->rnode) as far as dependent read barriers go.
716 root
->rnode
= (void __rcu
*)child
;
717 if (is_idr(root
) && !tag_get(node
, IDR_FREE
, 0))
718 root_tag_clear(root
, IDR_FREE
);
721 * We have a dilemma here. The node's slot[0] must not be
722 * NULLed in case there are concurrent lookups expecting to
723 * find the item. However if this was a bottom-level node,
724 * then it may be subject to the slot pointer being visible
725 * to callers dereferencing it. If item corresponding to
726 * slot[0] is subsequently deleted, these callers would expect
727 * their slot to become empty sooner or later.
729 * For example, lockless pagecache will look up a slot, deref
730 * the page pointer, and if the page has 0 refcount it means it
731 * was concurrently deleted from pagecache so try the deref
732 * again. Fortunately there is already a requirement for logic
733 * to retry the entire slot lookup -- the indirect pointer
734 * problem (replacing direct root node with an indirect pointer
735 * also results in a stale slot). So tag the slot as indirect
736 * to force callers to retry.
739 if (!radix_tree_is_internal_node(child
)) {
740 node
->slots
[0] = (void __rcu
*)RADIX_TREE_RETRY
;
745 WARN_ON_ONCE(!list_empty(&node
->private_list
));
746 radix_tree_node_free(node
);
753 static bool delete_node(struct radix_tree_root
*root
,
754 struct radix_tree_node
*node
,
755 radix_tree_update_node_t update_node
)
757 bool deleted
= false;
760 struct radix_tree_node
*parent
;
763 if (node_to_entry(node
) ==
764 rcu_dereference_raw(root
->rnode
))
765 deleted
|= radix_tree_shrink(root
,
770 parent
= node
->parent
;
772 parent
->slots
[node
->offset
] = NULL
;
776 * Shouldn't the tags already have all been cleared
780 root_tag_clear_all(root
);
784 WARN_ON_ONCE(!list_empty(&node
->private_list
));
785 radix_tree_node_free(node
);
795 * __radix_tree_create - create a slot in a radix tree
796 * @root: radix tree root
798 * @order: index occupies 2^order aligned slots
799 * @nodep: returns node
800 * @slotp: returns slot
802 * Create, if necessary, and return the node and slot for an item
803 * at position @index in the radix tree @root.
805 * Until there is more than one item in the tree, no nodes are
806 * allocated and @root->rnode is used as a direct slot instead of
807 * pointing to a node, in which case *@nodep will be NULL.
809 * Returns -ENOMEM, or 0 for success.
811 int __radix_tree_create(struct radix_tree_root
*root
, unsigned long index
,
812 unsigned order
, struct radix_tree_node
**nodep
,
815 struct radix_tree_node
*node
= NULL
, *child
;
816 void __rcu
**slot
= (void __rcu
**)&root
->rnode
;
817 unsigned long maxindex
;
818 unsigned int shift
, offset
= 0;
819 unsigned long max
= index
| ((1UL << order
) - 1);
820 gfp_t gfp
= root_gfp_mask(root
);
822 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
824 /* Make sure the tree is high enough. */
825 if (order
> 0 && max
== ((1UL << order
) - 1))
827 if (max
> maxindex
) {
828 int error
= radix_tree_extend(root
, gfp
, max
, shift
);
832 child
= rcu_dereference_raw(root
->rnode
);
835 while (shift
> order
) {
836 shift
-= RADIX_TREE_MAP_SHIFT
;
838 /* Have to add a child node. */
839 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
843 rcu_assign_pointer(*slot
, node_to_entry(child
));
846 } else if (!radix_tree_is_internal_node(child
))
849 /* Go a level down */
850 node
= entry_to_node(child
);
851 offset
= radix_tree_descend(node
, &child
, index
);
852 slot
= &node
->slots
[offset
];
863 * Free any nodes below this node. The tree is presumed to not need
864 * shrinking, and any user data in the tree is presumed to not need a
865 * destructor called on it. If we need to add a destructor, we can
866 * add that functionality later. Note that we may not clear tags or
867 * slots from the tree as an RCU walker may still have a pointer into
868 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
869 * but we'll still have to clear those in rcu_free.
871 static void radix_tree_free_nodes(struct radix_tree_node
*node
)
874 struct radix_tree_node
*child
= entry_to_node(node
);
877 void *entry
= rcu_dereference_raw(child
->slots
[offset
]);
878 if (radix_tree_is_internal_node(entry
) &&
879 !is_sibling_entry(child
, entry
)) {
880 child
= entry_to_node(entry
);
885 while (offset
== RADIX_TREE_MAP_SIZE
) {
886 struct radix_tree_node
*old
= child
;
887 offset
= child
->offset
+ 1;
888 child
= child
->parent
;
889 WARN_ON_ONCE(!list_empty(&old
->private_list
));
890 radix_tree_node_free(old
);
891 if (old
== entry_to_node(node
))
897 #ifdef CONFIG_RADIX_TREE_MULTIORDER
898 static inline int insert_entries(struct radix_tree_node
*node
,
899 void __rcu
**slot
, void *item
, unsigned order
, bool replace
)
901 struct radix_tree_node
*child
;
902 unsigned i
, n
, tag
, offset
, tags
= 0;
905 if (order
> node
->shift
)
906 n
= 1 << (order
- node
->shift
);
909 offset
= get_slot_offset(node
, slot
);
916 offset
= offset
& ~(n
- 1);
917 slot
= &node
->slots
[offset
];
919 child
= node_to_entry(slot
);
921 for (i
= 0; i
< n
; i
++) {
925 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
926 if (tag_get(node
, tag
, offset
+ i
))
933 for (i
= 0; i
< n
; i
++) {
934 struct radix_tree_node
*old
= rcu_dereference_raw(slot
[i
]);
936 rcu_assign_pointer(slot
[i
], child
);
937 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
938 if (tags
& (1 << tag
))
939 tag_clear(node
, tag
, offset
+ i
);
941 rcu_assign_pointer(slot
[i
], item
);
942 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
943 if (tags
& (1 << tag
))
944 tag_set(node
, tag
, offset
);
946 if (radix_tree_is_internal_node(old
) &&
947 !is_sibling_entry(node
, old
) &&
948 (old
!= RADIX_TREE_RETRY
))
949 radix_tree_free_nodes(old
);
950 if (radix_tree_exceptional_entry(old
))
955 if (radix_tree_exceptional_entry(item
))
956 node
->exceptional
+= n
;
961 static inline int insert_entries(struct radix_tree_node
*node
,
962 void __rcu
**slot
, void *item
, unsigned order
, bool replace
)
966 rcu_assign_pointer(*slot
, item
);
969 if (radix_tree_exceptional_entry(item
))
977 * __radix_tree_insert - insert into a radix tree
978 * @root: radix tree root
980 * @order: key covers the 2^order indices around index
981 * @item: item to insert
983 * Insert an item into the radix tree at position @index.
985 int __radix_tree_insert(struct radix_tree_root
*root
, unsigned long index
,
986 unsigned order
, void *item
)
988 struct radix_tree_node
*node
;
992 BUG_ON(radix_tree_is_internal_node(item
));
994 error
= __radix_tree_create(root
, index
, order
, &node
, &slot
);
998 error
= insert_entries(node
, slot
, item
, order
, false);
1003 unsigned offset
= get_slot_offset(node
, slot
);
1004 BUG_ON(tag_get(node
, 0, offset
));
1005 BUG_ON(tag_get(node
, 1, offset
));
1006 BUG_ON(tag_get(node
, 2, offset
));
1008 BUG_ON(root_tags_get(root
));
1013 EXPORT_SYMBOL(__radix_tree_insert
);
1016 * __radix_tree_lookup - lookup an item in a radix tree
1017 * @root: radix tree root
1019 * @nodep: returns node
1020 * @slotp: returns slot
1022 * Lookup and return the item at position @index in the radix
1025 * Until there is more than one item in the tree, no nodes are
1026 * allocated and @root->rnode is used as a direct slot instead of
1027 * pointing to a node, in which case *@nodep will be NULL.
1029 void *__radix_tree_lookup(const struct radix_tree_root
*root
,
1030 unsigned long index
, struct radix_tree_node
**nodep
,
1031 void __rcu
***slotp
)
1033 struct radix_tree_node
*node
, *parent
;
1034 unsigned long maxindex
;
1039 slot
= (void __rcu
**)&root
->rnode
;
1040 radix_tree_load_root(root
, &node
, &maxindex
);
1041 if (index
> maxindex
)
1044 while (radix_tree_is_internal_node(node
)) {
1047 if (node
== RADIX_TREE_RETRY
)
1049 parent
= entry_to_node(node
);
1050 offset
= radix_tree_descend(parent
, &node
, index
);
1051 slot
= parent
->slots
+ offset
;
1062 * radix_tree_lookup_slot - lookup a slot in a radix tree
1063 * @root: radix tree root
1066 * Returns: the slot corresponding to the position @index in the
1067 * radix tree @root. This is useful for update-if-exists operations.
1069 * This function can be called under rcu_read_lock iff the slot is not
1070 * modified by radix_tree_replace_slot, otherwise it must be called
1071 * exclusive from other writers. Any dereference of the slot must be done
1072 * using radix_tree_deref_slot.
1074 void __rcu
**radix_tree_lookup_slot(const struct radix_tree_root
*root
,
1075 unsigned long index
)
1079 if (!__radix_tree_lookup(root
, index
, NULL
, &slot
))
1083 EXPORT_SYMBOL(radix_tree_lookup_slot
);
1086 * radix_tree_lookup - perform lookup operation on a radix tree
1087 * @root: radix tree root
1090 * Lookup the item at the position @index in the radix tree @root.
1092 * This function can be called under rcu_read_lock, however the caller
1093 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1094 * them safely). No RCU barriers are required to access or modify the
1095 * returned item, however.
1097 void *radix_tree_lookup(const struct radix_tree_root
*root
, unsigned long index
)
1099 return __radix_tree_lookup(root
, index
, NULL
, NULL
);
1101 EXPORT_SYMBOL(radix_tree_lookup
);
1103 static inline void replace_sibling_entries(struct radix_tree_node
*node
,
1104 void __rcu
**slot
, int count
, int exceptional
)
1106 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1107 void *ptr
= node_to_entry(slot
);
1108 unsigned offset
= get_slot_offset(node
, slot
) + 1;
1110 while (offset
< RADIX_TREE_MAP_SIZE
) {
1111 if (rcu_dereference_raw(node
->slots
[offset
]) != ptr
)
1114 node
->slots
[offset
] = NULL
;
1117 node
->exceptional
+= exceptional
;
1123 static void replace_slot(void __rcu
**slot
, void *item
,
1124 struct radix_tree_node
*node
, int count
, int exceptional
)
1126 if (WARN_ON_ONCE(radix_tree_is_internal_node(item
)))
1129 if (node
&& (count
|| exceptional
)) {
1130 node
->count
+= count
;
1131 node
->exceptional
+= exceptional
;
1132 replace_sibling_entries(node
, slot
, count
, exceptional
);
1135 rcu_assign_pointer(*slot
, item
);
1138 static bool node_tag_get(const struct radix_tree_root
*root
,
1139 const struct radix_tree_node
*node
,
1140 unsigned int tag
, unsigned int offset
)
1143 return tag_get(node
, tag
, offset
);
1144 return root_tag_get(root
, tag
);
1148 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1149 * free, don't adjust the count, even if it's transitioning between NULL and
1150 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1151 * have empty bits, but it only stores NULL in slots when they're being
1154 static int calculate_count(struct radix_tree_root
*root
,
1155 struct radix_tree_node
*node
, void __rcu
**slot
,
1156 void *item
, void *old
)
1159 unsigned offset
= get_slot_offset(node
, slot
);
1160 bool free
= node_tag_get(root
, node
, IDR_FREE
, offset
);
1166 return !!item
- !!old
;
1170 * __radix_tree_replace - replace item in a slot
1171 * @root: radix tree root
1172 * @node: pointer to tree node
1173 * @slot: pointer to slot in @node
1174 * @item: new item to store in the slot.
1175 * @update_node: callback for changing leaf nodes
1177 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1178 * across slot lookup and replacement.
1180 void __radix_tree_replace(struct radix_tree_root
*root
,
1181 struct radix_tree_node
*node
,
1182 void __rcu
**slot
, void *item
,
1183 radix_tree_update_node_t update_node
)
1185 void *old
= rcu_dereference_raw(*slot
);
1186 int exceptional
= !!radix_tree_exceptional_entry(item
) -
1187 !!radix_tree_exceptional_entry(old
);
1188 int count
= calculate_count(root
, node
, slot
, item
, old
);
1191 * This function supports replacing exceptional entries and
1192 * deleting entries, but that needs accounting against the
1193 * node unless the slot is root->rnode.
1195 WARN_ON_ONCE(!node
&& (slot
!= (void __rcu
**)&root
->rnode
) &&
1196 (count
|| exceptional
));
1197 replace_slot(slot
, item
, node
, count
, exceptional
);
1205 delete_node(root
, node
, update_node
);
1209 * radix_tree_replace_slot - replace item in a slot
1210 * @root: radix tree root
1211 * @slot: pointer to slot
1212 * @item: new item to store in the slot.
1214 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1215 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1216 * across slot lookup and replacement.
1218 * NOTE: This cannot be used to switch between non-entries (empty slots),
1219 * regular entries, and exceptional entries, as that requires accounting
1220 * inside the radix tree node. When switching from one type of entry or
1221 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1222 * radix_tree_iter_replace().
1224 void radix_tree_replace_slot(struct radix_tree_root
*root
,
1225 void __rcu
**slot
, void *item
)
1227 __radix_tree_replace(root
, NULL
, slot
, item
, NULL
);
1229 EXPORT_SYMBOL(radix_tree_replace_slot
);
1232 * radix_tree_iter_replace - replace item in a slot
1233 * @root: radix tree root
1234 * @slot: pointer to slot
1235 * @item: new item to store in the slot.
1237 * For use with radix_tree_split() and radix_tree_for_each_slot().
1238 * Caller must hold tree write locked across split and replacement.
1240 void radix_tree_iter_replace(struct radix_tree_root
*root
,
1241 const struct radix_tree_iter
*iter
,
1242 void __rcu
**slot
, void *item
)
1244 __radix_tree_replace(root
, iter
->node
, slot
, item
, NULL
);
1247 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1249 * radix_tree_join - replace multiple entries with one multiorder entry
1250 * @root: radix tree root
1251 * @index: an index inside the new entry
1252 * @order: order of the new entry
1255 * Call this function to replace several entries with one larger entry.
1256 * The existing entries are presumed to not need freeing as a result of
1259 * The replacement entry will have all the tags set on it that were set
1260 * on any of the entries it is replacing.
1262 int radix_tree_join(struct radix_tree_root
*root
, unsigned long index
,
1263 unsigned order
, void *item
)
1265 struct radix_tree_node
*node
;
1269 BUG_ON(radix_tree_is_internal_node(item
));
1271 error
= __radix_tree_create(root
, index
, order
, &node
, &slot
);
1273 error
= insert_entries(node
, slot
, item
, order
, true);
1281 * radix_tree_split - Split an entry into smaller entries
1282 * @root: radix tree root
1283 * @index: An index within the large entry
1284 * @order: Order of new entries
1286 * Call this function as the first step in replacing a multiorder entry
1287 * with several entries of lower order. After this function returns,
1288 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1289 * and call radix_tree_iter_replace() to set up each new entry.
1291 * The tags from this entry are replicated to all the new entries.
1293 * The radix tree should be locked against modification during the entire
1294 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1295 * should prompt RCU walkers to restart the lookup from the root.
1297 int radix_tree_split(struct radix_tree_root
*root
, unsigned long index
,
1300 struct radix_tree_node
*parent
, *node
, *child
;
1302 unsigned int offset
, end
;
1303 unsigned n
, tag
, tags
= 0;
1304 gfp_t gfp
= root_gfp_mask(root
);
1306 if (!__radix_tree_lookup(root
, index
, &parent
, &slot
))
1311 offset
= get_slot_offset(parent
, slot
);
1313 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1314 if (tag_get(parent
, tag
, offset
))
1317 for (end
= offset
+ 1; end
< RADIX_TREE_MAP_SIZE
; end
++) {
1318 if (!is_sibling_entry(parent
,
1319 rcu_dereference_raw(parent
->slots
[end
])))
1321 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1322 if (tags
& (1 << tag
))
1323 tag_set(parent
, tag
, end
);
1324 /* rcu_assign_pointer ensures tags are set before RETRY */
1325 rcu_assign_pointer(parent
->slots
[end
], RADIX_TREE_RETRY
);
1327 rcu_assign_pointer(parent
->slots
[offset
], RADIX_TREE_RETRY
);
1328 parent
->exceptional
-= (end
- offset
);
1330 if (order
== parent
->shift
)
1332 if (order
> parent
->shift
) {
1333 while (offset
< end
)
1334 offset
+= insert_entries(parent
, &parent
->slots
[offset
],
1335 RADIX_TREE_RETRY
, order
, true);
1342 if (node
->shift
> order
) {
1343 child
= radix_tree_node_alloc(gfp
, node
, root
,
1344 node
->shift
- RADIX_TREE_MAP_SHIFT
,
1348 if (node
!= parent
) {
1350 rcu_assign_pointer(node
->slots
[offset
],
1351 node_to_entry(child
));
1352 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1353 if (tags
& (1 << tag
))
1354 tag_set(node
, tag
, offset
);
1362 n
= insert_entries(node
, &node
->slots
[offset
],
1363 RADIX_TREE_RETRY
, order
, false);
1364 BUG_ON(n
> RADIX_TREE_MAP_SIZE
);
1366 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1367 if (tags
& (1 << tag
))
1368 tag_set(node
, tag
, offset
);
1371 while (offset
== RADIX_TREE_MAP_SIZE
) {
1374 offset
= node
->offset
;
1376 node
= node
->parent
;
1377 rcu_assign_pointer(node
->slots
[offset
],
1378 node_to_entry(child
));
1381 if ((node
== parent
) && (offset
== end
))
1386 /* Shouldn't happen; did user forget to preload? */
1387 /* TODO: free all the allocated nodes */
1393 static void node_tag_set(struct radix_tree_root
*root
,
1394 struct radix_tree_node
*node
,
1395 unsigned int tag
, unsigned int offset
)
1398 if (tag_get(node
, tag
, offset
))
1400 tag_set(node
, tag
, offset
);
1401 offset
= node
->offset
;
1402 node
= node
->parent
;
1405 if (!root_tag_get(root
, tag
))
1406 root_tag_set(root
, tag
);
1410 * radix_tree_tag_set - set a tag on a radix tree node
1411 * @root: radix tree root
1415 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1416 * corresponding to @index in the radix tree. From
1417 * the root all the way down to the leaf node.
1419 * Returns the address of the tagged item. Setting a tag on a not-present
1422 void *radix_tree_tag_set(struct radix_tree_root
*root
,
1423 unsigned long index
, unsigned int tag
)
1425 struct radix_tree_node
*node
, *parent
;
1426 unsigned long maxindex
;
1428 radix_tree_load_root(root
, &node
, &maxindex
);
1429 BUG_ON(index
> maxindex
);
1431 while (radix_tree_is_internal_node(node
)) {
1434 parent
= entry_to_node(node
);
1435 offset
= radix_tree_descend(parent
, &node
, index
);
1438 if (!tag_get(parent
, tag
, offset
))
1439 tag_set(parent
, tag
, offset
);
1442 /* set the root's tag bit */
1443 if (!root_tag_get(root
, tag
))
1444 root_tag_set(root
, tag
);
1448 EXPORT_SYMBOL(radix_tree_tag_set
);
1451 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1452 * @root: radix tree root
1453 * @iter: iterator state
1456 void radix_tree_iter_tag_set(struct radix_tree_root
*root
,
1457 const struct radix_tree_iter
*iter
, unsigned int tag
)
1459 node_tag_set(root
, iter
->node
, tag
, iter_offset(iter
));
1462 static void node_tag_clear(struct radix_tree_root
*root
,
1463 struct radix_tree_node
*node
,
1464 unsigned int tag
, unsigned int offset
)
1467 if (!tag_get(node
, tag
, offset
))
1469 tag_clear(node
, tag
, offset
);
1470 if (any_tag_set(node
, tag
))
1473 offset
= node
->offset
;
1474 node
= node
->parent
;
1477 /* clear the root's tag bit */
1478 if (root_tag_get(root
, tag
))
1479 root_tag_clear(root
, tag
);
1483 * radix_tree_tag_clear - clear a tag on a radix tree node
1484 * @root: radix tree root
1488 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1489 * corresponding to @index in the radix tree. If this causes
1490 * the leaf node to have no tags set then clear the tag in the
1491 * next-to-leaf node, etc.
1493 * Returns the address of the tagged item on success, else NULL. ie:
1494 * has the same return value and semantics as radix_tree_lookup().
1496 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
1497 unsigned long index
, unsigned int tag
)
1499 struct radix_tree_node
*node
, *parent
;
1500 unsigned long maxindex
;
1501 int uninitialized_var(offset
);
1503 radix_tree_load_root(root
, &node
, &maxindex
);
1504 if (index
> maxindex
)
1509 while (radix_tree_is_internal_node(node
)) {
1510 parent
= entry_to_node(node
);
1511 offset
= radix_tree_descend(parent
, &node
, index
);
1515 node_tag_clear(root
, parent
, tag
, offset
);
1519 EXPORT_SYMBOL(radix_tree_tag_clear
);
1522 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1523 * @root: radix tree root
1524 * @iter: iterator state
1525 * @tag: tag to clear
1527 void radix_tree_iter_tag_clear(struct radix_tree_root
*root
,
1528 const struct radix_tree_iter
*iter
, unsigned int tag
)
1530 node_tag_clear(root
, iter
->node
, tag
, iter_offset(iter
));
1534 * radix_tree_tag_get - get a tag on a radix tree node
1535 * @root: radix tree root
1537 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1541 * 0: tag not present or not set
1544 * Note that the return value of this function may not be relied on, even if
1545 * the RCU lock is held, unless tag modification and node deletion are excluded
1548 int radix_tree_tag_get(const struct radix_tree_root
*root
,
1549 unsigned long index
, unsigned int tag
)
1551 struct radix_tree_node
*node
, *parent
;
1552 unsigned long maxindex
;
1554 if (!root_tag_get(root
, tag
))
1557 radix_tree_load_root(root
, &node
, &maxindex
);
1558 if (index
> maxindex
)
1561 while (radix_tree_is_internal_node(node
)) {
1564 parent
= entry_to_node(node
);
1565 offset
= radix_tree_descend(parent
, &node
, index
);
1567 if (!tag_get(parent
, tag
, offset
))
1569 if (node
== RADIX_TREE_RETRY
)
1575 EXPORT_SYMBOL(radix_tree_tag_get
);
1577 static inline void __set_iter_shift(struct radix_tree_iter
*iter
,
1580 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1581 iter
->shift
= shift
;
1585 /* Construct iter->tags bit-mask from node->tags[tag] array */
1586 static void set_iter_tags(struct radix_tree_iter
*iter
,
1587 struct radix_tree_node
*node
, unsigned offset
,
1590 unsigned tag_long
= offset
/ BITS_PER_LONG
;
1591 unsigned tag_bit
= offset
% BITS_PER_LONG
;
1598 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
1600 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1601 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
1602 /* Pick tags from next element */
1604 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
1605 (BITS_PER_LONG
- tag_bit
);
1606 /* Clip chunk size, here only BITS_PER_LONG tags */
1607 iter
->next_index
= __radix_tree_iter_add(iter
, BITS_PER_LONG
);
1611 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1612 static void __rcu
**skip_siblings(struct radix_tree_node
**nodep
,
1613 void __rcu
**slot
, struct radix_tree_iter
*iter
)
1615 void *sib
= node_to_entry(slot
- 1);
1617 while (iter
->index
< iter
->next_index
) {
1618 *nodep
= rcu_dereference_raw(*slot
);
1619 if (*nodep
&& *nodep
!= sib
)
1622 iter
->index
= __radix_tree_iter_add(iter
, 1);
1630 void __rcu
**__radix_tree_next_slot(void __rcu
**slot
,
1631 struct radix_tree_iter
*iter
, unsigned flags
)
1633 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1634 struct radix_tree_node
*node
= rcu_dereference_raw(*slot
);
1636 slot
= skip_siblings(&node
, slot
, iter
);
1638 while (radix_tree_is_internal_node(node
)) {
1640 unsigned long next_index
;
1642 if (node
== RADIX_TREE_RETRY
)
1644 node
= entry_to_node(node
);
1646 iter
->shift
= node
->shift
;
1648 if (flags
& RADIX_TREE_ITER_TAGGED
) {
1649 offset
= radix_tree_find_next_bit(node
, tag
, 0);
1650 if (offset
== RADIX_TREE_MAP_SIZE
)
1652 slot
= &node
->slots
[offset
];
1653 iter
->index
= __radix_tree_iter_add(iter
, offset
);
1654 set_iter_tags(iter
, node
, offset
, tag
);
1655 node
= rcu_dereference_raw(*slot
);
1658 slot
= &node
->slots
[0];
1660 node
= rcu_dereference_raw(*slot
);
1665 if (offset
== RADIX_TREE_MAP_SIZE
)
1668 iter
->index
= __radix_tree_iter_add(iter
, offset
);
1670 if ((flags
& RADIX_TREE_ITER_CONTIG
) && (offset
> 0))
1672 next_index
= (iter
->index
| shift_maxindex(iter
->shift
)) + 1;
1673 if (next_index
< iter
->next_index
)
1674 iter
->next_index
= next_index
;
1679 iter
->next_index
= 0;
1682 EXPORT_SYMBOL(__radix_tree_next_slot
);
1684 static void __rcu
**skip_siblings(struct radix_tree_node
**nodep
,
1685 void __rcu
**slot
, struct radix_tree_iter
*iter
)
1691 void __rcu
**radix_tree_iter_resume(void __rcu
**slot
,
1692 struct radix_tree_iter
*iter
)
1694 struct radix_tree_node
*node
;
1697 iter
->index
= __radix_tree_iter_add(iter
, 1);
1698 skip_siblings(&node
, slot
, iter
);
1699 iter
->next_index
= iter
->index
;
1703 EXPORT_SYMBOL(radix_tree_iter_resume
);
1706 * radix_tree_next_chunk - find next chunk of slots for iteration
1708 * @root: radix tree root
1709 * @iter: iterator state
1710 * @flags: RADIX_TREE_ITER_* flags and tag index
1711 * Returns: pointer to chunk first slot, or NULL if iteration is over
1713 void __rcu
**radix_tree_next_chunk(const struct radix_tree_root
*root
,
1714 struct radix_tree_iter
*iter
, unsigned flags
)
1716 unsigned tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
1717 struct radix_tree_node
*node
, *child
;
1718 unsigned long index
, offset
, maxindex
;
1720 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
1724 * Catch next_index overflow after ~0UL. iter->index never overflows
1725 * during iterating; it can be zero only at the beginning.
1726 * And we cannot overflow iter->next_index in a single step,
1727 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1729 * This condition also used by radix_tree_next_slot() to stop
1730 * contiguous iterating, and forbid switching to the next chunk.
1732 index
= iter
->next_index
;
1733 if (!index
&& iter
->index
)
1737 radix_tree_load_root(root
, &child
, &maxindex
);
1738 if (index
> maxindex
)
1743 if (!radix_tree_is_internal_node(child
)) {
1744 /* Single-slot tree */
1745 iter
->index
= index
;
1746 iter
->next_index
= maxindex
+ 1;
1749 __set_iter_shift(iter
, 0);
1750 return (void __rcu
**)&root
->rnode
;
1754 node
= entry_to_node(child
);
1755 offset
= radix_tree_descend(node
, &child
, index
);
1757 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
1758 !tag_get(node
, tag
, offset
) : !child
) {
1760 if (flags
& RADIX_TREE_ITER_CONTIG
)
1763 if (flags
& RADIX_TREE_ITER_TAGGED
)
1764 offset
= radix_tree_find_next_bit(node
, tag
,
1767 while (++offset
< RADIX_TREE_MAP_SIZE
) {
1768 void *slot
= rcu_dereference_raw(
1769 node
->slots
[offset
]);
1770 if (is_sibling_entry(node
, slot
))
1775 index
&= ~node_maxindex(node
);
1776 index
+= offset
<< node
->shift
;
1777 /* Overflow after ~0UL */
1780 if (offset
== RADIX_TREE_MAP_SIZE
)
1782 child
= rcu_dereference_raw(node
->slots
[offset
]);
1787 if (child
== RADIX_TREE_RETRY
)
1789 } while (radix_tree_is_internal_node(child
));
1791 /* Update the iterator state */
1792 iter
->index
= (index
&~ node_maxindex(node
)) | (offset
<< node
->shift
);
1793 iter
->next_index
= (index
| node_maxindex(node
)) + 1;
1795 __set_iter_shift(iter
, node
->shift
);
1797 if (flags
& RADIX_TREE_ITER_TAGGED
)
1798 set_iter_tags(iter
, node
, offset
, tag
);
1800 return node
->slots
+ offset
;
1802 EXPORT_SYMBOL(radix_tree_next_chunk
);
1805 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1806 * @root: radix tree root
1807 * @results: where the results of the lookup are placed
1808 * @first_index: start the lookup from this key
1809 * @max_items: place up to this many items at *results
1811 * Performs an index-ascending scan of the tree for present items. Places
1812 * them at *@results and returns the number of items which were placed at
1815 * The implementation is naive.
1817 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1818 * rcu_read_lock. In this case, rather than the returned results being
1819 * an atomic snapshot of the tree at a single point in time, the
1820 * semantics of an RCU protected gang lookup are as though multiple
1821 * radix_tree_lookups have been issued in individual locks, and results
1822 * stored in 'results'.
1825 radix_tree_gang_lookup(const struct radix_tree_root
*root
, void **results
,
1826 unsigned long first_index
, unsigned int max_items
)
1828 struct radix_tree_iter iter
;
1830 unsigned int ret
= 0;
1832 if (unlikely(!max_items
))
1835 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1836 results
[ret
] = rcu_dereference_raw(*slot
);
1839 if (radix_tree_is_internal_node(results
[ret
])) {
1840 slot
= radix_tree_iter_retry(&iter
);
1843 if (++ret
== max_items
)
1849 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1852 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1853 * @root: radix tree root
1854 * @results: where the results of the lookup are placed
1855 * @indices: where their indices should be placed (but usually NULL)
1856 * @first_index: start the lookup from this key
1857 * @max_items: place up to this many items at *results
1859 * Performs an index-ascending scan of the tree for present items. Places
1860 * their slots at *@results and returns the number of items which were
1861 * placed at *@results.
1863 * The implementation is naive.
1865 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1866 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1867 * protection, radix_tree_deref_slot may fail requiring a retry.
1870 radix_tree_gang_lookup_slot(const struct radix_tree_root
*root
,
1871 void __rcu
***results
, unsigned long *indices
,
1872 unsigned long first_index
, unsigned int max_items
)
1874 struct radix_tree_iter iter
;
1876 unsigned int ret
= 0;
1878 if (unlikely(!max_items
))
1881 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1882 results
[ret
] = slot
;
1884 indices
[ret
] = iter
.index
;
1885 if (++ret
== max_items
)
1891 EXPORT_SYMBOL(radix_tree_gang_lookup_slot
);
1894 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1896 * @root: radix tree root
1897 * @results: where the results of the lookup are placed
1898 * @first_index: start the lookup from this key
1899 * @max_items: place up to this many items at *results
1900 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1902 * Performs an index-ascending scan of the tree for present items which
1903 * have the tag indexed by @tag set. Places the items at *@results and
1904 * returns the number of items which were placed at *@results.
1907 radix_tree_gang_lookup_tag(const struct radix_tree_root
*root
, void **results
,
1908 unsigned long first_index
, unsigned int max_items
,
1911 struct radix_tree_iter iter
;
1913 unsigned int ret
= 0;
1915 if (unlikely(!max_items
))
1918 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1919 results
[ret
] = rcu_dereference_raw(*slot
);
1922 if (radix_tree_is_internal_node(results
[ret
])) {
1923 slot
= radix_tree_iter_retry(&iter
);
1926 if (++ret
== max_items
)
1932 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1935 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1936 * radix tree based on a tag
1937 * @root: radix tree root
1938 * @results: where the results of the lookup are placed
1939 * @first_index: start the lookup from this key
1940 * @max_items: place up to this many items at *results
1941 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1943 * Performs an index-ascending scan of the tree for present items which
1944 * have the tag indexed by @tag set. Places the slots at *@results and
1945 * returns the number of slots which were placed at *@results.
1948 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root
*root
,
1949 void __rcu
***results
, unsigned long first_index
,
1950 unsigned int max_items
, unsigned int tag
)
1952 struct radix_tree_iter iter
;
1954 unsigned int ret
= 0;
1956 if (unlikely(!max_items
))
1959 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1960 results
[ret
] = slot
;
1961 if (++ret
== max_items
)
1967 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1970 * __radix_tree_delete_node - try to free node after clearing a slot
1971 * @root: radix tree root
1972 * @node: node containing @index
1973 * @update_node: callback for changing leaf nodes
1975 * After clearing the slot at @index in @node from radix tree
1976 * rooted at @root, call this function to attempt freeing the
1977 * node and shrinking the tree.
1979 void __radix_tree_delete_node(struct radix_tree_root
*root
,
1980 struct radix_tree_node
*node
,
1981 radix_tree_update_node_t update_node
)
1983 delete_node(root
, node
, update_node
);
1986 static bool __radix_tree_delete(struct radix_tree_root
*root
,
1987 struct radix_tree_node
*node
, void __rcu
**slot
)
1989 void *old
= rcu_dereference_raw(*slot
);
1990 int exceptional
= radix_tree_exceptional_entry(old
) ? -1 : 0;
1991 unsigned offset
= get_slot_offset(node
, slot
);
1995 node_tag_set(root
, node
, IDR_FREE
, offset
);
1997 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
1998 node_tag_clear(root
, node
, tag
, offset
);
2000 replace_slot(slot
, NULL
, node
, -1, exceptional
);
2001 return node
&& delete_node(root
, node
, NULL
);
2005 * radix_tree_iter_delete - delete the entry at this iterator position
2006 * @root: radix tree root
2007 * @iter: iterator state
2008 * @slot: pointer to slot
2010 * Delete the entry at the position currently pointed to by the iterator.
2011 * This may result in the current node being freed; if it is, the iterator
2012 * is advanced so that it will not reference the freed memory. This
2013 * function may be called without any locking if there are no other threads
2014 * which can access this tree.
2016 void radix_tree_iter_delete(struct radix_tree_root
*root
,
2017 struct radix_tree_iter
*iter
, void __rcu
**slot
)
2019 if (__radix_tree_delete(root
, iter
->node
, slot
))
2020 iter
->index
= iter
->next_index
;
2022 EXPORT_SYMBOL(radix_tree_iter_delete
);
2025 * radix_tree_delete_item - delete an item from a radix tree
2026 * @root: radix tree root
2028 * @item: expected item
2030 * Remove @item at @index from the radix tree rooted at @root.
2032 * Return: the deleted entry, or %NULL if it was not present
2033 * or the entry at the given @index was not @item.
2035 void *radix_tree_delete_item(struct radix_tree_root
*root
,
2036 unsigned long index
, void *item
)
2038 struct radix_tree_node
*node
= NULL
;
2042 entry
= __radix_tree_lookup(root
, index
, &node
, &slot
);
2043 if (!entry
&& (!is_idr(root
) || node_tag_get(root
, node
, IDR_FREE
,
2044 get_slot_offset(node
, slot
))))
2047 if (item
&& entry
!= item
)
2050 __radix_tree_delete(root
, node
, slot
);
2054 EXPORT_SYMBOL(radix_tree_delete_item
);
2057 * radix_tree_delete - delete an entry from a radix tree
2058 * @root: radix tree root
2061 * Remove the entry at @index from the radix tree rooted at @root.
2063 * Return: The deleted entry, or %NULL if it was not present.
2065 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
2067 return radix_tree_delete_item(root
, index
, NULL
);
2069 EXPORT_SYMBOL(radix_tree_delete
);
2071 void radix_tree_clear_tags(struct radix_tree_root
*root
,
2072 struct radix_tree_node
*node
,
2076 unsigned int tag
, offset
= get_slot_offset(node
, slot
);
2077 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++)
2078 node_tag_clear(root
, node
, tag
, offset
);
2080 root_tag_clear_all(root
);
2085 * radix_tree_tagged - test whether any items in the tree are tagged
2086 * @root: radix tree root
2089 int radix_tree_tagged(const struct radix_tree_root
*root
, unsigned int tag
)
2091 return root_tag_get(root
, tag
);
2093 EXPORT_SYMBOL(radix_tree_tagged
);
2096 * idr_preload - preload for idr_alloc()
2097 * @gfp_mask: allocation mask to use for preloading
2099 * Preallocate memory to use for the next call to idr_alloc(). This function
2100 * returns with preemption disabled. It will be enabled by idr_preload_end().
2102 void idr_preload(gfp_t gfp_mask
)
2104 if (__radix_tree_preload(gfp_mask
, IDR_PRELOAD_SIZE
))
2107 EXPORT_SYMBOL(idr_preload
);
2110 * ida_pre_get - reserve resources for ida allocation
2112 * @gfp: memory allocation flags
2114 * This function should be called before calling ida_get_new_above(). If it
2115 * is unable to allocate memory, it will return %0. On success, it returns %1.
2117 int ida_pre_get(struct ida
*ida
, gfp_t gfp
)
2120 * The IDA API has no preload_end() equivalent. Instead,
2121 * ida_get_new() can return -EAGAIN, prompting the caller
2122 * to return to the ida_pre_get() step.
2124 if (!__radix_tree_preload(gfp
, IDA_PRELOAD_SIZE
))
2127 if (!this_cpu_read(ida_bitmap
)) {
2128 struct ida_bitmap
*bitmap
= kzalloc(sizeof(*bitmap
), gfp
);
2131 if (this_cpu_cmpxchg(ida_bitmap
, NULL
, bitmap
))
2137 EXPORT_SYMBOL(ida_pre_get
);
2139 void __rcu
**idr_get_free(struct radix_tree_root
*root
,
2140 struct radix_tree_iter
*iter
, gfp_t gfp
,
2143 struct radix_tree_node
*node
= NULL
, *child
;
2144 void __rcu
**slot
= (void __rcu
**)&root
->rnode
;
2145 unsigned long maxindex
, start
= iter
->next_index
;
2146 unsigned int shift
, offset
= 0;
2149 shift
= radix_tree_load_root(root
, &child
, &maxindex
);
2150 if (!radix_tree_tagged(root
, IDR_FREE
))
2151 start
= max(start
, maxindex
+ 1);
2153 return ERR_PTR(-ENOSPC
);
2155 if (start
> maxindex
) {
2156 int error
= radix_tree_extend(root
, gfp
, start
, shift
);
2158 return ERR_PTR(error
);
2160 child
= rcu_dereference_raw(root
->rnode
);
2164 shift
-= RADIX_TREE_MAP_SHIFT
;
2165 if (child
== NULL
) {
2166 /* Have to add a child node. */
2167 child
= radix_tree_node_alloc(gfp
, node
, root
, shift
,
2170 return ERR_PTR(-ENOMEM
);
2171 all_tag_set(child
, IDR_FREE
);
2172 rcu_assign_pointer(*slot
, node_to_entry(child
));
2175 } else if (!radix_tree_is_internal_node(child
))
2178 node
= entry_to_node(child
);
2179 offset
= radix_tree_descend(node
, &child
, start
);
2180 if (!tag_get(node
, IDR_FREE
, offset
)) {
2181 offset
= radix_tree_find_next_bit(node
, IDR_FREE
,
2183 start
= next_index(start
, node
, offset
);
2185 return ERR_PTR(-ENOSPC
);
2186 while (offset
== RADIX_TREE_MAP_SIZE
) {
2187 offset
= node
->offset
+ 1;
2188 node
= node
->parent
;
2191 shift
= node
->shift
;
2193 child
= rcu_dereference_raw(node
->slots
[offset
]);
2195 slot
= &node
->slots
[offset
];
2198 iter
->index
= start
;
2200 iter
->next_index
= 1 + min(max
, (start
| node_maxindex(node
)));
2202 iter
->next_index
= 1;
2204 __set_iter_shift(iter
, shift
);
2205 set_iter_tags(iter
, node
, offset
, IDR_FREE
);
2211 * idr_destroy - release all internal memory from an IDR
2214 * After this function is called, the IDR is empty, and may be reused or
2215 * the data structure containing it may be freed.
2217 * A typical clean-up sequence for objects stored in an idr tree will use
2218 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2219 * free the memory used to keep track of those objects.
2221 void idr_destroy(struct idr
*idr
)
2223 struct radix_tree_node
*node
= rcu_dereference_raw(idr
->idr_rt
.rnode
);
2224 if (radix_tree_is_internal_node(node
))
2225 radix_tree_free_nodes(node
);
2226 idr
->idr_rt
.rnode
= NULL
;
2227 root_tag_set(&idr
->idr_rt
, IDR_FREE
);
2229 EXPORT_SYMBOL(idr_destroy
);
2232 radix_tree_node_ctor(void *arg
)
2234 struct radix_tree_node
*node
= arg
;
2236 memset(node
, 0, sizeof(*node
));
2237 INIT_LIST_HEAD(&node
->private_list
);
2240 static __init
unsigned long __maxindex(unsigned int height
)
2242 unsigned int width
= height
* RADIX_TREE_MAP_SHIFT
;
2243 int shift
= RADIX_TREE_INDEX_BITS
- width
;
2247 if (shift
>= BITS_PER_LONG
)
2249 return ~0UL >> shift
;
2252 static __init
void radix_tree_init_maxnodes(void)
2254 unsigned long height_to_maxindex
[RADIX_TREE_MAX_PATH
+ 1];
2257 for (i
= 0; i
< ARRAY_SIZE(height_to_maxindex
); i
++)
2258 height_to_maxindex
[i
] = __maxindex(i
);
2259 for (i
= 0; i
< ARRAY_SIZE(height_to_maxnodes
); i
++) {
2260 for (j
= i
; j
> 0; j
--)
2261 height_to_maxnodes
[i
] += height_to_maxindex
[j
- 1] + 1;
2265 static int radix_tree_cpu_dead(unsigned int cpu
)
2267 struct radix_tree_preload
*rtp
;
2268 struct radix_tree_node
*node
;
2270 /* Free per-cpu pool of preloaded nodes */
2271 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
2274 rtp
->nodes
= node
->parent
;
2275 kmem_cache_free(radix_tree_node_cachep
, node
);
2278 kfree(per_cpu(ida_bitmap
, cpu
));
2279 per_cpu(ida_bitmap
, cpu
) = NULL
;
2283 void __init
radix_tree_init(void)
2287 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS
+ __GFP_BITS_SHIFT
> 32);
2288 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
2289 sizeof(struct radix_tree_node
), 0,
2290 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
2291 radix_tree_node_ctor
);
2292 radix_tree_init_maxnodes();
2293 ret
= cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD
, "lib/radix:dead",
2294 NULL
, radix_tree_cpu_dead
);