audit: fix some horrible switch statement style crimes
[linux/fpc-iii.git] / mm / memory.c
blob07493e34ab7e281936d43cb84e681728a23cbc4a
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
67 #include <asm/io.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/tlb.h>
72 #include <asm/tlbflush.h>
73 #include <asm/pgtable.h>
75 #include "internal.h"
77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #endif
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
91 * A number of key systems in x86 including ioremap() rely on the assumption
92 * that high_memory defines the upper bound on direct map memory, then end
93 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
94 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95 * and ZONE_HIGHMEM.
97 void * high_memory;
99 EXPORT_SYMBOL(high_memory);
102 * Randomize the address space (stacks, mmaps, brk, etc.).
104 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105 * as ancient (libc5 based) binaries can segfault. )
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
110 #else
112 #endif
114 static int __init disable_randmaps(char *s)
116 randomize_va_space = 0;
117 return 1;
119 __setup("norandmaps", disable_randmaps);
121 unsigned long zero_pfn __read_mostly;
122 unsigned long highest_memmap_pfn __read_mostly;
124 EXPORT_SYMBOL(zero_pfn);
127 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
129 static int __init init_zero_pfn(void)
131 zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 return 0;
134 core_initcall(init_zero_pfn);
137 #if defined(SPLIT_RSS_COUNTING)
139 void sync_mm_rss(struct mm_struct *mm)
141 int i;
143 for (i = 0; i < NR_MM_COUNTERS; i++) {
144 if (current->rss_stat.count[i]) {
145 add_mm_counter(mm, i, current->rss_stat.count[i]);
146 current->rss_stat.count[i] = 0;
149 current->rss_stat.events = 0;
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
154 struct task_struct *task = current;
156 if (likely(task->mm == mm))
157 task->rss_stat.count[member] += val;
158 else
159 add_mm_counter(mm, member, val);
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH (64)
166 static void check_sync_rss_stat(struct task_struct *task)
168 if (unlikely(task != current))
169 return;
170 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 sync_mm_rss(task->mm);
173 #else /* SPLIT_RSS_COUNTING */
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
178 static void check_sync_rss_stat(struct task_struct *task)
182 #endif /* SPLIT_RSS_COUNTING */
184 #ifdef HAVE_GENERIC_MMU_GATHER
186 static bool tlb_next_batch(struct mmu_gather *tlb)
188 struct mmu_gather_batch *batch;
190 batch = tlb->active;
191 if (batch->next) {
192 tlb->active = batch->next;
193 return true;
196 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 return false;
199 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 if (!batch)
201 return false;
203 tlb->batch_count++;
204 batch->next = NULL;
205 batch->nr = 0;
206 batch->max = MAX_GATHER_BATCH;
208 tlb->active->next = batch;
209 tlb->active = batch;
211 return true;
214 /* tlb_gather_mmu
215 * Called to initialize an (on-stack) mmu_gather structure for page-table
216 * tear-down from @mm. The @fullmm argument is used when @mm is without
217 * users and we're going to destroy the full address space (exit/execve).
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
221 tlb->mm = mm;
223 /* Is it from 0 to ~0? */
224 tlb->fullmm = !(start | (end+1));
225 tlb->need_flush_all = 0;
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
230 tlb->batch_count = 0;
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234 #endif
236 __tlb_reset_range(tlb);
239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
241 if (!tlb->end)
242 return;
244 tlb_flush(tlb);
245 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247 tlb_table_flush(tlb);
248 #endif
249 __tlb_reset_range(tlb);
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 struct mmu_gather_batch *batch;
256 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257 free_pages_and_swap_cache(batch->pages, batch->nr);
258 batch->nr = 0;
260 tlb->active = &tlb->local;
263 void tlb_flush_mmu(struct mmu_gather *tlb)
265 tlb_flush_mmu_tlbonly(tlb);
266 tlb_flush_mmu_free(tlb);
269 /* tlb_finish_mmu
270 * Called at the end of the shootdown operation to free up any resources
271 * that were required.
273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
275 struct mmu_gather_batch *batch, *next;
277 tlb_flush_mmu(tlb);
279 /* keep the page table cache within bounds */
280 check_pgt_cache();
282 for (batch = tlb->local.next; batch; batch = next) {
283 next = batch->next;
284 free_pages((unsigned long)batch, 0);
286 tlb->local.next = NULL;
289 /* __tlb_remove_page
290 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291 * handling the additional races in SMP caused by other CPUs caching valid
292 * mappings in their TLBs. Returns the number of free page slots left.
293 * When out of page slots we must call tlb_flush_mmu().
295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
297 struct mmu_gather_batch *batch;
299 VM_BUG_ON(!tlb->end);
301 batch = tlb->active;
302 batch->pages[batch->nr++] = page;
303 if (batch->nr == batch->max) {
304 if (!tlb_next_batch(tlb))
305 return 0;
306 batch = tlb->active;
308 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
310 return batch->max - batch->nr;
313 #endif /* HAVE_GENERIC_MMU_GATHER */
315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
318 * See the comment near struct mmu_table_batch.
321 static void tlb_remove_table_smp_sync(void *arg)
323 /* Simply deliver the interrupt */
326 static void tlb_remove_table_one(void *table)
329 * This isn't an RCU grace period and hence the page-tables cannot be
330 * assumed to be actually RCU-freed.
332 * It is however sufficient for software page-table walkers that rely on
333 * IRQ disabling. See the comment near struct mmu_table_batch.
335 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336 __tlb_remove_table(table);
339 static void tlb_remove_table_rcu(struct rcu_head *head)
341 struct mmu_table_batch *batch;
342 int i;
344 batch = container_of(head, struct mmu_table_batch, rcu);
346 for (i = 0; i < batch->nr; i++)
347 __tlb_remove_table(batch->tables[i]);
349 free_page((unsigned long)batch);
352 void tlb_table_flush(struct mmu_gather *tlb)
354 struct mmu_table_batch **batch = &tlb->batch;
356 if (*batch) {
357 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358 *batch = NULL;
362 void tlb_remove_table(struct mmu_gather *tlb, void *table)
364 struct mmu_table_batch **batch = &tlb->batch;
367 * When there's less then two users of this mm there cannot be a
368 * concurrent page-table walk.
370 if (atomic_read(&tlb->mm->mm_users) < 2) {
371 __tlb_remove_table(table);
372 return;
375 if (*batch == NULL) {
376 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377 if (*batch == NULL) {
378 tlb_remove_table_one(table);
379 return;
381 (*batch)->nr = 0;
383 (*batch)->tables[(*batch)->nr++] = table;
384 if ((*batch)->nr == MAX_TABLE_BATCH)
385 tlb_table_flush(tlb);
388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
391 * Note: this doesn't free the actual pages themselves. That
392 * has been handled earlier when unmapping all the memory regions.
394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395 unsigned long addr)
397 pgtable_t token = pmd_pgtable(*pmd);
398 pmd_clear(pmd);
399 pte_free_tlb(tlb, token, addr);
400 atomic_long_dec(&tlb->mm->nr_ptes);
403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404 unsigned long addr, unsigned long end,
405 unsigned long floor, unsigned long ceiling)
407 pmd_t *pmd;
408 unsigned long next;
409 unsigned long start;
411 start = addr;
412 pmd = pmd_offset(pud, addr);
413 do {
414 next = pmd_addr_end(addr, end);
415 if (pmd_none_or_clear_bad(pmd))
416 continue;
417 free_pte_range(tlb, pmd, addr);
418 } while (pmd++, addr = next, addr != end);
420 start &= PUD_MASK;
421 if (start < floor)
422 return;
423 if (ceiling) {
424 ceiling &= PUD_MASK;
425 if (!ceiling)
426 return;
428 if (end - 1 > ceiling - 1)
429 return;
431 pmd = pmd_offset(pud, start);
432 pud_clear(pud);
433 pmd_free_tlb(tlb, pmd, start);
434 mm_dec_nr_pmds(tlb->mm);
437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438 unsigned long addr, unsigned long end,
439 unsigned long floor, unsigned long ceiling)
441 pud_t *pud;
442 unsigned long next;
443 unsigned long start;
445 start = addr;
446 pud = pud_offset(pgd, addr);
447 do {
448 next = pud_addr_end(addr, end);
449 if (pud_none_or_clear_bad(pud))
450 continue;
451 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452 } while (pud++, addr = next, addr != end);
454 start &= PGDIR_MASK;
455 if (start < floor)
456 return;
457 if (ceiling) {
458 ceiling &= PGDIR_MASK;
459 if (!ceiling)
460 return;
462 if (end - 1 > ceiling - 1)
463 return;
465 pud = pud_offset(pgd, start);
466 pgd_clear(pgd);
467 pud_free_tlb(tlb, pud, start);
471 * This function frees user-level page tables of a process.
473 void free_pgd_range(struct mmu_gather *tlb,
474 unsigned long addr, unsigned long end,
475 unsigned long floor, unsigned long ceiling)
477 pgd_t *pgd;
478 unsigned long next;
481 * The next few lines have given us lots of grief...
483 * Why are we testing PMD* at this top level? Because often
484 * there will be no work to do at all, and we'd prefer not to
485 * go all the way down to the bottom just to discover that.
487 * Why all these "- 1"s? Because 0 represents both the bottom
488 * of the address space and the top of it (using -1 for the
489 * top wouldn't help much: the masks would do the wrong thing).
490 * The rule is that addr 0 and floor 0 refer to the bottom of
491 * the address space, but end 0 and ceiling 0 refer to the top
492 * Comparisons need to use "end - 1" and "ceiling - 1" (though
493 * that end 0 case should be mythical).
495 * Wherever addr is brought up or ceiling brought down, we must
496 * be careful to reject "the opposite 0" before it confuses the
497 * subsequent tests. But what about where end is brought down
498 * by PMD_SIZE below? no, end can't go down to 0 there.
500 * Whereas we round start (addr) and ceiling down, by different
501 * masks at different levels, in order to test whether a table
502 * now has no other vmas using it, so can be freed, we don't
503 * bother to round floor or end up - the tests don't need that.
506 addr &= PMD_MASK;
507 if (addr < floor) {
508 addr += PMD_SIZE;
509 if (!addr)
510 return;
512 if (ceiling) {
513 ceiling &= PMD_MASK;
514 if (!ceiling)
515 return;
517 if (end - 1 > ceiling - 1)
518 end -= PMD_SIZE;
519 if (addr > end - 1)
520 return;
522 pgd = pgd_offset(tlb->mm, addr);
523 do {
524 next = pgd_addr_end(addr, end);
525 if (pgd_none_or_clear_bad(pgd))
526 continue;
527 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528 } while (pgd++, addr = next, addr != end);
531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532 unsigned long floor, unsigned long ceiling)
534 while (vma) {
535 struct vm_area_struct *next = vma->vm_next;
536 unsigned long addr = vma->vm_start;
539 * Hide vma from rmap and truncate_pagecache before freeing
540 * pgtables
542 unlink_anon_vmas(vma);
543 unlink_file_vma(vma);
545 if (is_vm_hugetlb_page(vma)) {
546 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547 floor, next? next->vm_start: ceiling);
548 } else {
550 * Optimization: gather nearby vmas into one call down
552 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553 && !is_vm_hugetlb_page(next)) {
554 vma = next;
555 next = vma->vm_next;
556 unlink_anon_vmas(vma);
557 unlink_file_vma(vma);
559 free_pgd_range(tlb, addr, vma->vm_end,
560 floor, next? next->vm_start: ceiling);
562 vma = next;
566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
568 spinlock_t *ptl;
569 pgtable_t new = pte_alloc_one(mm, address);
570 if (!new)
571 return -ENOMEM;
574 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 * visible before the pte is made visible to other CPUs by being
576 * put into page tables.
578 * The other side of the story is the pointer chasing in the page
579 * table walking code (when walking the page table without locking;
580 * ie. most of the time). Fortunately, these data accesses consist
581 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 * being the notable exception) will already guarantee loads are
583 * seen in-order. See the alpha page table accessors for the
584 * smp_read_barrier_depends() barriers in page table walking code.
586 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
588 ptl = pmd_lock(mm, pmd);
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
594 spin_unlock(ptl);
595 if (new)
596 pte_free(mm, new);
597 return 0;
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 if (!new)
604 return -ENOMEM;
606 smp_wmb(); /* See comment in __pte_alloc */
608 spin_lock(&init_mm.page_table_lock);
609 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
610 pmd_populate_kernel(&init_mm, pmd, new);
611 new = NULL;
613 spin_unlock(&init_mm.page_table_lock);
614 if (new)
615 pte_free_kernel(&init_mm, new);
616 return 0;
619 static inline void init_rss_vec(int *rss)
621 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
626 int i;
628 if (current->mm == mm)
629 sync_mm_rss(mm);
630 for (i = 0; i < NR_MM_COUNTERS; i++)
631 if (rss[i])
632 add_mm_counter(mm, i, rss[i]);
636 * This function is called to print an error when a bad pte
637 * is found. For example, we might have a PFN-mapped pte in
638 * a region that doesn't allow it.
640 * The calling function must still handle the error.
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 pte_t pte, struct page *page)
645 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 pud_t *pud = pud_offset(pgd, addr);
647 pmd_t *pmd = pmd_offset(pud, addr);
648 struct address_space *mapping;
649 pgoff_t index;
650 static unsigned long resume;
651 static unsigned long nr_shown;
652 static unsigned long nr_unshown;
655 * Allow a burst of 60 reports, then keep quiet for that minute;
656 * or allow a steady drip of one report per second.
658 if (nr_shown == 60) {
659 if (time_before(jiffies, resume)) {
660 nr_unshown++;
661 return;
663 if (nr_unshown) {
664 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665 nr_unshown);
666 nr_unshown = 0;
668 nr_shown = 0;
670 if (nr_shown++ == 0)
671 resume = jiffies + 60 * HZ;
673 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 index = linear_page_index(vma, addr);
676 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
677 current->comm,
678 (long long)pte_val(pte), (long long)pmd_val(*pmd));
679 if (page)
680 dump_page(page, "bad pte");
681 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
684 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
686 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687 vma->vm_file,
688 vma->vm_ops ? vma->vm_ops->fault : NULL,
689 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690 mapping ? mapping->a_ops->readpage : NULL);
691 dump_stack();
692 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
696 * vm_normal_page -- This function gets the "struct page" associated with a pte.
698 * "Special" mappings do not wish to be associated with a "struct page" (either
699 * it doesn't exist, or it exists but they don't want to touch it). In this
700 * case, NULL is returned here. "Normal" mappings do have a struct page.
702 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703 * pte bit, in which case this function is trivial. Secondly, an architecture
704 * may not have a spare pte bit, which requires a more complicated scheme,
705 * described below.
707 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708 * special mapping (even if there are underlying and valid "struct pages").
709 * COWed pages of a VM_PFNMAP are always normal.
711 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714 * mapping will always honor the rule
716 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718 * And for normal mappings this is false.
720 * This restricts such mappings to be a linear translation from virtual address
721 * to pfn. To get around this restriction, we allow arbitrary mappings so long
722 * as the vma is not a COW mapping; in that case, we know that all ptes are
723 * special (because none can have been COWed).
726 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729 * page" backing, however the difference is that _all_ pages with a struct
730 * page (that is, those where pfn_valid is true) are refcounted and considered
731 * normal pages by the VM. The disadvantage is that pages are refcounted
732 * (which can be slower and simply not an option for some PFNMAP users). The
733 * advantage is that we don't have to follow the strict linearity rule of
734 * PFNMAP mappings in order to support COWable mappings.
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743 pte_t pte)
745 unsigned long pfn = pte_pfn(pte);
747 if (HAVE_PTE_SPECIAL) {
748 if (likely(!pte_special(pte)))
749 goto check_pfn;
750 if (vma->vm_ops && vma->vm_ops->find_special_page)
751 return vma->vm_ops->find_special_page(vma, addr);
752 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753 return NULL;
754 if (!is_zero_pfn(pfn))
755 print_bad_pte(vma, addr, pte, NULL);
756 return NULL;
759 /* !HAVE_PTE_SPECIAL case follows: */
761 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762 if (vma->vm_flags & VM_MIXEDMAP) {
763 if (!pfn_valid(pfn))
764 return NULL;
765 goto out;
766 } else {
767 unsigned long off;
768 off = (addr - vma->vm_start) >> PAGE_SHIFT;
769 if (pfn == vma->vm_pgoff + off)
770 return NULL;
771 if (!is_cow_mapping(vma->vm_flags))
772 return NULL;
776 if (is_zero_pfn(pfn))
777 return NULL;
778 check_pfn:
779 if (unlikely(pfn > highest_memmap_pfn)) {
780 print_bad_pte(vma, addr, pte, NULL);
781 return NULL;
785 * NOTE! We still have PageReserved() pages in the page tables.
786 * eg. VDSO mappings can cause them to exist.
788 out:
789 return pfn_to_page(pfn);
792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
793 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
794 pmd_t pmd)
796 unsigned long pfn = pmd_pfn(pmd);
799 * There is no pmd_special() but there may be special pmds, e.g.
800 * in a direct-access (dax) mapping, so let's just replicate the
801 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
803 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
804 if (vma->vm_flags & VM_MIXEDMAP) {
805 if (!pfn_valid(pfn))
806 return NULL;
807 goto out;
808 } else {
809 unsigned long off;
810 off = (addr - vma->vm_start) >> PAGE_SHIFT;
811 if (pfn == vma->vm_pgoff + off)
812 return NULL;
813 if (!is_cow_mapping(vma->vm_flags))
814 return NULL;
818 if (is_zero_pfn(pfn))
819 return NULL;
820 if (unlikely(pfn > highest_memmap_pfn))
821 return NULL;
824 * NOTE! We still have PageReserved() pages in the page tables.
825 * eg. VDSO mappings can cause them to exist.
827 out:
828 return pfn_to_page(pfn);
830 #endif
833 * copy one vm_area from one task to the other. Assumes the page tables
834 * already present in the new task to be cleared in the whole range
835 * covered by this vma.
838 static inline unsigned long
839 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
840 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
841 unsigned long addr, int *rss)
843 unsigned long vm_flags = vma->vm_flags;
844 pte_t pte = *src_pte;
845 struct page *page;
847 /* pte contains position in swap or file, so copy. */
848 if (unlikely(!pte_present(pte))) {
849 swp_entry_t entry = pte_to_swp_entry(pte);
851 if (likely(!non_swap_entry(entry))) {
852 if (swap_duplicate(entry) < 0)
853 return entry.val;
855 /* make sure dst_mm is on swapoff's mmlist. */
856 if (unlikely(list_empty(&dst_mm->mmlist))) {
857 spin_lock(&mmlist_lock);
858 if (list_empty(&dst_mm->mmlist))
859 list_add(&dst_mm->mmlist,
860 &src_mm->mmlist);
861 spin_unlock(&mmlist_lock);
863 rss[MM_SWAPENTS]++;
864 } else if (is_migration_entry(entry)) {
865 page = migration_entry_to_page(entry);
867 rss[mm_counter(page)]++;
869 if (is_write_migration_entry(entry) &&
870 is_cow_mapping(vm_flags)) {
872 * COW mappings require pages in both
873 * parent and child to be set to read.
875 make_migration_entry_read(&entry);
876 pte = swp_entry_to_pte(entry);
877 if (pte_swp_soft_dirty(*src_pte))
878 pte = pte_swp_mksoft_dirty(pte);
879 set_pte_at(src_mm, addr, src_pte, pte);
882 goto out_set_pte;
886 * If it's a COW mapping, write protect it both
887 * in the parent and the child
889 if (is_cow_mapping(vm_flags)) {
890 ptep_set_wrprotect(src_mm, addr, src_pte);
891 pte = pte_wrprotect(pte);
895 * If it's a shared mapping, mark it clean in
896 * the child
898 if (vm_flags & VM_SHARED)
899 pte = pte_mkclean(pte);
900 pte = pte_mkold(pte);
902 page = vm_normal_page(vma, addr, pte);
903 if (page) {
904 get_page(page);
905 page_dup_rmap(page, false);
906 rss[mm_counter(page)]++;
909 out_set_pte:
910 set_pte_at(dst_mm, addr, dst_pte, pte);
911 return 0;
914 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
915 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
916 unsigned long addr, unsigned long end)
918 pte_t *orig_src_pte, *orig_dst_pte;
919 pte_t *src_pte, *dst_pte;
920 spinlock_t *src_ptl, *dst_ptl;
921 int progress = 0;
922 int rss[NR_MM_COUNTERS];
923 swp_entry_t entry = (swp_entry_t){0};
925 again:
926 init_rss_vec(rss);
928 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
929 if (!dst_pte)
930 return -ENOMEM;
931 src_pte = pte_offset_map(src_pmd, addr);
932 src_ptl = pte_lockptr(src_mm, src_pmd);
933 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
934 orig_src_pte = src_pte;
935 orig_dst_pte = dst_pte;
936 arch_enter_lazy_mmu_mode();
938 do {
940 * We are holding two locks at this point - either of them
941 * could generate latencies in another task on another CPU.
943 if (progress >= 32) {
944 progress = 0;
945 if (need_resched() ||
946 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
947 break;
949 if (pte_none(*src_pte)) {
950 progress++;
951 continue;
953 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
954 vma, addr, rss);
955 if (entry.val)
956 break;
957 progress += 8;
958 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
960 arch_leave_lazy_mmu_mode();
961 spin_unlock(src_ptl);
962 pte_unmap(orig_src_pte);
963 add_mm_rss_vec(dst_mm, rss);
964 pte_unmap_unlock(orig_dst_pte, dst_ptl);
965 cond_resched();
967 if (entry.val) {
968 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
969 return -ENOMEM;
970 progress = 0;
972 if (addr != end)
973 goto again;
974 return 0;
977 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
979 unsigned long addr, unsigned long end)
981 pmd_t *src_pmd, *dst_pmd;
982 unsigned long next;
984 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
985 if (!dst_pmd)
986 return -ENOMEM;
987 src_pmd = pmd_offset(src_pud, addr);
988 do {
989 next = pmd_addr_end(addr, end);
990 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
991 int err;
992 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
993 err = copy_huge_pmd(dst_mm, src_mm,
994 dst_pmd, src_pmd, addr, vma);
995 if (err == -ENOMEM)
996 return -ENOMEM;
997 if (!err)
998 continue;
999 /* fall through */
1001 if (pmd_none_or_clear_bad(src_pmd))
1002 continue;
1003 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1004 vma, addr, next))
1005 return -ENOMEM;
1006 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1007 return 0;
1010 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1012 unsigned long addr, unsigned long end)
1014 pud_t *src_pud, *dst_pud;
1015 unsigned long next;
1017 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1018 if (!dst_pud)
1019 return -ENOMEM;
1020 src_pud = pud_offset(src_pgd, addr);
1021 do {
1022 next = pud_addr_end(addr, end);
1023 if (pud_none_or_clear_bad(src_pud))
1024 continue;
1025 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1026 vma, addr, next))
1027 return -ENOMEM;
1028 } while (dst_pud++, src_pud++, addr = next, addr != end);
1029 return 0;
1032 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1033 struct vm_area_struct *vma)
1035 pgd_t *src_pgd, *dst_pgd;
1036 unsigned long next;
1037 unsigned long addr = vma->vm_start;
1038 unsigned long end = vma->vm_end;
1039 unsigned long mmun_start; /* For mmu_notifiers */
1040 unsigned long mmun_end; /* For mmu_notifiers */
1041 bool is_cow;
1042 int ret;
1045 * Don't copy ptes where a page fault will fill them correctly.
1046 * Fork becomes much lighter when there are big shared or private
1047 * readonly mappings. The tradeoff is that copy_page_range is more
1048 * efficient than faulting.
1050 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1051 !vma->anon_vma)
1052 return 0;
1054 if (is_vm_hugetlb_page(vma))
1055 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1057 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1059 * We do not free on error cases below as remove_vma
1060 * gets called on error from higher level routine
1062 ret = track_pfn_copy(vma);
1063 if (ret)
1064 return ret;
1068 * We need to invalidate the secondary MMU mappings only when
1069 * there could be a permission downgrade on the ptes of the
1070 * parent mm. And a permission downgrade will only happen if
1071 * is_cow_mapping() returns true.
1073 is_cow = is_cow_mapping(vma->vm_flags);
1074 mmun_start = addr;
1075 mmun_end = end;
1076 if (is_cow)
1077 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1078 mmun_end);
1080 ret = 0;
1081 dst_pgd = pgd_offset(dst_mm, addr);
1082 src_pgd = pgd_offset(src_mm, addr);
1083 do {
1084 next = pgd_addr_end(addr, end);
1085 if (pgd_none_or_clear_bad(src_pgd))
1086 continue;
1087 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1088 vma, addr, next))) {
1089 ret = -ENOMEM;
1090 break;
1092 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1094 if (is_cow)
1095 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1096 return ret;
1099 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1100 struct vm_area_struct *vma, pmd_t *pmd,
1101 unsigned long addr, unsigned long end,
1102 struct zap_details *details)
1104 struct mm_struct *mm = tlb->mm;
1105 int force_flush = 0;
1106 int rss[NR_MM_COUNTERS];
1107 spinlock_t *ptl;
1108 pte_t *start_pte;
1109 pte_t *pte;
1110 swp_entry_t entry;
1112 again:
1113 init_rss_vec(rss);
1114 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115 pte = start_pte;
1116 arch_enter_lazy_mmu_mode();
1117 do {
1118 pte_t ptent = *pte;
1119 if (pte_none(ptent)) {
1120 continue;
1123 if (pte_present(ptent)) {
1124 struct page *page;
1126 page = vm_normal_page(vma, addr, ptent);
1127 if (unlikely(details) && page) {
1129 * unmap_shared_mapping_pages() wants to
1130 * invalidate cache without truncating:
1131 * unmap shared but keep private pages.
1133 if (details->check_mapping &&
1134 details->check_mapping != page->mapping)
1135 continue;
1137 ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 tlb->fullmm);
1139 tlb_remove_tlb_entry(tlb, pte, addr);
1140 if (unlikely(!page))
1141 continue;
1143 if (!PageAnon(page)) {
1144 if (pte_dirty(ptent)) {
1146 * oom_reaper cannot tear down dirty
1147 * pages
1149 if (unlikely(details && details->ignore_dirty))
1150 continue;
1151 force_flush = 1;
1152 set_page_dirty(page);
1154 if (pte_young(ptent) &&
1155 likely(!(vma->vm_flags & VM_SEQ_READ)))
1156 mark_page_accessed(page);
1158 rss[mm_counter(page)]--;
1159 page_remove_rmap(page, false);
1160 if (unlikely(page_mapcount(page) < 0))
1161 print_bad_pte(vma, addr, ptent, page);
1162 if (unlikely(!__tlb_remove_page(tlb, page))) {
1163 force_flush = 1;
1164 addr += PAGE_SIZE;
1165 break;
1167 continue;
1169 /* only check swap_entries if explicitly asked for in details */
1170 if (unlikely(details && !details->check_swap_entries))
1171 continue;
1173 entry = pte_to_swp_entry(ptent);
1174 if (!non_swap_entry(entry))
1175 rss[MM_SWAPENTS]--;
1176 else if (is_migration_entry(entry)) {
1177 struct page *page;
1179 page = migration_entry_to_page(entry);
1180 rss[mm_counter(page)]--;
1182 if (unlikely(!free_swap_and_cache(entry)))
1183 print_bad_pte(vma, addr, ptent, NULL);
1184 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185 } while (pte++, addr += PAGE_SIZE, addr != end);
1187 add_mm_rss_vec(mm, rss);
1188 arch_leave_lazy_mmu_mode();
1190 /* Do the actual TLB flush before dropping ptl */
1191 if (force_flush)
1192 tlb_flush_mmu_tlbonly(tlb);
1193 pte_unmap_unlock(start_pte, ptl);
1196 * If we forced a TLB flush (either due to running out of
1197 * batch buffers or because we needed to flush dirty TLB
1198 * entries before releasing the ptl), free the batched
1199 * memory too. Restart if we didn't do everything.
1201 if (force_flush) {
1202 force_flush = 0;
1203 tlb_flush_mmu_free(tlb);
1205 if (addr != end)
1206 goto again;
1209 return addr;
1212 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1213 struct vm_area_struct *vma, pud_t *pud,
1214 unsigned long addr, unsigned long end,
1215 struct zap_details *details)
1217 pmd_t *pmd;
1218 unsigned long next;
1220 pmd = pmd_offset(pud, addr);
1221 do {
1222 next = pmd_addr_end(addr, end);
1223 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1224 if (next - addr != HPAGE_PMD_SIZE) {
1225 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1226 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1227 split_huge_pmd(vma, pmd, addr);
1228 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1229 goto next;
1230 /* fall through */
1233 * Here there can be other concurrent MADV_DONTNEED or
1234 * trans huge page faults running, and if the pmd is
1235 * none or trans huge it can change under us. This is
1236 * because MADV_DONTNEED holds the mmap_sem in read
1237 * mode.
1239 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1240 goto next;
1241 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1242 next:
1243 cond_resched();
1244 } while (pmd++, addr = next, addr != end);
1246 return addr;
1249 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1250 struct vm_area_struct *vma, pgd_t *pgd,
1251 unsigned long addr, unsigned long end,
1252 struct zap_details *details)
1254 pud_t *pud;
1255 unsigned long next;
1257 pud = pud_offset(pgd, addr);
1258 do {
1259 next = pud_addr_end(addr, end);
1260 if (pud_none_or_clear_bad(pud))
1261 continue;
1262 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1263 } while (pud++, addr = next, addr != end);
1265 return addr;
1268 void unmap_page_range(struct mmu_gather *tlb,
1269 struct vm_area_struct *vma,
1270 unsigned long addr, unsigned long end,
1271 struct zap_details *details)
1273 pgd_t *pgd;
1274 unsigned long next;
1276 BUG_ON(addr >= end);
1277 tlb_start_vma(tlb, vma);
1278 pgd = pgd_offset(vma->vm_mm, addr);
1279 do {
1280 next = pgd_addr_end(addr, end);
1281 if (pgd_none_or_clear_bad(pgd))
1282 continue;
1283 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1284 } while (pgd++, addr = next, addr != end);
1285 tlb_end_vma(tlb, vma);
1289 static void unmap_single_vma(struct mmu_gather *tlb,
1290 struct vm_area_struct *vma, unsigned long start_addr,
1291 unsigned long end_addr,
1292 struct zap_details *details)
1294 unsigned long start = max(vma->vm_start, start_addr);
1295 unsigned long end;
1297 if (start >= vma->vm_end)
1298 return;
1299 end = min(vma->vm_end, end_addr);
1300 if (end <= vma->vm_start)
1301 return;
1303 if (vma->vm_file)
1304 uprobe_munmap(vma, start, end);
1306 if (unlikely(vma->vm_flags & VM_PFNMAP))
1307 untrack_pfn(vma, 0, 0);
1309 if (start != end) {
1310 if (unlikely(is_vm_hugetlb_page(vma))) {
1312 * It is undesirable to test vma->vm_file as it
1313 * should be non-null for valid hugetlb area.
1314 * However, vm_file will be NULL in the error
1315 * cleanup path of mmap_region. When
1316 * hugetlbfs ->mmap method fails,
1317 * mmap_region() nullifies vma->vm_file
1318 * before calling this function to clean up.
1319 * Since no pte has actually been setup, it is
1320 * safe to do nothing in this case.
1322 if (vma->vm_file) {
1323 i_mmap_lock_write(vma->vm_file->f_mapping);
1324 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1325 i_mmap_unlock_write(vma->vm_file->f_mapping);
1327 } else
1328 unmap_page_range(tlb, vma, start, end, details);
1333 * unmap_vmas - unmap a range of memory covered by a list of vma's
1334 * @tlb: address of the caller's struct mmu_gather
1335 * @vma: the starting vma
1336 * @start_addr: virtual address at which to start unmapping
1337 * @end_addr: virtual address at which to end unmapping
1339 * Unmap all pages in the vma list.
1341 * Only addresses between `start' and `end' will be unmapped.
1343 * The VMA list must be sorted in ascending virtual address order.
1345 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1346 * range after unmap_vmas() returns. So the only responsibility here is to
1347 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1348 * drops the lock and schedules.
1350 void unmap_vmas(struct mmu_gather *tlb,
1351 struct vm_area_struct *vma, unsigned long start_addr,
1352 unsigned long end_addr)
1354 struct mm_struct *mm = vma->vm_mm;
1356 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1357 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1358 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1359 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1363 * zap_page_range - remove user pages in a given range
1364 * @vma: vm_area_struct holding the applicable pages
1365 * @start: starting address of pages to zap
1366 * @size: number of bytes to zap
1367 * @details: details of shared cache invalidation
1369 * Caller must protect the VMA list
1371 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1372 unsigned long size, struct zap_details *details)
1374 struct mm_struct *mm = vma->vm_mm;
1375 struct mmu_gather tlb;
1376 unsigned long end = start + size;
1378 lru_add_drain();
1379 tlb_gather_mmu(&tlb, mm, start, end);
1380 update_hiwater_rss(mm);
1381 mmu_notifier_invalidate_range_start(mm, start, end);
1382 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1383 unmap_single_vma(&tlb, vma, start, end, details);
1384 mmu_notifier_invalidate_range_end(mm, start, end);
1385 tlb_finish_mmu(&tlb, start, end);
1389 * zap_page_range_single - remove user pages in a given range
1390 * @vma: vm_area_struct holding the applicable pages
1391 * @address: starting address of pages to zap
1392 * @size: number of bytes to zap
1393 * @details: details of shared cache invalidation
1395 * The range must fit into one VMA.
1397 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1398 unsigned long size, struct zap_details *details)
1400 struct mm_struct *mm = vma->vm_mm;
1401 struct mmu_gather tlb;
1402 unsigned long end = address + size;
1404 lru_add_drain();
1405 tlb_gather_mmu(&tlb, mm, address, end);
1406 update_hiwater_rss(mm);
1407 mmu_notifier_invalidate_range_start(mm, address, end);
1408 unmap_single_vma(&tlb, vma, address, end, details);
1409 mmu_notifier_invalidate_range_end(mm, address, end);
1410 tlb_finish_mmu(&tlb, address, end);
1414 * zap_vma_ptes - remove ptes mapping the vma
1415 * @vma: vm_area_struct holding ptes to be zapped
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1419 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1421 * The entire address range must be fully contained within the vma.
1423 * Returns 0 if successful.
1425 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1426 unsigned long size)
1428 if (address < vma->vm_start || address + size > vma->vm_end ||
1429 !(vma->vm_flags & VM_PFNMAP))
1430 return -1;
1431 zap_page_range_single(vma, address, size, NULL);
1432 return 0;
1434 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1436 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1437 spinlock_t **ptl)
1439 pgd_t * pgd = pgd_offset(mm, addr);
1440 pud_t * pud = pud_alloc(mm, pgd, addr);
1441 if (pud) {
1442 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1443 if (pmd) {
1444 VM_BUG_ON(pmd_trans_huge(*pmd));
1445 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1448 return NULL;
1452 * This is the old fallback for page remapping.
1454 * For historical reasons, it only allows reserved pages. Only
1455 * old drivers should use this, and they needed to mark their
1456 * pages reserved for the old functions anyway.
1458 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1459 struct page *page, pgprot_t prot)
1461 struct mm_struct *mm = vma->vm_mm;
1462 int retval;
1463 pte_t *pte;
1464 spinlock_t *ptl;
1466 retval = -EINVAL;
1467 if (PageAnon(page))
1468 goto out;
1469 retval = -ENOMEM;
1470 flush_dcache_page(page);
1471 pte = get_locked_pte(mm, addr, &ptl);
1472 if (!pte)
1473 goto out;
1474 retval = -EBUSY;
1475 if (!pte_none(*pte))
1476 goto out_unlock;
1478 /* Ok, finally just insert the thing.. */
1479 get_page(page);
1480 inc_mm_counter_fast(mm, mm_counter_file(page));
1481 page_add_file_rmap(page);
1482 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1484 retval = 0;
1485 pte_unmap_unlock(pte, ptl);
1486 return retval;
1487 out_unlock:
1488 pte_unmap_unlock(pte, ptl);
1489 out:
1490 return retval;
1494 * vm_insert_page - insert single page into user vma
1495 * @vma: user vma to map to
1496 * @addr: target user address of this page
1497 * @page: source kernel page
1499 * This allows drivers to insert individual pages they've allocated
1500 * into a user vma.
1502 * The page has to be a nice clean _individual_ kernel allocation.
1503 * If you allocate a compound page, you need to have marked it as
1504 * such (__GFP_COMP), or manually just split the page up yourself
1505 * (see split_page()).
1507 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1508 * took an arbitrary page protection parameter. This doesn't allow
1509 * that. Your vma protection will have to be set up correctly, which
1510 * means that if you want a shared writable mapping, you'd better
1511 * ask for a shared writable mapping!
1513 * The page does not need to be reserved.
1515 * Usually this function is called from f_op->mmap() handler
1516 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1517 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1518 * function from other places, for example from page-fault handler.
1520 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1521 struct page *page)
1523 if (addr < vma->vm_start || addr >= vma->vm_end)
1524 return -EFAULT;
1525 if (!page_count(page))
1526 return -EINVAL;
1527 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1528 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1529 BUG_ON(vma->vm_flags & VM_PFNMAP);
1530 vma->vm_flags |= VM_MIXEDMAP;
1532 return insert_page(vma, addr, page, vma->vm_page_prot);
1534 EXPORT_SYMBOL(vm_insert_page);
1536 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1537 pfn_t pfn, pgprot_t prot)
1539 struct mm_struct *mm = vma->vm_mm;
1540 int retval;
1541 pte_t *pte, entry;
1542 spinlock_t *ptl;
1544 retval = -ENOMEM;
1545 pte = get_locked_pte(mm, addr, &ptl);
1546 if (!pte)
1547 goto out;
1548 retval = -EBUSY;
1549 if (!pte_none(*pte))
1550 goto out_unlock;
1552 /* Ok, finally just insert the thing.. */
1553 if (pfn_t_devmap(pfn))
1554 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1555 else
1556 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1557 set_pte_at(mm, addr, pte, entry);
1558 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1560 retval = 0;
1561 out_unlock:
1562 pte_unmap_unlock(pte, ptl);
1563 out:
1564 return retval;
1568 * vm_insert_pfn - insert single pfn into user vma
1569 * @vma: user vma to map to
1570 * @addr: target user address of this page
1571 * @pfn: source kernel pfn
1573 * Similar to vm_insert_page, this allows drivers to insert individual pages
1574 * they've allocated into a user vma. Same comments apply.
1576 * This function should only be called from a vm_ops->fault handler, and
1577 * in that case the handler should return NULL.
1579 * vma cannot be a COW mapping.
1581 * As this is called only for pages that do not currently exist, we
1582 * do not need to flush old virtual caches or the TLB.
1584 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1585 unsigned long pfn)
1587 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1589 EXPORT_SYMBOL(vm_insert_pfn);
1592 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1593 * @vma: user vma to map to
1594 * @addr: target user address of this page
1595 * @pfn: source kernel pfn
1596 * @pgprot: pgprot flags for the inserted page
1598 * This is exactly like vm_insert_pfn, except that it allows drivers to
1599 * to override pgprot on a per-page basis.
1601 * This only makes sense for IO mappings, and it makes no sense for
1602 * cow mappings. In general, using multiple vmas is preferable;
1603 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1604 * impractical.
1606 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1607 unsigned long pfn, pgprot_t pgprot)
1609 int ret;
1611 * Technically, architectures with pte_special can avoid all these
1612 * restrictions (same for remap_pfn_range). However we would like
1613 * consistency in testing and feature parity among all, so we should
1614 * try to keep these invariants in place for everybody.
1616 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1617 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1618 (VM_PFNMAP|VM_MIXEDMAP));
1619 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1620 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1622 if (addr < vma->vm_start || addr >= vma->vm_end)
1623 return -EFAULT;
1624 if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1625 return -EINVAL;
1627 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1629 return ret;
1631 EXPORT_SYMBOL(vm_insert_pfn_prot);
1633 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634 pfn_t pfn)
1636 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1638 if (addr < vma->vm_start || addr >= vma->vm_end)
1639 return -EFAULT;
1642 * If we don't have pte special, then we have to use the pfn_valid()
1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644 * refcount the page if pfn_valid is true (hence insert_page rather
1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1646 * without pte special, it would there be refcounted as a normal page.
1648 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1649 struct page *page;
1652 * At this point we are committed to insert_page()
1653 * regardless of whether the caller specified flags that
1654 * result in pfn_t_has_page() == false.
1656 page = pfn_to_page(pfn_t_to_pfn(pfn));
1657 return insert_page(vma, addr, page, vma->vm_page_prot);
1659 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1661 EXPORT_SYMBOL(vm_insert_mixed);
1664 * maps a range of physical memory into the requested pages. the old
1665 * mappings are removed. any references to nonexistent pages results
1666 * in null mappings (currently treated as "copy-on-access")
1668 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1669 unsigned long addr, unsigned long end,
1670 unsigned long pfn, pgprot_t prot)
1672 pte_t *pte;
1673 spinlock_t *ptl;
1675 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1676 if (!pte)
1677 return -ENOMEM;
1678 arch_enter_lazy_mmu_mode();
1679 do {
1680 BUG_ON(!pte_none(*pte));
1681 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1682 pfn++;
1683 } while (pte++, addr += PAGE_SIZE, addr != end);
1684 arch_leave_lazy_mmu_mode();
1685 pte_unmap_unlock(pte - 1, ptl);
1686 return 0;
1689 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1690 unsigned long addr, unsigned long end,
1691 unsigned long pfn, pgprot_t prot)
1693 pmd_t *pmd;
1694 unsigned long next;
1696 pfn -= addr >> PAGE_SHIFT;
1697 pmd = pmd_alloc(mm, pud, addr);
1698 if (!pmd)
1699 return -ENOMEM;
1700 VM_BUG_ON(pmd_trans_huge(*pmd));
1701 do {
1702 next = pmd_addr_end(addr, end);
1703 if (remap_pte_range(mm, pmd, addr, next,
1704 pfn + (addr >> PAGE_SHIFT), prot))
1705 return -ENOMEM;
1706 } while (pmd++, addr = next, addr != end);
1707 return 0;
1710 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1711 unsigned long addr, unsigned long end,
1712 unsigned long pfn, pgprot_t prot)
1714 pud_t *pud;
1715 unsigned long next;
1717 pfn -= addr >> PAGE_SHIFT;
1718 pud = pud_alloc(mm, pgd, addr);
1719 if (!pud)
1720 return -ENOMEM;
1721 do {
1722 next = pud_addr_end(addr, end);
1723 if (remap_pmd_range(mm, pud, addr, next,
1724 pfn + (addr >> PAGE_SHIFT), prot))
1725 return -ENOMEM;
1726 } while (pud++, addr = next, addr != end);
1727 return 0;
1731 * remap_pfn_range - remap kernel memory to userspace
1732 * @vma: user vma to map to
1733 * @addr: target user address to start at
1734 * @pfn: physical address of kernel memory
1735 * @size: size of map area
1736 * @prot: page protection flags for this mapping
1738 * Note: this is only safe if the mm semaphore is held when called.
1740 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1741 unsigned long pfn, unsigned long size, pgprot_t prot)
1743 pgd_t *pgd;
1744 unsigned long next;
1745 unsigned long end = addr + PAGE_ALIGN(size);
1746 struct mm_struct *mm = vma->vm_mm;
1747 int err;
1750 * Physically remapped pages are special. Tell the
1751 * rest of the world about it:
1752 * VM_IO tells people not to look at these pages
1753 * (accesses can have side effects).
1754 * VM_PFNMAP tells the core MM that the base pages are just
1755 * raw PFN mappings, and do not have a "struct page" associated
1756 * with them.
1757 * VM_DONTEXPAND
1758 * Disable vma merging and expanding with mremap().
1759 * VM_DONTDUMP
1760 * Omit vma from core dump, even when VM_IO turned off.
1762 * There's a horrible special case to handle copy-on-write
1763 * behaviour that some programs depend on. We mark the "original"
1764 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1765 * See vm_normal_page() for details.
1767 if (is_cow_mapping(vma->vm_flags)) {
1768 if (addr != vma->vm_start || end != vma->vm_end)
1769 return -EINVAL;
1770 vma->vm_pgoff = pfn;
1773 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1774 if (err)
1775 return -EINVAL;
1777 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1779 BUG_ON(addr >= end);
1780 pfn -= addr >> PAGE_SHIFT;
1781 pgd = pgd_offset(mm, addr);
1782 flush_cache_range(vma, addr, end);
1783 do {
1784 next = pgd_addr_end(addr, end);
1785 err = remap_pud_range(mm, pgd, addr, next,
1786 pfn + (addr >> PAGE_SHIFT), prot);
1787 if (err)
1788 break;
1789 } while (pgd++, addr = next, addr != end);
1791 if (err)
1792 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1794 return err;
1796 EXPORT_SYMBOL(remap_pfn_range);
1799 * vm_iomap_memory - remap memory to userspace
1800 * @vma: user vma to map to
1801 * @start: start of area
1802 * @len: size of area
1804 * This is a simplified io_remap_pfn_range() for common driver use. The
1805 * driver just needs to give us the physical memory range to be mapped,
1806 * we'll figure out the rest from the vma information.
1808 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1809 * whatever write-combining details or similar.
1811 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1813 unsigned long vm_len, pfn, pages;
1815 /* Check that the physical memory area passed in looks valid */
1816 if (start + len < start)
1817 return -EINVAL;
1819 * You *really* shouldn't map things that aren't page-aligned,
1820 * but we've historically allowed it because IO memory might
1821 * just have smaller alignment.
1823 len += start & ~PAGE_MASK;
1824 pfn = start >> PAGE_SHIFT;
1825 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1826 if (pfn + pages < pfn)
1827 return -EINVAL;
1829 /* We start the mapping 'vm_pgoff' pages into the area */
1830 if (vma->vm_pgoff > pages)
1831 return -EINVAL;
1832 pfn += vma->vm_pgoff;
1833 pages -= vma->vm_pgoff;
1835 /* Can we fit all of the mapping? */
1836 vm_len = vma->vm_end - vma->vm_start;
1837 if (vm_len >> PAGE_SHIFT > pages)
1838 return -EINVAL;
1840 /* Ok, let it rip */
1841 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1843 EXPORT_SYMBOL(vm_iomap_memory);
1845 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846 unsigned long addr, unsigned long end,
1847 pte_fn_t fn, void *data)
1849 pte_t *pte;
1850 int err;
1851 pgtable_t token;
1852 spinlock_t *uninitialized_var(ptl);
1854 pte = (mm == &init_mm) ?
1855 pte_alloc_kernel(pmd, addr) :
1856 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1857 if (!pte)
1858 return -ENOMEM;
1860 BUG_ON(pmd_huge(*pmd));
1862 arch_enter_lazy_mmu_mode();
1864 token = pmd_pgtable(*pmd);
1866 do {
1867 err = fn(pte++, token, addr, data);
1868 if (err)
1869 break;
1870 } while (addr += PAGE_SIZE, addr != end);
1872 arch_leave_lazy_mmu_mode();
1874 if (mm != &init_mm)
1875 pte_unmap_unlock(pte-1, ptl);
1876 return err;
1879 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1880 unsigned long addr, unsigned long end,
1881 pte_fn_t fn, void *data)
1883 pmd_t *pmd;
1884 unsigned long next;
1885 int err;
1887 BUG_ON(pud_huge(*pud));
1889 pmd = pmd_alloc(mm, pud, addr);
1890 if (!pmd)
1891 return -ENOMEM;
1892 do {
1893 next = pmd_addr_end(addr, end);
1894 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1895 if (err)
1896 break;
1897 } while (pmd++, addr = next, addr != end);
1898 return err;
1901 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1902 unsigned long addr, unsigned long end,
1903 pte_fn_t fn, void *data)
1905 pud_t *pud;
1906 unsigned long next;
1907 int err;
1909 pud = pud_alloc(mm, pgd, addr);
1910 if (!pud)
1911 return -ENOMEM;
1912 do {
1913 next = pud_addr_end(addr, end);
1914 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1915 if (err)
1916 break;
1917 } while (pud++, addr = next, addr != end);
1918 return err;
1922 * Scan a region of virtual memory, filling in page tables as necessary
1923 * and calling a provided function on each leaf page table.
1925 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1926 unsigned long size, pte_fn_t fn, void *data)
1928 pgd_t *pgd;
1929 unsigned long next;
1930 unsigned long end = addr + size;
1931 int err;
1933 if (WARN_ON(addr >= end))
1934 return -EINVAL;
1936 pgd = pgd_offset(mm, addr);
1937 do {
1938 next = pgd_addr_end(addr, end);
1939 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1940 if (err)
1941 break;
1942 } while (pgd++, addr = next, addr != end);
1944 return err;
1946 EXPORT_SYMBOL_GPL(apply_to_page_range);
1949 * handle_pte_fault chooses page fault handler according to an entry which was
1950 * read non-atomically. Before making any commitment, on those architectures
1951 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1952 * parts, do_swap_page must check under lock before unmapping the pte and
1953 * proceeding (but do_wp_page is only called after already making such a check;
1954 * and do_anonymous_page can safely check later on).
1956 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1957 pte_t *page_table, pte_t orig_pte)
1959 int same = 1;
1960 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1961 if (sizeof(pte_t) > sizeof(unsigned long)) {
1962 spinlock_t *ptl = pte_lockptr(mm, pmd);
1963 spin_lock(ptl);
1964 same = pte_same(*page_table, orig_pte);
1965 spin_unlock(ptl);
1967 #endif
1968 pte_unmap(page_table);
1969 return same;
1972 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1974 debug_dma_assert_idle(src);
1977 * If the source page was a PFN mapping, we don't have
1978 * a "struct page" for it. We do a best-effort copy by
1979 * just copying from the original user address. If that
1980 * fails, we just zero-fill it. Live with it.
1982 if (unlikely(!src)) {
1983 void *kaddr = kmap_atomic(dst);
1984 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1987 * This really shouldn't fail, because the page is there
1988 * in the page tables. But it might just be unreadable,
1989 * in which case we just give up and fill the result with
1990 * zeroes.
1992 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1993 clear_page(kaddr);
1994 kunmap_atomic(kaddr);
1995 flush_dcache_page(dst);
1996 } else
1997 copy_user_highpage(dst, src, va, vma);
2000 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2002 struct file *vm_file = vma->vm_file;
2004 if (vm_file)
2005 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2008 * Special mappings (e.g. VDSO) do not have any file so fake
2009 * a default GFP_KERNEL for them.
2011 return GFP_KERNEL;
2015 * Notify the address space that the page is about to become writable so that
2016 * it can prohibit this or wait for the page to get into an appropriate state.
2018 * We do this without the lock held, so that it can sleep if it needs to.
2020 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2021 unsigned long address)
2023 struct vm_fault vmf;
2024 int ret;
2026 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2027 vmf.pgoff = page->index;
2028 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2029 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2030 vmf.page = page;
2031 vmf.cow_page = NULL;
2033 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2034 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2035 return ret;
2036 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2037 lock_page(page);
2038 if (!page->mapping) {
2039 unlock_page(page);
2040 return 0; /* retry */
2042 ret |= VM_FAULT_LOCKED;
2043 } else
2044 VM_BUG_ON_PAGE(!PageLocked(page), page);
2045 return ret;
2049 * Handle write page faults for pages that can be reused in the current vma
2051 * This can happen either due to the mapping being with the VM_SHARED flag,
2052 * or due to us being the last reference standing to the page. In either
2053 * case, all we need to do here is to mark the page as writable and update
2054 * any related book-keeping.
2056 static inline int wp_page_reuse(struct mm_struct *mm,
2057 struct vm_area_struct *vma, unsigned long address,
2058 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2059 struct page *page, int page_mkwrite,
2060 int dirty_shared)
2061 __releases(ptl)
2063 pte_t entry;
2065 * Clear the pages cpupid information as the existing
2066 * information potentially belongs to a now completely
2067 * unrelated process.
2069 if (page)
2070 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2072 flush_cache_page(vma, address, pte_pfn(orig_pte));
2073 entry = pte_mkyoung(orig_pte);
2074 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2075 if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2076 update_mmu_cache(vma, address, page_table);
2077 pte_unmap_unlock(page_table, ptl);
2079 if (dirty_shared) {
2080 struct address_space *mapping;
2081 int dirtied;
2083 if (!page_mkwrite)
2084 lock_page(page);
2086 dirtied = set_page_dirty(page);
2087 VM_BUG_ON_PAGE(PageAnon(page), page);
2088 mapping = page->mapping;
2089 unlock_page(page);
2090 put_page(page);
2092 if ((dirtied || page_mkwrite) && mapping) {
2094 * Some device drivers do not set page.mapping
2095 * but still dirty their pages
2097 balance_dirty_pages_ratelimited(mapping);
2100 if (!page_mkwrite)
2101 file_update_time(vma->vm_file);
2104 return VM_FAULT_WRITE;
2108 * Handle the case of a page which we actually need to copy to a new page.
2110 * Called with mmap_sem locked and the old page referenced, but
2111 * without the ptl held.
2113 * High level logic flow:
2115 * - Allocate a page, copy the content of the old page to the new one.
2116 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2117 * - Take the PTL. If the pte changed, bail out and release the allocated page
2118 * - If the pte is still the way we remember it, update the page table and all
2119 * relevant references. This includes dropping the reference the page-table
2120 * held to the old page, as well as updating the rmap.
2121 * - In any case, unlock the PTL and drop the reference we took to the old page.
2123 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2124 unsigned long address, pte_t *page_table, pmd_t *pmd,
2125 pte_t orig_pte, struct page *old_page)
2127 struct page *new_page = NULL;
2128 spinlock_t *ptl = NULL;
2129 pte_t entry;
2130 int page_copied = 0;
2131 const unsigned long mmun_start = address & PAGE_MASK; /* For mmu_notifiers */
2132 const unsigned long mmun_end = mmun_start + PAGE_SIZE; /* For mmu_notifiers */
2133 struct mem_cgroup *memcg;
2135 if (unlikely(anon_vma_prepare(vma)))
2136 goto oom;
2138 if (is_zero_pfn(pte_pfn(orig_pte))) {
2139 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2140 if (!new_page)
2141 goto oom;
2142 } else {
2143 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2144 if (!new_page)
2145 goto oom;
2146 cow_user_page(new_page, old_page, address, vma);
2149 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2150 goto oom_free_new;
2152 __SetPageUptodate(new_page);
2154 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2157 * Re-check the pte - we dropped the lock
2159 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2160 if (likely(pte_same(*page_table, orig_pte))) {
2161 if (old_page) {
2162 if (!PageAnon(old_page)) {
2163 dec_mm_counter_fast(mm,
2164 mm_counter_file(old_page));
2165 inc_mm_counter_fast(mm, MM_ANONPAGES);
2167 } else {
2168 inc_mm_counter_fast(mm, MM_ANONPAGES);
2170 flush_cache_page(vma, address, pte_pfn(orig_pte));
2171 entry = mk_pte(new_page, vma->vm_page_prot);
2172 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2174 * Clear the pte entry and flush it first, before updating the
2175 * pte with the new entry. This will avoid a race condition
2176 * seen in the presence of one thread doing SMC and another
2177 * thread doing COW.
2179 ptep_clear_flush_notify(vma, address, page_table);
2180 page_add_new_anon_rmap(new_page, vma, address, false);
2181 mem_cgroup_commit_charge(new_page, memcg, false, false);
2182 lru_cache_add_active_or_unevictable(new_page, vma);
2184 * We call the notify macro here because, when using secondary
2185 * mmu page tables (such as kvm shadow page tables), we want the
2186 * new page to be mapped directly into the secondary page table.
2188 set_pte_at_notify(mm, address, page_table, entry);
2189 update_mmu_cache(vma, address, page_table);
2190 if (old_page) {
2192 * Only after switching the pte to the new page may
2193 * we remove the mapcount here. Otherwise another
2194 * process may come and find the rmap count decremented
2195 * before the pte is switched to the new page, and
2196 * "reuse" the old page writing into it while our pte
2197 * here still points into it and can be read by other
2198 * threads.
2200 * The critical issue is to order this
2201 * page_remove_rmap with the ptp_clear_flush above.
2202 * Those stores are ordered by (if nothing else,)
2203 * the barrier present in the atomic_add_negative
2204 * in page_remove_rmap.
2206 * Then the TLB flush in ptep_clear_flush ensures that
2207 * no process can access the old page before the
2208 * decremented mapcount is visible. And the old page
2209 * cannot be reused until after the decremented
2210 * mapcount is visible. So transitively, TLBs to
2211 * old page will be flushed before it can be reused.
2213 page_remove_rmap(old_page, false);
2216 /* Free the old page.. */
2217 new_page = old_page;
2218 page_copied = 1;
2219 } else {
2220 mem_cgroup_cancel_charge(new_page, memcg, false);
2223 if (new_page)
2224 put_page(new_page);
2226 pte_unmap_unlock(page_table, ptl);
2227 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2228 if (old_page) {
2230 * Don't let another task, with possibly unlocked vma,
2231 * keep the mlocked page.
2233 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2234 lock_page(old_page); /* LRU manipulation */
2235 if (PageMlocked(old_page))
2236 munlock_vma_page(old_page);
2237 unlock_page(old_page);
2239 put_page(old_page);
2241 return page_copied ? VM_FAULT_WRITE : 0;
2242 oom_free_new:
2243 put_page(new_page);
2244 oom:
2245 if (old_page)
2246 put_page(old_page);
2247 return VM_FAULT_OOM;
2251 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2252 * mapping
2254 static int wp_pfn_shared(struct mm_struct *mm,
2255 struct vm_area_struct *vma, unsigned long address,
2256 pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2257 pmd_t *pmd)
2259 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2260 struct vm_fault vmf = {
2261 .page = NULL,
2262 .pgoff = linear_page_index(vma, address),
2263 .virtual_address = (void __user *)(address & PAGE_MASK),
2264 .flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2266 int ret;
2268 pte_unmap_unlock(page_table, ptl);
2269 ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2270 if (ret & VM_FAULT_ERROR)
2271 return ret;
2272 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2274 * We might have raced with another page fault while we
2275 * released the pte_offset_map_lock.
2277 if (!pte_same(*page_table, orig_pte)) {
2278 pte_unmap_unlock(page_table, ptl);
2279 return 0;
2282 return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2283 NULL, 0, 0);
2286 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2287 unsigned long address, pte_t *page_table,
2288 pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2289 struct page *old_page)
2290 __releases(ptl)
2292 int page_mkwrite = 0;
2294 get_page(old_page);
2296 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2297 int tmp;
2299 pte_unmap_unlock(page_table, ptl);
2300 tmp = do_page_mkwrite(vma, old_page, address);
2301 if (unlikely(!tmp || (tmp &
2302 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2303 put_page(old_page);
2304 return tmp;
2307 * Since we dropped the lock we need to revalidate
2308 * the PTE as someone else may have changed it. If
2309 * they did, we just return, as we can count on the
2310 * MMU to tell us if they didn't also make it writable.
2312 page_table = pte_offset_map_lock(mm, pmd, address,
2313 &ptl);
2314 if (!pte_same(*page_table, orig_pte)) {
2315 unlock_page(old_page);
2316 pte_unmap_unlock(page_table, ptl);
2317 put_page(old_page);
2318 return 0;
2320 page_mkwrite = 1;
2323 return wp_page_reuse(mm, vma, address, page_table, ptl,
2324 orig_pte, old_page, page_mkwrite, 1);
2328 * This routine handles present pages, when users try to write
2329 * to a shared page. It is done by copying the page to a new address
2330 * and decrementing the shared-page counter for the old page.
2332 * Note that this routine assumes that the protection checks have been
2333 * done by the caller (the low-level page fault routine in most cases).
2334 * Thus we can safely just mark it writable once we've done any necessary
2335 * COW.
2337 * We also mark the page dirty at this point even though the page will
2338 * change only once the write actually happens. This avoids a few races,
2339 * and potentially makes it more efficient.
2341 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2342 * but allow concurrent faults), with pte both mapped and locked.
2343 * We return with mmap_sem still held, but pte unmapped and unlocked.
2345 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2346 unsigned long address, pte_t *page_table, pmd_t *pmd,
2347 spinlock_t *ptl, pte_t orig_pte)
2348 __releases(ptl)
2350 struct page *old_page;
2352 old_page = vm_normal_page(vma, address, orig_pte);
2353 if (!old_page) {
2355 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2356 * VM_PFNMAP VMA.
2358 * We should not cow pages in a shared writeable mapping.
2359 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2361 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2362 (VM_WRITE|VM_SHARED))
2363 return wp_pfn_shared(mm, vma, address, page_table, ptl,
2364 orig_pte, pmd);
2366 pte_unmap_unlock(page_table, ptl);
2367 return wp_page_copy(mm, vma, address, page_table, pmd,
2368 orig_pte, old_page);
2372 * Take out anonymous pages first, anonymous shared vmas are
2373 * not dirty accountable.
2375 if (PageAnon(old_page) && !PageKsm(old_page)) {
2376 int total_mapcount;
2377 if (!trylock_page(old_page)) {
2378 get_page(old_page);
2379 pte_unmap_unlock(page_table, ptl);
2380 lock_page(old_page);
2381 page_table = pte_offset_map_lock(mm, pmd, address,
2382 &ptl);
2383 if (!pte_same(*page_table, orig_pte)) {
2384 unlock_page(old_page);
2385 pte_unmap_unlock(page_table, ptl);
2386 put_page(old_page);
2387 return 0;
2389 put_page(old_page);
2391 if (reuse_swap_page(old_page, &total_mapcount)) {
2392 if (total_mapcount == 1) {
2394 * The page is all ours. Move it to
2395 * our anon_vma so the rmap code will
2396 * not search our parent or siblings.
2397 * Protected against the rmap code by
2398 * the page lock.
2400 page_move_anon_rmap(compound_head(old_page),
2401 vma, address);
2403 unlock_page(old_page);
2404 return wp_page_reuse(mm, vma, address, page_table, ptl,
2405 orig_pte, old_page, 0, 0);
2407 unlock_page(old_page);
2408 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2409 (VM_WRITE|VM_SHARED))) {
2410 return wp_page_shared(mm, vma, address, page_table, pmd,
2411 ptl, orig_pte, old_page);
2415 * Ok, we need to copy. Oh, well..
2417 get_page(old_page);
2419 pte_unmap_unlock(page_table, ptl);
2420 return wp_page_copy(mm, vma, address, page_table, pmd,
2421 orig_pte, old_page);
2424 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2425 unsigned long start_addr, unsigned long end_addr,
2426 struct zap_details *details)
2428 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2431 static inline void unmap_mapping_range_tree(struct rb_root *root,
2432 struct zap_details *details)
2434 struct vm_area_struct *vma;
2435 pgoff_t vba, vea, zba, zea;
2437 vma_interval_tree_foreach(vma, root,
2438 details->first_index, details->last_index) {
2440 vba = vma->vm_pgoff;
2441 vea = vba + vma_pages(vma) - 1;
2442 zba = details->first_index;
2443 if (zba < vba)
2444 zba = vba;
2445 zea = details->last_index;
2446 if (zea > vea)
2447 zea = vea;
2449 unmap_mapping_range_vma(vma,
2450 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2451 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2452 details);
2457 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2458 * address_space corresponding to the specified page range in the underlying
2459 * file.
2461 * @mapping: the address space containing mmaps to be unmapped.
2462 * @holebegin: byte in first page to unmap, relative to the start of
2463 * the underlying file. This will be rounded down to a PAGE_SIZE
2464 * boundary. Note that this is different from truncate_pagecache(), which
2465 * must keep the partial page. In contrast, we must get rid of
2466 * partial pages.
2467 * @holelen: size of prospective hole in bytes. This will be rounded
2468 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2469 * end of the file.
2470 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2471 * but 0 when invalidating pagecache, don't throw away private data.
2473 void unmap_mapping_range(struct address_space *mapping,
2474 loff_t const holebegin, loff_t const holelen, int even_cows)
2476 struct zap_details details = { };
2477 pgoff_t hba = holebegin >> PAGE_SHIFT;
2478 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2480 /* Check for overflow. */
2481 if (sizeof(holelen) > sizeof(hlen)) {
2482 long long holeend =
2483 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2484 if (holeend & ~(long long)ULONG_MAX)
2485 hlen = ULONG_MAX - hba + 1;
2488 details.check_mapping = even_cows? NULL: mapping;
2489 details.first_index = hba;
2490 details.last_index = hba + hlen - 1;
2491 if (details.last_index < details.first_index)
2492 details.last_index = ULONG_MAX;
2495 /* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2496 i_mmap_lock_write(mapping);
2497 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2498 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2499 i_mmap_unlock_write(mapping);
2501 EXPORT_SYMBOL(unmap_mapping_range);
2504 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2505 * but allow concurrent faults), and pte mapped but not yet locked.
2506 * We return with pte unmapped and unlocked.
2508 * We return with the mmap_sem locked or unlocked in the same cases
2509 * as does filemap_fault().
2511 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2512 unsigned long address, pte_t *page_table, pmd_t *pmd,
2513 unsigned int flags, pte_t orig_pte)
2515 spinlock_t *ptl;
2516 struct page *page, *swapcache;
2517 struct mem_cgroup *memcg;
2518 swp_entry_t entry;
2519 pte_t pte;
2520 int locked;
2521 int exclusive = 0;
2522 int ret = 0;
2524 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2525 goto out;
2527 entry = pte_to_swp_entry(orig_pte);
2528 if (unlikely(non_swap_entry(entry))) {
2529 if (is_migration_entry(entry)) {
2530 migration_entry_wait(mm, pmd, address);
2531 } else if (is_hwpoison_entry(entry)) {
2532 ret = VM_FAULT_HWPOISON;
2533 } else {
2534 print_bad_pte(vma, address, orig_pte, NULL);
2535 ret = VM_FAULT_SIGBUS;
2537 goto out;
2539 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2540 page = lookup_swap_cache(entry);
2541 if (!page) {
2542 page = swapin_readahead(entry,
2543 GFP_HIGHUSER_MOVABLE, vma, address);
2544 if (!page) {
2546 * Back out if somebody else faulted in this pte
2547 * while we released the pte lock.
2549 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2550 if (likely(pte_same(*page_table, orig_pte)))
2551 ret = VM_FAULT_OOM;
2552 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2553 goto unlock;
2556 /* Had to read the page from swap area: Major fault */
2557 ret = VM_FAULT_MAJOR;
2558 count_vm_event(PGMAJFAULT);
2559 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2560 } else if (PageHWPoison(page)) {
2562 * hwpoisoned dirty swapcache pages are kept for killing
2563 * owner processes (which may be unknown at hwpoison time)
2565 ret = VM_FAULT_HWPOISON;
2566 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2567 swapcache = page;
2568 goto out_release;
2571 swapcache = page;
2572 locked = lock_page_or_retry(page, mm, flags);
2574 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2575 if (!locked) {
2576 ret |= VM_FAULT_RETRY;
2577 goto out_release;
2581 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2582 * release the swapcache from under us. The page pin, and pte_same
2583 * test below, are not enough to exclude that. Even if it is still
2584 * swapcache, we need to check that the page's swap has not changed.
2586 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2587 goto out_page;
2589 page = ksm_might_need_to_copy(page, vma, address);
2590 if (unlikely(!page)) {
2591 ret = VM_FAULT_OOM;
2592 page = swapcache;
2593 goto out_page;
2596 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2597 ret = VM_FAULT_OOM;
2598 goto out_page;
2602 * Back out if somebody else already faulted in this pte.
2604 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2605 if (unlikely(!pte_same(*page_table, orig_pte)))
2606 goto out_nomap;
2608 if (unlikely(!PageUptodate(page))) {
2609 ret = VM_FAULT_SIGBUS;
2610 goto out_nomap;
2614 * The page isn't present yet, go ahead with the fault.
2616 * Be careful about the sequence of operations here.
2617 * To get its accounting right, reuse_swap_page() must be called
2618 * while the page is counted on swap but not yet in mapcount i.e.
2619 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2620 * must be called after the swap_free(), or it will never succeed.
2623 inc_mm_counter_fast(mm, MM_ANONPAGES);
2624 dec_mm_counter_fast(mm, MM_SWAPENTS);
2625 pte = mk_pte(page, vma->vm_page_prot);
2626 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2627 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2628 flags &= ~FAULT_FLAG_WRITE;
2629 ret |= VM_FAULT_WRITE;
2630 exclusive = RMAP_EXCLUSIVE;
2632 flush_icache_page(vma, page);
2633 if (pte_swp_soft_dirty(orig_pte))
2634 pte = pte_mksoft_dirty(pte);
2635 set_pte_at(mm, address, page_table, pte);
2636 if (page == swapcache) {
2637 do_page_add_anon_rmap(page, vma, address, exclusive);
2638 mem_cgroup_commit_charge(page, memcg, true, false);
2639 } else { /* ksm created a completely new copy */
2640 page_add_new_anon_rmap(page, vma, address, false);
2641 mem_cgroup_commit_charge(page, memcg, false, false);
2642 lru_cache_add_active_or_unevictable(page, vma);
2645 swap_free(entry);
2646 if (mem_cgroup_swap_full(page) ||
2647 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2648 try_to_free_swap(page);
2649 unlock_page(page);
2650 if (page != swapcache) {
2652 * Hold the lock to avoid the swap entry to be reused
2653 * until we take the PT lock for the pte_same() check
2654 * (to avoid false positives from pte_same). For
2655 * further safety release the lock after the swap_free
2656 * so that the swap count won't change under a
2657 * parallel locked swapcache.
2659 unlock_page(swapcache);
2660 put_page(swapcache);
2663 if (flags & FAULT_FLAG_WRITE) {
2664 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2665 if (ret & VM_FAULT_ERROR)
2666 ret &= VM_FAULT_ERROR;
2667 goto out;
2670 /* No need to invalidate - it was non-present before */
2671 update_mmu_cache(vma, address, page_table);
2672 unlock:
2673 pte_unmap_unlock(page_table, ptl);
2674 out:
2675 return ret;
2676 out_nomap:
2677 mem_cgroup_cancel_charge(page, memcg, false);
2678 pte_unmap_unlock(page_table, ptl);
2679 out_page:
2680 unlock_page(page);
2681 out_release:
2682 put_page(page);
2683 if (page != swapcache) {
2684 unlock_page(swapcache);
2685 put_page(swapcache);
2687 return ret;
2691 * This is like a special single-page "expand_{down|up}wards()",
2692 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2693 * doesn't hit another vma.
2695 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2697 address &= PAGE_MASK;
2698 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2699 struct vm_area_struct *prev = vma->vm_prev;
2702 * Is there a mapping abutting this one below?
2704 * That's only ok if it's the same stack mapping
2705 * that has gotten split..
2707 if (prev && prev->vm_end == address)
2708 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2710 return expand_downwards(vma, address - PAGE_SIZE);
2712 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2713 struct vm_area_struct *next = vma->vm_next;
2715 /* As VM_GROWSDOWN but s/below/above/ */
2716 if (next && next->vm_start == address + PAGE_SIZE)
2717 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2719 return expand_upwards(vma, address + PAGE_SIZE);
2721 return 0;
2725 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2726 * but allow concurrent faults), and pte mapped but not yet locked.
2727 * We return with mmap_sem still held, but pte unmapped and unlocked.
2729 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2730 unsigned long address, pte_t *page_table, pmd_t *pmd,
2731 unsigned int flags)
2733 struct mem_cgroup *memcg;
2734 struct page *page;
2735 spinlock_t *ptl;
2736 pte_t entry;
2738 pte_unmap(page_table);
2740 /* File mapping without ->vm_ops ? */
2741 if (vma->vm_flags & VM_SHARED)
2742 return VM_FAULT_SIGBUS;
2744 /* Check if we need to add a guard page to the stack */
2745 if (check_stack_guard_page(vma, address) < 0)
2746 return VM_FAULT_SIGSEGV;
2748 /* Use the zero-page for reads */
2749 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2750 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2751 vma->vm_page_prot));
2752 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2753 if (!pte_none(*page_table))
2754 goto unlock;
2755 /* Deliver the page fault to userland, check inside PT lock */
2756 if (userfaultfd_missing(vma)) {
2757 pte_unmap_unlock(page_table, ptl);
2758 return handle_userfault(vma, address, flags,
2759 VM_UFFD_MISSING);
2761 goto setpte;
2764 /* Allocate our own private page. */
2765 if (unlikely(anon_vma_prepare(vma)))
2766 goto oom;
2767 page = alloc_zeroed_user_highpage_movable(vma, address);
2768 if (!page)
2769 goto oom;
2771 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2772 goto oom_free_page;
2775 * The memory barrier inside __SetPageUptodate makes sure that
2776 * preceeding stores to the page contents become visible before
2777 * the set_pte_at() write.
2779 __SetPageUptodate(page);
2781 entry = mk_pte(page, vma->vm_page_prot);
2782 if (vma->vm_flags & VM_WRITE)
2783 entry = pte_mkwrite(pte_mkdirty(entry));
2785 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2786 if (!pte_none(*page_table))
2787 goto release;
2789 /* Deliver the page fault to userland, check inside PT lock */
2790 if (userfaultfd_missing(vma)) {
2791 pte_unmap_unlock(page_table, ptl);
2792 mem_cgroup_cancel_charge(page, memcg, false);
2793 put_page(page);
2794 return handle_userfault(vma, address, flags,
2795 VM_UFFD_MISSING);
2798 inc_mm_counter_fast(mm, MM_ANONPAGES);
2799 page_add_new_anon_rmap(page, vma, address, false);
2800 mem_cgroup_commit_charge(page, memcg, false, false);
2801 lru_cache_add_active_or_unevictable(page, vma);
2802 setpte:
2803 set_pte_at(mm, address, page_table, entry);
2805 /* No need to invalidate - it was non-present before */
2806 update_mmu_cache(vma, address, page_table);
2807 unlock:
2808 pte_unmap_unlock(page_table, ptl);
2809 return 0;
2810 release:
2811 mem_cgroup_cancel_charge(page, memcg, false);
2812 put_page(page);
2813 goto unlock;
2814 oom_free_page:
2815 put_page(page);
2816 oom:
2817 return VM_FAULT_OOM;
2821 * The mmap_sem must have been held on entry, and may have been
2822 * released depending on flags and vma->vm_ops->fault() return value.
2823 * See filemap_fault() and __lock_page_retry().
2825 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2826 pgoff_t pgoff, unsigned int flags,
2827 struct page *cow_page, struct page **page)
2829 struct vm_fault vmf;
2830 int ret;
2832 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2833 vmf.pgoff = pgoff;
2834 vmf.flags = flags;
2835 vmf.page = NULL;
2836 vmf.gfp_mask = __get_fault_gfp_mask(vma);
2837 vmf.cow_page = cow_page;
2839 ret = vma->vm_ops->fault(vma, &vmf);
2840 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2841 return ret;
2842 if (!vmf.page)
2843 goto out;
2845 if (unlikely(PageHWPoison(vmf.page))) {
2846 if (ret & VM_FAULT_LOCKED)
2847 unlock_page(vmf.page);
2848 put_page(vmf.page);
2849 return VM_FAULT_HWPOISON;
2852 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2853 lock_page(vmf.page);
2854 else
2855 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2857 out:
2858 *page = vmf.page;
2859 return ret;
2863 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2865 * @vma: virtual memory area
2866 * @address: user virtual address
2867 * @page: page to map
2868 * @pte: pointer to target page table entry
2869 * @write: true, if new entry is writable
2870 * @anon: true, if it's anonymous page
2872 * Caller must hold page table lock relevant for @pte.
2874 * Target users are page handler itself and implementations of
2875 * vm_ops->map_pages.
2877 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2878 struct page *page, pte_t *pte, bool write, bool anon)
2880 pte_t entry;
2882 flush_icache_page(vma, page);
2883 entry = mk_pte(page, vma->vm_page_prot);
2884 if (write)
2885 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2886 if (anon) {
2887 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2888 page_add_new_anon_rmap(page, vma, address, false);
2889 } else {
2890 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2891 page_add_file_rmap(page);
2893 set_pte_at(vma->vm_mm, address, pte, entry);
2895 /* no need to invalidate: a not-present page won't be cached */
2896 update_mmu_cache(vma, address, pte);
2899 static unsigned long fault_around_bytes __read_mostly =
2900 rounddown_pow_of_two(65536);
2902 #ifdef CONFIG_DEBUG_FS
2903 static int fault_around_bytes_get(void *data, u64 *val)
2905 *val = fault_around_bytes;
2906 return 0;
2910 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2911 * rounded down to nearest page order. It's what do_fault_around() expects to
2912 * see.
2914 static int fault_around_bytes_set(void *data, u64 val)
2916 if (val / PAGE_SIZE > PTRS_PER_PTE)
2917 return -EINVAL;
2918 if (val > PAGE_SIZE)
2919 fault_around_bytes = rounddown_pow_of_two(val);
2920 else
2921 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2922 return 0;
2924 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2925 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2927 static int __init fault_around_debugfs(void)
2929 void *ret;
2931 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2932 &fault_around_bytes_fops);
2933 if (!ret)
2934 pr_warn("Failed to create fault_around_bytes in debugfs");
2935 return 0;
2937 late_initcall(fault_around_debugfs);
2938 #endif
2941 * do_fault_around() tries to map few pages around the fault address. The hope
2942 * is that the pages will be needed soon and this will lower the number of
2943 * faults to handle.
2945 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2946 * not ready to be mapped: not up-to-date, locked, etc.
2948 * This function is called with the page table lock taken. In the split ptlock
2949 * case the page table lock only protects only those entries which belong to
2950 * the page table corresponding to the fault address.
2952 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2953 * only once.
2955 * fault_around_pages() defines how many pages we'll try to map.
2956 * do_fault_around() expects it to return a power of two less than or equal to
2957 * PTRS_PER_PTE.
2959 * The virtual address of the area that we map is naturally aligned to the
2960 * fault_around_pages() value (and therefore to page order). This way it's
2961 * easier to guarantee that we don't cross page table boundaries.
2963 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2964 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2966 unsigned long start_addr, nr_pages, mask;
2967 pgoff_t max_pgoff;
2968 struct vm_fault vmf;
2969 int off;
2971 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2972 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2974 start_addr = max(address & mask, vma->vm_start);
2975 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2976 pte -= off;
2977 pgoff -= off;
2980 * max_pgoff is either end of page table or end of vma
2981 * or fault_around_pages() from pgoff, depending what is nearest.
2983 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2984 PTRS_PER_PTE - 1;
2985 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2986 pgoff + nr_pages - 1);
2988 /* Check if it makes any sense to call ->map_pages */
2989 while (!pte_none(*pte)) {
2990 if (++pgoff > max_pgoff)
2991 return;
2992 start_addr += PAGE_SIZE;
2993 if (start_addr >= vma->vm_end)
2994 return;
2995 pte++;
2998 vmf.virtual_address = (void __user *) start_addr;
2999 vmf.pte = pte;
3000 vmf.pgoff = pgoff;
3001 vmf.max_pgoff = max_pgoff;
3002 vmf.flags = flags;
3003 vmf.gfp_mask = __get_fault_gfp_mask(vma);
3004 vma->vm_ops->map_pages(vma, &vmf);
3007 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3008 unsigned long address, pmd_t *pmd,
3009 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3011 struct page *fault_page;
3012 spinlock_t *ptl;
3013 pte_t *pte;
3014 int ret = 0;
3017 * Let's call ->map_pages() first and use ->fault() as fallback
3018 * if page by the offset is not ready to be mapped (cold cache or
3019 * something).
3021 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3022 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3023 do_fault_around(vma, address, pte, pgoff, flags);
3024 if (!pte_same(*pte, orig_pte))
3025 goto unlock_out;
3026 pte_unmap_unlock(pte, ptl);
3029 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3030 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3031 return ret;
3033 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3034 if (unlikely(!pte_same(*pte, orig_pte))) {
3035 pte_unmap_unlock(pte, ptl);
3036 unlock_page(fault_page);
3037 put_page(fault_page);
3038 return ret;
3040 do_set_pte(vma, address, fault_page, pte, false, false);
3041 unlock_page(fault_page);
3042 unlock_out:
3043 pte_unmap_unlock(pte, ptl);
3044 return ret;
3047 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3048 unsigned long address, pmd_t *pmd,
3049 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3051 struct page *fault_page, *new_page;
3052 struct mem_cgroup *memcg;
3053 spinlock_t *ptl;
3054 pte_t *pte;
3055 int ret;
3057 if (unlikely(anon_vma_prepare(vma)))
3058 return VM_FAULT_OOM;
3060 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3061 if (!new_page)
3062 return VM_FAULT_OOM;
3064 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3065 put_page(new_page);
3066 return VM_FAULT_OOM;
3069 ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3070 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3071 goto uncharge_out;
3073 if (fault_page)
3074 copy_user_highpage(new_page, fault_page, address, vma);
3075 __SetPageUptodate(new_page);
3077 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3078 if (unlikely(!pte_same(*pte, orig_pte))) {
3079 pte_unmap_unlock(pte, ptl);
3080 if (fault_page) {
3081 unlock_page(fault_page);
3082 put_page(fault_page);
3083 } else {
3085 * The fault handler has no page to lock, so it holds
3086 * i_mmap_lock for read to protect against truncate.
3088 i_mmap_unlock_read(vma->vm_file->f_mapping);
3090 goto uncharge_out;
3092 do_set_pte(vma, address, new_page, pte, true, true);
3093 mem_cgroup_commit_charge(new_page, memcg, false, false);
3094 lru_cache_add_active_or_unevictable(new_page, vma);
3095 pte_unmap_unlock(pte, ptl);
3096 if (fault_page) {
3097 unlock_page(fault_page);
3098 put_page(fault_page);
3099 } else {
3101 * The fault handler has no page to lock, so it holds
3102 * i_mmap_lock for read to protect against truncate.
3104 i_mmap_unlock_read(vma->vm_file->f_mapping);
3106 return ret;
3107 uncharge_out:
3108 mem_cgroup_cancel_charge(new_page, memcg, false);
3109 put_page(new_page);
3110 return ret;
3113 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3114 unsigned long address, pmd_t *pmd,
3115 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3117 struct page *fault_page;
3118 struct address_space *mapping;
3119 spinlock_t *ptl;
3120 pte_t *pte;
3121 int dirtied = 0;
3122 int ret, tmp;
3124 ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3125 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3126 return ret;
3129 * Check if the backing address space wants to know that the page is
3130 * about to become writable
3132 if (vma->vm_ops->page_mkwrite) {
3133 unlock_page(fault_page);
3134 tmp = do_page_mkwrite(vma, fault_page, address);
3135 if (unlikely(!tmp ||
3136 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3137 put_page(fault_page);
3138 return tmp;
3142 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3143 if (unlikely(!pte_same(*pte, orig_pte))) {
3144 pte_unmap_unlock(pte, ptl);
3145 unlock_page(fault_page);
3146 put_page(fault_page);
3147 return ret;
3149 do_set_pte(vma, address, fault_page, pte, true, false);
3150 pte_unmap_unlock(pte, ptl);
3152 if (set_page_dirty(fault_page))
3153 dirtied = 1;
3155 * Take a local copy of the address_space - page.mapping may be zeroed
3156 * by truncate after unlock_page(). The address_space itself remains
3157 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
3158 * release semantics to prevent the compiler from undoing this copying.
3160 mapping = page_rmapping(fault_page);
3161 unlock_page(fault_page);
3162 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3164 * Some device drivers do not set page.mapping but still
3165 * dirty their pages
3167 balance_dirty_pages_ratelimited(mapping);
3170 if (!vma->vm_ops->page_mkwrite)
3171 file_update_time(vma->vm_file);
3173 return ret;
3177 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3178 * but allow concurrent faults).
3179 * The mmap_sem may have been released depending on flags and our
3180 * return value. See filemap_fault() and __lock_page_or_retry().
3182 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3183 unsigned long address, pte_t *page_table, pmd_t *pmd,
3184 unsigned int flags, pte_t orig_pte)
3186 pgoff_t pgoff = linear_page_index(vma, address);
3188 pte_unmap(page_table);
3189 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3190 if (!vma->vm_ops->fault)
3191 return VM_FAULT_SIGBUS;
3192 if (!(flags & FAULT_FLAG_WRITE))
3193 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3194 orig_pte);
3195 if (!(vma->vm_flags & VM_SHARED))
3196 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3197 orig_pte);
3198 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3201 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3202 unsigned long addr, int page_nid,
3203 int *flags)
3205 get_page(page);
3207 count_vm_numa_event(NUMA_HINT_FAULTS);
3208 if (page_nid == numa_node_id()) {
3209 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3210 *flags |= TNF_FAULT_LOCAL;
3213 return mpol_misplaced(page, vma, addr);
3216 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3217 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3219 struct page *page = NULL;
3220 spinlock_t *ptl;
3221 int page_nid = -1;
3222 int last_cpupid;
3223 int target_nid;
3224 bool migrated = false;
3225 bool was_writable = pte_write(pte);
3226 int flags = 0;
3228 /* A PROT_NONE fault should not end up here */
3229 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3232 * The "pte" at this point cannot be used safely without
3233 * validation through pte_unmap_same(). It's of NUMA type but
3234 * the pfn may be screwed if the read is non atomic.
3236 * We can safely just do a "set_pte_at()", because the old
3237 * page table entry is not accessible, so there would be no
3238 * concurrent hardware modifications to the PTE.
3240 ptl = pte_lockptr(mm, pmd);
3241 spin_lock(ptl);
3242 if (unlikely(!pte_same(*ptep, pte))) {
3243 pte_unmap_unlock(ptep, ptl);
3244 goto out;
3247 /* Make it present again */
3248 pte = pte_modify(pte, vma->vm_page_prot);
3249 pte = pte_mkyoung(pte);
3250 if (was_writable)
3251 pte = pte_mkwrite(pte);
3252 set_pte_at(mm, addr, ptep, pte);
3253 update_mmu_cache(vma, addr, ptep);
3255 page = vm_normal_page(vma, addr, pte);
3256 if (!page) {
3257 pte_unmap_unlock(ptep, ptl);
3258 return 0;
3261 /* TODO: handle PTE-mapped THP */
3262 if (PageCompound(page)) {
3263 pte_unmap_unlock(ptep, ptl);
3264 return 0;
3268 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3269 * much anyway since they can be in shared cache state. This misses
3270 * the case where a mapping is writable but the process never writes
3271 * to it but pte_write gets cleared during protection updates and
3272 * pte_dirty has unpredictable behaviour between PTE scan updates,
3273 * background writeback, dirty balancing and application behaviour.
3275 if (!(vma->vm_flags & VM_WRITE))
3276 flags |= TNF_NO_GROUP;
3279 * Flag if the page is shared between multiple address spaces. This
3280 * is later used when determining whether to group tasks together
3282 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3283 flags |= TNF_SHARED;
3285 last_cpupid = page_cpupid_last(page);
3286 page_nid = page_to_nid(page);
3287 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3288 pte_unmap_unlock(ptep, ptl);
3289 if (target_nid == -1) {
3290 put_page(page);
3291 goto out;
3294 /* Migrate to the requested node */
3295 migrated = migrate_misplaced_page(page, vma, target_nid);
3296 if (migrated) {
3297 page_nid = target_nid;
3298 flags |= TNF_MIGRATED;
3299 } else
3300 flags |= TNF_MIGRATE_FAIL;
3302 out:
3303 if (page_nid != -1)
3304 task_numa_fault(last_cpupid, page_nid, 1, flags);
3305 return 0;
3308 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3309 unsigned long address, pmd_t *pmd, unsigned int flags)
3311 if (vma_is_anonymous(vma))
3312 return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3313 if (vma->vm_ops->pmd_fault)
3314 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3315 return VM_FAULT_FALLBACK;
3318 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3319 unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3320 unsigned int flags)
3322 if (vma_is_anonymous(vma))
3323 return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3324 if (vma->vm_ops->pmd_fault)
3325 return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3326 return VM_FAULT_FALLBACK;
3330 * These routines also need to handle stuff like marking pages dirty
3331 * and/or accessed for architectures that don't do it in hardware (most
3332 * RISC architectures). The early dirtying is also good on the i386.
3334 * There is also a hook called "update_mmu_cache()" that architectures
3335 * with external mmu caches can use to update those (ie the Sparc or
3336 * PowerPC hashed page tables that act as extended TLBs).
3338 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3339 * but allow concurrent faults), and pte mapped but not yet locked.
3340 * We return with pte unmapped and unlocked.
3342 * The mmap_sem may have been released depending on flags and our
3343 * return value. See filemap_fault() and __lock_page_or_retry().
3345 static int handle_pte_fault(struct mm_struct *mm,
3346 struct vm_area_struct *vma, unsigned long address,
3347 pte_t *pte, pmd_t *pmd, unsigned int flags)
3349 pte_t entry;
3350 spinlock_t *ptl;
3353 * some architectures can have larger ptes than wordsize,
3354 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3355 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3356 * The code below just needs a consistent view for the ifs and
3357 * we later double check anyway with the ptl lock held. So here
3358 * a barrier will do.
3360 entry = *pte;
3361 barrier();
3362 if (!pte_present(entry)) {
3363 if (pte_none(entry)) {
3364 if (vma_is_anonymous(vma))
3365 return do_anonymous_page(mm, vma, address,
3366 pte, pmd, flags);
3367 else
3368 return do_fault(mm, vma, address, pte, pmd,
3369 flags, entry);
3371 return do_swap_page(mm, vma, address,
3372 pte, pmd, flags, entry);
3375 if (pte_protnone(entry))
3376 return do_numa_page(mm, vma, address, entry, pte, pmd);
3378 ptl = pte_lockptr(mm, pmd);
3379 spin_lock(ptl);
3380 if (unlikely(!pte_same(*pte, entry)))
3381 goto unlock;
3382 if (flags & FAULT_FLAG_WRITE) {
3383 if (!pte_write(entry))
3384 return do_wp_page(mm, vma, address,
3385 pte, pmd, ptl, entry);
3386 entry = pte_mkdirty(entry);
3388 entry = pte_mkyoung(entry);
3389 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3390 update_mmu_cache(vma, address, pte);
3391 } else {
3393 * This is needed only for protection faults but the arch code
3394 * is not yet telling us if this is a protection fault or not.
3395 * This still avoids useless tlb flushes for .text page faults
3396 * with threads.
3398 if (flags & FAULT_FLAG_WRITE)
3399 flush_tlb_fix_spurious_fault(vma, address);
3401 unlock:
3402 pte_unmap_unlock(pte, ptl);
3403 return 0;
3407 * By the time we get here, we already hold the mm semaphore
3409 * The mmap_sem may have been released depending on flags and our
3410 * return value. See filemap_fault() and __lock_page_or_retry().
3412 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3413 unsigned long address, unsigned int flags)
3415 pgd_t *pgd;
3416 pud_t *pud;
3417 pmd_t *pmd;
3418 pte_t *pte;
3420 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3421 flags & FAULT_FLAG_INSTRUCTION,
3422 flags & FAULT_FLAG_REMOTE))
3423 return VM_FAULT_SIGSEGV;
3425 if (unlikely(is_vm_hugetlb_page(vma)))
3426 return hugetlb_fault(mm, vma, address, flags);
3428 pgd = pgd_offset(mm, address);
3429 pud = pud_alloc(mm, pgd, address);
3430 if (!pud)
3431 return VM_FAULT_OOM;
3432 pmd = pmd_alloc(mm, pud, address);
3433 if (!pmd)
3434 return VM_FAULT_OOM;
3435 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3436 int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3437 if (!(ret & VM_FAULT_FALLBACK))
3438 return ret;
3439 } else {
3440 pmd_t orig_pmd = *pmd;
3441 int ret;
3443 barrier();
3444 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3445 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3447 if (pmd_protnone(orig_pmd))
3448 return do_huge_pmd_numa_page(mm, vma, address,
3449 orig_pmd, pmd);
3451 if (dirty && !pmd_write(orig_pmd)) {
3452 ret = wp_huge_pmd(mm, vma, address, pmd,
3453 orig_pmd, flags);
3454 if (!(ret & VM_FAULT_FALLBACK))
3455 return ret;
3456 } else {
3457 huge_pmd_set_accessed(mm, vma, address, pmd,
3458 orig_pmd, dirty);
3459 return 0;
3465 * Use pte_alloc() instead of pte_alloc_map, because we can't
3466 * run pte_offset_map on the pmd, if an huge pmd could
3467 * materialize from under us from a different thread.
3469 if (unlikely(pte_alloc(mm, pmd, address)))
3470 return VM_FAULT_OOM;
3472 * If a huge pmd materialized under us just retry later. Use
3473 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3474 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3475 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3476 * in a different thread of this mm, in turn leading to a misleading
3477 * pmd_trans_huge() retval. All we have to ensure is that it is a
3478 * regular pmd that we can walk with pte_offset_map() and we can do that
3479 * through an atomic read in C, which is what pmd_trans_unstable()
3480 * provides.
3482 if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3483 return 0;
3485 * A regular pmd is established and it can't morph into a huge pmd
3486 * from under us anymore at this point because we hold the mmap_sem
3487 * read mode and khugepaged takes it in write mode. So now it's
3488 * safe to run pte_offset_map().
3490 pte = pte_offset_map(pmd, address);
3492 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3496 * By the time we get here, we already hold the mm semaphore
3498 * The mmap_sem may have been released depending on flags and our
3499 * return value. See filemap_fault() and __lock_page_or_retry().
3501 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502 unsigned long address, unsigned int flags)
3504 int ret;
3506 __set_current_state(TASK_RUNNING);
3508 count_vm_event(PGFAULT);
3509 mem_cgroup_count_vm_event(mm, PGFAULT);
3511 /* do counter updates before entering really critical section. */
3512 check_sync_rss_stat(current);
3515 * Enable the memcg OOM handling for faults triggered in user
3516 * space. Kernel faults are handled more gracefully.
3518 if (flags & FAULT_FLAG_USER)
3519 mem_cgroup_oom_enable();
3521 ret = __handle_mm_fault(mm, vma, address, flags);
3523 if (flags & FAULT_FLAG_USER) {
3524 mem_cgroup_oom_disable();
3526 * The task may have entered a memcg OOM situation but
3527 * if the allocation error was handled gracefully (no
3528 * VM_FAULT_OOM), there is no need to kill anything.
3529 * Just clean up the OOM state peacefully.
3531 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3532 mem_cgroup_oom_synchronize(false);
3535 return ret;
3537 EXPORT_SYMBOL_GPL(handle_mm_fault);
3539 #ifndef __PAGETABLE_PUD_FOLDED
3541 * Allocate page upper directory.
3542 * We've already handled the fast-path in-line.
3544 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3546 pud_t *new = pud_alloc_one(mm, address);
3547 if (!new)
3548 return -ENOMEM;
3550 smp_wmb(); /* See comment in __pte_alloc */
3552 spin_lock(&mm->page_table_lock);
3553 if (pgd_present(*pgd)) /* Another has populated it */
3554 pud_free(mm, new);
3555 else
3556 pgd_populate(mm, pgd, new);
3557 spin_unlock(&mm->page_table_lock);
3558 return 0;
3560 #endif /* __PAGETABLE_PUD_FOLDED */
3562 #ifndef __PAGETABLE_PMD_FOLDED
3564 * Allocate page middle directory.
3565 * We've already handled the fast-path in-line.
3567 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3569 pmd_t *new = pmd_alloc_one(mm, address);
3570 if (!new)
3571 return -ENOMEM;
3573 smp_wmb(); /* See comment in __pte_alloc */
3575 spin_lock(&mm->page_table_lock);
3576 #ifndef __ARCH_HAS_4LEVEL_HACK
3577 if (!pud_present(*pud)) {
3578 mm_inc_nr_pmds(mm);
3579 pud_populate(mm, pud, new);
3580 } else /* Another has populated it */
3581 pmd_free(mm, new);
3582 #else
3583 if (!pgd_present(*pud)) {
3584 mm_inc_nr_pmds(mm);
3585 pgd_populate(mm, pud, new);
3586 } else /* Another has populated it */
3587 pmd_free(mm, new);
3588 #endif /* __ARCH_HAS_4LEVEL_HACK */
3589 spin_unlock(&mm->page_table_lock);
3590 return 0;
3592 #endif /* __PAGETABLE_PMD_FOLDED */
3594 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3595 pte_t **ptepp, spinlock_t **ptlp)
3597 pgd_t *pgd;
3598 pud_t *pud;
3599 pmd_t *pmd;
3600 pte_t *ptep;
3602 pgd = pgd_offset(mm, address);
3603 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3604 goto out;
3606 pud = pud_offset(pgd, address);
3607 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3608 goto out;
3610 pmd = pmd_offset(pud, address);
3611 VM_BUG_ON(pmd_trans_huge(*pmd));
3612 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3613 goto out;
3615 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3616 if (pmd_huge(*pmd))
3617 goto out;
3619 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3620 if (!ptep)
3621 goto out;
3622 if (!pte_present(*ptep))
3623 goto unlock;
3624 *ptepp = ptep;
3625 return 0;
3626 unlock:
3627 pte_unmap_unlock(ptep, *ptlp);
3628 out:
3629 return -EINVAL;
3632 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3633 pte_t **ptepp, spinlock_t **ptlp)
3635 int res;
3637 /* (void) is needed to make gcc happy */
3638 (void) __cond_lock(*ptlp,
3639 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3640 return res;
3644 * follow_pfn - look up PFN at a user virtual address
3645 * @vma: memory mapping
3646 * @address: user virtual address
3647 * @pfn: location to store found PFN
3649 * Only IO mappings and raw PFN mappings are allowed.
3651 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3653 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3654 unsigned long *pfn)
3656 int ret = -EINVAL;
3657 spinlock_t *ptl;
3658 pte_t *ptep;
3660 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3661 return ret;
3663 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3664 if (ret)
3665 return ret;
3666 *pfn = pte_pfn(*ptep);
3667 pte_unmap_unlock(ptep, ptl);
3668 return 0;
3670 EXPORT_SYMBOL(follow_pfn);
3672 #ifdef CONFIG_HAVE_IOREMAP_PROT
3673 int follow_phys(struct vm_area_struct *vma,
3674 unsigned long address, unsigned int flags,
3675 unsigned long *prot, resource_size_t *phys)
3677 int ret = -EINVAL;
3678 pte_t *ptep, pte;
3679 spinlock_t *ptl;
3681 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3682 goto out;
3684 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3685 goto out;
3686 pte = *ptep;
3688 if ((flags & FOLL_WRITE) && !pte_write(pte))
3689 goto unlock;
3691 *prot = pgprot_val(pte_pgprot(pte));
3692 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3694 ret = 0;
3695 unlock:
3696 pte_unmap_unlock(ptep, ptl);
3697 out:
3698 return ret;
3701 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3702 void *buf, int len, int write)
3704 resource_size_t phys_addr;
3705 unsigned long prot = 0;
3706 void __iomem *maddr;
3707 int offset = addr & (PAGE_SIZE-1);
3709 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3710 return -EINVAL;
3712 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3713 if (write)
3714 memcpy_toio(maddr + offset, buf, len);
3715 else
3716 memcpy_fromio(buf, maddr + offset, len);
3717 iounmap(maddr);
3719 return len;
3721 EXPORT_SYMBOL_GPL(generic_access_phys);
3722 #endif
3725 * Access another process' address space as given in mm. If non-NULL, use the
3726 * given task for page fault accounting.
3728 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3729 unsigned long addr, void *buf, int len, int write)
3731 struct vm_area_struct *vma;
3732 void *old_buf = buf;
3734 down_read(&mm->mmap_sem);
3735 /* ignore errors, just check how much was successfully transferred */
3736 while (len) {
3737 int bytes, ret, offset;
3738 void *maddr;
3739 struct page *page = NULL;
3741 ret = get_user_pages_remote(tsk, mm, addr, 1,
3742 write, 1, &page, &vma);
3743 if (ret <= 0) {
3744 #ifndef CONFIG_HAVE_IOREMAP_PROT
3745 break;
3746 #else
3748 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3749 * we can access using slightly different code.
3751 vma = find_vma(mm, addr);
3752 if (!vma || vma->vm_start > addr)
3753 break;
3754 if (vma->vm_ops && vma->vm_ops->access)
3755 ret = vma->vm_ops->access(vma, addr, buf,
3756 len, write);
3757 if (ret <= 0)
3758 break;
3759 bytes = ret;
3760 #endif
3761 } else {
3762 bytes = len;
3763 offset = addr & (PAGE_SIZE-1);
3764 if (bytes > PAGE_SIZE-offset)
3765 bytes = PAGE_SIZE-offset;
3767 maddr = kmap(page);
3768 if (write) {
3769 copy_to_user_page(vma, page, addr,
3770 maddr + offset, buf, bytes);
3771 set_page_dirty_lock(page);
3772 } else {
3773 copy_from_user_page(vma, page, addr,
3774 buf, maddr + offset, bytes);
3776 kunmap(page);
3777 put_page(page);
3779 len -= bytes;
3780 buf += bytes;
3781 addr += bytes;
3783 up_read(&mm->mmap_sem);
3785 return buf - old_buf;
3789 * access_remote_vm - access another process' address space
3790 * @mm: the mm_struct of the target address space
3791 * @addr: start address to access
3792 * @buf: source or destination buffer
3793 * @len: number of bytes to transfer
3794 * @write: whether the access is a write
3796 * The caller must hold a reference on @mm.
3798 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3799 void *buf, int len, int write)
3801 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3805 * Access another process' address space.
3806 * Source/target buffer must be kernel space,
3807 * Do not walk the page table directly, use get_user_pages
3809 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3810 void *buf, int len, int write)
3812 struct mm_struct *mm;
3813 int ret;
3815 mm = get_task_mm(tsk);
3816 if (!mm)
3817 return 0;
3819 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3820 mmput(mm);
3822 return ret;
3826 * Print the name of a VMA.
3828 void print_vma_addr(char *prefix, unsigned long ip)
3830 struct mm_struct *mm = current->mm;
3831 struct vm_area_struct *vma;
3834 * Do not print if we are in atomic
3835 * contexts (in exception stacks, etc.):
3837 if (preempt_count())
3838 return;
3840 down_read(&mm->mmap_sem);
3841 vma = find_vma(mm, ip);
3842 if (vma && vma->vm_file) {
3843 struct file *f = vma->vm_file;
3844 char *buf = (char *)__get_free_page(GFP_KERNEL);
3845 if (buf) {
3846 char *p;
3848 p = file_path(f, buf, PAGE_SIZE);
3849 if (IS_ERR(p))
3850 p = "?";
3851 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3852 vma->vm_start,
3853 vma->vm_end - vma->vm_start);
3854 free_page((unsigned long)buf);
3857 up_read(&mm->mmap_sem);
3860 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3861 void __might_fault(const char *file, int line)
3864 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3865 * holding the mmap_sem, this is safe because kernel memory doesn't
3866 * get paged out, therefore we'll never actually fault, and the
3867 * below annotations will generate false positives.
3869 if (segment_eq(get_fs(), KERNEL_DS))
3870 return;
3871 if (pagefault_disabled())
3872 return;
3873 __might_sleep(file, line, 0);
3874 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3875 if (current->mm)
3876 might_lock_read(&current->mm->mmap_sem);
3877 #endif
3879 EXPORT_SYMBOL(__might_fault);
3880 #endif
3882 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3883 static void clear_gigantic_page(struct page *page,
3884 unsigned long addr,
3885 unsigned int pages_per_huge_page)
3887 int i;
3888 struct page *p = page;
3890 might_sleep();
3891 for (i = 0; i < pages_per_huge_page;
3892 i++, p = mem_map_next(p, page, i)) {
3893 cond_resched();
3894 clear_user_highpage(p, addr + i * PAGE_SIZE);
3897 void clear_huge_page(struct page *page,
3898 unsigned long addr, unsigned int pages_per_huge_page)
3900 int i;
3902 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3903 clear_gigantic_page(page, addr, pages_per_huge_page);
3904 return;
3907 might_sleep();
3908 for (i = 0; i < pages_per_huge_page; i++) {
3909 cond_resched();
3910 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3914 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3915 unsigned long addr,
3916 struct vm_area_struct *vma,
3917 unsigned int pages_per_huge_page)
3919 int i;
3920 struct page *dst_base = dst;
3921 struct page *src_base = src;
3923 for (i = 0; i < pages_per_huge_page; ) {
3924 cond_resched();
3925 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3927 i++;
3928 dst = mem_map_next(dst, dst_base, i);
3929 src = mem_map_next(src, src_base, i);
3933 void copy_user_huge_page(struct page *dst, struct page *src,
3934 unsigned long addr, struct vm_area_struct *vma,
3935 unsigned int pages_per_huge_page)
3937 int i;
3939 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3940 copy_user_gigantic_page(dst, src, addr, vma,
3941 pages_per_huge_page);
3942 return;
3945 might_sleep();
3946 for (i = 0; i < pages_per_huge_page; i++) {
3947 cond_resched();
3948 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3951 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3953 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3955 static struct kmem_cache *page_ptl_cachep;
3957 void __init ptlock_cache_init(void)
3959 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3960 SLAB_PANIC, NULL);
3963 bool ptlock_alloc(struct page *page)
3965 spinlock_t *ptl;
3967 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3968 if (!ptl)
3969 return false;
3970 page->ptl = ptl;
3971 return true;
3974 void ptlock_free(struct page *page)
3976 kmem_cache_free(page_ptl_cachep, page->ptl);
3978 #endif