4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
11 #include <linux/vmalloc.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/debugobjects.h>
22 #include <linux/kallsyms.h>
23 #include <linux/list.h>
24 #include <linux/rbtree.h>
25 #include <linux/radix-tree.h>
26 #include <linux/rcupdate.h>
27 #include <linux/pfn.h>
28 #include <linux/kmemleak.h>
29 #include <linux/atomic.h>
30 #include <linux/compiler.h>
31 #include <linux/llist.h>
32 #include <linux/bitops.h>
34 #include <asm/uaccess.h>
35 #include <asm/tlbflush.h>
36 #include <asm/shmparam.h>
40 struct vfree_deferred
{
41 struct llist_head list
;
42 struct work_struct wq
;
44 static DEFINE_PER_CPU(struct vfree_deferred
, vfree_deferred
);
46 static void __vunmap(const void *, int);
48 static void free_work(struct work_struct
*w
)
50 struct vfree_deferred
*p
= container_of(w
, struct vfree_deferred
, wq
);
51 struct llist_node
*llnode
= llist_del_all(&p
->list
);
54 llnode
= llist_next(llnode
);
59 /*** Page table manipulation functions ***/
61 static void vunmap_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
)
65 pte
= pte_offset_kernel(pmd
, addr
);
67 pte_t ptent
= ptep_get_and_clear(&init_mm
, addr
, pte
);
68 WARN_ON(!pte_none(ptent
) && !pte_present(ptent
));
69 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
72 static void vunmap_pmd_range(pud_t
*pud
, unsigned long addr
, unsigned long end
)
77 pmd
= pmd_offset(pud
, addr
);
79 next
= pmd_addr_end(addr
, end
);
80 if (pmd_clear_huge(pmd
))
82 if (pmd_none_or_clear_bad(pmd
))
84 vunmap_pte_range(pmd
, addr
, next
);
85 } while (pmd
++, addr
= next
, addr
!= end
);
88 static void vunmap_pud_range(pgd_t
*pgd
, unsigned long addr
, unsigned long end
)
93 pud
= pud_offset(pgd
, addr
);
95 next
= pud_addr_end(addr
, end
);
96 if (pud_clear_huge(pud
))
98 if (pud_none_or_clear_bad(pud
))
100 vunmap_pmd_range(pud
, addr
, next
);
101 } while (pud
++, addr
= next
, addr
!= end
);
104 static void vunmap_page_range(unsigned long addr
, unsigned long end
)
110 pgd
= pgd_offset_k(addr
);
112 next
= pgd_addr_end(addr
, end
);
113 if (pgd_none_or_clear_bad(pgd
))
115 vunmap_pud_range(pgd
, addr
, next
);
116 } while (pgd
++, addr
= next
, addr
!= end
);
119 static int vmap_pte_range(pmd_t
*pmd
, unsigned long addr
,
120 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
125 * nr is a running index into the array which helps higher level
126 * callers keep track of where we're up to.
129 pte
= pte_alloc_kernel(pmd
, addr
);
133 struct page
*page
= pages
[*nr
];
135 if (WARN_ON(!pte_none(*pte
)))
139 set_pte_at(&init_mm
, addr
, pte
, mk_pte(page
, prot
));
141 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
145 static int vmap_pmd_range(pud_t
*pud
, unsigned long addr
,
146 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
151 pmd
= pmd_alloc(&init_mm
, pud
, addr
);
155 next
= pmd_addr_end(addr
, end
);
156 if (vmap_pte_range(pmd
, addr
, next
, prot
, pages
, nr
))
158 } while (pmd
++, addr
= next
, addr
!= end
);
162 static int vmap_pud_range(pgd_t
*pgd
, unsigned long addr
,
163 unsigned long end
, pgprot_t prot
, struct page
**pages
, int *nr
)
168 pud
= pud_alloc(&init_mm
, pgd
, addr
);
172 next
= pud_addr_end(addr
, end
);
173 if (vmap_pmd_range(pud
, addr
, next
, prot
, pages
, nr
))
175 } while (pud
++, addr
= next
, addr
!= end
);
180 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
181 * will have pfns corresponding to the "pages" array.
183 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
185 static int vmap_page_range_noflush(unsigned long start
, unsigned long end
,
186 pgprot_t prot
, struct page
**pages
)
190 unsigned long addr
= start
;
195 pgd
= pgd_offset_k(addr
);
197 next
= pgd_addr_end(addr
, end
);
198 err
= vmap_pud_range(pgd
, addr
, next
, prot
, pages
, &nr
);
201 } while (pgd
++, addr
= next
, addr
!= end
);
206 static int vmap_page_range(unsigned long start
, unsigned long end
,
207 pgprot_t prot
, struct page
**pages
)
211 ret
= vmap_page_range_noflush(start
, end
, prot
, pages
);
212 flush_cache_vmap(start
, end
);
216 int is_vmalloc_or_module_addr(const void *x
)
219 * ARM, x86-64 and sparc64 put modules in a special place,
220 * and fall back on vmalloc() if that fails. Others
221 * just put it in the vmalloc space.
223 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
224 unsigned long addr
= (unsigned long)x
;
225 if (addr
>= MODULES_VADDR
&& addr
< MODULES_END
)
228 return is_vmalloc_addr(x
);
232 * Walk a vmap address to the struct page it maps.
234 struct page
*vmalloc_to_page(const void *vmalloc_addr
)
236 unsigned long addr
= (unsigned long) vmalloc_addr
;
237 struct page
*page
= NULL
;
238 pgd_t
*pgd
= pgd_offset_k(addr
);
241 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
242 * architectures that do not vmalloc module space
244 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr
));
246 if (!pgd_none(*pgd
)) {
247 pud_t
*pud
= pud_offset(pgd
, addr
);
248 if (!pud_none(*pud
)) {
249 pmd_t
*pmd
= pmd_offset(pud
, addr
);
250 if (!pmd_none(*pmd
)) {
253 ptep
= pte_offset_map(pmd
, addr
);
255 if (pte_present(pte
))
256 page
= pte_page(pte
);
263 EXPORT_SYMBOL(vmalloc_to_page
);
266 * Map a vmalloc()-space virtual address to the physical page frame number.
268 unsigned long vmalloc_to_pfn(const void *vmalloc_addr
)
270 return page_to_pfn(vmalloc_to_page(vmalloc_addr
));
272 EXPORT_SYMBOL(vmalloc_to_pfn
);
275 /*** Global kva allocator ***/
277 #define VM_LAZY_FREE 0x01
278 #define VM_LAZY_FREEING 0x02
279 #define VM_VM_AREA 0x04
281 static DEFINE_SPINLOCK(vmap_area_lock
);
282 /* Export for kexec only */
283 LIST_HEAD(vmap_area_list
);
284 static struct rb_root vmap_area_root
= RB_ROOT
;
286 /* The vmap cache globals are protected by vmap_area_lock */
287 static struct rb_node
*free_vmap_cache
;
288 static unsigned long cached_hole_size
;
289 static unsigned long cached_vstart
;
290 static unsigned long cached_align
;
292 static unsigned long vmap_area_pcpu_hole
;
294 static struct vmap_area
*__find_vmap_area(unsigned long addr
)
296 struct rb_node
*n
= vmap_area_root
.rb_node
;
299 struct vmap_area
*va
;
301 va
= rb_entry(n
, struct vmap_area
, rb_node
);
302 if (addr
< va
->va_start
)
304 else if (addr
>= va
->va_end
)
313 static void __insert_vmap_area(struct vmap_area
*va
)
315 struct rb_node
**p
= &vmap_area_root
.rb_node
;
316 struct rb_node
*parent
= NULL
;
320 struct vmap_area
*tmp_va
;
323 tmp_va
= rb_entry(parent
, struct vmap_area
, rb_node
);
324 if (va
->va_start
< tmp_va
->va_end
)
326 else if (va
->va_end
> tmp_va
->va_start
)
332 rb_link_node(&va
->rb_node
, parent
, p
);
333 rb_insert_color(&va
->rb_node
, &vmap_area_root
);
335 /* address-sort this list */
336 tmp
= rb_prev(&va
->rb_node
);
338 struct vmap_area
*prev
;
339 prev
= rb_entry(tmp
, struct vmap_area
, rb_node
);
340 list_add_rcu(&va
->list
, &prev
->list
);
342 list_add_rcu(&va
->list
, &vmap_area_list
);
345 static void purge_vmap_area_lazy(void);
348 * Allocate a region of KVA of the specified size and alignment, within the
351 static struct vmap_area
*alloc_vmap_area(unsigned long size
,
353 unsigned long vstart
, unsigned long vend
,
354 int node
, gfp_t gfp_mask
)
356 struct vmap_area
*va
;
360 struct vmap_area
*first
;
363 BUG_ON(offset_in_page(size
));
364 BUG_ON(!is_power_of_2(align
));
366 va
= kmalloc_node(sizeof(struct vmap_area
),
367 gfp_mask
& GFP_RECLAIM_MASK
, node
);
369 return ERR_PTR(-ENOMEM
);
372 * Only scan the relevant parts containing pointers to other objects
373 * to avoid false negatives.
375 kmemleak_scan_area(&va
->rb_node
, SIZE_MAX
, gfp_mask
& GFP_RECLAIM_MASK
);
378 spin_lock(&vmap_area_lock
);
380 * Invalidate cache if we have more permissive parameters.
381 * cached_hole_size notes the largest hole noticed _below_
382 * the vmap_area cached in free_vmap_cache: if size fits
383 * into that hole, we want to scan from vstart to reuse
384 * the hole instead of allocating above free_vmap_cache.
385 * Note that __free_vmap_area may update free_vmap_cache
386 * without updating cached_hole_size or cached_align.
388 if (!free_vmap_cache
||
389 size
< cached_hole_size
||
390 vstart
< cached_vstart
||
391 align
< cached_align
) {
393 cached_hole_size
= 0;
394 free_vmap_cache
= NULL
;
396 /* record if we encounter less permissive parameters */
397 cached_vstart
= vstart
;
398 cached_align
= align
;
400 /* find starting point for our search */
401 if (free_vmap_cache
) {
402 first
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
403 addr
= ALIGN(first
->va_end
, align
);
406 if (addr
+ size
< addr
)
410 addr
= ALIGN(vstart
, align
);
411 if (addr
+ size
< addr
)
414 n
= vmap_area_root
.rb_node
;
418 struct vmap_area
*tmp
;
419 tmp
= rb_entry(n
, struct vmap_area
, rb_node
);
420 if (tmp
->va_end
>= addr
) {
422 if (tmp
->va_start
<= addr
)
433 /* from the starting point, walk areas until a suitable hole is found */
434 while (addr
+ size
> first
->va_start
&& addr
+ size
<= vend
) {
435 if (addr
+ cached_hole_size
< first
->va_start
)
436 cached_hole_size
= first
->va_start
- addr
;
437 addr
= ALIGN(first
->va_end
, align
);
438 if (addr
+ size
< addr
)
441 if (list_is_last(&first
->list
, &vmap_area_list
))
444 first
= list_next_entry(first
, list
);
448 if (addr
+ size
> vend
)
452 va
->va_end
= addr
+ size
;
454 __insert_vmap_area(va
);
455 free_vmap_cache
= &va
->rb_node
;
456 spin_unlock(&vmap_area_lock
);
458 BUG_ON(!IS_ALIGNED(va
->va_start
, align
));
459 BUG_ON(va
->va_start
< vstart
);
460 BUG_ON(va
->va_end
> vend
);
465 spin_unlock(&vmap_area_lock
);
467 purge_vmap_area_lazy();
471 if (printk_ratelimit())
472 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
475 return ERR_PTR(-EBUSY
);
478 static void __free_vmap_area(struct vmap_area
*va
)
480 BUG_ON(RB_EMPTY_NODE(&va
->rb_node
));
482 if (free_vmap_cache
) {
483 if (va
->va_end
< cached_vstart
) {
484 free_vmap_cache
= NULL
;
486 struct vmap_area
*cache
;
487 cache
= rb_entry(free_vmap_cache
, struct vmap_area
, rb_node
);
488 if (va
->va_start
<= cache
->va_start
) {
489 free_vmap_cache
= rb_prev(&va
->rb_node
);
491 * We don't try to update cached_hole_size or
492 * cached_align, but it won't go very wrong.
497 rb_erase(&va
->rb_node
, &vmap_area_root
);
498 RB_CLEAR_NODE(&va
->rb_node
);
499 list_del_rcu(&va
->list
);
502 * Track the highest possible candidate for pcpu area
503 * allocation. Areas outside of vmalloc area can be returned
504 * here too, consider only end addresses which fall inside
505 * vmalloc area proper.
507 if (va
->va_end
> VMALLOC_START
&& va
->va_end
<= VMALLOC_END
)
508 vmap_area_pcpu_hole
= max(vmap_area_pcpu_hole
, va
->va_end
);
510 kfree_rcu(va
, rcu_head
);
514 * Free a region of KVA allocated by alloc_vmap_area
516 static void free_vmap_area(struct vmap_area
*va
)
518 spin_lock(&vmap_area_lock
);
519 __free_vmap_area(va
);
520 spin_unlock(&vmap_area_lock
);
524 * Clear the pagetable entries of a given vmap_area
526 static void unmap_vmap_area(struct vmap_area
*va
)
528 vunmap_page_range(va
->va_start
, va
->va_end
);
531 static void vmap_debug_free_range(unsigned long start
, unsigned long end
)
534 * Unmap page tables and force a TLB flush immediately if pagealloc
535 * debugging is enabled. This catches use after free bugs similarly to
536 * those in linear kernel virtual address space after a page has been
539 * All the lazy freeing logic is still retained, in order to minimise
540 * intrusiveness of this debugging feature.
542 * This is going to be *slow* (linear kernel virtual address debugging
543 * doesn't do a broadcast TLB flush so it is a lot faster).
545 if (debug_pagealloc_enabled()) {
546 vunmap_page_range(start
, end
);
547 flush_tlb_kernel_range(start
, end
);
552 * lazy_max_pages is the maximum amount of virtual address space we gather up
553 * before attempting to purge with a TLB flush.
555 * There is a tradeoff here: a larger number will cover more kernel page tables
556 * and take slightly longer to purge, but it will linearly reduce the number of
557 * global TLB flushes that must be performed. It would seem natural to scale
558 * this number up linearly with the number of CPUs (because vmapping activity
559 * could also scale linearly with the number of CPUs), however it is likely
560 * that in practice, workloads might be constrained in other ways that mean
561 * vmap activity will not scale linearly with CPUs. Also, I want to be
562 * conservative and not introduce a big latency on huge systems, so go with
563 * a less aggressive log scale. It will still be an improvement over the old
564 * code, and it will be simple to change the scale factor if we find that it
565 * becomes a problem on bigger systems.
567 static unsigned long lazy_max_pages(void)
571 log
= fls(num_online_cpus());
573 return log
* (32UL * 1024 * 1024 / PAGE_SIZE
);
576 static atomic_t vmap_lazy_nr
= ATOMIC_INIT(0);
578 /* for per-CPU blocks */
579 static void purge_fragmented_blocks_allcpus(void);
582 * called before a call to iounmap() if the caller wants vm_area_struct's
585 void set_iounmap_nonlazy(void)
587 atomic_set(&vmap_lazy_nr
, lazy_max_pages()+1);
591 * Purges all lazily-freed vmap areas.
593 * If sync is 0 then don't purge if there is already a purge in progress.
594 * If force_flush is 1, then flush kernel TLBs between *start and *end even
595 * if we found no lazy vmap areas to unmap (callers can use this to optimise
596 * their own TLB flushing).
597 * Returns with *start = min(*start, lowest purged address)
598 * *end = max(*end, highest purged address)
600 static void __purge_vmap_area_lazy(unsigned long *start
, unsigned long *end
,
601 int sync
, int force_flush
)
603 static DEFINE_SPINLOCK(purge_lock
);
605 struct vmap_area
*va
;
606 struct vmap_area
*n_va
;
610 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
611 * should not expect such behaviour. This just simplifies locking for
612 * the case that isn't actually used at the moment anyway.
614 if (!sync
&& !force_flush
) {
615 if (!spin_trylock(&purge_lock
))
618 spin_lock(&purge_lock
);
621 purge_fragmented_blocks_allcpus();
624 list_for_each_entry_rcu(va
, &vmap_area_list
, list
) {
625 if (va
->flags
& VM_LAZY_FREE
) {
626 if (va
->va_start
< *start
)
627 *start
= va
->va_start
;
628 if (va
->va_end
> *end
)
630 nr
+= (va
->va_end
- va
->va_start
) >> PAGE_SHIFT
;
631 list_add_tail(&va
->purge_list
, &valist
);
632 va
->flags
|= VM_LAZY_FREEING
;
633 va
->flags
&= ~VM_LAZY_FREE
;
639 atomic_sub(nr
, &vmap_lazy_nr
);
641 if (nr
|| force_flush
)
642 flush_tlb_kernel_range(*start
, *end
);
645 spin_lock(&vmap_area_lock
);
646 list_for_each_entry_safe(va
, n_va
, &valist
, purge_list
)
647 __free_vmap_area(va
);
648 spin_unlock(&vmap_area_lock
);
650 spin_unlock(&purge_lock
);
654 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
655 * is already purging.
657 static void try_purge_vmap_area_lazy(void)
659 unsigned long start
= ULONG_MAX
, end
= 0;
661 __purge_vmap_area_lazy(&start
, &end
, 0, 0);
665 * Kick off a purge of the outstanding lazy areas.
667 static void purge_vmap_area_lazy(void)
669 unsigned long start
= ULONG_MAX
, end
= 0;
671 __purge_vmap_area_lazy(&start
, &end
, 1, 0);
675 * Free a vmap area, caller ensuring that the area has been unmapped
676 * and flush_cache_vunmap had been called for the correct range
679 static void free_vmap_area_noflush(struct vmap_area
*va
)
681 va
->flags
|= VM_LAZY_FREE
;
682 atomic_add((va
->va_end
- va
->va_start
) >> PAGE_SHIFT
, &vmap_lazy_nr
);
683 if (unlikely(atomic_read(&vmap_lazy_nr
) > lazy_max_pages()))
684 try_purge_vmap_area_lazy();
688 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
689 * called for the correct range previously.
691 static void free_unmap_vmap_area_noflush(struct vmap_area
*va
)
694 free_vmap_area_noflush(va
);
698 * Free and unmap a vmap area
700 static void free_unmap_vmap_area(struct vmap_area
*va
)
702 flush_cache_vunmap(va
->va_start
, va
->va_end
);
703 free_unmap_vmap_area_noflush(va
);
706 static struct vmap_area
*find_vmap_area(unsigned long addr
)
708 struct vmap_area
*va
;
710 spin_lock(&vmap_area_lock
);
711 va
= __find_vmap_area(addr
);
712 spin_unlock(&vmap_area_lock
);
717 static void free_unmap_vmap_area_addr(unsigned long addr
)
719 struct vmap_area
*va
;
721 va
= find_vmap_area(addr
);
723 free_unmap_vmap_area(va
);
727 /*** Per cpu kva allocator ***/
730 * vmap space is limited especially on 32 bit architectures. Ensure there is
731 * room for at least 16 percpu vmap blocks per CPU.
734 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
735 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
736 * instead (we just need a rough idea)
738 #if BITS_PER_LONG == 32
739 #define VMALLOC_SPACE (128UL*1024*1024)
741 #define VMALLOC_SPACE (128UL*1024*1024*1024)
744 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
745 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
746 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
747 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
748 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
749 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
750 #define VMAP_BBMAP_BITS \
751 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
752 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
753 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
755 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
757 static bool vmap_initialized __read_mostly
= false;
759 struct vmap_block_queue
{
761 struct list_head free
;
766 struct vmap_area
*va
;
767 unsigned long free
, dirty
;
768 unsigned long dirty_min
, dirty_max
; /*< dirty range */
769 struct list_head free_list
;
770 struct rcu_head rcu_head
;
771 struct list_head purge
;
774 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
775 static DEFINE_PER_CPU(struct vmap_block_queue
, vmap_block_queue
);
778 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
779 * in the free path. Could get rid of this if we change the API to return a
780 * "cookie" from alloc, to be passed to free. But no big deal yet.
782 static DEFINE_SPINLOCK(vmap_block_tree_lock
);
783 static RADIX_TREE(vmap_block_tree
, GFP_ATOMIC
);
786 * We should probably have a fallback mechanism to allocate virtual memory
787 * out of partially filled vmap blocks. However vmap block sizing should be
788 * fairly reasonable according to the vmalloc size, so it shouldn't be a
792 static unsigned long addr_to_vb_idx(unsigned long addr
)
794 addr
-= VMALLOC_START
& ~(VMAP_BLOCK_SIZE
-1);
795 addr
/= VMAP_BLOCK_SIZE
;
799 static void *vmap_block_vaddr(unsigned long va_start
, unsigned long pages_off
)
803 addr
= va_start
+ (pages_off
<< PAGE_SHIFT
);
804 BUG_ON(addr_to_vb_idx(addr
) != addr_to_vb_idx(va_start
));
809 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
810 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
811 * @order: how many 2^order pages should be occupied in newly allocated block
812 * @gfp_mask: flags for the page level allocator
814 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
816 static void *new_vmap_block(unsigned int order
, gfp_t gfp_mask
)
818 struct vmap_block_queue
*vbq
;
819 struct vmap_block
*vb
;
820 struct vmap_area
*va
;
821 unsigned long vb_idx
;
825 node
= numa_node_id();
827 vb
= kmalloc_node(sizeof(struct vmap_block
),
828 gfp_mask
& GFP_RECLAIM_MASK
, node
);
830 return ERR_PTR(-ENOMEM
);
832 va
= alloc_vmap_area(VMAP_BLOCK_SIZE
, VMAP_BLOCK_SIZE
,
833 VMALLOC_START
, VMALLOC_END
,
840 err
= radix_tree_preload(gfp_mask
);
847 vaddr
= vmap_block_vaddr(va
->va_start
, 0);
848 spin_lock_init(&vb
->lock
);
850 /* At least something should be left free */
851 BUG_ON(VMAP_BBMAP_BITS
<= (1UL << order
));
852 vb
->free
= VMAP_BBMAP_BITS
- (1UL << order
);
854 vb
->dirty_min
= VMAP_BBMAP_BITS
;
856 INIT_LIST_HEAD(&vb
->free_list
);
858 vb_idx
= addr_to_vb_idx(va
->va_start
);
859 spin_lock(&vmap_block_tree_lock
);
860 err
= radix_tree_insert(&vmap_block_tree
, vb_idx
, vb
);
861 spin_unlock(&vmap_block_tree_lock
);
863 radix_tree_preload_end();
865 vbq
= &get_cpu_var(vmap_block_queue
);
866 spin_lock(&vbq
->lock
);
867 list_add_tail_rcu(&vb
->free_list
, &vbq
->free
);
868 spin_unlock(&vbq
->lock
);
869 put_cpu_var(vmap_block_queue
);
874 static void free_vmap_block(struct vmap_block
*vb
)
876 struct vmap_block
*tmp
;
877 unsigned long vb_idx
;
879 vb_idx
= addr_to_vb_idx(vb
->va
->va_start
);
880 spin_lock(&vmap_block_tree_lock
);
881 tmp
= radix_tree_delete(&vmap_block_tree
, vb_idx
);
882 spin_unlock(&vmap_block_tree_lock
);
885 free_vmap_area_noflush(vb
->va
);
886 kfree_rcu(vb
, rcu_head
);
889 static void purge_fragmented_blocks(int cpu
)
892 struct vmap_block
*vb
;
893 struct vmap_block
*n_vb
;
894 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
897 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
899 if (!(vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
))
902 spin_lock(&vb
->lock
);
903 if (vb
->free
+ vb
->dirty
== VMAP_BBMAP_BITS
&& vb
->dirty
!= VMAP_BBMAP_BITS
) {
904 vb
->free
= 0; /* prevent further allocs after releasing lock */
905 vb
->dirty
= VMAP_BBMAP_BITS
; /* prevent purging it again */
907 vb
->dirty_max
= VMAP_BBMAP_BITS
;
908 spin_lock(&vbq
->lock
);
909 list_del_rcu(&vb
->free_list
);
910 spin_unlock(&vbq
->lock
);
911 spin_unlock(&vb
->lock
);
912 list_add_tail(&vb
->purge
, &purge
);
914 spin_unlock(&vb
->lock
);
918 list_for_each_entry_safe(vb
, n_vb
, &purge
, purge
) {
919 list_del(&vb
->purge
);
924 static void purge_fragmented_blocks_allcpus(void)
928 for_each_possible_cpu(cpu
)
929 purge_fragmented_blocks(cpu
);
932 static void *vb_alloc(unsigned long size
, gfp_t gfp_mask
)
934 struct vmap_block_queue
*vbq
;
935 struct vmap_block
*vb
;
939 BUG_ON(offset_in_page(size
));
940 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
941 if (WARN_ON(size
== 0)) {
943 * Allocating 0 bytes isn't what caller wants since
944 * get_order(0) returns funny result. Just warn and terminate
949 order
= get_order(size
);
952 vbq
= &get_cpu_var(vmap_block_queue
);
953 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
954 unsigned long pages_off
;
956 spin_lock(&vb
->lock
);
957 if (vb
->free
< (1UL << order
)) {
958 spin_unlock(&vb
->lock
);
962 pages_off
= VMAP_BBMAP_BITS
- vb
->free
;
963 vaddr
= vmap_block_vaddr(vb
->va
->va_start
, pages_off
);
964 vb
->free
-= 1UL << order
;
966 spin_lock(&vbq
->lock
);
967 list_del_rcu(&vb
->free_list
);
968 spin_unlock(&vbq
->lock
);
971 spin_unlock(&vb
->lock
);
975 put_cpu_var(vmap_block_queue
);
978 /* Allocate new block if nothing was found */
980 vaddr
= new_vmap_block(order
, gfp_mask
);
985 static void vb_free(const void *addr
, unsigned long size
)
987 unsigned long offset
;
988 unsigned long vb_idx
;
990 struct vmap_block
*vb
;
992 BUG_ON(offset_in_page(size
));
993 BUG_ON(size
> PAGE_SIZE
*VMAP_MAX_ALLOC
);
995 flush_cache_vunmap((unsigned long)addr
, (unsigned long)addr
+ size
);
997 order
= get_order(size
);
999 offset
= (unsigned long)addr
& (VMAP_BLOCK_SIZE
- 1);
1000 offset
>>= PAGE_SHIFT
;
1002 vb_idx
= addr_to_vb_idx((unsigned long)addr
);
1004 vb
= radix_tree_lookup(&vmap_block_tree
, vb_idx
);
1008 vunmap_page_range((unsigned long)addr
, (unsigned long)addr
+ size
);
1010 spin_lock(&vb
->lock
);
1012 /* Expand dirty range */
1013 vb
->dirty_min
= min(vb
->dirty_min
, offset
);
1014 vb
->dirty_max
= max(vb
->dirty_max
, offset
+ (1UL << order
));
1016 vb
->dirty
+= 1UL << order
;
1017 if (vb
->dirty
== VMAP_BBMAP_BITS
) {
1019 spin_unlock(&vb
->lock
);
1020 free_vmap_block(vb
);
1022 spin_unlock(&vb
->lock
);
1026 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1028 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1029 * to amortize TLB flushing overheads. What this means is that any page you
1030 * have now, may, in a former life, have been mapped into kernel virtual
1031 * address by the vmap layer and so there might be some CPUs with TLB entries
1032 * still referencing that page (additional to the regular 1:1 kernel mapping).
1034 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1035 * be sure that none of the pages we have control over will have any aliases
1036 * from the vmap layer.
1038 void vm_unmap_aliases(void)
1040 unsigned long start
= ULONG_MAX
, end
= 0;
1044 if (unlikely(!vmap_initialized
))
1047 for_each_possible_cpu(cpu
) {
1048 struct vmap_block_queue
*vbq
= &per_cpu(vmap_block_queue
, cpu
);
1049 struct vmap_block
*vb
;
1052 list_for_each_entry_rcu(vb
, &vbq
->free
, free_list
) {
1053 spin_lock(&vb
->lock
);
1055 unsigned long va_start
= vb
->va
->va_start
;
1058 s
= va_start
+ (vb
->dirty_min
<< PAGE_SHIFT
);
1059 e
= va_start
+ (vb
->dirty_max
<< PAGE_SHIFT
);
1061 start
= min(s
, start
);
1066 spin_unlock(&vb
->lock
);
1071 __purge_vmap_area_lazy(&start
, &end
, 1, flush
);
1073 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
1076 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1077 * @mem: the pointer returned by vm_map_ram
1078 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1080 void vm_unmap_ram(const void *mem
, unsigned int count
)
1082 unsigned long size
= count
<< PAGE_SHIFT
;
1083 unsigned long addr
= (unsigned long)mem
;
1086 BUG_ON(addr
< VMALLOC_START
);
1087 BUG_ON(addr
> VMALLOC_END
);
1088 BUG_ON(!PAGE_ALIGNED(addr
));
1090 debug_check_no_locks_freed(mem
, size
);
1091 vmap_debug_free_range(addr
, addr
+size
);
1093 if (likely(count
<= VMAP_MAX_ALLOC
))
1096 free_unmap_vmap_area_addr(addr
);
1098 EXPORT_SYMBOL(vm_unmap_ram
);
1101 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1102 * @pages: an array of pointers to the pages to be mapped
1103 * @count: number of pages
1104 * @node: prefer to allocate data structures on this node
1105 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1107 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1108 * faster than vmap so it's good. But if you mix long-life and short-life
1109 * objects with vm_map_ram(), it could consume lots of address space through
1110 * fragmentation (especially on a 32bit machine). You could see failures in
1111 * the end. Please use this function for short-lived objects.
1113 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1115 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
1117 unsigned long size
= count
<< PAGE_SHIFT
;
1121 if (likely(count
<= VMAP_MAX_ALLOC
)) {
1122 mem
= vb_alloc(size
, GFP_KERNEL
);
1125 addr
= (unsigned long)mem
;
1127 struct vmap_area
*va
;
1128 va
= alloc_vmap_area(size
, PAGE_SIZE
,
1129 VMALLOC_START
, VMALLOC_END
, node
, GFP_KERNEL
);
1133 addr
= va
->va_start
;
1136 if (vmap_page_range(addr
, addr
+ size
, prot
, pages
) < 0) {
1137 vm_unmap_ram(mem
, count
);
1142 EXPORT_SYMBOL(vm_map_ram
);
1144 static struct vm_struct
*vmlist __initdata
;
1146 * vm_area_add_early - add vmap area early during boot
1147 * @vm: vm_struct to add
1149 * This function is used to add fixed kernel vm area to vmlist before
1150 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
1151 * should contain proper values and the other fields should be zero.
1153 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1155 void __init
vm_area_add_early(struct vm_struct
*vm
)
1157 struct vm_struct
*tmp
, **p
;
1159 BUG_ON(vmap_initialized
);
1160 for (p
= &vmlist
; (tmp
= *p
) != NULL
; p
= &tmp
->next
) {
1161 if (tmp
->addr
>= vm
->addr
) {
1162 BUG_ON(tmp
->addr
< vm
->addr
+ vm
->size
);
1165 BUG_ON(tmp
->addr
+ tmp
->size
> vm
->addr
);
1172 * vm_area_register_early - register vmap area early during boot
1173 * @vm: vm_struct to register
1174 * @align: requested alignment
1176 * This function is used to register kernel vm area before
1177 * vmalloc_init() is called. @vm->size and @vm->flags should contain
1178 * proper values on entry and other fields should be zero. On return,
1179 * vm->addr contains the allocated address.
1181 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1183 void __init
vm_area_register_early(struct vm_struct
*vm
, size_t align
)
1185 static size_t vm_init_off __initdata
;
1188 addr
= ALIGN(VMALLOC_START
+ vm_init_off
, align
);
1189 vm_init_off
= PFN_ALIGN(addr
+ vm
->size
) - VMALLOC_START
;
1191 vm
->addr
= (void *)addr
;
1193 vm_area_add_early(vm
);
1196 void __init
vmalloc_init(void)
1198 struct vmap_area
*va
;
1199 struct vm_struct
*tmp
;
1202 for_each_possible_cpu(i
) {
1203 struct vmap_block_queue
*vbq
;
1204 struct vfree_deferred
*p
;
1206 vbq
= &per_cpu(vmap_block_queue
, i
);
1207 spin_lock_init(&vbq
->lock
);
1208 INIT_LIST_HEAD(&vbq
->free
);
1209 p
= &per_cpu(vfree_deferred
, i
);
1210 init_llist_head(&p
->list
);
1211 INIT_WORK(&p
->wq
, free_work
);
1214 /* Import existing vmlist entries. */
1215 for (tmp
= vmlist
; tmp
; tmp
= tmp
->next
) {
1216 va
= kzalloc(sizeof(struct vmap_area
), GFP_NOWAIT
);
1217 va
->flags
= VM_VM_AREA
;
1218 va
->va_start
= (unsigned long)tmp
->addr
;
1219 va
->va_end
= va
->va_start
+ tmp
->size
;
1221 __insert_vmap_area(va
);
1224 vmap_area_pcpu_hole
= VMALLOC_END
;
1226 vmap_initialized
= true;
1230 * map_kernel_range_noflush - map kernel VM area with the specified pages
1231 * @addr: start of the VM area to map
1232 * @size: size of the VM area to map
1233 * @prot: page protection flags to use
1234 * @pages: pages to map
1236 * Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
1237 * specify should have been allocated using get_vm_area() and its
1241 * This function does NOT do any cache flushing. The caller is
1242 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1243 * before calling this function.
1246 * The number of pages mapped on success, -errno on failure.
1248 int map_kernel_range_noflush(unsigned long addr
, unsigned long size
,
1249 pgprot_t prot
, struct page
**pages
)
1251 return vmap_page_range_noflush(addr
, addr
+ size
, prot
, pages
);
1255 * unmap_kernel_range_noflush - unmap kernel VM area
1256 * @addr: start of the VM area to unmap
1257 * @size: size of the VM area to unmap
1259 * Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
1260 * specify should have been allocated using get_vm_area() and its
1264 * This function does NOT do any cache flushing. The caller is
1265 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1266 * before calling this function and flush_tlb_kernel_range() after.
1268 void unmap_kernel_range_noflush(unsigned long addr
, unsigned long size
)
1270 vunmap_page_range(addr
, addr
+ size
);
1272 EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush
);
1275 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1276 * @addr: start of the VM area to unmap
1277 * @size: size of the VM area to unmap
1279 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1280 * the unmapping and tlb after.
1282 void unmap_kernel_range(unsigned long addr
, unsigned long size
)
1284 unsigned long end
= addr
+ size
;
1286 flush_cache_vunmap(addr
, end
);
1287 vunmap_page_range(addr
, end
);
1288 flush_tlb_kernel_range(addr
, end
);
1290 EXPORT_SYMBOL_GPL(unmap_kernel_range
);
1292 int map_vm_area(struct vm_struct
*area
, pgprot_t prot
, struct page
**pages
)
1294 unsigned long addr
= (unsigned long)area
->addr
;
1295 unsigned long end
= addr
+ get_vm_area_size(area
);
1298 err
= vmap_page_range(addr
, end
, prot
, pages
);
1300 return err
> 0 ? 0 : err
;
1302 EXPORT_SYMBOL_GPL(map_vm_area
);
1304 static void setup_vmalloc_vm(struct vm_struct
*vm
, struct vmap_area
*va
,
1305 unsigned long flags
, const void *caller
)
1307 spin_lock(&vmap_area_lock
);
1309 vm
->addr
= (void *)va
->va_start
;
1310 vm
->size
= va
->va_end
- va
->va_start
;
1311 vm
->caller
= caller
;
1313 va
->flags
|= VM_VM_AREA
;
1314 spin_unlock(&vmap_area_lock
);
1317 static void clear_vm_uninitialized_flag(struct vm_struct
*vm
)
1320 * Before removing VM_UNINITIALIZED,
1321 * we should make sure that vm has proper values.
1322 * Pair with smp_rmb() in show_numa_info().
1325 vm
->flags
&= ~VM_UNINITIALIZED
;
1328 static struct vm_struct
*__get_vm_area_node(unsigned long size
,
1329 unsigned long align
, unsigned long flags
, unsigned long start
,
1330 unsigned long end
, int node
, gfp_t gfp_mask
, const void *caller
)
1332 struct vmap_area
*va
;
1333 struct vm_struct
*area
;
1335 BUG_ON(in_interrupt());
1336 if (flags
& VM_IOREMAP
)
1337 align
= 1ul << clamp_t(int, fls_long(size
),
1338 PAGE_SHIFT
, IOREMAP_MAX_ORDER
);
1340 size
= PAGE_ALIGN(size
);
1341 if (unlikely(!size
))
1344 area
= kzalloc_node(sizeof(*area
), gfp_mask
& GFP_RECLAIM_MASK
, node
);
1345 if (unlikely(!area
))
1348 if (!(flags
& VM_NO_GUARD
))
1351 va
= alloc_vmap_area(size
, align
, start
, end
, node
, gfp_mask
);
1357 setup_vmalloc_vm(area
, va
, flags
, caller
);
1362 struct vm_struct
*__get_vm_area(unsigned long size
, unsigned long flags
,
1363 unsigned long start
, unsigned long end
)
1365 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1366 GFP_KERNEL
, __builtin_return_address(0));
1368 EXPORT_SYMBOL_GPL(__get_vm_area
);
1370 struct vm_struct
*__get_vm_area_caller(unsigned long size
, unsigned long flags
,
1371 unsigned long start
, unsigned long end
,
1374 return __get_vm_area_node(size
, 1, flags
, start
, end
, NUMA_NO_NODE
,
1375 GFP_KERNEL
, caller
);
1379 * get_vm_area - reserve a contiguous kernel virtual area
1380 * @size: size of the area
1381 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1383 * Search an area of @size in the kernel virtual mapping area,
1384 * and reserved it for out purposes. Returns the area descriptor
1385 * on success or %NULL on failure.
1387 struct vm_struct
*get_vm_area(unsigned long size
, unsigned long flags
)
1389 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1390 NUMA_NO_NODE
, GFP_KERNEL
,
1391 __builtin_return_address(0));
1394 struct vm_struct
*get_vm_area_caller(unsigned long size
, unsigned long flags
,
1397 return __get_vm_area_node(size
, 1, flags
, VMALLOC_START
, VMALLOC_END
,
1398 NUMA_NO_NODE
, GFP_KERNEL
, caller
);
1402 * find_vm_area - find a continuous kernel virtual area
1403 * @addr: base address
1405 * Search for the kernel VM area starting at @addr, and return it.
1406 * It is up to the caller to do all required locking to keep the returned
1409 struct vm_struct
*find_vm_area(const void *addr
)
1411 struct vmap_area
*va
;
1413 va
= find_vmap_area((unsigned long)addr
);
1414 if (va
&& va
->flags
& VM_VM_AREA
)
1421 * remove_vm_area - find and remove a continuous kernel virtual area
1422 * @addr: base address
1424 * Search for the kernel VM area starting at @addr, and remove it.
1425 * This function returns the found VM area, but using it is NOT safe
1426 * on SMP machines, except for its size or flags.
1428 struct vm_struct
*remove_vm_area(const void *addr
)
1430 struct vmap_area
*va
;
1432 va
= find_vmap_area((unsigned long)addr
);
1433 if (va
&& va
->flags
& VM_VM_AREA
) {
1434 struct vm_struct
*vm
= va
->vm
;
1436 spin_lock(&vmap_area_lock
);
1438 va
->flags
&= ~VM_VM_AREA
;
1439 spin_unlock(&vmap_area_lock
);
1441 vmap_debug_free_range(va
->va_start
, va
->va_end
);
1442 kasan_free_shadow(vm
);
1443 free_unmap_vmap_area(va
);
1450 static void __vunmap(const void *addr
, int deallocate_pages
)
1452 struct vm_struct
*area
;
1457 if (WARN(!PAGE_ALIGNED(addr
), "Trying to vfree() bad address (%p)\n",
1461 area
= remove_vm_area(addr
);
1462 if (unlikely(!area
)) {
1463 WARN(1, KERN_ERR
"Trying to vfree() nonexistent vm area (%p)\n",
1468 debug_check_no_locks_freed(addr
, get_vm_area_size(area
));
1469 debug_check_no_obj_freed(addr
, get_vm_area_size(area
));
1471 if (deallocate_pages
) {
1474 for (i
= 0; i
< area
->nr_pages
; i
++) {
1475 struct page
*page
= area
->pages
[i
];
1478 __free_kmem_pages(page
, 0);
1481 kvfree(area
->pages
);
1489 * vfree - release memory allocated by vmalloc()
1490 * @addr: memory base address
1492 * Free the virtually continuous memory area starting at @addr, as
1493 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1494 * NULL, no operation is performed.
1496 * Must not be called in NMI context (strictly speaking, only if we don't
1497 * have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1498 * conventions for vfree() arch-depenedent would be a really bad idea)
1500 * NOTE: assumes that the object at *addr has a size >= sizeof(llist_node)
1502 void vfree(const void *addr
)
1506 kmemleak_free(addr
);
1510 if (unlikely(in_interrupt())) {
1511 struct vfree_deferred
*p
= this_cpu_ptr(&vfree_deferred
);
1512 if (llist_add((struct llist_node
*)addr
, &p
->list
))
1513 schedule_work(&p
->wq
);
1517 EXPORT_SYMBOL(vfree
);
1520 * vunmap - release virtual mapping obtained by vmap()
1521 * @addr: memory base address
1523 * Free the virtually contiguous memory area starting at @addr,
1524 * which was created from the page array passed to vmap().
1526 * Must not be called in interrupt context.
1528 void vunmap(const void *addr
)
1530 BUG_ON(in_interrupt());
1535 EXPORT_SYMBOL(vunmap
);
1538 * vmap - map an array of pages into virtually contiguous space
1539 * @pages: array of page pointers
1540 * @count: number of pages to map
1541 * @flags: vm_area->flags
1542 * @prot: page protection for the mapping
1544 * Maps @count pages from @pages into contiguous kernel virtual
1547 void *vmap(struct page
**pages
, unsigned int count
,
1548 unsigned long flags
, pgprot_t prot
)
1550 struct vm_struct
*area
;
1554 if (count
> totalram_pages
)
1557 area
= get_vm_area_caller((count
<< PAGE_SHIFT
), flags
,
1558 __builtin_return_address(0));
1562 if (map_vm_area(area
, prot
, pages
)) {
1569 EXPORT_SYMBOL(vmap
);
1571 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1572 gfp_t gfp_mask
, pgprot_t prot
,
1573 int node
, const void *caller
);
1574 static void *__vmalloc_area_node(struct vm_struct
*area
, gfp_t gfp_mask
,
1575 pgprot_t prot
, int node
)
1577 const int order
= 0;
1578 struct page
**pages
;
1579 unsigned int nr_pages
, array_size
, i
;
1580 const gfp_t nested_gfp
= (gfp_mask
& GFP_RECLAIM_MASK
) | __GFP_ZERO
;
1581 const gfp_t alloc_mask
= gfp_mask
| __GFP_NOWARN
;
1583 nr_pages
= get_vm_area_size(area
) >> PAGE_SHIFT
;
1584 array_size
= (nr_pages
* sizeof(struct page
*));
1586 area
->nr_pages
= nr_pages
;
1587 /* Please note that the recursion is strictly bounded. */
1588 if (array_size
> PAGE_SIZE
) {
1589 pages
= __vmalloc_node(array_size
, 1, nested_gfp
|__GFP_HIGHMEM
,
1590 PAGE_KERNEL
, node
, area
->caller
);
1592 pages
= kmalloc_node(array_size
, nested_gfp
, node
);
1594 area
->pages
= pages
;
1596 remove_vm_area(area
->addr
);
1601 for (i
= 0; i
< area
->nr_pages
; i
++) {
1604 if (node
== NUMA_NO_NODE
)
1605 page
= alloc_kmem_pages(alloc_mask
, order
);
1607 page
= alloc_kmem_pages_node(node
, alloc_mask
, order
);
1609 if (unlikely(!page
)) {
1610 /* Successfully allocated i pages, free them in __vunmap() */
1614 area
->pages
[i
] = page
;
1615 if (gfpflags_allow_blocking(gfp_mask
))
1619 if (map_vm_area(area
, prot
, pages
))
1624 warn_alloc_failed(gfp_mask
, order
,
1625 "vmalloc: allocation failure, allocated %ld of %ld bytes\n",
1626 (area
->nr_pages
*PAGE_SIZE
), area
->size
);
1632 * __vmalloc_node_range - allocate virtually contiguous memory
1633 * @size: allocation size
1634 * @align: desired alignment
1635 * @start: vm area range start
1636 * @end: vm area range end
1637 * @gfp_mask: flags for the page level allocator
1638 * @prot: protection mask for the allocated pages
1639 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
1640 * @node: node to use for allocation or NUMA_NO_NODE
1641 * @caller: caller's return address
1643 * Allocate enough pages to cover @size from the page level
1644 * allocator with @gfp_mask flags. Map them into contiguous
1645 * kernel virtual space, using a pagetable protection of @prot.
1647 void *__vmalloc_node_range(unsigned long size
, unsigned long align
,
1648 unsigned long start
, unsigned long end
, gfp_t gfp_mask
,
1649 pgprot_t prot
, unsigned long vm_flags
, int node
,
1652 struct vm_struct
*area
;
1654 unsigned long real_size
= size
;
1656 size
= PAGE_ALIGN(size
);
1657 if (!size
|| (size
>> PAGE_SHIFT
) > totalram_pages
)
1660 area
= __get_vm_area_node(size
, align
, VM_ALLOC
| VM_UNINITIALIZED
|
1661 vm_flags
, start
, end
, node
, gfp_mask
, caller
);
1665 addr
= __vmalloc_area_node(area
, gfp_mask
, prot
, node
);
1670 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1671 * flag. It means that vm_struct is not fully initialized.
1672 * Now, it is fully initialized, so remove this flag here.
1674 clear_vm_uninitialized_flag(area
);
1677 * A ref_count = 2 is needed because vm_struct allocated in
1678 * __get_vm_area_node() contains a reference to the virtual address of
1679 * the vmalloc'ed block.
1681 kmemleak_alloc(addr
, real_size
, 2, gfp_mask
);
1686 warn_alloc_failed(gfp_mask
, 0,
1687 "vmalloc: allocation failure: %lu bytes\n",
1693 * __vmalloc_node - allocate virtually contiguous memory
1694 * @size: allocation size
1695 * @align: desired alignment
1696 * @gfp_mask: flags for the page level allocator
1697 * @prot: protection mask for the allocated pages
1698 * @node: node to use for allocation or NUMA_NO_NODE
1699 * @caller: caller's return address
1701 * Allocate enough pages to cover @size from the page level
1702 * allocator with @gfp_mask flags. Map them into contiguous
1703 * kernel virtual space, using a pagetable protection of @prot.
1705 static void *__vmalloc_node(unsigned long size
, unsigned long align
,
1706 gfp_t gfp_mask
, pgprot_t prot
,
1707 int node
, const void *caller
)
1709 return __vmalloc_node_range(size
, align
, VMALLOC_START
, VMALLOC_END
,
1710 gfp_mask
, prot
, 0, node
, caller
);
1713 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
1715 return __vmalloc_node(size
, 1, gfp_mask
, prot
, NUMA_NO_NODE
,
1716 __builtin_return_address(0));
1718 EXPORT_SYMBOL(__vmalloc
);
1720 static inline void *__vmalloc_node_flags(unsigned long size
,
1721 int node
, gfp_t flags
)
1723 return __vmalloc_node(size
, 1, flags
, PAGE_KERNEL
,
1724 node
, __builtin_return_address(0));
1728 * vmalloc - allocate virtually contiguous memory
1729 * @size: allocation size
1730 * Allocate enough pages to cover @size from the page level
1731 * allocator and map them into contiguous kernel virtual space.
1733 * For tight control over page level allocator and protection flags
1734 * use __vmalloc() instead.
1736 void *vmalloc(unsigned long size
)
1738 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1739 GFP_KERNEL
| __GFP_HIGHMEM
);
1741 EXPORT_SYMBOL(vmalloc
);
1744 * vzalloc - allocate virtually contiguous memory with zero fill
1745 * @size: allocation size
1746 * Allocate enough pages to cover @size from the page level
1747 * allocator and map them into contiguous kernel virtual space.
1748 * The memory allocated is set to zero.
1750 * For tight control over page level allocator and protection flags
1751 * use __vmalloc() instead.
1753 void *vzalloc(unsigned long size
)
1755 return __vmalloc_node_flags(size
, NUMA_NO_NODE
,
1756 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1758 EXPORT_SYMBOL(vzalloc
);
1761 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1762 * @size: allocation size
1764 * The resulting memory area is zeroed so it can be mapped to userspace
1765 * without leaking data.
1767 void *vmalloc_user(unsigned long size
)
1769 struct vm_struct
*area
;
1772 ret
= __vmalloc_node(size
, SHMLBA
,
1773 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
1774 PAGE_KERNEL
, NUMA_NO_NODE
,
1775 __builtin_return_address(0));
1777 area
= find_vm_area(ret
);
1778 area
->flags
|= VM_USERMAP
;
1782 EXPORT_SYMBOL(vmalloc_user
);
1785 * vmalloc_node - allocate memory on a specific node
1786 * @size: allocation size
1789 * Allocate enough pages to cover @size from the page level
1790 * allocator and map them into contiguous kernel virtual space.
1792 * For tight control over page level allocator and protection flags
1793 * use __vmalloc() instead.
1795 void *vmalloc_node(unsigned long size
, int node
)
1797 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
,
1798 node
, __builtin_return_address(0));
1800 EXPORT_SYMBOL(vmalloc_node
);
1803 * vzalloc_node - allocate memory on a specific node with zero fill
1804 * @size: allocation size
1807 * Allocate enough pages to cover @size from the page level
1808 * allocator and map them into contiguous kernel virtual space.
1809 * The memory allocated is set to zero.
1811 * For tight control over page level allocator and protection flags
1812 * use __vmalloc_node() instead.
1814 void *vzalloc_node(unsigned long size
, int node
)
1816 return __vmalloc_node_flags(size
, node
,
1817 GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
);
1819 EXPORT_SYMBOL(vzalloc_node
);
1821 #ifndef PAGE_KERNEL_EXEC
1822 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1826 * vmalloc_exec - allocate virtually contiguous, executable memory
1827 * @size: allocation size
1829 * Kernel-internal function to allocate enough pages to cover @size
1830 * the page level allocator and map them into contiguous and
1831 * executable kernel virtual space.
1833 * For tight control over page level allocator and protection flags
1834 * use __vmalloc() instead.
1837 void *vmalloc_exec(unsigned long size
)
1839 return __vmalloc_node(size
, 1, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
,
1840 NUMA_NO_NODE
, __builtin_return_address(0));
1843 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1844 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1845 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1846 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1848 #define GFP_VMALLOC32 GFP_KERNEL
1852 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1853 * @size: allocation size
1855 * Allocate enough 32bit PA addressable pages to cover @size from the
1856 * page level allocator and map them into contiguous kernel virtual space.
1858 void *vmalloc_32(unsigned long size
)
1860 return __vmalloc_node(size
, 1, GFP_VMALLOC32
, PAGE_KERNEL
,
1861 NUMA_NO_NODE
, __builtin_return_address(0));
1863 EXPORT_SYMBOL(vmalloc_32
);
1866 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1867 * @size: allocation size
1869 * The resulting memory area is 32bit addressable and zeroed so it can be
1870 * mapped to userspace without leaking data.
1872 void *vmalloc_32_user(unsigned long size
)
1874 struct vm_struct
*area
;
1877 ret
= __vmalloc_node(size
, 1, GFP_VMALLOC32
| __GFP_ZERO
, PAGE_KERNEL
,
1878 NUMA_NO_NODE
, __builtin_return_address(0));
1880 area
= find_vm_area(ret
);
1881 area
->flags
|= VM_USERMAP
;
1885 EXPORT_SYMBOL(vmalloc_32_user
);
1888 * small helper routine , copy contents to buf from addr.
1889 * If the page is not present, fill zero.
1892 static int aligned_vread(char *buf
, char *addr
, unsigned long count
)
1898 unsigned long offset
, length
;
1900 offset
= offset_in_page(addr
);
1901 length
= PAGE_SIZE
- offset
;
1904 p
= vmalloc_to_page(addr
);
1906 * To do safe access to this _mapped_ area, we need
1907 * lock. But adding lock here means that we need to add
1908 * overhead of vmalloc()/vfree() calles for this _debug_
1909 * interface, rarely used. Instead of that, we'll use
1910 * kmap() and get small overhead in this access function.
1914 * we can expect USER0 is not used (see vread/vwrite's
1915 * function description)
1917 void *map
= kmap_atomic(p
);
1918 memcpy(buf
, map
+ offset
, length
);
1921 memset(buf
, 0, length
);
1931 static int aligned_vwrite(char *buf
, char *addr
, unsigned long count
)
1937 unsigned long offset
, length
;
1939 offset
= offset_in_page(addr
);
1940 length
= PAGE_SIZE
- offset
;
1943 p
= vmalloc_to_page(addr
);
1945 * To do safe access to this _mapped_ area, we need
1946 * lock. But adding lock here means that we need to add
1947 * overhead of vmalloc()/vfree() calles for this _debug_
1948 * interface, rarely used. Instead of that, we'll use
1949 * kmap() and get small overhead in this access function.
1953 * we can expect USER0 is not used (see vread/vwrite's
1954 * function description)
1956 void *map
= kmap_atomic(p
);
1957 memcpy(map
+ offset
, buf
, length
);
1969 * vread() - read vmalloc area in a safe way.
1970 * @buf: buffer for reading data
1971 * @addr: vm address.
1972 * @count: number of bytes to be read.
1974 * Returns # of bytes which addr and buf should be increased.
1975 * (same number to @count). Returns 0 if [addr...addr+count) doesn't
1976 * includes any intersect with alive vmalloc area.
1978 * This function checks that addr is a valid vmalloc'ed area, and
1979 * copy data from that area to a given buffer. If the given memory range
1980 * of [addr...addr+count) includes some valid address, data is copied to
1981 * proper area of @buf. If there are memory holes, they'll be zero-filled.
1982 * IOREMAP area is treated as memory hole and no copy is done.
1984 * If [addr...addr+count) doesn't includes any intersects with alive
1985 * vm_struct area, returns 0. @buf should be kernel's buffer.
1987 * Note: In usual ops, vread() is never necessary because the caller
1988 * should know vmalloc() area is valid and can use memcpy().
1989 * This is for routines which have to access vmalloc area without
1990 * any informaion, as /dev/kmem.
1994 long vread(char *buf
, char *addr
, unsigned long count
)
1996 struct vmap_area
*va
;
1997 struct vm_struct
*vm
;
1998 char *vaddr
, *buf_start
= buf
;
1999 unsigned long buflen
= count
;
2002 /* Don't allow overflow */
2003 if ((unsigned long) addr
+ count
< count
)
2004 count
= -(unsigned long) addr
;
2006 spin_lock(&vmap_area_lock
);
2007 list_for_each_entry(va
, &vmap_area_list
, list
) {
2011 if (!(va
->flags
& VM_VM_AREA
))
2015 vaddr
= (char *) vm
->addr
;
2016 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2018 while (addr
< vaddr
) {
2026 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2029 if (!(vm
->flags
& VM_IOREMAP
))
2030 aligned_vread(buf
, addr
, n
);
2031 else /* IOREMAP area is treated as memory hole */
2038 spin_unlock(&vmap_area_lock
);
2040 if (buf
== buf_start
)
2042 /* zero-fill memory holes */
2043 if (buf
!= buf_start
+ buflen
)
2044 memset(buf
, 0, buflen
- (buf
- buf_start
));
2050 * vwrite() - write vmalloc area in a safe way.
2051 * @buf: buffer for source data
2052 * @addr: vm address.
2053 * @count: number of bytes to be read.
2055 * Returns # of bytes which addr and buf should be incresed.
2056 * (same number to @count).
2057 * If [addr...addr+count) doesn't includes any intersect with valid
2058 * vmalloc area, returns 0.
2060 * This function checks that addr is a valid vmalloc'ed area, and
2061 * copy data from a buffer to the given addr. If specified range of
2062 * [addr...addr+count) includes some valid address, data is copied from
2063 * proper area of @buf. If there are memory holes, no copy to hole.
2064 * IOREMAP area is treated as memory hole and no copy is done.
2066 * If [addr...addr+count) doesn't includes any intersects with alive
2067 * vm_struct area, returns 0. @buf should be kernel's buffer.
2069 * Note: In usual ops, vwrite() is never necessary because the caller
2070 * should know vmalloc() area is valid and can use memcpy().
2071 * This is for routines which have to access vmalloc area without
2072 * any informaion, as /dev/kmem.
2075 long vwrite(char *buf
, char *addr
, unsigned long count
)
2077 struct vmap_area
*va
;
2078 struct vm_struct
*vm
;
2080 unsigned long n
, buflen
;
2083 /* Don't allow overflow */
2084 if ((unsigned long) addr
+ count
< count
)
2085 count
= -(unsigned long) addr
;
2088 spin_lock(&vmap_area_lock
);
2089 list_for_each_entry(va
, &vmap_area_list
, list
) {
2093 if (!(va
->flags
& VM_VM_AREA
))
2097 vaddr
= (char *) vm
->addr
;
2098 if (addr
>= vaddr
+ get_vm_area_size(vm
))
2100 while (addr
< vaddr
) {
2107 n
= vaddr
+ get_vm_area_size(vm
) - addr
;
2110 if (!(vm
->flags
& VM_IOREMAP
)) {
2111 aligned_vwrite(buf
, addr
, n
);
2119 spin_unlock(&vmap_area_lock
);
2126 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2127 * @vma: vma to cover
2128 * @uaddr: target user address to start at
2129 * @kaddr: virtual address of vmalloc kernel memory
2130 * @size: size of map area
2132 * Returns: 0 for success, -Exxx on failure
2134 * This function checks that @kaddr is a valid vmalloc'ed area,
2135 * and that it is big enough to cover the range starting at
2136 * @uaddr in @vma. Will return failure if that criteria isn't
2139 * Similar to remap_pfn_range() (see mm/memory.c)
2141 int remap_vmalloc_range_partial(struct vm_area_struct
*vma
, unsigned long uaddr
,
2142 void *kaddr
, unsigned long size
)
2144 struct vm_struct
*area
;
2146 size
= PAGE_ALIGN(size
);
2148 if (!PAGE_ALIGNED(uaddr
) || !PAGE_ALIGNED(kaddr
))
2151 area
= find_vm_area(kaddr
);
2155 if (!(area
->flags
& VM_USERMAP
))
2158 if (kaddr
+ size
> area
->addr
+ area
->size
)
2162 struct page
*page
= vmalloc_to_page(kaddr
);
2165 ret
= vm_insert_page(vma
, uaddr
, page
);
2174 vma
->vm_flags
|= VM_DONTEXPAND
| VM_DONTDUMP
;
2178 EXPORT_SYMBOL(remap_vmalloc_range_partial
);
2181 * remap_vmalloc_range - map vmalloc pages to userspace
2182 * @vma: vma to cover (map full range of vma)
2183 * @addr: vmalloc memory
2184 * @pgoff: number of pages into addr before first page to map
2186 * Returns: 0 for success, -Exxx on failure
2188 * This function checks that addr is a valid vmalloc'ed area, and
2189 * that it is big enough to cover the vma. Will return failure if
2190 * that criteria isn't met.
2192 * Similar to remap_pfn_range() (see mm/memory.c)
2194 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
2195 unsigned long pgoff
)
2197 return remap_vmalloc_range_partial(vma
, vma
->vm_start
,
2198 addr
+ (pgoff
<< PAGE_SHIFT
),
2199 vma
->vm_end
- vma
->vm_start
);
2201 EXPORT_SYMBOL(remap_vmalloc_range
);
2204 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2207 void __weak
vmalloc_sync_all(void)
2212 static int f(pte_t
*pte
, pgtable_t table
, unsigned long addr
, void *data
)
2224 * alloc_vm_area - allocate a range of kernel address space
2225 * @size: size of the area
2226 * @ptes: returns the PTEs for the address space
2228 * Returns: NULL on failure, vm_struct on success
2230 * This function reserves a range of kernel address space, and
2231 * allocates pagetables to map that range. No actual mappings
2234 * If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2235 * allocated for the VM area are returned.
2237 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
2239 struct vm_struct
*area
;
2241 area
= get_vm_area_caller(size
, VM_IOREMAP
,
2242 __builtin_return_address(0));
2247 * This ensures that page tables are constructed for this region
2248 * of kernel virtual address space and mapped into init_mm.
2250 if (apply_to_page_range(&init_mm
, (unsigned long)area
->addr
,
2251 size
, f
, ptes
? &ptes
: NULL
)) {
2258 EXPORT_SYMBOL_GPL(alloc_vm_area
);
2260 void free_vm_area(struct vm_struct
*area
)
2262 struct vm_struct
*ret
;
2263 ret
= remove_vm_area(area
->addr
);
2264 BUG_ON(ret
!= area
);
2267 EXPORT_SYMBOL_GPL(free_vm_area
);
2270 static struct vmap_area
*node_to_va(struct rb_node
*n
)
2272 return n
? rb_entry(n
, struct vmap_area
, rb_node
) : NULL
;
2276 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2277 * @end: target address
2278 * @pnext: out arg for the next vmap_area
2279 * @pprev: out arg for the previous vmap_area
2281 * Returns: %true if either or both of next and prev are found,
2282 * %false if no vmap_area exists
2284 * Find vmap_areas end addresses of which enclose @end. ie. if not
2285 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2287 static bool pvm_find_next_prev(unsigned long end
,
2288 struct vmap_area
**pnext
,
2289 struct vmap_area
**pprev
)
2291 struct rb_node
*n
= vmap_area_root
.rb_node
;
2292 struct vmap_area
*va
= NULL
;
2295 va
= rb_entry(n
, struct vmap_area
, rb_node
);
2296 if (end
< va
->va_end
)
2298 else if (end
> va
->va_end
)
2307 if (va
->va_end
> end
) {
2309 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2312 *pnext
= node_to_va(rb_next(&(*pprev
)->rb_node
));
2318 * pvm_determine_end - find the highest aligned address between two vmap_areas
2319 * @pnext: in/out arg for the next vmap_area
2320 * @pprev: in/out arg for the previous vmap_area
2323 * Returns: determined end address
2325 * Find the highest aligned address between *@pnext and *@pprev below
2326 * VMALLOC_END. *@pnext and *@pprev are adjusted so that the aligned
2327 * down address is between the end addresses of the two vmap_areas.
2329 * Please note that the address returned by this function may fall
2330 * inside *@pnext vmap_area. The caller is responsible for checking
2333 static unsigned long pvm_determine_end(struct vmap_area
**pnext
,
2334 struct vmap_area
**pprev
,
2335 unsigned long align
)
2337 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2341 addr
= min((*pnext
)->va_start
& ~(align
- 1), vmalloc_end
);
2345 while (*pprev
&& (*pprev
)->va_end
> addr
) {
2347 *pprev
= node_to_va(rb_prev(&(*pnext
)->rb_node
));
2354 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2355 * @offsets: array containing offset of each area
2356 * @sizes: array containing size of each area
2357 * @nr_vms: the number of areas to allocate
2358 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2360 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2361 * vm_structs on success, %NULL on failure
2363 * Percpu allocator wants to use congruent vm areas so that it can
2364 * maintain the offsets among percpu areas. This function allocates
2365 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
2366 * be scattered pretty far, distance between two areas easily going up
2367 * to gigabytes. To avoid interacting with regular vmallocs, these
2368 * areas are allocated from top.
2370 * Despite its complicated look, this allocator is rather simple. It
2371 * does everything top-down and scans areas from the end looking for
2372 * matching slot. While scanning, if any of the areas overlaps with
2373 * existing vmap_area, the base address is pulled down to fit the
2374 * area. Scanning is repeated till all the areas fit and then all
2375 * necessary data structres are inserted and the result is returned.
2377 struct vm_struct
**pcpu_get_vm_areas(const unsigned long *offsets
,
2378 const size_t *sizes
, int nr_vms
,
2381 const unsigned long vmalloc_start
= ALIGN(VMALLOC_START
, align
);
2382 const unsigned long vmalloc_end
= VMALLOC_END
& ~(align
- 1);
2383 struct vmap_area
**vas
, *prev
, *next
;
2384 struct vm_struct
**vms
;
2385 int area
, area2
, last_area
, term_area
;
2386 unsigned long base
, start
, end
, last_end
;
2387 bool purged
= false;
2389 /* verify parameters and allocate data structures */
2390 BUG_ON(offset_in_page(align
) || !is_power_of_2(align
));
2391 for (last_area
= 0, area
= 0; area
< nr_vms
; area
++) {
2392 start
= offsets
[area
];
2393 end
= start
+ sizes
[area
];
2395 /* is everything aligned properly? */
2396 BUG_ON(!IS_ALIGNED(offsets
[area
], align
));
2397 BUG_ON(!IS_ALIGNED(sizes
[area
], align
));
2399 /* detect the area with the highest address */
2400 if (start
> offsets
[last_area
])
2403 for (area2
= 0; area2
< nr_vms
; area2
++) {
2404 unsigned long start2
= offsets
[area2
];
2405 unsigned long end2
= start2
+ sizes
[area2
];
2410 BUG_ON(start2
>= start
&& start2
< end
);
2411 BUG_ON(end2
<= end
&& end2
> start
);
2414 last_end
= offsets
[last_area
] + sizes
[last_area
];
2416 if (vmalloc_end
- vmalloc_start
< last_end
) {
2421 vms
= kcalloc(nr_vms
, sizeof(vms
[0]), GFP_KERNEL
);
2422 vas
= kcalloc(nr_vms
, sizeof(vas
[0]), GFP_KERNEL
);
2426 for (area
= 0; area
< nr_vms
; area
++) {
2427 vas
[area
] = kzalloc(sizeof(struct vmap_area
), GFP_KERNEL
);
2428 vms
[area
] = kzalloc(sizeof(struct vm_struct
), GFP_KERNEL
);
2429 if (!vas
[area
] || !vms
[area
])
2433 spin_lock(&vmap_area_lock
);
2435 /* start scanning - we scan from the top, begin with the last area */
2436 area
= term_area
= last_area
;
2437 start
= offsets
[area
];
2438 end
= start
+ sizes
[area
];
2440 if (!pvm_find_next_prev(vmap_area_pcpu_hole
, &next
, &prev
)) {
2441 base
= vmalloc_end
- last_end
;
2444 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2447 BUG_ON(next
&& next
->va_end
<= base
+ end
);
2448 BUG_ON(prev
&& prev
->va_end
> base
+ end
);
2451 * base might have underflowed, add last_end before
2454 if (base
+ last_end
< vmalloc_start
+ last_end
) {
2455 spin_unlock(&vmap_area_lock
);
2457 purge_vmap_area_lazy();
2465 * If next overlaps, move base downwards so that it's
2466 * right below next and then recheck.
2468 if (next
&& next
->va_start
< base
+ end
) {
2469 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2475 * If prev overlaps, shift down next and prev and move
2476 * base so that it's right below new next and then
2479 if (prev
&& prev
->va_end
> base
+ start
) {
2481 prev
= node_to_va(rb_prev(&next
->rb_node
));
2482 base
= pvm_determine_end(&next
, &prev
, align
) - end
;
2488 * This area fits, move on to the previous one. If
2489 * the previous one is the terminal one, we're done.
2491 area
= (area
+ nr_vms
- 1) % nr_vms
;
2492 if (area
== term_area
)
2494 start
= offsets
[area
];
2495 end
= start
+ sizes
[area
];
2496 pvm_find_next_prev(base
+ end
, &next
, &prev
);
2499 /* we've found a fitting base, insert all va's */
2500 for (area
= 0; area
< nr_vms
; area
++) {
2501 struct vmap_area
*va
= vas
[area
];
2503 va
->va_start
= base
+ offsets
[area
];
2504 va
->va_end
= va
->va_start
+ sizes
[area
];
2505 __insert_vmap_area(va
);
2508 vmap_area_pcpu_hole
= base
+ offsets
[last_area
];
2510 spin_unlock(&vmap_area_lock
);
2512 /* insert all vm's */
2513 for (area
= 0; area
< nr_vms
; area
++)
2514 setup_vmalloc_vm(vms
[area
], vas
[area
], VM_ALLOC
,
2521 for (area
= 0; area
< nr_vms
; area
++) {
2532 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2533 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2534 * @nr_vms: the number of allocated areas
2536 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2538 void pcpu_free_vm_areas(struct vm_struct
**vms
, int nr_vms
)
2542 for (i
= 0; i
< nr_vms
; i
++)
2543 free_vm_area(vms
[i
]);
2546 #endif /* CONFIG_SMP */
2548 #ifdef CONFIG_PROC_FS
2549 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
2550 __acquires(&vmap_area_lock
)
2553 struct vmap_area
*va
;
2555 spin_lock(&vmap_area_lock
);
2556 va
= list_first_entry(&vmap_area_list
, typeof(*va
), list
);
2557 while (n
> 0 && &va
->list
!= &vmap_area_list
) {
2559 va
= list_next_entry(va
, list
);
2561 if (!n
&& &va
->list
!= &vmap_area_list
)
2568 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
2570 struct vmap_area
*va
= p
, *next
;
2573 next
= list_next_entry(va
, list
);
2574 if (&next
->list
!= &vmap_area_list
)
2580 static void s_stop(struct seq_file
*m
, void *p
)
2581 __releases(&vmap_area_lock
)
2583 spin_unlock(&vmap_area_lock
);
2586 static void show_numa_info(struct seq_file
*m
, struct vm_struct
*v
)
2588 if (IS_ENABLED(CONFIG_NUMA
)) {
2589 unsigned int nr
, *counters
= m
->private;
2594 if (v
->flags
& VM_UNINITIALIZED
)
2596 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2599 memset(counters
, 0, nr_node_ids
* sizeof(unsigned int));
2601 for (nr
= 0; nr
< v
->nr_pages
; nr
++)
2602 counters
[page_to_nid(v
->pages
[nr
])]++;
2604 for_each_node_state(nr
, N_HIGH_MEMORY
)
2606 seq_printf(m
, " N%u=%u", nr
, counters
[nr
]);
2610 static int s_show(struct seq_file
*m
, void *p
)
2612 struct vmap_area
*va
= p
;
2613 struct vm_struct
*v
;
2616 * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2617 * behalf of vmap area is being tear down or vm_map_ram allocation.
2619 if (!(va
->flags
& VM_VM_AREA
))
2624 seq_printf(m
, "0x%pK-0x%pK %7ld",
2625 v
->addr
, v
->addr
+ v
->size
, v
->size
);
2628 seq_printf(m
, " %pS", v
->caller
);
2631 seq_printf(m
, " pages=%d", v
->nr_pages
);
2634 seq_printf(m
, " phys=%llx", (unsigned long long)v
->phys_addr
);
2636 if (v
->flags
& VM_IOREMAP
)
2637 seq_puts(m
, " ioremap");
2639 if (v
->flags
& VM_ALLOC
)
2640 seq_puts(m
, " vmalloc");
2642 if (v
->flags
& VM_MAP
)
2643 seq_puts(m
, " vmap");
2645 if (v
->flags
& VM_USERMAP
)
2646 seq_puts(m
, " user");
2648 if (is_vmalloc_addr(v
->pages
))
2649 seq_puts(m
, " vpages");
2651 show_numa_info(m
, v
);
2656 static const struct seq_operations vmalloc_op
= {
2663 static int vmalloc_open(struct inode
*inode
, struct file
*file
)
2665 if (IS_ENABLED(CONFIG_NUMA
))
2666 return seq_open_private(file
, &vmalloc_op
,
2667 nr_node_ids
* sizeof(unsigned int));
2669 return seq_open(file
, &vmalloc_op
);
2672 static const struct file_operations proc_vmalloc_operations
= {
2673 .open
= vmalloc_open
,
2675 .llseek
= seq_lseek
,
2676 .release
= seq_release_private
,
2679 static int __init
proc_vmalloc_init(void)
2681 proc_create("vmallocinfo", S_IRUSR
, NULL
, &proc_vmalloc_operations
);
2684 module_init(proc_vmalloc_init
);