2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
67 static struct workqueue_struct
*raid5_wq
;
72 #define NR_STRIPES 256
73 #define STRIPE_SIZE PAGE_SIZE
74 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
75 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
76 #define IO_THRESHOLD 1
77 #define BYPASS_THRESHOLD 1
78 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
79 #define HASH_MASK (NR_HASH - 1)
80 #define MAX_STRIPE_BATCH 8
82 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
84 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
85 return &conf
->stripe_hashtbl
[hash
];
88 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
89 * order without overlap. There may be several bio's per stripe+device, and
90 * a bio could span several devices.
91 * When walking this list for a particular stripe+device, we must never proceed
92 * beyond a bio that extends past this device, as the next bio might no longer
94 * This function is used to determine the 'next' bio in the list, given the sector
95 * of the current stripe+device
97 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
99 int sectors
= bio_sectors(bio
);
100 if (bio
->bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
107 * We maintain a biased count of active stripes in the bottom 16 bits of
108 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
110 static inline int raid5_bi_processed_stripes(struct bio
*bio
)
112 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
113 return (atomic_read(segments
) >> 16) & 0xffff;
116 static inline int raid5_dec_bi_active_stripes(struct bio
*bio
)
118 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
119 return atomic_sub_return(1, segments
) & 0xffff;
122 static inline void raid5_inc_bi_active_stripes(struct bio
*bio
)
124 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
125 atomic_inc(segments
);
128 static inline void raid5_set_bi_processed_stripes(struct bio
*bio
,
131 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
135 old
= atomic_read(segments
);
136 new = (old
& 0xffff) | (cnt
<< 16);
137 } while (atomic_cmpxchg(segments
, old
, new) != old
);
140 static inline void raid5_set_bi_stripes(struct bio
*bio
, unsigned int cnt
)
142 atomic_t
*segments
= (atomic_t
*)&bio
->bi_phys_segments
;
143 atomic_set(segments
, cnt
);
146 /* Find first data disk in a raid6 stripe */
147 static inline int raid6_d0(struct stripe_head
*sh
)
150 /* ddf always start from first device */
152 /* md starts just after Q block */
153 if (sh
->qd_idx
== sh
->disks
- 1)
156 return sh
->qd_idx
+ 1;
158 static inline int raid6_next_disk(int disk
, int raid_disks
)
161 return (disk
< raid_disks
) ? disk
: 0;
164 /* When walking through the disks in a raid5, starting at raid6_d0,
165 * We need to map each disk to a 'slot', where the data disks are slot
166 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
167 * is raid_disks-1. This help does that mapping.
169 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
170 int *count
, int syndrome_disks
)
176 if (idx
== sh
->pd_idx
)
177 return syndrome_disks
;
178 if (idx
== sh
->qd_idx
)
179 return syndrome_disks
+ 1;
185 static void return_io(struct bio
*return_bi
)
187 struct bio
*bi
= return_bi
;
190 return_bi
= bi
->bi_next
;
193 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
200 static void print_raid5_conf (struct r5conf
*conf
);
202 static int stripe_operations_active(struct stripe_head
*sh
)
204 return sh
->check_state
|| sh
->reconstruct_state
||
205 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
206 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
209 static void raid5_wakeup_stripe_thread(struct stripe_head
*sh
)
211 struct r5conf
*conf
= sh
->raid_conf
;
212 struct r5worker_group
*group
;
214 int i
, cpu
= sh
->cpu
;
216 if (!cpu_online(cpu
)) {
217 cpu
= cpumask_any(cpu_online_mask
);
221 if (list_empty(&sh
->lru
)) {
222 struct r5worker_group
*group
;
223 group
= conf
->worker_groups
+ cpu_to_group(cpu
);
224 list_add_tail(&sh
->lru
, &group
->handle_list
);
225 group
->stripes_cnt
++;
229 if (conf
->worker_cnt_per_group
== 0) {
230 md_wakeup_thread(conf
->mddev
->thread
);
234 group
= conf
->worker_groups
+ cpu_to_group(sh
->cpu
);
236 group
->workers
[0].working
= true;
237 /* at least one worker should run to avoid race */
238 queue_work_on(sh
->cpu
, raid5_wq
, &group
->workers
[0].work
);
240 thread_cnt
= group
->stripes_cnt
/ MAX_STRIPE_BATCH
- 1;
241 /* wakeup more workers */
242 for (i
= 1; i
< conf
->worker_cnt_per_group
&& thread_cnt
> 0; i
++) {
243 if (group
->workers
[i
].working
== false) {
244 group
->workers
[i
].working
= true;
245 queue_work_on(sh
->cpu
, raid5_wq
,
246 &group
->workers
[i
].work
);
252 static void do_release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
254 BUG_ON(!list_empty(&sh
->lru
));
255 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
256 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
257 if (test_bit(STRIPE_DELAYED
, &sh
->state
) &&
258 !test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
259 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
260 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
261 sh
->bm_seq
- conf
->seq_write
> 0)
262 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
264 clear_bit(STRIPE_DELAYED
, &sh
->state
);
265 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
266 if (conf
->worker_cnt_per_group
== 0) {
267 list_add_tail(&sh
->lru
, &conf
->handle_list
);
269 raid5_wakeup_stripe_thread(sh
);
273 md_wakeup_thread(conf
->mddev
->thread
);
275 BUG_ON(stripe_operations_active(sh
));
276 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
277 if (atomic_dec_return(&conf
->preread_active_stripes
)
279 md_wakeup_thread(conf
->mddev
->thread
);
280 atomic_dec(&conf
->active_stripes
);
281 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
282 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
283 wake_up(&conf
->wait_for_stripe
);
284 if (conf
->retry_read_aligned
)
285 md_wakeup_thread(conf
->mddev
->thread
);
290 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
292 if (atomic_dec_and_test(&sh
->count
))
293 do_release_stripe(conf
, sh
);
296 /* should hold conf->device_lock already */
297 static int release_stripe_list(struct r5conf
*conf
)
299 struct stripe_head
*sh
;
301 struct llist_node
*head
;
303 head
= llist_del_all(&conf
->released_stripes
);
304 head
= llist_reverse_order(head
);
306 sh
= llist_entry(head
, struct stripe_head
, release_list
);
307 head
= llist_next(head
);
308 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
310 clear_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
);
312 * Don't worry the bit is set here, because if the bit is set
313 * again, the count is always > 1. This is true for
314 * STRIPE_ON_UNPLUG_LIST bit too.
316 __release_stripe(conf
, sh
);
323 static void release_stripe(struct stripe_head
*sh
)
325 struct r5conf
*conf
= sh
->raid_conf
;
329 if (test_and_set_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
))
331 wakeup
= llist_add(&sh
->release_list
, &conf
->released_stripes
);
333 md_wakeup_thread(conf
->mddev
->thread
);
336 local_irq_save(flags
);
337 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
338 if (atomic_dec_and_lock(&sh
->count
, &conf
->device_lock
)) {
339 do_release_stripe(conf
, sh
);
340 spin_unlock(&conf
->device_lock
);
342 local_irq_restore(flags
);
345 static inline void remove_hash(struct stripe_head
*sh
)
347 pr_debug("remove_hash(), stripe %llu\n",
348 (unsigned long long)sh
->sector
);
350 hlist_del_init(&sh
->hash
);
353 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
355 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
357 pr_debug("insert_hash(), stripe %llu\n",
358 (unsigned long long)sh
->sector
);
360 hlist_add_head(&sh
->hash
, hp
);
364 /* find an idle stripe, make sure it is unhashed, and return it. */
365 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
)
367 struct stripe_head
*sh
= NULL
;
368 struct list_head
*first
;
370 if (list_empty(&conf
->inactive_list
))
372 first
= conf
->inactive_list
.next
;
373 sh
= list_entry(first
, struct stripe_head
, lru
);
374 list_del_init(first
);
376 atomic_inc(&conf
->active_stripes
);
381 static void shrink_buffers(struct stripe_head
*sh
)
385 int num
= sh
->raid_conf
->pool_size
;
387 for (i
= 0; i
< num
; i
++) {
391 sh
->dev
[i
].page
= NULL
;
396 static int grow_buffers(struct stripe_head
*sh
)
399 int num
= sh
->raid_conf
->pool_size
;
401 for (i
= 0; i
< num
; i
++) {
404 if (!(page
= alloc_page(GFP_KERNEL
))) {
407 sh
->dev
[i
].page
= page
;
412 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
413 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
414 struct stripe_head
*sh
);
416 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
418 struct r5conf
*conf
= sh
->raid_conf
;
421 BUG_ON(atomic_read(&sh
->count
) != 0);
422 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
423 BUG_ON(stripe_operations_active(sh
));
425 pr_debug("init_stripe called, stripe %llu\n",
426 (unsigned long long)sh
->sector
);
430 sh
->generation
= conf
->generation
- previous
;
431 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
433 stripe_set_idx(sector
, conf
, previous
, sh
);
437 for (i
= sh
->disks
; i
--; ) {
438 struct r5dev
*dev
= &sh
->dev
[i
];
440 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
441 test_bit(R5_LOCKED
, &dev
->flags
)) {
442 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
443 (unsigned long long)sh
->sector
, i
, dev
->toread
,
444 dev
->read
, dev
->towrite
, dev
->written
,
445 test_bit(R5_LOCKED
, &dev
->flags
));
449 raid5_build_block(sh
, i
, previous
);
451 insert_hash(conf
, sh
);
452 sh
->cpu
= smp_processor_id();
455 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
458 struct stripe_head
*sh
;
460 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
461 hlist_for_each_entry(sh
, stripe_hash(conf
, sector
), hash
)
462 if (sh
->sector
== sector
&& sh
->generation
== generation
)
464 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
469 * Need to check if array has failed when deciding whether to:
471 * - remove non-faulty devices
474 * This determination is simple when no reshape is happening.
475 * However if there is a reshape, we need to carefully check
476 * both the before and after sections.
477 * This is because some failed devices may only affect one
478 * of the two sections, and some non-in_sync devices may
479 * be insync in the section most affected by failed devices.
481 static int calc_degraded(struct r5conf
*conf
)
483 int degraded
, degraded2
;
488 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
489 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
490 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
491 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
492 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
494 else if (test_bit(In_sync
, &rdev
->flags
))
497 /* not in-sync or faulty.
498 * If the reshape increases the number of devices,
499 * this is being recovered by the reshape, so
500 * this 'previous' section is not in_sync.
501 * If the number of devices is being reduced however,
502 * the device can only be part of the array if
503 * we are reverting a reshape, so this section will
506 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
510 if (conf
->raid_disks
== conf
->previous_raid_disks
)
514 for (i
= 0; i
< conf
->raid_disks
; i
++) {
515 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
516 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
517 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
518 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
520 else if (test_bit(In_sync
, &rdev
->flags
))
523 /* not in-sync or faulty.
524 * If reshape increases the number of devices, this
525 * section has already been recovered, else it
526 * almost certainly hasn't.
528 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
532 if (degraded2
> degraded
)
537 static int has_failed(struct r5conf
*conf
)
541 if (conf
->mddev
->reshape_position
== MaxSector
)
542 return conf
->mddev
->degraded
> conf
->max_degraded
;
544 degraded
= calc_degraded(conf
);
545 if (degraded
> conf
->max_degraded
)
550 static struct stripe_head
*
551 get_active_stripe(struct r5conf
*conf
, sector_t sector
,
552 int previous
, int noblock
, int noquiesce
)
554 struct stripe_head
*sh
;
556 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
558 spin_lock_irq(&conf
->device_lock
);
561 wait_event_lock_irq(conf
->wait_for_stripe
,
562 conf
->quiesce
== 0 || noquiesce
,
564 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
566 if (!conf
->inactive_blocked
)
567 sh
= get_free_stripe(conf
);
568 if (noblock
&& sh
== NULL
)
571 conf
->inactive_blocked
= 1;
572 wait_event_lock_irq(conf
->wait_for_stripe
,
573 !list_empty(&conf
->inactive_list
) &&
574 (atomic_read(&conf
->active_stripes
)
575 < (conf
->max_nr_stripes
*3/4)
576 || !conf
->inactive_blocked
),
578 conf
->inactive_blocked
= 0;
580 init_stripe(sh
, sector
, previous
);
582 if (atomic_read(&sh
->count
)) {
583 BUG_ON(!list_empty(&sh
->lru
)
584 && !test_bit(STRIPE_EXPANDING
, &sh
->state
)
585 && !test_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
)
586 && !test_bit(STRIPE_ON_RELEASE_LIST
, &sh
->state
));
588 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
589 atomic_inc(&conf
->active_stripes
);
590 if (list_empty(&sh
->lru
) &&
591 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
593 list_del_init(&sh
->lru
);
595 sh
->group
->stripes_cnt
--;
600 } while (sh
== NULL
);
603 atomic_inc(&sh
->count
);
605 spin_unlock_irq(&conf
->device_lock
);
609 /* Determine if 'data_offset' or 'new_data_offset' should be used
610 * in this stripe_head.
612 static int use_new_offset(struct r5conf
*conf
, struct stripe_head
*sh
)
614 sector_t progress
= conf
->reshape_progress
;
615 /* Need a memory barrier to make sure we see the value
616 * of conf->generation, or ->data_offset that was set before
617 * reshape_progress was updated.
620 if (progress
== MaxSector
)
622 if (sh
->generation
== conf
->generation
- 1)
624 /* We are in a reshape, and this is a new-generation stripe,
625 * so use new_data_offset.
631 raid5_end_read_request(struct bio
*bi
, int error
);
633 raid5_end_write_request(struct bio
*bi
, int error
);
635 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
637 struct r5conf
*conf
= sh
->raid_conf
;
638 int i
, disks
= sh
->disks
;
642 for (i
= disks
; i
--; ) {
644 int replace_only
= 0;
645 struct bio
*bi
, *rbi
;
646 struct md_rdev
*rdev
, *rrdev
= NULL
;
647 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
648 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
652 if (test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
654 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
656 else if (test_and_clear_bit(R5_WantReplace
,
657 &sh
->dev
[i
].flags
)) {
662 if (test_and_clear_bit(R5_SyncIO
, &sh
->dev
[i
].flags
))
665 bi
= &sh
->dev
[i
].req
;
666 rbi
= &sh
->dev
[i
].rreq
; /* For writing to replacement */
669 rrdev
= rcu_dereference(conf
->disks
[i
].replacement
);
670 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
671 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
680 /* We raced and saw duplicates */
683 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
) && rrdev
)
688 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
691 atomic_inc(&rdev
->nr_pending
);
692 if (rrdev
&& test_bit(Faulty
, &rrdev
->flags
))
695 atomic_inc(&rrdev
->nr_pending
);
698 /* We have already checked bad blocks for reads. Now
699 * need to check for writes. We never accept write errors
700 * on the replacement, so we don't to check rrdev.
702 while ((rw
& WRITE
) && rdev
&&
703 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
706 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
707 &first_bad
, &bad_sectors
);
712 set_bit(BlockedBadBlocks
, &rdev
->flags
);
713 if (!conf
->mddev
->external
&&
714 conf
->mddev
->flags
) {
715 /* It is very unlikely, but we might
716 * still need to write out the
717 * bad block log - better give it
719 md_check_recovery(conf
->mddev
);
722 * Because md_wait_for_blocked_rdev
723 * will dec nr_pending, we must
724 * increment it first.
726 atomic_inc(&rdev
->nr_pending
);
727 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
729 /* Acknowledged bad block - skip the write */
730 rdev_dec_pending(rdev
, conf
->mddev
);
736 if (s
->syncing
|| s
->expanding
|| s
->expanded
738 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
740 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
743 bi
->bi_bdev
= rdev
->bdev
;
745 bi
->bi_end_io
= (rw
& WRITE
)
746 ? raid5_end_write_request
747 : raid5_end_read_request
;
750 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
751 __func__
, (unsigned long long)sh
->sector
,
753 atomic_inc(&sh
->count
);
754 if (use_new_offset(conf
, sh
))
755 bi
->bi_sector
= (sh
->sector
756 + rdev
->new_data_offset
);
758 bi
->bi_sector
= (sh
->sector
759 + rdev
->data_offset
);
760 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
761 bi
->bi_rw
|= REQ_FLUSH
;
764 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
765 bi
->bi_io_vec
[0].bv_offset
= 0;
766 bi
->bi_size
= STRIPE_SIZE
;
768 * If this is discard request, set bi_vcnt 0. We don't
769 * want to confuse SCSI because SCSI will replace payload
771 if (rw
& REQ_DISCARD
)
774 set_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
);
776 if (conf
->mddev
->gendisk
)
777 trace_block_bio_remap(bdev_get_queue(bi
->bi_bdev
),
778 bi
, disk_devt(conf
->mddev
->gendisk
),
780 generic_make_request(bi
);
783 if (s
->syncing
|| s
->expanding
|| s
->expanded
785 md_sync_acct(rrdev
->bdev
, STRIPE_SECTORS
);
787 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
790 rbi
->bi_bdev
= rrdev
->bdev
;
792 BUG_ON(!(rw
& WRITE
));
793 rbi
->bi_end_io
= raid5_end_write_request
;
794 rbi
->bi_private
= sh
;
796 pr_debug("%s: for %llu schedule op %ld on "
797 "replacement disc %d\n",
798 __func__
, (unsigned long long)sh
->sector
,
800 atomic_inc(&sh
->count
);
801 if (use_new_offset(conf
, sh
))
802 rbi
->bi_sector
= (sh
->sector
803 + rrdev
->new_data_offset
);
805 rbi
->bi_sector
= (sh
->sector
806 + rrdev
->data_offset
);
808 rbi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
809 rbi
->bi_io_vec
[0].bv_offset
= 0;
810 rbi
->bi_size
= STRIPE_SIZE
;
812 * If this is discard request, set bi_vcnt 0. We don't
813 * want to confuse SCSI because SCSI will replace payload
815 if (rw
& REQ_DISCARD
)
817 if (conf
->mddev
->gendisk
)
818 trace_block_bio_remap(bdev_get_queue(rbi
->bi_bdev
),
819 rbi
, disk_devt(conf
->mddev
->gendisk
),
821 generic_make_request(rbi
);
823 if (!rdev
&& !rrdev
) {
825 set_bit(STRIPE_DEGRADED
, &sh
->state
);
826 pr_debug("skip op %ld on disc %d for sector %llu\n",
827 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
828 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
829 set_bit(STRIPE_HANDLE
, &sh
->state
);
834 static struct dma_async_tx_descriptor
*
835 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
836 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
839 struct page
*bio_page
;
842 struct async_submit_ctl submit
;
843 enum async_tx_flags flags
= 0;
845 if (bio
->bi_sector
>= sector
)
846 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
848 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
851 flags
|= ASYNC_TX_FENCE
;
852 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
854 bio_for_each_segment(bvl
, bio
, i
) {
855 int len
= bvl
->bv_len
;
859 if (page_offset
< 0) {
860 b_offset
= -page_offset
;
861 page_offset
+= b_offset
;
865 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
866 clen
= STRIPE_SIZE
- page_offset
;
871 b_offset
+= bvl
->bv_offset
;
872 bio_page
= bvl
->bv_page
;
874 tx
= async_memcpy(page
, bio_page
, page_offset
,
875 b_offset
, clen
, &submit
);
877 tx
= async_memcpy(bio_page
, page
, b_offset
,
878 page_offset
, clen
, &submit
);
880 /* chain the operations */
881 submit
.depend_tx
= tx
;
883 if (clen
< len
) /* hit end of page */
891 static void ops_complete_biofill(void *stripe_head_ref
)
893 struct stripe_head
*sh
= stripe_head_ref
;
894 struct bio
*return_bi
= NULL
;
897 pr_debug("%s: stripe %llu\n", __func__
,
898 (unsigned long long)sh
->sector
);
900 /* clear completed biofills */
901 for (i
= sh
->disks
; i
--; ) {
902 struct r5dev
*dev
= &sh
->dev
[i
];
904 /* acknowledge completion of a biofill operation */
905 /* and check if we need to reply to a read request,
906 * new R5_Wantfill requests are held off until
907 * !STRIPE_BIOFILL_RUN
909 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
910 struct bio
*rbi
, *rbi2
;
915 while (rbi
&& rbi
->bi_sector
<
916 dev
->sector
+ STRIPE_SECTORS
) {
917 rbi2
= r5_next_bio(rbi
, dev
->sector
);
918 if (!raid5_dec_bi_active_stripes(rbi
)) {
919 rbi
->bi_next
= return_bi
;
926 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
928 return_io(return_bi
);
930 set_bit(STRIPE_HANDLE
, &sh
->state
);
934 static void ops_run_biofill(struct stripe_head
*sh
)
936 struct dma_async_tx_descriptor
*tx
= NULL
;
937 struct async_submit_ctl submit
;
940 pr_debug("%s: stripe %llu\n", __func__
,
941 (unsigned long long)sh
->sector
);
943 for (i
= sh
->disks
; i
--; ) {
944 struct r5dev
*dev
= &sh
->dev
[i
];
945 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
947 spin_lock_irq(&sh
->stripe_lock
);
948 dev
->read
= rbi
= dev
->toread
;
950 spin_unlock_irq(&sh
->stripe_lock
);
951 while (rbi
&& rbi
->bi_sector
<
952 dev
->sector
+ STRIPE_SECTORS
) {
953 tx
= async_copy_data(0, rbi
, dev
->page
,
955 rbi
= r5_next_bio(rbi
, dev
->sector
);
960 atomic_inc(&sh
->count
);
961 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
962 async_trigger_callback(&submit
);
965 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
972 tgt
= &sh
->dev
[target
];
973 set_bit(R5_UPTODATE
, &tgt
->flags
);
974 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
975 clear_bit(R5_Wantcompute
, &tgt
->flags
);
978 static void ops_complete_compute(void *stripe_head_ref
)
980 struct stripe_head
*sh
= stripe_head_ref
;
982 pr_debug("%s: stripe %llu\n", __func__
,
983 (unsigned long long)sh
->sector
);
985 /* mark the computed target(s) as uptodate */
986 mark_target_uptodate(sh
, sh
->ops
.target
);
987 mark_target_uptodate(sh
, sh
->ops
.target2
);
989 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
990 if (sh
->check_state
== check_state_compute_run
)
991 sh
->check_state
= check_state_compute_result
;
992 set_bit(STRIPE_HANDLE
, &sh
->state
);
996 /* return a pointer to the address conversion region of the scribble buffer */
997 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
998 struct raid5_percpu
*percpu
)
1000 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
1003 static struct dma_async_tx_descriptor
*
1004 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1006 int disks
= sh
->disks
;
1007 struct page
**xor_srcs
= percpu
->scribble
;
1008 int target
= sh
->ops
.target
;
1009 struct r5dev
*tgt
= &sh
->dev
[target
];
1010 struct page
*xor_dest
= tgt
->page
;
1012 struct dma_async_tx_descriptor
*tx
;
1013 struct async_submit_ctl submit
;
1016 pr_debug("%s: stripe %llu block: %d\n",
1017 __func__
, (unsigned long long)sh
->sector
, target
);
1018 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1020 for (i
= disks
; i
--; )
1022 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1024 atomic_inc(&sh
->count
);
1026 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
1027 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
1028 if (unlikely(count
== 1))
1029 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1031 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1036 /* set_syndrome_sources - populate source buffers for gen_syndrome
1037 * @srcs - (struct page *) array of size sh->disks
1038 * @sh - stripe_head to parse
1040 * Populates srcs in proper layout order for the stripe and returns the
1041 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1042 * destination buffer is recorded in srcs[count] and the Q destination
1043 * is recorded in srcs[count+1]].
1045 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
1047 int disks
= sh
->disks
;
1048 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
1049 int d0_idx
= raid6_d0(sh
);
1053 for (i
= 0; i
< disks
; i
++)
1059 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1061 srcs
[slot
] = sh
->dev
[i
].page
;
1062 i
= raid6_next_disk(i
, disks
);
1063 } while (i
!= d0_idx
);
1065 return syndrome_disks
;
1068 static struct dma_async_tx_descriptor
*
1069 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1071 int disks
= sh
->disks
;
1072 struct page
**blocks
= percpu
->scribble
;
1074 int qd_idx
= sh
->qd_idx
;
1075 struct dma_async_tx_descriptor
*tx
;
1076 struct async_submit_ctl submit
;
1082 if (sh
->ops
.target
< 0)
1083 target
= sh
->ops
.target2
;
1084 else if (sh
->ops
.target2
< 0)
1085 target
= sh
->ops
.target
;
1087 /* we should only have one valid target */
1090 pr_debug("%s: stripe %llu block: %d\n",
1091 __func__
, (unsigned long long)sh
->sector
, target
);
1093 tgt
= &sh
->dev
[target
];
1094 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1097 atomic_inc(&sh
->count
);
1099 if (target
== qd_idx
) {
1100 count
= set_syndrome_sources(blocks
, sh
);
1101 blocks
[count
] = NULL
; /* regenerating p is not necessary */
1102 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
1103 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1104 ops_complete_compute
, sh
,
1105 to_addr_conv(sh
, percpu
));
1106 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1108 /* Compute any data- or p-drive using XOR */
1110 for (i
= disks
; i
-- ; ) {
1111 if (i
== target
|| i
== qd_idx
)
1113 blocks
[count
++] = sh
->dev
[i
].page
;
1116 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1117 NULL
, ops_complete_compute
, sh
,
1118 to_addr_conv(sh
, percpu
));
1119 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
1125 static struct dma_async_tx_descriptor
*
1126 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1128 int i
, count
, disks
= sh
->disks
;
1129 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
1130 int d0_idx
= raid6_d0(sh
);
1131 int faila
= -1, failb
= -1;
1132 int target
= sh
->ops
.target
;
1133 int target2
= sh
->ops
.target2
;
1134 struct r5dev
*tgt
= &sh
->dev
[target
];
1135 struct r5dev
*tgt2
= &sh
->dev
[target2
];
1136 struct dma_async_tx_descriptor
*tx
;
1137 struct page
**blocks
= percpu
->scribble
;
1138 struct async_submit_ctl submit
;
1140 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1141 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
1142 BUG_ON(target
< 0 || target2
< 0);
1143 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
1144 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
1146 /* we need to open-code set_syndrome_sources to handle the
1147 * slot number conversion for 'faila' and 'failb'
1149 for (i
= 0; i
< disks
; i
++)
1154 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
1156 blocks
[slot
] = sh
->dev
[i
].page
;
1162 i
= raid6_next_disk(i
, disks
);
1163 } while (i
!= d0_idx
);
1165 BUG_ON(faila
== failb
);
1168 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1169 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
1171 atomic_inc(&sh
->count
);
1173 if (failb
== syndrome_disks
+1) {
1174 /* Q disk is one of the missing disks */
1175 if (faila
== syndrome_disks
) {
1176 /* Missing P+Q, just recompute */
1177 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1178 ops_complete_compute
, sh
,
1179 to_addr_conv(sh
, percpu
));
1180 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
1181 STRIPE_SIZE
, &submit
);
1185 int qd_idx
= sh
->qd_idx
;
1187 /* Missing D+Q: recompute D from P, then recompute Q */
1188 if (target
== qd_idx
)
1189 data_target
= target2
;
1191 data_target
= target
;
1194 for (i
= disks
; i
-- ; ) {
1195 if (i
== data_target
|| i
== qd_idx
)
1197 blocks
[count
++] = sh
->dev
[i
].page
;
1199 dest
= sh
->dev
[data_target
].page
;
1200 init_async_submit(&submit
,
1201 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
1203 to_addr_conv(sh
, percpu
));
1204 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
1207 count
= set_syndrome_sources(blocks
, sh
);
1208 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
1209 ops_complete_compute
, sh
,
1210 to_addr_conv(sh
, percpu
));
1211 return async_gen_syndrome(blocks
, 0, count
+2,
1212 STRIPE_SIZE
, &submit
);
1215 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
1216 ops_complete_compute
, sh
,
1217 to_addr_conv(sh
, percpu
));
1218 if (failb
== syndrome_disks
) {
1219 /* We're missing D+P. */
1220 return async_raid6_datap_recov(syndrome_disks
+2,
1224 /* We're missing D+D. */
1225 return async_raid6_2data_recov(syndrome_disks
+2,
1226 STRIPE_SIZE
, faila
, failb
,
1233 static void ops_complete_prexor(void *stripe_head_ref
)
1235 struct stripe_head
*sh
= stripe_head_ref
;
1237 pr_debug("%s: stripe %llu\n", __func__
,
1238 (unsigned long long)sh
->sector
);
1241 static struct dma_async_tx_descriptor
*
1242 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1243 struct dma_async_tx_descriptor
*tx
)
1245 int disks
= sh
->disks
;
1246 struct page
**xor_srcs
= percpu
->scribble
;
1247 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1248 struct async_submit_ctl submit
;
1250 /* existing parity data subtracted */
1251 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1253 pr_debug("%s: stripe %llu\n", __func__
,
1254 (unsigned long long)sh
->sector
);
1256 for (i
= disks
; i
--; ) {
1257 struct r5dev
*dev
= &sh
->dev
[i
];
1258 /* Only process blocks that are known to be uptodate */
1259 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1260 xor_srcs
[count
++] = dev
->page
;
1263 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1264 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1265 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1270 static struct dma_async_tx_descriptor
*
1271 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1273 int disks
= sh
->disks
;
1276 pr_debug("%s: stripe %llu\n", __func__
,
1277 (unsigned long long)sh
->sector
);
1279 for (i
= disks
; i
--; ) {
1280 struct r5dev
*dev
= &sh
->dev
[i
];
1283 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1286 spin_lock_irq(&sh
->stripe_lock
);
1287 chosen
= dev
->towrite
;
1288 dev
->towrite
= NULL
;
1289 BUG_ON(dev
->written
);
1290 wbi
= dev
->written
= chosen
;
1291 spin_unlock_irq(&sh
->stripe_lock
);
1293 while (wbi
&& wbi
->bi_sector
<
1294 dev
->sector
+ STRIPE_SECTORS
) {
1295 if (wbi
->bi_rw
& REQ_FUA
)
1296 set_bit(R5_WantFUA
, &dev
->flags
);
1297 if (wbi
->bi_rw
& REQ_SYNC
)
1298 set_bit(R5_SyncIO
, &dev
->flags
);
1299 if (wbi
->bi_rw
& REQ_DISCARD
)
1300 set_bit(R5_Discard
, &dev
->flags
);
1302 tx
= async_copy_data(1, wbi
, dev
->page
,
1304 wbi
= r5_next_bio(wbi
, dev
->sector
);
1312 static void ops_complete_reconstruct(void *stripe_head_ref
)
1314 struct stripe_head
*sh
= stripe_head_ref
;
1315 int disks
= sh
->disks
;
1316 int pd_idx
= sh
->pd_idx
;
1317 int qd_idx
= sh
->qd_idx
;
1319 bool fua
= false, sync
= false, discard
= false;
1321 pr_debug("%s: stripe %llu\n", __func__
,
1322 (unsigned long long)sh
->sector
);
1324 for (i
= disks
; i
--; ) {
1325 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1326 sync
|= test_bit(R5_SyncIO
, &sh
->dev
[i
].flags
);
1327 discard
|= test_bit(R5_Discard
, &sh
->dev
[i
].flags
);
1330 for (i
= disks
; i
--; ) {
1331 struct r5dev
*dev
= &sh
->dev
[i
];
1333 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1335 set_bit(R5_UPTODATE
, &dev
->flags
);
1337 set_bit(R5_WantFUA
, &dev
->flags
);
1339 set_bit(R5_SyncIO
, &dev
->flags
);
1343 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1344 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1345 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1346 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1348 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1349 sh
->reconstruct_state
= reconstruct_state_result
;
1352 set_bit(STRIPE_HANDLE
, &sh
->state
);
1357 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1358 struct dma_async_tx_descriptor
*tx
)
1360 int disks
= sh
->disks
;
1361 struct page
**xor_srcs
= percpu
->scribble
;
1362 struct async_submit_ctl submit
;
1363 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1364 struct page
*xor_dest
;
1366 unsigned long flags
;
1368 pr_debug("%s: stripe %llu\n", __func__
,
1369 (unsigned long long)sh
->sector
);
1371 for (i
= 0; i
< sh
->disks
; i
++) {
1374 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1377 if (i
>= sh
->disks
) {
1378 atomic_inc(&sh
->count
);
1379 set_bit(R5_Discard
, &sh
->dev
[pd_idx
].flags
);
1380 ops_complete_reconstruct(sh
);
1383 /* check if prexor is active which means only process blocks
1384 * that are part of a read-modify-write (written)
1386 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1388 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1389 for (i
= disks
; i
--; ) {
1390 struct r5dev
*dev
= &sh
->dev
[i
];
1392 xor_srcs
[count
++] = dev
->page
;
1395 xor_dest
= sh
->dev
[pd_idx
].page
;
1396 for (i
= disks
; i
--; ) {
1397 struct r5dev
*dev
= &sh
->dev
[i
];
1399 xor_srcs
[count
++] = dev
->page
;
1403 /* 1/ if we prexor'd then the dest is reused as a source
1404 * 2/ if we did not prexor then we are redoing the parity
1405 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1406 * for the synchronous xor case
1408 flags
= ASYNC_TX_ACK
|
1409 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1411 atomic_inc(&sh
->count
);
1413 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1414 to_addr_conv(sh
, percpu
));
1415 if (unlikely(count
== 1))
1416 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1418 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1422 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1423 struct dma_async_tx_descriptor
*tx
)
1425 struct async_submit_ctl submit
;
1426 struct page
**blocks
= percpu
->scribble
;
1429 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1431 for (i
= 0; i
< sh
->disks
; i
++) {
1432 if (sh
->pd_idx
== i
|| sh
->qd_idx
== i
)
1434 if (!test_bit(R5_Discard
, &sh
->dev
[i
].flags
))
1437 if (i
>= sh
->disks
) {
1438 atomic_inc(&sh
->count
);
1439 set_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
1440 set_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
1441 ops_complete_reconstruct(sh
);
1445 count
= set_syndrome_sources(blocks
, sh
);
1447 atomic_inc(&sh
->count
);
1449 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1450 sh
, to_addr_conv(sh
, percpu
));
1451 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1454 static void ops_complete_check(void *stripe_head_ref
)
1456 struct stripe_head
*sh
= stripe_head_ref
;
1458 pr_debug("%s: stripe %llu\n", __func__
,
1459 (unsigned long long)sh
->sector
);
1461 sh
->check_state
= check_state_check_result
;
1462 set_bit(STRIPE_HANDLE
, &sh
->state
);
1466 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1468 int disks
= sh
->disks
;
1469 int pd_idx
= sh
->pd_idx
;
1470 int qd_idx
= sh
->qd_idx
;
1471 struct page
*xor_dest
;
1472 struct page
**xor_srcs
= percpu
->scribble
;
1473 struct dma_async_tx_descriptor
*tx
;
1474 struct async_submit_ctl submit
;
1478 pr_debug("%s: stripe %llu\n", __func__
,
1479 (unsigned long long)sh
->sector
);
1482 xor_dest
= sh
->dev
[pd_idx
].page
;
1483 xor_srcs
[count
++] = xor_dest
;
1484 for (i
= disks
; i
--; ) {
1485 if (i
== pd_idx
|| i
== qd_idx
)
1487 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1490 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1491 to_addr_conv(sh
, percpu
));
1492 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1493 &sh
->ops
.zero_sum_result
, &submit
);
1495 atomic_inc(&sh
->count
);
1496 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1497 tx
= async_trigger_callback(&submit
);
1500 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1502 struct page
**srcs
= percpu
->scribble
;
1503 struct async_submit_ctl submit
;
1506 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1507 (unsigned long long)sh
->sector
, checkp
);
1509 count
= set_syndrome_sources(srcs
, sh
);
1513 atomic_inc(&sh
->count
);
1514 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1515 sh
, to_addr_conv(sh
, percpu
));
1516 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1517 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1520 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1522 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1523 struct dma_async_tx_descriptor
*tx
= NULL
;
1524 struct r5conf
*conf
= sh
->raid_conf
;
1525 int level
= conf
->level
;
1526 struct raid5_percpu
*percpu
;
1530 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1531 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1532 ops_run_biofill(sh
);
1536 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1538 tx
= ops_run_compute5(sh
, percpu
);
1540 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1541 tx
= ops_run_compute6_1(sh
, percpu
);
1543 tx
= ops_run_compute6_2(sh
, percpu
);
1545 /* terminate the chain if reconstruct is not set to be run */
1546 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1550 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1551 tx
= ops_run_prexor(sh
, percpu
, tx
);
1553 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1554 tx
= ops_run_biodrain(sh
, tx
);
1558 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1560 ops_run_reconstruct5(sh
, percpu
, tx
);
1562 ops_run_reconstruct6(sh
, percpu
, tx
);
1565 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1566 if (sh
->check_state
== check_state_run
)
1567 ops_run_check_p(sh
, percpu
);
1568 else if (sh
->check_state
== check_state_run_q
)
1569 ops_run_check_pq(sh
, percpu
, 0);
1570 else if (sh
->check_state
== check_state_run_pq
)
1571 ops_run_check_pq(sh
, percpu
, 1);
1577 for (i
= disks
; i
--; ) {
1578 struct r5dev
*dev
= &sh
->dev
[i
];
1579 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1580 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1585 static int grow_one_stripe(struct r5conf
*conf
)
1587 struct stripe_head
*sh
;
1588 sh
= kmem_cache_zalloc(conf
->slab_cache
, GFP_KERNEL
);
1592 sh
->raid_conf
= conf
;
1594 spin_lock_init(&sh
->stripe_lock
);
1596 if (grow_buffers(sh
)) {
1598 kmem_cache_free(conf
->slab_cache
, sh
);
1601 /* we just created an active stripe so... */
1602 atomic_set(&sh
->count
, 1);
1603 atomic_inc(&conf
->active_stripes
);
1604 INIT_LIST_HEAD(&sh
->lru
);
1609 static int grow_stripes(struct r5conf
*conf
, int num
)
1611 struct kmem_cache
*sc
;
1612 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1614 if (conf
->mddev
->gendisk
)
1615 sprintf(conf
->cache_name
[0],
1616 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1618 sprintf(conf
->cache_name
[0],
1619 "raid%d-%p", conf
->level
, conf
->mddev
);
1620 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1622 conf
->active_name
= 0;
1623 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1624 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1628 conf
->slab_cache
= sc
;
1629 conf
->pool_size
= devs
;
1631 if (!grow_one_stripe(conf
))
1637 * scribble_len - return the required size of the scribble region
1638 * @num - total number of disks in the array
1640 * The size must be enough to contain:
1641 * 1/ a struct page pointer for each device in the array +2
1642 * 2/ room to convert each entry in (1) to its corresponding dma
1643 * (dma_map_page()) or page (page_address()) address.
1645 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1646 * calculate over all devices (not just the data blocks), using zeros in place
1647 * of the P and Q blocks.
1649 static size_t scribble_len(int num
)
1653 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1658 static int resize_stripes(struct r5conf
*conf
, int newsize
)
1660 /* Make all the stripes able to hold 'newsize' devices.
1661 * New slots in each stripe get 'page' set to a new page.
1663 * This happens in stages:
1664 * 1/ create a new kmem_cache and allocate the required number of
1666 * 2/ gather all the old stripe_heads and transfer the pages across
1667 * to the new stripe_heads. This will have the side effect of
1668 * freezing the array as once all stripe_heads have been collected,
1669 * no IO will be possible. Old stripe heads are freed once their
1670 * pages have been transferred over, and the old kmem_cache is
1671 * freed when all stripes are done.
1672 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1673 * we simple return a failre status - no need to clean anything up.
1674 * 4/ allocate new pages for the new slots in the new stripe_heads.
1675 * If this fails, we don't bother trying the shrink the
1676 * stripe_heads down again, we just leave them as they are.
1677 * As each stripe_head is processed the new one is released into
1680 * Once step2 is started, we cannot afford to wait for a write,
1681 * so we use GFP_NOIO allocations.
1683 struct stripe_head
*osh
, *nsh
;
1684 LIST_HEAD(newstripes
);
1685 struct disk_info
*ndisks
;
1688 struct kmem_cache
*sc
;
1691 if (newsize
<= conf
->pool_size
)
1692 return 0; /* never bother to shrink */
1694 err
= md_allow_write(conf
->mddev
);
1699 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1700 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1705 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1706 nsh
= kmem_cache_zalloc(sc
, GFP_KERNEL
);
1710 nsh
->raid_conf
= conf
;
1711 spin_lock_init(&nsh
->stripe_lock
);
1713 list_add(&nsh
->lru
, &newstripes
);
1716 /* didn't get enough, give up */
1717 while (!list_empty(&newstripes
)) {
1718 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1719 list_del(&nsh
->lru
);
1720 kmem_cache_free(sc
, nsh
);
1722 kmem_cache_destroy(sc
);
1725 /* Step 2 - Must use GFP_NOIO now.
1726 * OK, we have enough stripes, start collecting inactive
1727 * stripes and copying them over
1729 list_for_each_entry(nsh
, &newstripes
, lru
) {
1730 spin_lock_irq(&conf
->device_lock
);
1731 wait_event_lock_irq(conf
->wait_for_stripe
,
1732 !list_empty(&conf
->inactive_list
),
1734 osh
= get_free_stripe(conf
);
1735 spin_unlock_irq(&conf
->device_lock
);
1736 atomic_set(&nsh
->count
, 1);
1737 for(i
=0; i
<conf
->pool_size
; i
++)
1738 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1739 for( ; i
<newsize
; i
++)
1740 nsh
->dev
[i
].page
= NULL
;
1741 kmem_cache_free(conf
->slab_cache
, osh
);
1743 kmem_cache_destroy(conf
->slab_cache
);
1746 * At this point, we are holding all the stripes so the array
1747 * is completely stalled, so now is a good time to resize
1748 * conf->disks and the scribble region
1750 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1752 for (i
=0; i
<conf
->raid_disks
; i
++)
1753 ndisks
[i
] = conf
->disks
[i
];
1755 conf
->disks
= ndisks
;
1760 conf
->scribble_len
= scribble_len(newsize
);
1761 for_each_present_cpu(cpu
) {
1762 struct raid5_percpu
*percpu
;
1765 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1766 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1769 kfree(percpu
->scribble
);
1770 percpu
->scribble
= scribble
;
1778 /* Step 4, return new stripes to service */
1779 while(!list_empty(&newstripes
)) {
1780 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1781 list_del_init(&nsh
->lru
);
1783 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1784 if (nsh
->dev
[i
].page
== NULL
) {
1785 struct page
*p
= alloc_page(GFP_NOIO
);
1786 nsh
->dev
[i
].page
= p
;
1790 release_stripe(nsh
);
1792 /* critical section pass, GFP_NOIO no longer needed */
1794 conf
->slab_cache
= sc
;
1795 conf
->active_name
= 1-conf
->active_name
;
1796 conf
->pool_size
= newsize
;
1800 static int drop_one_stripe(struct r5conf
*conf
)
1802 struct stripe_head
*sh
;
1804 spin_lock_irq(&conf
->device_lock
);
1805 sh
= get_free_stripe(conf
);
1806 spin_unlock_irq(&conf
->device_lock
);
1809 BUG_ON(atomic_read(&sh
->count
));
1811 kmem_cache_free(conf
->slab_cache
, sh
);
1812 atomic_dec(&conf
->active_stripes
);
1816 static void shrink_stripes(struct r5conf
*conf
)
1818 while (drop_one_stripe(conf
))
1821 if (conf
->slab_cache
)
1822 kmem_cache_destroy(conf
->slab_cache
);
1823 conf
->slab_cache
= NULL
;
1826 static void raid5_end_read_request(struct bio
* bi
, int error
)
1828 struct stripe_head
*sh
= bi
->bi_private
;
1829 struct r5conf
*conf
= sh
->raid_conf
;
1830 int disks
= sh
->disks
, i
;
1831 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1832 char b
[BDEVNAME_SIZE
];
1833 struct md_rdev
*rdev
= NULL
;
1836 for (i
=0 ; i
<disks
; i
++)
1837 if (bi
== &sh
->dev
[i
].req
)
1840 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1841 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1847 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
1848 /* If replacement finished while this request was outstanding,
1849 * 'replacement' might be NULL already.
1850 * In that case it moved down to 'rdev'.
1851 * rdev is not removed until all requests are finished.
1853 rdev
= conf
->disks
[i
].replacement
;
1855 rdev
= conf
->disks
[i
].rdev
;
1857 if (use_new_offset(conf
, sh
))
1858 s
= sh
->sector
+ rdev
->new_data_offset
;
1860 s
= sh
->sector
+ rdev
->data_offset
;
1862 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1863 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1864 /* Note that this cannot happen on a
1865 * replacement device. We just fail those on
1870 "md/raid:%s: read error corrected"
1871 " (%lu sectors at %llu on %s)\n",
1872 mdname(conf
->mddev
), STRIPE_SECTORS
,
1873 (unsigned long long)s
,
1874 bdevname(rdev
->bdev
, b
));
1875 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1876 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1877 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1878 } else if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
))
1879 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
1881 if (atomic_read(&rdev
->read_errors
))
1882 atomic_set(&rdev
->read_errors
, 0);
1884 const char *bdn
= bdevname(rdev
->bdev
, b
);
1888 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1889 atomic_inc(&rdev
->read_errors
);
1890 if (test_bit(R5_ReadRepl
, &sh
->dev
[i
].flags
))
1893 "md/raid:%s: read error on replacement device "
1894 "(sector %llu on %s).\n",
1895 mdname(conf
->mddev
),
1896 (unsigned long long)s
,
1898 else if (conf
->mddev
->degraded
>= conf
->max_degraded
) {
1902 "md/raid:%s: read error not correctable "
1903 "(sector %llu on %s).\n",
1904 mdname(conf
->mddev
),
1905 (unsigned long long)s
,
1907 } else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
)) {
1912 "md/raid:%s: read error NOT corrected!! "
1913 "(sector %llu on %s).\n",
1914 mdname(conf
->mddev
),
1915 (unsigned long long)s
,
1917 } else if (atomic_read(&rdev
->read_errors
)
1918 > conf
->max_nr_stripes
)
1920 "md/raid:%s: Too many read errors, failing device %s.\n",
1921 mdname(conf
->mddev
), bdn
);
1925 if (test_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
)) {
1926 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1927 clear_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
1929 set_bit(R5_ReadNoMerge
, &sh
->dev
[i
].flags
);
1931 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1932 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1934 && test_bit(In_sync
, &rdev
->flags
)
1935 && rdev_set_badblocks(
1936 rdev
, sh
->sector
, STRIPE_SECTORS
, 0)))
1937 md_error(conf
->mddev
, rdev
);
1940 rdev_dec_pending(rdev
, conf
->mddev
);
1941 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1942 set_bit(STRIPE_HANDLE
, &sh
->state
);
1946 static void raid5_end_write_request(struct bio
*bi
, int error
)
1948 struct stripe_head
*sh
= bi
->bi_private
;
1949 struct r5conf
*conf
= sh
->raid_conf
;
1950 int disks
= sh
->disks
, i
;
1951 struct md_rdev
*uninitialized_var(rdev
);
1952 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1955 int replacement
= 0;
1957 for (i
= 0 ; i
< disks
; i
++) {
1958 if (bi
== &sh
->dev
[i
].req
) {
1959 rdev
= conf
->disks
[i
].rdev
;
1962 if (bi
== &sh
->dev
[i
].rreq
) {
1963 rdev
= conf
->disks
[i
].replacement
;
1967 /* rdev was removed and 'replacement'
1968 * replaced it. rdev is not removed
1969 * until all requests are finished.
1971 rdev
= conf
->disks
[i
].rdev
;
1975 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1976 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1985 md_error(conf
->mddev
, rdev
);
1986 else if (is_badblock(rdev
, sh
->sector
,
1988 &first_bad
, &bad_sectors
))
1989 set_bit(R5_MadeGoodRepl
, &sh
->dev
[i
].flags
);
1992 set_bit(WriteErrorSeen
, &rdev
->flags
);
1993 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
1994 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1995 set_bit(MD_RECOVERY_NEEDED
,
1996 &rdev
->mddev
->recovery
);
1997 } else if (is_badblock(rdev
, sh
->sector
,
1999 &first_bad
, &bad_sectors
)) {
2000 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
2001 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))
2002 /* That was a successful write so make
2003 * sure it looks like we already did
2006 set_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
2009 rdev_dec_pending(rdev
, conf
->mddev
);
2011 if (!test_and_clear_bit(R5_DOUBLE_LOCKED
, &sh
->dev
[i
].flags
))
2012 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2013 set_bit(STRIPE_HANDLE
, &sh
->state
);
2017 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
2019 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
2021 struct r5dev
*dev
= &sh
->dev
[i
];
2023 bio_init(&dev
->req
);
2024 dev
->req
.bi_io_vec
= &dev
->vec
;
2026 dev
->req
.bi_max_vecs
++;
2027 dev
->req
.bi_private
= sh
;
2028 dev
->vec
.bv_page
= dev
->page
;
2030 bio_init(&dev
->rreq
);
2031 dev
->rreq
.bi_io_vec
= &dev
->rvec
;
2032 dev
->rreq
.bi_vcnt
++;
2033 dev
->rreq
.bi_max_vecs
++;
2034 dev
->rreq
.bi_private
= sh
;
2035 dev
->rvec
.bv_page
= dev
->page
;
2038 dev
->sector
= compute_blocknr(sh
, i
, previous
);
2041 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
2043 char b
[BDEVNAME_SIZE
];
2044 struct r5conf
*conf
= mddev
->private;
2045 unsigned long flags
;
2046 pr_debug("raid456: error called\n");
2048 spin_lock_irqsave(&conf
->device_lock
, flags
);
2049 clear_bit(In_sync
, &rdev
->flags
);
2050 mddev
->degraded
= calc_degraded(conf
);
2051 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2052 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2054 set_bit(Blocked
, &rdev
->flags
);
2055 set_bit(Faulty
, &rdev
->flags
);
2056 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2058 "md/raid:%s: Disk failure on %s, disabling device.\n"
2059 "md/raid:%s: Operation continuing on %d devices.\n",
2061 bdevname(rdev
->bdev
, b
),
2063 conf
->raid_disks
- mddev
->degraded
);
2067 * Input: a 'big' sector number,
2068 * Output: index of the data and parity disk, and the sector # in them.
2070 static sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
2071 int previous
, int *dd_idx
,
2072 struct stripe_head
*sh
)
2074 sector_t stripe
, stripe2
;
2075 sector_t chunk_number
;
2076 unsigned int chunk_offset
;
2079 sector_t new_sector
;
2080 int algorithm
= previous
? conf
->prev_algo
2082 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2083 : conf
->chunk_sectors
;
2084 int raid_disks
= previous
? conf
->previous_raid_disks
2086 int data_disks
= raid_disks
- conf
->max_degraded
;
2088 /* First compute the information on this sector */
2091 * Compute the chunk number and the sector offset inside the chunk
2093 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
2094 chunk_number
= r_sector
;
2097 * Compute the stripe number
2099 stripe
= chunk_number
;
2100 *dd_idx
= sector_div(stripe
, data_disks
);
2103 * Select the parity disk based on the user selected algorithm.
2105 pd_idx
= qd_idx
= -1;
2106 switch(conf
->level
) {
2108 pd_idx
= data_disks
;
2111 switch (algorithm
) {
2112 case ALGORITHM_LEFT_ASYMMETRIC
:
2113 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2114 if (*dd_idx
>= pd_idx
)
2117 case ALGORITHM_RIGHT_ASYMMETRIC
:
2118 pd_idx
= sector_div(stripe2
, raid_disks
);
2119 if (*dd_idx
>= pd_idx
)
2122 case ALGORITHM_LEFT_SYMMETRIC
:
2123 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
2124 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2126 case ALGORITHM_RIGHT_SYMMETRIC
:
2127 pd_idx
= sector_div(stripe2
, raid_disks
);
2128 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2130 case ALGORITHM_PARITY_0
:
2134 case ALGORITHM_PARITY_N
:
2135 pd_idx
= data_disks
;
2143 switch (algorithm
) {
2144 case ALGORITHM_LEFT_ASYMMETRIC
:
2145 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2146 qd_idx
= pd_idx
+ 1;
2147 if (pd_idx
== raid_disks
-1) {
2148 (*dd_idx
)++; /* Q D D D P */
2150 } else if (*dd_idx
>= pd_idx
)
2151 (*dd_idx
) += 2; /* D D P Q D */
2153 case ALGORITHM_RIGHT_ASYMMETRIC
:
2154 pd_idx
= sector_div(stripe2
, raid_disks
);
2155 qd_idx
= pd_idx
+ 1;
2156 if (pd_idx
== raid_disks
-1) {
2157 (*dd_idx
)++; /* Q D D D P */
2159 } else if (*dd_idx
>= pd_idx
)
2160 (*dd_idx
) += 2; /* D D P Q D */
2162 case ALGORITHM_LEFT_SYMMETRIC
:
2163 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2164 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2165 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2167 case ALGORITHM_RIGHT_SYMMETRIC
:
2168 pd_idx
= sector_div(stripe2
, raid_disks
);
2169 qd_idx
= (pd_idx
+ 1) % raid_disks
;
2170 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
2173 case ALGORITHM_PARITY_0
:
2178 case ALGORITHM_PARITY_N
:
2179 pd_idx
= data_disks
;
2180 qd_idx
= data_disks
+ 1;
2183 case ALGORITHM_ROTATING_ZERO_RESTART
:
2184 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2185 * of blocks for computing Q is different.
2187 pd_idx
= sector_div(stripe2
, raid_disks
);
2188 qd_idx
= pd_idx
+ 1;
2189 if (pd_idx
== raid_disks
-1) {
2190 (*dd_idx
)++; /* Q D D D P */
2192 } else if (*dd_idx
>= pd_idx
)
2193 (*dd_idx
) += 2; /* D D P Q D */
2197 case ALGORITHM_ROTATING_N_RESTART
:
2198 /* Same a left_asymmetric, by first stripe is
2199 * D D D P Q rather than
2203 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2204 qd_idx
= pd_idx
+ 1;
2205 if (pd_idx
== raid_disks
-1) {
2206 (*dd_idx
)++; /* Q D D D P */
2208 } else if (*dd_idx
>= pd_idx
)
2209 (*dd_idx
) += 2; /* D D P Q D */
2213 case ALGORITHM_ROTATING_N_CONTINUE
:
2214 /* Same as left_symmetric but Q is before P */
2215 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
2216 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
2217 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
2221 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2222 /* RAID5 left_asymmetric, with Q on last device */
2223 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2224 if (*dd_idx
>= pd_idx
)
2226 qd_idx
= raid_disks
- 1;
2229 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2230 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2231 if (*dd_idx
>= pd_idx
)
2233 qd_idx
= raid_disks
- 1;
2236 case ALGORITHM_LEFT_SYMMETRIC_6
:
2237 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
2238 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2239 qd_idx
= raid_disks
- 1;
2242 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2243 pd_idx
= sector_div(stripe2
, raid_disks
-1);
2244 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
2245 qd_idx
= raid_disks
- 1;
2248 case ALGORITHM_PARITY_0_6
:
2251 qd_idx
= raid_disks
- 1;
2261 sh
->pd_idx
= pd_idx
;
2262 sh
->qd_idx
= qd_idx
;
2263 sh
->ddf_layout
= ddf_layout
;
2266 * Finally, compute the new sector number
2268 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
2273 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
2275 struct r5conf
*conf
= sh
->raid_conf
;
2276 int raid_disks
= sh
->disks
;
2277 int data_disks
= raid_disks
- conf
->max_degraded
;
2278 sector_t new_sector
= sh
->sector
, check
;
2279 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
2280 : conf
->chunk_sectors
;
2281 int algorithm
= previous
? conf
->prev_algo
2285 sector_t chunk_number
;
2286 int dummy1
, dd_idx
= i
;
2288 struct stripe_head sh2
;
2291 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
2292 stripe
= new_sector
;
2294 if (i
== sh
->pd_idx
)
2296 switch(conf
->level
) {
2299 switch (algorithm
) {
2300 case ALGORITHM_LEFT_ASYMMETRIC
:
2301 case ALGORITHM_RIGHT_ASYMMETRIC
:
2305 case ALGORITHM_LEFT_SYMMETRIC
:
2306 case ALGORITHM_RIGHT_SYMMETRIC
:
2309 i
-= (sh
->pd_idx
+ 1);
2311 case ALGORITHM_PARITY_0
:
2314 case ALGORITHM_PARITY_N
:
2321 if (i
== sh
->qd_idx
)
2322 return 0; /* It is the Q disk */
2323 switch (algorithm
) {
2324 case ALGORITHM_LEFT_ASYMMETRIC
:
2325 case ALGORITHM_RIGHT_ASYMMETRIC
:
2326 case ALGORITHM_ROTATING_ZERO_RESTART
:
2327 case ALGORITHM_ROTATING_N_RESTART
:
2328 if (sh
->pd_idx
== raid_disks
-1)
2329 i
--; /* Q D D D P */
2330 else if (i
> sh
->pd_idx
)
2331 i
-= 2; /* D D P Q D */
2333 case ALGORITHM_LEFT_SYMMETRIC
:
2334 case ALGORITHM_RIGHT_SYMMETRIC
:
2335 if (sh
->pd_idx
== raid_disks
-1)
2336 i
--; /* Q D D D P */
2341 i
-= (sh
->pd_idx
+ 2);
2344 case ALGORITHM_PARITY_0
:
2347 case ALGORITHM_PARITY_N
:
2349 case ALGORITHM_ROTATING_N_CONTINUE
:
2350 /* Like left_symmetric, but P is before Q */
2351 if (sh
->pd_idx
== 0)
2352 i
--; /* P D D D Q */
2357 i
-= (sh
->pd_idx
+ 1);
2360 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2361 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2365 case ALGORITHM_LEFT_SYMMETRIC_6
:
2366 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2368 i
+= data_disks
+ 1;
2369 i
-= (sh
->pd_idx
+ 1);
2371 case ALGORITHM_PARITY_0_6
:
2380 chunk_number
= stripe
* data_disks
+ i
;
2381 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2383 check
= raid5_compute_sector(conf
, r_sector
,
2384 previous
, &dummy1
, &sh2
);
2385 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2386 || sh2
.qd_idx
!= sh
->qd_idx
) {
2387 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2388 mdname(conf
->mddev
));
2396 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2397 int rcw
, int expand
)
2399 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2400 struct r5conf
*conf
= sh
->raid_conf
;
2401 int level
= conf
->level
;
2405 for (i
= disks
; i
--; ) {
2406 struct r5dev
*dev
= &sh
->dev
[i
];
2409 set_bit(R5_LOCKED
, &dev
->flags
);
2410 set_bit(R5_Wantdrain
, &dev
->flags
);
2412 clear_bit(R5_UPTODATE
, &dev
->flags
);
2416 /* if we are not expanding this is a proper write request, and
2417 * there will be bios with new data to be drained into the
2422 /* False alarm, nothing to do */
2424 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2425 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2427 sh
->reconstruct_state
= reconstruct_state_run
;
2429 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2431 if (s
->locked
+ conf
->max_degraded
== disks
)
2432 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2433 atomic_inc(&conf
->pending_full_writes
);
2436 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2437 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2439 for (i
= disks
; i
--; ) {
2440 struct r5dev
*dev
= &sh
->dev
[i
];
2445 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2446 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2447 set_bit(R5_Wantdrain
, &dev
->flags
);
2448 set_bit(R5_LOCKED
, &dev
->flags
);
2449 clear_bit(R5_UPTODATE
, &dev
->flags
);
2454 /* False alarm - nothing to do */
2456 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2457 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2458 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2459 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2462 /* keep the parity disk(s) locked while asynchronous operations
2465 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2466 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2470 int qd_idx
= sh
->qd_idx
;
2471 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2473 set_bit(R5_LOCKED
, &dev
->flags
);
2474 clear_bit(R5_UPTODATE
, &dev
->flags
);
2478 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2479 __func__
, (unsigned long long)sh
->sector
,
2480 s
->locked
, s
->ops_request
);
2484 * Each stripe/dev can have one or more bion attached.
2485 * toread/towrite point to the first in a chain.
2486 * The bi_next chain must be in order.
2488 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2491 struct r5conf
*conf
= sh
->raid_conf
;
2494 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2495 (unsigned long long)bi
->bi_sector
,
2496 (unsigned long long)sh
->sector
);
2499 * If several bio share a stripe. The bio bi_phys_segments acts as a
2500 * reference count to avoid race. The reference count should already be
2501 * increased before this function is called (for example, in
2502 * make_request()), so other bio sharing this stripe will not free the
2503 * stripe. If a stripe is owned by one stripe, the stripe lock will
2506 spin_lock_irq(&sh
->stripe_lock
);
2508 bip
= &sh
->dev
[dd_idx
].towrite
;
2512 bip
= &sh
->dev
[dd_idx
].toread
;
2513 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2514 if (bio_end_sector(*bip
) > bi
->bi_sector
)
2516 bip
= & (*bip
)->bi_next
;
2518 if (*bip
&& (*bip
)->bi_sector
< bio_end_sector(bi
))
2521 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2525 raid5_inc_bi_active_stripes(bi
);
2528 /* check if page is covered */
2529 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2530 for (bi
=sh
->dev
[dd_idx
].towrite
;
2531 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2532 bi
&& bi
->bi_sector
<= sector
;
2533 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2534 if (bio_end_sector(bi
) >= sector
)
2535 sector
= bio_end_sector(bi
);
2537 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2538 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2541 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2542 (unsigned long long)(*bip
)->bi_sector
,
2543 (unsigned long long)sh
->sector
, dd_idx
);
2544 spin_unlock_irq(&sh
->stripe_lock
);
2546 if (conf
->mddev
->bitmap
&& firstwrite
) {
2547 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2549 sh
->bm_seq
= conf
->seq_flush
+1;
2550 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2555 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2556 spin_unlock_irq(&sh
->stripe_lock
);
2560 static void end_reshape(struct r5conf
*conf
);
2562 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
2563 struct stripe_head
*sh
)
2565 int sectors_per_chunk
=
2566 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2568 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2569 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2571 raid5_compute_sector(conf
,
2572 stripe
* (disks
- conf
->max_degraded
)
2573 *sectors_per_chunk
+ chunk_offset
,
2579 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
2580 struct stripe_head_state
*s
, int disks
,
2581 struct bio
**return_bi
)
2584 for (i
= disks
; i
--; ) {
2588 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2589 struct md_rdev
*rdev
;
2591 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2592 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2593 atomic_inc(&rdev
->nr_pending
);
2598 if (!rdev_set_badblocks(
2602 md_error(conf
->mddev
, rdev
);
2603 rdev_dec_pending(rdev
, conf
->mddev
);
2606 spin_lock_irq(&sh
->stripe_lock
);
2607 /* fail all writes first */
2608 bi
= sh
->dev
[i
].towrite
;
2609 sh
->dev
[i
].towrite
= NULL
;
2610 spin_unlock_irq(&sh
->stripe_lock
);
2614 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2615 wake_up(&conf
->wait_for_overlap
);
2617 while (bi
&& bi
->bi_sector
<
2618 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2619 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2620 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2621 if (!raid5_dec_bi_active_stripes(bi
)) {
2622 md_write_end(conf
->mddev
);
2623 bi
->bi_next
= *return_bi
;
2629 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2630 STRIPE_SECTORS
, 0, 0);
2632 /* and fail all 'written' */
2633 bi
= sh
->dev
[i
].written
;
2634 sh
->dev
[i
].written
= NULL
;
2635 if (bi
) bitmap_end
= 1;
2636 while (bi
&& bi
->bi_sector
<
2637 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2638 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2639 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2640 if (!raid5_dec_bi_active_stripes(bi
)) {
2641 md_write_end(conf
->mddev
);
2642 bi
->bi_next
= *return_bi
;
2648 /* fail any reads if this device is non-operational and
2649 * the data has not reached the cache yet.
2651 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2652 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2653 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2654 spin_lock_irq(&sh
->stripe_lock
);
2655 bi
= sh
->dev
[i
].toread
;
2656 sh
->dev
[i
].toread
= NULL
;
2657 spin_unlock_irq(&sh
->stripe_lock
);
2658 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2659 wake_up(&conf
->wait_for_overlap
);
2660 while (bi
&& bi
->bi_sector
<
2661 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2662 struct bio
*nextbi
=
2663 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2664 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2665 if (!raid5_dec_bi_active_stripes(bi
)) {
2666 bi
->bi_next
= *return_bi
;
2673 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2674 STRIPE_SECTORS
, 0, 0);
2675 /* If we were in the middle of a write the parity block might
2676 * still be locked - so just clear all R5_LOCKED flags
2678 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2681 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2682 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2683 md_wakeup_thread(conf
->mddev
->thread
);
2687 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
2688 struct stripe_head_state
*s
)
2693 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2694 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
2695 wake_up(&conf
->wait_for_overlap
);
2698 /* There is nothing more to do for sync/check/repair.
2699 * Don't even need to abort as that is handled elsewhere
2700 * if needed, and not always wanted e.g. if there is a known
2702 * For recover/replace we need to record a bad block on all
2703 * non-sync devices, or abort the recovery
2705 if (test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
)) {
2706 /* During recovery devices cannot be removed, so
2707 * locking and refcounting of rdevs is not needed
2709 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2710 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
2712 && !test_bit(Faulty
, &rdev
->flags
)
2713 && !test_bit(In_sync
, &rdev
->flags
)
2714 && !rdev_set_badblocks(rdev
, sh
->sector
,
2717 rdev
= conf
->disks
[i
].replacement
;
2719 && !test_bit(Faulty
, &rdev
->flags
)
2720 && !test_bit(In_sync
, &rdev
->flags
)
2721 && !rdev_set_badblocks(rdev
, sh
->sector
,
2726 conf
->recovery_disabled
=
2727 conf
->mddev
->recovery_disabled
;
2729 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, !abort
);
2732 static int want_replace(struct stripe_head
*sh
, int disk_idx
)
2734 struct md_rdev
*rdev
;
2736 /* Doing recovery so rcu locking not required */
2737 rdev
= sh
->raid_conf
->disks
[disk_idx
].replacement
;
2739 && !test_bit(Faulty
, &rdev
->flags
)
2740 && !test_bit(In_sync
, &rdev
->flags
)
2741 && (rdev
->recovery_offset
<= sh
->sector
2742 || rdev
->mddev
->recovery_cp
<= sh
->sector
))
2748 /* fetch_block - checks the given member device to see if its data needs
2749 * to be read or computed to satisfy a request.
2751 * Returns 1 when no more member devices need to be checked, otherwise returns
2752 * 0 to tell the loop in handle_stripe_fill to continue
2754 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2755 int disk_idx
, int disks
)
2757 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2758 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
2759 &sh
->dev
[s
->failed_num
[1]] };
2761 /* is the data in this block needed, and can we get it? */
2762 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2763 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2765 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2766 s
->syncing
|| s
->expanding
||
2767 (s
->replacing
&& want_replace(sh
, disk_idx
)) ||
2768 (s
->failed
>= 1 && fdev
[0]->toread
) ||
2769 (s
->failed
>= 2 && fdev
[1]->toread
) ||
2770 (sh
->raid_conf
->level
<= 5 && s
->failed
&& fdev
[0]->towrite
&&
2771 !test_bit(R5_OVERWRITE
, &fdev
[0]->flags
)) ||
2772 (sh
->raid_conf
->level
== 6 && s
->failed
&& s
->to_write
))) {
2773 /* we would like to get this block, possibly by computing it,
2774 * otherwise read it if the backing disk is insync
2776 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2777 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2778 if ((s
->uptodate
== disks
- 1) &&
2779 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
2780 disk_idx
== s
->failed_num
[1]))) {
2781 /* have disk failed, and we're requested to fetch it;
2784 pr_debug("Computing stripe %llu block %d\n",
2785 (unsigned long long)sh
->sector
, disk_idx
);
2786 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2787 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2788 set_bit(R5_Wantcompute
, &dev
->flags
);
2789 sh
->ops
.target
= disk_idx
;
2790 sh
->ops
.target2
= -1; /* no 2nd target */
2792 /* Careful: from this point on 'uptodate' is in the eye
2793 * of raid_run_ops which services 'compute' operations
2794 * before writes. R5_Wantcompute flags a block that will
2795 * be R5_UPTODATE by the time it is needed for a
2796 * subsequent operation.
2800 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2801 /* Computing 2-failure is *very* expensive; only
2802 * do it if failed >= 2
2805 for (other
= disks
; other
--; ) {
2806 if (other
== disk_idx
)
2808 if (!test_bit(R5_UPTODATE
,
2809 &sh
->dev
[other
].flags
))
2813 pr_debug("Computing stripe %llu blocks %d,%d\n",
2814 (unsigned long long)sh
->sector
,
2816 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2817 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2818 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2819 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2820 sh
->ops
.target
= disk_idx
;
2821 sh
->ops
.target2
= other
;
2825 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2826 set_bit(R5_LOCKED
, &dev
->flags
);
2827 set_bit(R5_Wantread
, &dev
->flags
);
2829 pr_debug("Reading block %d (sync=%d)\n",
2830 disk_idx
, s
->syncing
);
2838 * handle_stripe_fill - read or compute data to satisfy pending requests.
2840 static void handle_stripe_fill(struct stripe_head
*sh
,
2841 struct stripe_head_state
*s
,
2846 /* look for blocks to read/compute, skip this if a compute
2847 * is already in flight, or if the stripe contents are in the
2848 * midst of changing due to a write
2850 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2851 !sh
->reconstruct_state
)
2852 for (i
= disks
; i
--; )
2853 if (fetch_block(sh
, s
, i
, disks
))
2855 set_bit(STRIPE_HANDLE
, &sh
->state
);
2859 /* handle_stripe_clean_event
2860 * any written block on an uptodate or failed drive can be returned.
2861 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2862 * never LOCKED, so we don't need to test 'failed' directly.
2864 static void handle_stripe_clean_event(struct r5conf
*conf
,
2865 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2869 int discard_pending
= 0;
2871 for (i
= disks
; i
--; )
2872 if (sh
->dev
[i
].written
) {
2874 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2875 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2876 test_bit(R5_Discard
, &dev
->flags
))) {
2877 /* We can return any write requests */
2878 struct bio
*wbi
, *wbi2
;
2879 pr_debug("Return write for disc %d\n", i
);
2880 if (test_and_clear_bit(R5_Discard
, &dev
->flags
))
2881 clear_bit(R5_UPTODATE
, &dev
->flags
);
2883 dev
->written
= NULL
;
2884 while (wbi
&& wbi
->bi_sector
<
2885 dev
->sector
+ STRIPE_SECTORS
) {
2886 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2887 if (!raid5_dec_bi_active_stripes(wbi
)) {
2888 md_write_end(conf
->mddev
);
2889 wbi
->bi_next
= *return_bi
;
2894 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2896 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2898 } else if (test_bit(R5_Discard
, &dev
->flags
))
2899 discard_pending
= 1;
2901 if (!discard_pending
&&
2902 test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
)) {
2903 clear_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
);
2904 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2905 if (sh
->qd_idx
>= 0) {
2906 clear_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
);
2907 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
);
2909 /* now that discard is done we can proceed with any sync */
2910 clear_bit(STRIPE_DISCARD
, &sh
->state
);
2912 * SCSI discard will change some bio fields and the stripe has
2913 * no updated data, so remove it from hash list and the stripe
2914 * will be reinitialized
2916 spin_lock_irq(&conf
->device_lock
);
2918 spin_unlock_irq(&conf
->device_lock
);
2919 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
))
2920 set_bit(STRIPE_HANDLE
, &sh
->state
);
2924 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2925 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2926 md_wakeup_thread(conf
->mddev
->thread
);
2929 static void handle_stripe_dirtying(struct r5conf
*conf
,
2930 struct stripe_head
*sh
,
2931 struct stripe_head_state
*s
,
2934 int rmw
= 0, rcw
= 0, i
;
2935 sector_t recovery_cp
= conf
->mddev
->recovery_cp
;
2937 /* RAID6 requires 'rcw' in current implementation.
2938 * Otherwise, check whether resync is now happening or should start.
2939 * If yes, then the array is dirty (after unclean shutdown or
2940 * initial creation), so parity in some stripes might be inconsistent.
2941 * In this case, we need to always do reconstruct-write, to ensure
2942 * that in case of drive failure or read-error correction, we
2943 * generate correct data from the parity.
2945 if (conf
->max_degraded
== 2 ||
2946 (recovery_cp
< MaxSector
&& sh
->sector
>= recovery_cp
)) {
2947 /* Calculate the real rcw later - for now make it
2948 * look like rcw is cheaper
2951 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2952 conf
->max_degraded
, (unsigned long long)recovery_cp
,
2953 (unsigned long long)sh
->sector
);
2954 } else for (i
= disks
; i
--; ) {
2955 /* would I have to read this buffer for read_modify_write */
2956 struct r5dev
*dev
= &sh
->dev
[i
];
2957 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2958 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2959 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2960 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2961 if (test_bit(R5_Insync
, &dev
->flags
))
2964 rmw
+= 2*disks
; /* cannot read it */
2966 /* Would I have to read this buffer for reconstruct_write */
2967 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2968 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2969 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2970 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2971 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2976 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2977 (unsigned long long)sh
->sector
, rmw
, rcw
);
2978 set_bit(STRIPE_HANDLE
, &sh
->state
);
2979 if (rmw
< rcw
&& rmw
> 0) {
2980 /* prefer read-modify-write, but need to get some data */
2981 if (conf
->mddev
->queue
)
2982 blk_add_trace_msg(conf
->mddev
->queue
,
2983 "raid5 rmw %llu %d",
2984 (unsigned long long)sh
->sector
, rmw
);
2985 for (i
= disks
; i
--; ) {
2986 struct r5dev
*dev
= &sh
->dev
[i
];
2987 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2988 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2989 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2990 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2991 test_bit(R5_Insync
, &dev
->flags
)) {
2993 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2994 pr_debug("Read_old block "
2995 "%d for r-m-w\n", i
);
2996 set_bit(R5_LOCKED
, &dev
->flags
);
2997 set_bit(R5_Wantread
, &dev
->flags
);
3000 set_bit(STRIPE_DELAYED
, &sh
->state
);
3001 set_bit(STRIPE_HANDLE
, &sh
->state
);
3006 if (rcw
<= rmw
&& rcw
> 0) {
3007 /* want reconstruct write, but need to get some data */
3010 for (i
= disks
; i
--; ) {
3011 struct r5dev
*dev
= &sh
->dev
[i
];
3012 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
3013 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
3014 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3015 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
3016 test_bit(R5_Wantcompute
, &dev
->flags
))) {
3018 if (!test_bit(R5_Insync
, &dev
->flags
))
3019 continue; /* it's a failed drive */
3021 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
3022 pr_debug("Read_old block "
3023 "%d for Reconstruct\n", i
);
3024 set_bit(R5_LOCKED
, &dev
->flags
);
3025 set_bit(R5_Wantread
, &dev
->flags
);
3029 set_bit(STRIPE_DELAYED
, &sh
->state
);
3030 set_bit(STRIPE_HANDLE
, &sh
->state
);
3034 if (rcw
&& conf
->mddev
->queue
)
3035 blk_add_trace_msg(conf
->mddev
->queue
, "raid5 rcw %llu %d %d %d",
3036 (unsigned long long)sh
->sector
,
3037 rcw
, qread
, test_bit(STRIPE_DELAYED
, &sh
->state
));
3039 /* now if nothing is locked, and if we have enough data,
3040 * we can start a write request
3042 /* since handle_stripe can be called at any time we need to handle the
3043 * case where a compute block operation has been submitted and then a
3044 * subsequent call wants to start a write request. raid_run_ops only
3045 * handles the case where compute block and reconstruct are requested
3046 * simultaneously. If this is not the case then new writes need to be
3047 * held off until the compute completes.
3049 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
3050 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
3051 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
3052 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
3055 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
3056 struct stripe_head_state
*s
, int disks
)
3058 struct r5dev
*dev
= NULL
;
3060 set_bit(STRIPE_HANDLE
, &sh
->state
);
3062 switch (sh
->check_state
) {
3063 case check_state_idle
:
3064 /* start a new check operation if there are no failures */
3065 if (s
->failed
== 0) {
3066 BUG_ON(s
->uptodate
!= disks
);
3067 sh
->check_state
= check_state_run
;
3068 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3069 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
3073 dev
= &sh
->dev
[s
->failed_num
[0]];
3075 case check_state_compute_result
:
3076 sh
->check_state
= check_state_idle
;
3078 dev
= &sh
->dev
[sh
->pd_idx
];
3080 /* check that a write has not made the stripe insync */
3081 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3084 /* either failed parity check, or recovery is happening */
3085 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3086 BUG_ON(s
->uptodate
!= disks
);
3088 set_bit(R5_LOCKED
, &dev
->flags
);
3090 set_bit(R5_Wantwrite
, &dev
->flags
);
3092 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3093 set_bit(STRIPE_INSYNC
, &sh
->state
);
3095 case check_state_run
:
3096 break; /* we will be called again upon completion */
3097 case check_state_check_result
:
3098 sh
->check_state
= check_state_idle
;
3100 /* if a failure occurred during the check operation, leave
3101 * STRIPE_INSYNC not set and let the stripe be handled again
3106 /* handle a successful check operation, if parity is correct
3107 * we are done. Otherwise update the mismatch count and repair
3108 * parity if !MD_RECOVERY_CHECK
3110 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
3111 /* parity is correct (on disc,
3112 * not in buffer any more)
3114 set_bit(STRIPE_INSYNC
, &sh
->state
);
3116 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3117 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3118 /* don't try to repair!! */
3119 set_bit(STRIPE_INSYNC
, &sh
->state
);
3121 sh
->check_state
= check_state_compute_run
;
3122 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3123 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3124 set_bit(R5_Wantcompute
,
3125 &sh
->dev
[sh
->pd_idx
].flags
);
3126 sh
->ops
.target
= sh
->pd_idx
;
3127 sh
->ops
.target2
= -1;
3132 case check_state_compute_run
:
3135 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3136 __func__
, sh
->check_state
,
3137 (unsigned long long) sh
->sector
);
3143 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
3144 struct stripe_head_state
*s
,
3147 int pd_idx
= sh
->pd_idx
;
3148 int qd_idx
= sh
->qd_idx
;
3151 set_bit(STRIPE_HANDLE
, &sh
->state
);
3153 BUG_ON(s
->failed
> 2);
3155 /* Want to check and possibly repair P and Q.
3156 * However there could be one 'failed' device, in which
3157 * case we can only check one of them, possibly using the
3158 * other to generate missing data
3161 switch (sh
->check_state
) {
3162 case check_state_idle
:
3163 /* start a new check operation if there are < 2 failures */
3164 if (s
->failed
== s
->q_failed
) {
3165 /* The only possible failed device holds Q, so it
3166 * makes sense to check P (If anything else were failed,
3167 * we would have used P to recreate it).
3169 sh
->check_state
= check_state_run
;
3171 if (!s
->q_failed
&& s
->failed
< 2) {
3172 /* Q is not failed, and we didn't use it to generate
3173 * anything, so it makes sense to check it
3175 if (sh
->check_state
== check_state_run
)
3176 sh
->check_state
= check_state_run_pq
;
3178 sh
->check_state
= check_state_run_q
;
3181 /* discard potentially stale zero_sum_result */
3182 sh
->ops
.zero_sum_result
= 0;
3184 if (sh
->check_state
== check_state_run
) {
3185 /* async_xor_zero_sum destroys the contents of P */
3186 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
3189 if (sh
->check_state
>= check_state_run
&&
3190 sh
->check_state
<= check_state_run_pq
) {
3191 /* async_syndrome_zero_sum preserves P and Q, so
3192 * no need to mark them !uptodate here
3194 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
3198 /* we have 2-disk failure */
3199 BUG_ON(s
->failed
!= 2);
3201 case check_state_compute_result
:
3202 sh
->check_state
= check_state_idle
;
3204 /* check that a write has not made the stripe insync */
3205 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
3208 /* now write out any block on a failed drive,
3209 * or P or Q if they were recomputed
3211 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
3212 if (s
->failed
== 2) {
3213 dev
= &sh
->dev
[s
->failed_num
[1]];
3215 set_bit(R5_LOCKED
, &dev
->flags
);
3216 set_bit(R5_Wantwrite
, &dev
->flags
);
3218 if (s
->failed
>= 1) {
3219 dev
= &sh
->dev
[s
->failed_num
[0]];
3221 set_bit(R5_LOCKED
, &dev
->flags
);
3222 set_bit(R5_Wantwrite
, &dev
->flags
);
3224 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3225 dev
= &sh
->dev
[pd_idx
];
3227 set_bit(R5_LOCKED
, &dev
->flags
);
3228 set_bit(R5_Wantwrite
, &dev
->flags
);
3230 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3231 dev
= &sh
->dev
[qd_idx
];
3233 set_bit(R5_LOCKED
, &dev
->flags
);
3234 set_bit(R5_Wantwrite
, &dev
->flags
);
3236 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
3238 set_bit(STRIPE_INSYNC
, &sh
->state
);
3240 case check_state_run
:
3241 case check_state_run_q
:
3242 case check_state_run_pq
:
3243 break; /* we will be called again upon completion */
3244 case check_state_check_result
:
3245 sh
->check_state
= check_state_idle
;
3247 /* handle a successful check operation, if parity is correct
3248 * we are done. Otherwise update the mismatch count and repair
3249 * parity if !MD_RECOVERY_CHECK
3251 if (sh
->ops
.zero_sum_result
== 0) {
3252 /* both parities are correct */
3254 set_bit(STRIPE_INSYNC
, &sh
->state
);
3256 /* in contrast to the raid5 case we can validate
3257 * parity, but still have a failure to write
3260 sh
->check_state
= check_state_compute_result
;
3261 /* Returning at this point means that we may go
3262 * off and bring p and/or q uptodate again so
3263 * we make sure to check zero_sum_result again
3264 * to verify if p or q need writeback
3268 atomic64_add(STRIPE_SECTORS
, &conf
->mddev
->resync_mismatches
);
3269 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
3270 /* don't try to repair!! */
3271 set_bit(STRIPE_INSYNC
, &sh
->state
);
3273 int *target
= &sh
->ops
.target
;
3275 sh
->ops
.target
= -1;
3276 sh
->ops
.target2
= -1;
3277 sh
->check_state
= check_state_compute_run
;
3278 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
3279 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
3280 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
3281 set_bit(R5_Wantcompute
,
3282 &sh
->dev
[pd_idx
].flags
);
3284 target
= &sh
->ops
.target2
;
3287 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
3288 set_bit(R5_Wantcompute
,
3289 &sh
->dev
[qd_idx
].flags
);
3296 case check_state_compute_run
:
3299 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
3300 __func__
, sh
->check_state
,
3301 (unsigned long long) sh
->sector
);
3306 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
3310 /* We have read all the blocks in this stripe and now we need to
3311 * copy some of them into a target stripe for expand.
3313 struct dma_async_tx_descriptor
*tx
= NULL
;
3314 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3315 for (i
= 0; i
< sh
->disks
; i
++)
3316 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
3318 struct stripe_head
*sh2
;
3319 struct async_submit_ctl submit
;
3321 sector_t bn
= compute_blocknr(sh
, i
, 1);
3322 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
3324 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
3326 /* so far only the early blocks of this stripe
3327 * have been requested. When later blocks
3328 * get requested, we will try again
3331 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
3332 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
3333 /* must have already done this block */
3334 release_stripe(sh2
);
3338 /* place all the copies on one channel */
3339 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
3340 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
3341 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
3344 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
3345 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
3346 for (j
= 0; j
< conf
->raid_disks
; j
++)
3347 if (j
!= sh2
->pd_idx
&&
3349 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
3351 if (j
== conf
->raid_disks
) {
3352 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
3353 set_bit(STRIPE_HANDLE
, &sh2
->state
);
3355 release_stripe(sh2
);
3358 /* done submitting copies, wait for them to complete */
3359 async_tx_quiesce(&tx
);
3363 * handle_stripe - do things to a stripe.
3365 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3366 * state of various bits to see what needs to be done.
3368 * return some read requests which now have data
3369 * return some write requests which are safely on storage
3370 * schedule a read on some buffers
3371 * schedule a write of some buffers
3372 * return confirmation of parity correctness
3376 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
3378 struct r5conf
*conf
= sh
->raid_conf
;
3379 int disks
= sh
->disks
;
3382 int do_recovery
= 0;
3384 memset(s
, 0, sizeof(*s
));
3386 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3387 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3388 s
->failed_num
[0] = -1;
3389 s
->failed_num
[1] = -1;
3391 /* Now to look around and see what can be done */
3393 for (i
=disks
; i
--; ) {
3394 struct md_rdev
*rdev
;
3401 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3403 dev
->toread
, dev
->towrite
, dev
->written
);
3404 /* maybe we can reply to a read
3406 * new wantfill requests are only permitted while
3407 * ops_complete_biofill is guaranteed to be inactive
3409 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3410 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3411 set_bit(R5_Wantfill
, &dev
->flags
);
3413 /* now count some things */
3414 if (test_bit(R5_LOCKED
, &dev
->flags
))
3416 if (test_bit(R5_UPTODATE
, &dev
->flags
))
3418 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3420 BUG_ON(s
->compute
> 2);
3423 if (test_bit(R5_Wantfill
, &dev
->flags
))
3425 else if (dev
->toread
)
3429 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3434 /* Prefer to use the replacement for reads, but only
3435 * if it is recovered enough and has no bad blocks.
3437 rdev
= rcu_dereference(conf
->disks
[i
].replacement
);
3438 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) &&
3439 rdev
->recovery_offset
>= sh
->sector
+ STRIPE_SECTORS
&&
3440 !is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3441 &first_bad
, &bad_sectors
))
3442 set_bit(R5_ReadRepl
, &dev
->flags
);
3445 set_bit(R5_NeedReplace
, &dev
->flags
);
3446 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3447 clear_bit(R5_ReadRepl
, &dev
->flags
);
3449 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
3452 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3453 &first_bad
, &bad_sectors
);
3454 if (s
->blocked_rdev
== NULL
3455 && (test_bit(Blocked
, &rdev
->flags
)
3458 set_bit(BlockedBadBlocks
,
3460 s
->blocked_rdev
= rdev
;
3461 atomic_inc(&rdev
->nr_pending
);
3464 clear_bit(R5_Insync
, &dev
->flags
);
3468 /* also not in-sync */
3469 if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
3470 test_bit(R5_UPTODATE
, &dev
->flags
)) {
3471 /* treat as in-sync, but with a read error
3472 * which we can now try to correct
3474 set_bit(R5_Insync
, &dev
->flags
);
3475 set_bit(R5_ReadError
, &dev
->flags
);
3477 } else if (test_bit(In_sync
, &rdev
->flags
))
3478 set_bit(R5_Insync
, &dev
->flags
);
3479 else if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3480 /* in sync if before recovery_offset */
3481 set_bit(R5_Insync
, &dev
->flags
);
3482 else if (test_bit(R5_UPTODATE
, &dev
->flags
) &&
3483 test_bit(R5_Expanded
, &dev
->flags
))
3484 /* If we've reshaped into here, we assume it is Insync.
3485 * We will shortly update recovery_offset to make
3488 set_bit(R5_Insync
, &dev
->flags
);
3490 if (rdev
&& test_bit(R5_WriteError
, &dev
->flags
)) {
3491 /* This flag does not apply to '.replacement'
3492 * only to .rdev, so make sure to check that*/
3493 struct md_rdev
*rdev2
= rcu_dereference(
3494 conf
->disks
[i
].rdev
);
3496 clear_bit(R5_Insync
, &dev
->flags
);
3497 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3498 s
->handle_bad_blocks
= 1;
3499 atomic_inc(&rdev2
->nr_pending
);
3501 clear_bit(R5_WriteError
, &dev
->flags
);
3503 if (rdev
&& test_bit(R5_MadeGood
, &dev
->flags
)) {
3504 /* This flag does not apply to '.replacement'
3505 * only to .rdev, so make sure to check that*/
3506 struct md_rdev
*rdev2
= rcu_dereference(
3507 conf
->disks
[i
].rdev
);
3508 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3509 s
->handle_bad_blocks
= 1;
3510 atomic_inc(&rdev2
->nr_pending
);
3512 clear_bit(R5_MadeGood
, &dev
->flags
);
3514 if (test_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
3515 struct md_rdev
*rdev2
= rcu_dereference(
3516 conf
->disks
[i
].replacement
);
3517 if (rdev2
&& !test_bit(Faulty
, &rdev2
->flags
)) {
3518 s
->handle_bad_blocks
= 1;
3519 atomic_inc(&rdev2
->nr_pending
);
3521 clear_bit(R5_MadeGoodRepl
, &dev
->flags
);
3523 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3524 /* The ReadError flag will just be confusing now */
3525 clear_bit(R5_ReadError
, &dev
->flags
);
3526 clear_bit(R5_ReWrite
, &dev
->flags
);
3528 if (test_bit(R5_ReadError
, &dev
->flags
))
3529 clear_bit(R5_Insync
, &dev
->flags
);
3530 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3532 s
->failed_num
[s
->failed
] = i
;
3534 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
))
3538 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
3539 /* If there is a failed device being replaced,
3540 * we must be recovering.
3541 * else if we are after recovery_cp, we must be syncing
3542 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3543 * else we can only be replacing
3544 * sync and recovery both need to read all devices, and so
3545 * use the same flag.
3548 sh
->sector
>= conf
->mddev
->recovery_cp
||
3549 test_bit(MD_RECOVERY_REQUESTED
, &(conf
->mddev
->recovery
)))
3557 static void handle_stripe(struct stripe_head
*sh
)
3559 struct stripe_head_state s
;
3560 struct r5conf
*conf
= sh
->raid_conf
;
3563 int disks
= sh
->disks
;
3564 struct r5dev
*pdev
, *qdev
;
3566 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3567 if (test_and_set_bit_lock(STRIPE_ACTIVE
, &sh
->state
)) {
3568 /* already being handled, ensure it gets handled
3569 * again when current action finishes */
3570 set_bit(STRIPE_HANDLE
, &sh
->state
);
3574 if (test_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3575 spin_lock(&sh
->stripe_lock
);
3576 /* Cannot process 'sync' concurrently with 'discard' */
3577 if (!test_bit(STRIPE_DISCARD
, &sh
->state
) &&
3578 test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3579 set_bit(STRIPE_SYNCING
, &sh
->state
);
3580 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3581 clear_bit(STRIPE_REPLACED
, &sh
->state
);
3583 spin_unlock(&sh
->stripe_lock
);
3585 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3587 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3588 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3589 (unsigned long long)sh
->sector
, sh
->state
,
3590 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
3591 sh
->check_state
, sh
->reconstruct_state
);
3593 analyse_stripe(sh
, &s
);
3595 if (s
.handle_bad_blocks
) {
3596 set_bit(STRIPE_HANDLE
, &sh
->state
);
3600 if (unlikely(s
.blocked_rdev
)) {
3601 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3602 s
.replacing
|| s
.to_write
|| s
.written
) {
3603 set_bit(STRIPE_HANDLE
, &sh
->state
);
3606 /* There is nothing for the blocked_rdev to block */
3607 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
3608 s
.blocked_rdev
= NULL
;
3611 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3612 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3613 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3616 pr_debug("locked=%d uptodate=%d to_read=%d"
3617 " to_write=%d failed=%d failed_num=%d,%d\n",
3618 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3619 s
.failed_num
[0], s
.failed_num
[1]);
3620 /* check if the array has lost more than max_degraded devices and,
3621 * if so, some requests might need to be failed.
3623 if (s
.failed
> conf
->max_degraded
) {
3624 sh
->check_state
= 0;
3625 sh
->reconstruct_state
= 0;
3626 if (s
.to_read
+s
.to_write
+s
.written
)
3627 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
3628 if (s
.syncing
+ s
.replacing
)
3629 handle_failed_sync(conf
, sh
, &s
);
3632 /* Now we check to see if any write operations have recently
3636 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3638 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3639 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3640 sh
->reconstruct_state
= reconstruct_state_idle
;
3642 /* All the 'written' buffers and the parity block are ready to
3643 * be written back to disk
3645 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
) &&
3646 !test_bit(R5_Discard
, &sh
->dev
[sh
->pd_idx
].flags
));
3647 BUG_ON(sh
->qd_idx
>= 0 &&
3648 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
) &&
3649 !test_bit(R5_Discard
, &sh
->dev
[sh
->qd_idx
].flags
));
3650 for (i
= disks
; i
--; ) {
3651 struct r5dev
*dev
= &sh
->dev
[i
];
3652 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3653 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3655 pr_debug("Writing block %d\n", i
);
3656 set_bit(R5_Wantwrite
, &dev
->flags
);
3659 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3660 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3662 set_bit(STRIPE_INSYNC
, &sh
->state
);
3665 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3666 s
.dec_preread_active
= 1;
3670 * might be able to return some write requests if the parity blocks
3671 * are safe, or on a failed drive
3673 pdev
= &sh
->dev
[sh
->pd_idx
];
3674 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
3675 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
3676 qdev
= &sh
->dev
[sh
->qd_idx
];
3677 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
3678 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
3682 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3683 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3684 && (test_bit(R5_UPTODATE
, &pdev
->flags
) ||
3685 test_bit(R5_Discard
, &pdev
->flags
))))) &&
3686 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3687 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3688 && (test_bit(R5_UPTODATE
, &qdev
->flags
) ||
3689 test_bit(R5_Discard
, &qdev
->flags
))))))
3690 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
3692 /* Now we might consider reading some blocks, either to check/generate
3693 * parity, or to satisfy requests
3694 * or to load a block that is being partially written.
3696 if (s
.to_read
|| s
.non_overwrite
3697 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
3698 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
))
3701 handle_stripe_fill(sh
, &s
, disks
);
3703 /* Now to consider new write requests and what else, if anything
3704 * should be read. We do not handle new writes when:
3705 * 1/ A 'write' operation (copy+xor) is already in flight.
3706 * 2/ A 'check' operation is in flight, as it may clobber the parity
3709 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3710 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
3712 /* maybe we need to check and possibly fix the parity for this stripe
3713 * Any reads will already have been scheduled, so we just see if enough
3714 * data is available. The parity check is held off while parity
3715 * dependent operations are in flight.
3717 if (sh
->check_state
||
3718 (s
.syncing
&& s
.locked
== 0 &&
3719 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3720 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
3721 if (conf
->level
== 6)
3722 handle_parity_checks6(conf
, sh
, &s
, disks
);
3724 handle_parity_checks5(conf
, sh
, &s
, disks
);
3727 if ((s
.replacing
|| s
.syncing
) && s
.locked
== 0
3728 && !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)
3729 && !test_bit(STRIPE_REPLACED
, &sh
->state
)) {
3730 /* Write out to replacement devices where possible */
3731 for (i
= 0; i
< conf
->raid_disks
; i
++)
3732 if (test_bit(R5_NeedReplace
, &sh
->dev
[i
].flags
)) {
3733 WARN_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
));
3734 set_bit(R5_WantReplace
, &sh
->dev
[i
].flags
);
3735 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3739 set_bit(STRIPE_INSYNC
, &sh
->state
);
3740 set_bit(STRIPE_REPLACED
, &sh
->state
);
3742 if ((s
.syncing
|| s
.replacing
) && s
.locked
== 0 &&
3743 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3744 test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3745 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3746 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3747 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
))
3748 wake_up(&conf
->wait_for_overlap
);
3751 /* If the failed drives are just a ReadError, then we might need
3752 * to progress the repair/check process
3754 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
3755 for (i
= 0; i
< s
.failed
; i
++) {
3756 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
3757 if (test_bit(R5_ReadError
, &dev
->flags
)
3758 && !test_bit(R5_LOCKED
, &dev
->flags
)
3759 && test_bit(R5_UPTODATE
, &dev
->flags
)
3761 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3762 set_bit(R5_Wantwrite
, &dev
->flags
);
3763 set_bit(R5_ReWrite
, &dev
->flags
);
3764 set_bit(R5_LOCKED
, &dev
->flags
);
3767 /* let's read it back */
3768 set_bit(R5_Wantread
, &dev
->flags
);
3769 set_bit(R5_LOCKED
, &dev
->flags
);
3776 /* Finish reconstruct operations initiated by the expansion process */
3777 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3778 struct stripe_head
*sh_src
3779 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3780 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
3781 /* sh cannot be written until sh_src has been read.
3782 * so arrange for sh to be delayed a little
3784 set_bit(STRIPE_DELAYED
, &sh
->state
);
3785 set_bit(STRIPE_HANDLE
, &sh
->state
);
3786 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3788 atomic_inc(&conf
->preread_active_stripes
);
3789 release_stripe(sh_src
);
3793 release_stripe(sh_src
);
3795 sh
->reconstruct_state
= reconstruct_state_idle
;
3796 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3797 for (i
= conf
->raid_disks
; i
--; ) {
3798 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3799 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3804 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3805 !sh
->reconstruct_state
) {
3806 /* Need to write out all blocks after computing parity */
3807 sh
->disks
= conf
->raid_disks
;
3808 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3809 schedule_reconstruction(sh
, &s
, 1, 1);
3810 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3811 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3812 atomic_dec(&conf
->reshape_stripes
);
3813 wake_up(&conf
->wait_for_overlap
);
3814 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3817 if (s
.expanding
&& s
.locked
== 0 &&
3818 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3819 handle_stripe_expansion(conf
, sh
);
3822 /* wait for this device to become unblocked */
3823 if (unlikely(s
.blocked_rdev
)) {
3824 if (conf
->mddev
->external
)
3825 md_wait_for_blocked_rdev(s
.blocked_rdev
,
3828 /* Internal metadata will immediately
3829 * be written by raid5d, so we don't
3830 * need to wait here.
3832 rdev_dec_pending(s
.blocked_rdev
,
3836 if (s
.handle_bad_blocks
)
3837 for (i
= disks
; i
--; ) {
3838 struct md_rdev
*rdev
;
3839 struct r5dev
*dev
= &sh
->dev
[i
];
3840 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
3841 /* We own a safe reference to the rdev */
3842 rdev
= conf
->disks
[i
].rdev
;
3843 if (!rdev_set_badblocks(rdev
, sh
->sector
,
3845 md_error(conf
->mddev
, rdev
);
3846 rdev_dec_pending(rdev
, conf
->mddev
);
3848 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
3849 rdev
= conf
->disks
[i
].rdev
;
3850 rdev_clear_badblocks(rdev
, sh
->sector
,
3852 rdev_dec_pending(rdev
, conf
->mddev
);
3854 if (test_and_clear_bit(R5_MadeGoodRepl
, &dev
->flags
)) {
3855 rdev
= conf
->disks
[i
].replacement
;
3857 /* rdev have been moved down */
3858 rdev
= conf
->disks
[i
].rdev
;
3859 rdev_clear_badblocks(rdev
, sh
->sector
,
3861 rdev_dec_pending(rdev
, conf
->mddev
);
3866 raid_run_ops(sh
, s
.ops_request
);
3870 if (s
.dec_preread_active
) {
3871 /* We delay this until after ops_run_io so that if make_request
3872 * is waiting on a flush, it won't continue until the writes
3873 * have actually been submitted.
3875 atomic_dec(&conf
->preread_active_stripes
);
3876 if (atomic_read(&conf
->preread_active_stripes
) <
3878 md_wakeup_thread(conf
->mddev
->thread
);
3881 return_io(s
.return_bi
);
3883 clear_bit_unlock(STRIPE_ACTIVE
, &sh
->state
);
3886 static void raid5_activate_delayed(struct r5conf
*conf
)
3888 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3889 while (!list_empty(&conf
->delayed_list
)) {
3890 struct list_head
*l
= conf
->delayed_list
.next
;
3891 struct stripe_head
*sh
;
3892 sh
= list_entry(l
, struct stripe_head
, lru
);
3894 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3895 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3896 atomic_inc(&conf
->preread_active_stripes
);
3897 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3898 raid5_wakeup_stripe_thread(sh
);
3903 static void activate_bit_delay(struct r5conf
*conf
)
3905 /* device_lock is held */
3906 struct list_head head
;
3907 list_add(&head
, &conf
->bitmap_list
);
3908 list_del_init(&conf
->bitmap_list
);
3909 while (!list_empty(&head
)) {
3910 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3911 list_del_init(&sh
->lru
);
3912 atomic_inc(&sh
->count
);
3913 __release_stripe(conf
, sh
);
3917 int md_raid5_congested(struct mddev
*mddev
, int bits
)
3919 struct r5conf
*conf
= mddev
->private;
3921 /* No difference between reads and writes. Just check
3922 * how busy the stripe_cache is
3925 if (conf
->inactive_blocked
)
3929 if (list_empty_careful(&conf
->inactive_list
))
3934 EXPORT_SYMBOL_GPL(md_raid5_congested
);
3936 static int raid5_congested(void *data
, int bits
)
3938 struct mddev
*mddev
= data
;
3940 return mddev_congested(mddev
, bits
) ||
3941 md_raid5_congested(mddev
, bits
);
3944 /* We want read requests to align with chunks where possible,
3945 * but write requests don't need to.
3947 static int raid5_mergeable_bvec(struct request_queue
*q
,
3948 struct bvec_merge_data
*bvm
,
3949 struct bio_vec
*biovec
)
3951 struct mddev
*mddev
= q
->queuedata
;
3952 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3954 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3955 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3957 if ((bvm
->bi_rw
& 1) == WRITE
)
3958 return biovec
->bv_len
; /* always allow writes to be mergeable */
3960 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3961 chunk_sectors
= mddev
->new_chunk_sectors
;
3962 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3963 if (max
< 0) max
= 0;
3964 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3965 return biovec
->bv_len
;
3971 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
3973 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3974 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3975 unsigned int bio_sectors
= bio_sectors(bio
);
3977 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3978 chunk_sectors
= mddev
->new_chunk_sectors
;
3979 return chunk_sectors
>=
3980 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3984 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3985 * later sampled by raid5d.
3987 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
3989 unsigned long flags
;
3991 spin_lock_irqsave(&conf
->device_lock
, flags
);
3993 bi
->bi_next
= conf
->retry_read_aligned_list
;
3994 conf
->retry_read_aligned_list
= bi
;
3996 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3997 md_wakeup_thread(conf
->mddev
->thread
);
4001 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
4005 bi
= conf
->retry_read_aligned
;
4007 conf
->retry_read_aligned
= NULL
;
4010 bi
= conf
->retry_read_aligned_list
;
4012 conf
->retry_read_aligned_list
= bi
->bi_next
;
4015 * this sets the active strip count to 1 and the processed
4016 * strip count to zero (upper 8 bits)
4018 raid5_set_bi_stripes(bi
, 1); /* biased count of active stripes */
4026 * The "raid5_align_endio" should check if the read succeeded and if it
4027 * did, call bio_endio on the original bio (having bio_put the new bio
4029 * If the read failed..
4031 static void raid5_align_endio(struct bio
*bi
, int error
)
4033 struct bio
* raid_bi
= bi
->bi_private
;
4034 struct mddev
*mddev
;
4035 struct r5conf
*conf
;
4036 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4037 struct md_rdev
*rdev
;
4041 rdev
= (void*)raid_bi
->bi_next
;
4042 raid_bi
->bi_next
= NULL
;
4043 mddev
= rdev
->mddev
;
4044 conf
= mddev
->private;
4046 rdev_dec_pending(rdev
, conf
->mddev
);
4048 if (!error
&& uptodate
) {
4049 trace_block_bio_complete(bdev_get_queue(raid_bi
->bi_bdev
),
4051 bio_endio(raid_bi
, 0);
4052 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4053 wake_up(&conf
->wait_for_stripe
);
4058 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4060 add_bio_to_retry(raid_bi
, conf
);
4063 static int bio_fits_rdev(struct bio
*bi
)
4065 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
4067 if (bio_sectors(bi
) > queue_max_sectors(q
))
4069 blk_recount_segments(q
, bi
);
4070 if (bi
->bi_phys_segments
> queue_max_segments(q
))
4073 if (q
->merge_bvec_fn
)
4074 /* it's too hard to apply the merge_bvec_fn at this stage,
4083 static int chunk_aligned_read(struct mddev
*mddev
, struct bio
* raid_bio
)
4085 struct r5conf
*conf
= mddev
->private;
4087 struct bio
* align_bi
;
4088 struct md_rdev
*rdev
;
4089 sector_t end_sector
;
4091 if (!in_chunk_boundary(mddev
, raid_bio
)) {
4092 pr_debug("chunk_aligned_read : non aligned\n");
4096 * use bio_clone_mddev to make a copy of the bio
4098 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
4102 * set bi_end_io to a new function, and set bi_private to the
4105 align_bi
->bi_end_io
= raid5_align_endio
;
4106 align_bi
->bi_private
= raid_bio
;
4110 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
4114 end_sector
= bio_end_sector(align_bi
);
4116 rdev
= rcu_dereference(conf
->disks
[dd_idx
].replacement
);
4117 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
) ||
4118 rdev
->recovery_offset
< end_sector
) {
4119 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
4121 (test_bit(Faulty
, &rdev
->flags
) ||
4122 !(test_bit(In_sync
, &rdev
->flags
) ||
4123 rdev
->recovery_offset
>= end_sector
)))
4130 atomic_inc(&rdev
->nr_pending
);
4132 raid_bio
->bi_next
= (void*)rdev
;
4133 align_bi
->bi_bdev
= rdev
->bdev
;
4134 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
4136 if (!bio_fits_rdev(align_bi
) ||
4137 is_badblock(rdev
, align_bi
->bi_sector
, bio_sectors(align_bi
),
4138 &first_bad
, &bad_sectors
)) {
4139 /* too big in some way, or has a known bad block */
4141 rdev_dec_pending(rdev
, mddev
);
4145 /* No reshape active, so we can trust rdev->data_offset */
4146 align_bi
->bi_sector
+= rdev
->data_offset
;
4148 spin_lock_irq(&conf
->device_lock
);
4149 wait_event_lock_irq(conf
->wait_for_stripe
,
4152 atomic_inc(&conf
->active_aligned_reads
);
4153 spin_unlock_irq(&conf
->device_lock
);
4156 trace_block_bio_remap(bdev_get_queue(align_bi
->bi_bdev
),
4157 align_bi
, disk_devt(mddev
->gendisk
),
4158 raid_bio
->bi_sector
);
4159 generic_make_request(align_bi
);
4168 /* __get_priority_stripe - get the next stripe to process
4170 * Full stripe writes are allowed to pass preread active stripes up until
4171 * the bypass_threshold is exceeded. In general the bypass_count
4172 * increments when the handle_list is handled before the hold_list; however, it
4173 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4174 * stripe with in flight i/o. The bypass_count will be reset when the
4175 * head of the hold_list has changed, i.e. the head was promoted to the
4178 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
, int group
)
4180 struct stripe_head
*sh
= NULL
, *tmp
;
4181 struct list_head
*handle_list
= NULL
;
4182 struct r5worker_group
*wg
= NULL
;
4184 if (conf
->worker_cnt_per_group
== 0) {
4185 handle_list
= &conf
->handle_list
;
4186 } else if (group
!= ANY_GROUP
) {
4187 handle_list
= &conf
->worker_groups
[group
].handle_list
;
4188 wg
= &conf
->worker_groups
[group
];
4191 for (i
= 0; i
< conf
->group_cnt
; i
++) {
4192 handle_list
= &conf
->worker_groups
[i
].handle_list
;
4193 wg
= &conf
->worker_groups
[i
];
4194 if (!list_empty(handle_list
))
4199 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4201 list_empty(handle_list
) ? "empty" : "busy",
4202 list_empty(&conf
->hold_list
) ? "empty" : "busy",
4203 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
4205 if (!list_empty(handle_list
)) {
4206 sh
= list_entry(handle_list
->next
, typeof(*sh
), lru
);
4208 if (list_empty(&conf
->hold_list
))
4209 conf
->bypass_count
= 0;
4210 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
4211 if (conf
->hold_list
.next
== conf
->last_hold
)
4212 conf
->bypass_count
++;
4214 conf
->last_hold
= conf
->hold_list
.next
;
4215 conf
->bypass_count
-= conf
->bypass_threshold
;
4216 if (conf
->bypass_count
< 0)
4217 conf
->bypass_count
= 0;
4220 } else if (!list_empty(&conf
->hold_list
) &&
4221 ((conf
->bypass_threshold
&&
4222 conf
->bypass_count
> conf
->bypass_threshold
) ||
4223 atomic_read(&conf
->pending_full_writes
) == 0)) {
4225 list_for_each_entry(tmp
, &conf
->hold_list
, lru
) {
4226 if (conf
->worker_cnt_per_group
== 0 ||
4227 group
== ANY_GROUP
||
4228 !cpu_online(tmp
->cpu
) ||
4229 cpu_to_group(tmp
->cpu
) == group
) {
4236 conf
->bypass_count
-= conf
->bypass_threshold
;
4237 if (conf
->bypass_count
< 0)
4238 conf
->bypass_count
= 0;
4250 list_del_init(&sh
->lru
);
4251 atomic_inc(&sh
->count
);
4252 BUG_ON(atomic_read(&sh
->count
) != 1);
4256 struct raid5_plug_cb
{
4257 struct blk_plug_cb cb
;
4258 struct list_head list
;
4261 static void raid5_unplug(struct blk_plug_cb
*blk_cb
, bool from_schedule
)
4263 struct raid5_plug_cb
*cb
= container_of(
4264 blk_cb
, struct raid5_plug_cb
, cb
);
4265 struct stripe_head
*sh
;
4266 struct mddev
*mddev
= cb
->cb
.data
;
4267 struct r5conf
*conf
= mddev
->private;
4270 if (cb
->list
.next
&& !list_empty(&cb
->list
)) {
4271 spin_lock_irq(&conf
->device_lock
);
4272 while (!list_empty(&cb
->list
)) {
4273 sh
= list_first_entry(&cb
->list
, struct stripe_head
, lru
);
4274 list_del_init(&sh
->lru
);
4276 * avoid race release_stripe_plug() sees
4277 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4278 * is still in our list
4280 smp_mb__before_clear_bit();
4281 clear_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
);
4283 * STRIPE_ON_RELEASE_LIST could be set here. In that
4284 * case, the count is always > 1 here
4286 __release_stripe(conf
, sh
);
4289 spin_unlock_irq(&conf
->device_lock
);
4292 trace_block_unplug(mddev
->queue
, cnt
, !from_schedule
);
4296 static void release_stripe_plug(struct mddev
*mddev
,
4297 struct stripe_head
*sh
)
4299 struct blk_plug_cb
*blk_cb
= blk_check_plugged(
4300 raid5_unplug
, mddev
,
4301 sizeof(struct raid5_plug_cb
));
4302 struct raid5_plug_cb
*cb
;
4309 cb
= container_of(blk_cb
, struct raid5_plug_cb
, cb
);
4311 if (cb
->list
.next
== NULL
)
4312 INIT_LIST_HEAD(&cb
->list
);
4314 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST
, &sh
->state
))
4315 list_add_tail(&sh
->lru
, &cb
->list
);
4320 static void make_discard_request(struct mddev
*mddev
, struct bio
*bi
)
4322 struct r5conf
*conf
= mddev
->private;
4323 sector_t logical_sector
, last_sector
;
4324 struct stripe_head
*sh
;
4328 if (mddev
->reshape_position
!= MaxSector
)
4329 /* Skip discard while reshape is happening */
4332 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4333 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
4336 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
4338 stripe_sectors
= conf
->chunk_sectors
*
4339 (conf
->raid_disks
- conf
->max_degraded
);
4340 logical_sector
= DIV_ROUND_UP_SECTOR_T(logical_sector
,
4342 sector_div(last_sector
, stripe_sectors
);
4344 logical_sector
*= conf
->chunk_sectors
;
4345 last_sector
*= conf
->chunk_sectors
;
4347 for (; logical_sector
< last_sector
;
4348 logical_sector
+= STRIPE_SECTORS
) {
4352 sh
= get_active_stripe(conf
, logical_sector
, 0, 0, 0);
4353 prepare_to_wait(&conf
->wait_for_overlap
, &w
,
4354 TASK_UNINTERRUPTIBLE
);
4355 set_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
4356 if (test_bit(STRIPE_SYNCING
, &sh
->state
)) {
4361 clear_bit(R5_Overlap
, &sh
->dev
[sh
->pd_idx
].flags
);
4362 spin_lock_irq(&sh
->stripe_lock
);
4363 for (d
= 0; d
< conf
->raid_disks
; d
++) {
4364 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
4366 if (sh
->dev
[d
].towrite
|| sh
->dev
[d
].toread
) {
4367 set_bit(R5_Overlap
, &sh
->dev
[d
].flags
);
4368 spin_unlock_irq(&sh
->stripe_lock
);
4374 set_bit(STRIPE_DISCARD
, &sh
->state
);
4375 finish_wait(&conf
->wait_for_overlap
, &w
);
4376 for (d
= 0; d
< conf
->raid_disks
; d
++) {
4377 if (d
== sh
->pd_idx
|| d
== sh
->qd_idx
)
4379 sh
->dev
[d
].towrite
= bi
;
4380 set_bit(R5_OVERWRITE
, &sh
->dev
[d
].flags
);
4381 raid5_inc_bi_active_stripes(bi
);
4383 spin_unlock_irq(&sh
->stripe_lock
);
4384 if (conf
->mddev
->bitmap
) {
4386 d
< conf
->raid_disks
- conf
->max_degraded
;
4388 bitmap_startwrite(mddev
->bitmap
,
4392 sh
->bm_seq
= conf
->seq_flush
+ 1;
4393 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
4396 set_bit(STRIPE_HANDLE
, &sh
->state
);
4397 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4398 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4399 atomic_inc(&conf
->preread_active_stripes
);
4400 release_stripe_plug(mddev
, sh
);
4403 remaining
= raid5_dec_bi_active_stripes(bi
);
4404 if (remaining
== 0) {
4405 md_write_end(mddev
);
4410 static void make_request(struct mddev
*mddev
, struct bio
* bi
)
4412 struct r5conf
*conf
= mddev
->private;
4414 sector_t new_sector
;
4415 sector_t logical_sector
, last_sector
;
4416 struct stripe_head
*sh
;
4417 const int rw
= bio_data_dir(bi
);
4420 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
4421 md_flush_request(mddev
, bi
);
4425 md_write_start(mddev
, bi
);
4428 mddev
->reshape_position
== MaxSector
&&
4429 chunk_aligned_read(mddev
,bi
))
4432 if (unlikely(bi
->bi_rw
& REQ_DISCARD
)) {
4433 make_discard_request(mddev
, bi
);
4437 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4438 last_sector
= bio_end_sector(bi
);
4440 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
4442 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
4448 seq
= read_seqcount_begin(&conf
->gen_lock
);
4450 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
4451 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
4452 /* spinlock is needed as reshape_progress may be
4453 * 64bit on a 32bit platform, and so it might be
4454 * possible to see a half-updated value
4455 * Of course reshape_progress could change after
4456 * the lock is dropped, so once we get a reference
4457 * to the stripe that we think it is, we will have
4460 spin_lock_irq(&conf
->device_lock
);
4461 if (mddev
->reshape_backwards
4462 ? logical_sector
< conf
->reshape_progress
4463 : logical_sector
>= conf
->reshape_progress
) {
4466 if (mddev
->reshape_backwards
4467 ? logical_sector
< conf
->reshape_safe
4468 : logical_sector
>= conf
->reshape_safe
) {
4469 spin_unlock_irq(&conf
->device_lock
);
4474 spin_unlock_irq(&conf
->device_lock
);
4477 new_sector
= raid5_compute_sector(conf
, logical_sector
,
4480 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4481 (unsigned long long)new_sector
,
4482 (unsigned long long)logical_sector
);
4484 sh
= get_active_stripe(conf
, new_sector
, previous
,
4485 (bi
->bi_rw
&RWA_MASK
), 0);
4487 if (unlikely(previous
)) {
4488 /* expansion might have moved on while waiting for a
4489 * stripe, so we must do the range check again.
4490 * Expansion could still move past after this
4491 * test, but as we are holding a reference to
4492 * 'sh', we know that if that happens,
4493 * STRIPE_EXPANDING will get set and the expansion
4494 * won't proceed until we finish with the stripe.
4497 spin_lock_irq(&conf
->device_lock
);
4498 if (mddev
->reshape_backwards
4499 ? logical_sector
>= conf
->reshape_progress
4500 : logical_sector
< conf
->reshape_progress
)
4501 /* mismatch, need to try again */
4503 spin_unlock_irq(&conf
->device_lock
);
4510 if (read_seqcount_retry(&conf
->gen_lock
, seq
)) {
4511 /* Might have got the wrong stripe_head
4519 logical_sector
>= mddev
->suspend_lo
&&
4520 logical_sector
< mddev
->suspend_hi
) {
4522 /* As the suspend_* range is controlled by
4523 * userspace, we want an interruptible
4526 flush_signals(current
);
4527 prepare_to_wait(&conf
->wait_for_overlap
,
4528 &w
, TASK_INTERRUPTIBLE
);
4529 if (logical_sector
>= mddev
->suspend_lo
&&
4530 logical_sector
< mddev
->suspend_hi
)
4535 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
4536 !add_stripe_bio(sh
, bi
, dd_idx
, rw
)) {
4537 /* Stripe is busy expanding or
4538 * add failed due to overlap. Flush everything
4541 md_wakeup_thread(mddev
->thread
);
4546 finish_wait(&conf
->wait_for_overlap
, &w
);
4547 set_bit(STRIPE_HANDLE
, &sh
->state
);
4548 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4549 if ((bi
->bi_rw
& REQ_SYNC
) &&
4550 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4551 atomic_inc(&conf
->preread_active_stripes
);
4552 release_stripe_plug(mddev
, sh
);
4554 /* cannot get stripe for read-ahead, just give-up */
4555 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4556 finish_wait(&conf
->wait_for_overlap
, &w
);
4561 remaining
= raid5_dec_bi_active_stripes(bi
);
4562 if (remaining
== 0) {
4565 md_write_end(mddev
);
4567 trace_block_bio_complete(bdev_get_queue(bi
->bi_bdev
),
4573 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
4575 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
4577 /* reshaping is quite different to recovery/resync so it is
4578 * handled quite separately ... here.
4580 * On each call to sync_request, we gather one chunk worth of
4581 * destination stripes and flag them as expanding.
4582 * Then we find all the source stripes and request reads.
4583 * As the reads complete, handle_stripe will copy the data
4584 * into the destination stripe and release that stripe.
4586 struct r5conf
*conf
= mddev
->private;
4587 struct stripe_head
*sh
;
4588 sector_t first_sector
, last_sector
;
4589 int raid_disks
= conf
->previous_raid_disks
;
4590 int data_disks
= raid_disks
- conf
->max_degraded
;
4591 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4594 sector_t writepos
, readpos
, safepos
;
4595 sector_t stripe_addr
;
4596 int reshape_sectors
;
4597 struct list_head stripes
;
4599 if (sector_nr
== 0) {
4600 /* If restarting in the middle, skip the initial sectors */
4601 if (mddev
->reshape_backwards
&&
4602 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4603 sector_nr
= raid5_size(mddev
, 0, 0)
4604 - conf
->reshape_progress
;
4605 } else if (!mddev
->reshape_backwards
&&
4606 conf
->reshape_progress
> 0)
4607 sector_nr
= conf
->reshape_progress
;
4608 sector_div(sector_nr
, new_data_disks
);
4610 mddev
->curr_resync_completed
= sector_nr
;
4611 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4617 /* We need to process a full chunk at a time.
4618 * If old and new chunk sizes differ, we need to process the
4621 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4622 reshape_sectors
= mddev
->new_chunk_sectors
;
4624 reshape_sectors
= mddev
->chunk_sectors
;
4626 /* We update the metadata at least every 10 seconds, or when
4627 * the data about to be copied would over-write the source of
4628 * the data at the front of the range. i.e. one new_stripe
4629 * along from reshape_progress new_maps to after where
4630 * reshape_safe old_maps to
4632 writepos
= conf
->reshape_progress
;
4633 sector_div(writepos
, new_data_disks
);
4634 readpos
= conf
->reshape_progress
;
4635 sector_div(readpos
, data_disks
);
4636 safepos
= conf
->reshape_safe
;
4637 sector_div(safepos
, data_disks
);
4638 if (mddev
->reshape_backwards
) {
4639 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4640 readpos
+= reshape_sectors
;
4641 safepos
+= reshape_sectors
;
4643 writepos
+= reshape_sectors
;
4644 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4645 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4648 /* Having calculated the 'writepos' possibly use it
4649 * to set 'stripe_addr' which is where we will write to.
4651 if (mddev
->reshape_backwards
) {
4652 BUG_ON(conf
->reshape_progress
== 0);
4653 stripe_addr
= writepos
;
4654 BUG_ON((mddev
->dev_sectors
&
4655 ~((sector_t
)reshape_sectors
- 1))
4656 - reshape_sectors
- stripe_addr
4659 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4660 stripe_addr
= sector_nr
;
4663 /* 'writepos' is the most advanced device address we might write.
4664 * 'readpos' is the least advanced device address we might read.
4665 * 'safepos' is the least address recorded in the metadata as having
4667 * If there is a min_offset_diff, these are adjusted either by
4668 * increasing the safepos/readpos if diff is negative, or
4669 * increasing writepos if diff is positive.
4670 * If 'readpos' is then behind 'writepos', there is no way that we can
4671 * ensure safety in the face of a crash - that must be done by userspace
4672 * making a backup of the data. So in that case there is no particular
4673 * rush to update metadata.
4674 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4675 * update the metadata to advance 'safepos' to match 'readpos' so that
4676 * we can be safe in the event of a crash.
4677 * So we insist on updating metadata if safepos is behind writepos and
4678 * readpos is beyond writepos.
4679 * In any case, update the metadata every 10 seconds.
4680 * Maybe that number should be configurable, but I'm not sure it is
4681 * worth it.... maybe it could be a multiple of safemode_delay???
4683 if (conf
->min_offset_diff
< 0) {
4684 safepos
+= -conf
->min_offset_diff
;
4685 readpos
+= -conf
->min_offset_diff
;
4687 writepos
+= conf
->min_offset_diff
;
4689 if ((mddev
->reshape_backwards
4690 ? (safepos
> writepos
&& readpos
< writepos
)
4691 : (safepos
< writepos
&& readpos
> writepos
)) ||
4692 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4693 /* Cannot proceed until we've updated the superblock... */
4694 wait_event(conf
->wait_for_overlap
,
4695 atomic_read(&conf
->reshape_stripes
)==0);
4696 mddev
->reshape_position
= conf
->reshape_progress
;
4697 mddev
->curr_resync_completed
= sector_nr
;
4698 conf
->reshape_checkpoint
= jiffies
;
4699 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4700 md_wakeup_thread(mddev
->thread
);
4701 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4702 kthread_should_stop());
4703 spin_lock_irq(&conf
->device_lock
);
4704 conf
->reshape_safe
= mddev
->reshape_position
;
4705 spin_unlock_irq(&conf
->device_lock
);
4706 wake_up(&conf
->wait_for_overlap
);
4707 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4710 INIT_LIST_HEAD(&stripes
);
4711 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4713 int skipped_disk
= 0;
4714 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4715 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4716 atomic_inc(&conf
->reshape_stripes
);
4717 /* If any of this stripe is beyond the end of the old
4718 * array, then we need to zero those blocks
4720 for (j
=sh
->disks
; j
--;) {
4722 if (j
== sh
->pd_idx
)
4724 if (conf
->level
== 6 &&
4727 s
= compute_blocknr(sh
, j
, 0);
4728 if (s
< raid5_size(mddev
, 0, 0)) {
4732 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4733 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4734 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4736 if (!skipped_disk
) {
4737 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4738 set_bit(STRIPE_HANDLE
, &sh
->state
);
4740 list_add(&sh
->lru
, &stripes
);
4742 spin_lock_irq(&conf
->device_lock
);
4743 if (mddev
->reshape_backwards
)
4744 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4746 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4747 spin_unlock_irq(&conf
->device_lock
);
4748 /* Ok, those stripe are ready. We can start scheduling
4749 * reads on the source stripes.
4750 * The source stripes are determined by mapping the first and last
4751 * block on the destination stripes.
4754 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4757 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4758 * new_data_disks
- 1),
4760 if (last_sector
>= mddev
->dev_sectors
)
4761 last_sector
= mddev
->dev_sectors
- 1;
4762 while (first_sector
<= last_sector
) {
4763 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4764 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4765 set_bit(STRIPE_HANDLE
, &sh
->state
);
4767 first_sector
+= STRIPE_SECTORS
;
4769 /* Now that the sources are clearly marked, we can release
4770 * the destination stripes
4772 while (!list_empty(&stripes
)) {
4773 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4774 list_del_init(&sh
->lru
);
4777 /* If this takes us to the resync_max point where we have to pause,
4778 * then we need to write out the superblock.
4780 sector_nr
+= reshape_sectors
;
4781 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4782 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4783 /* Cannot proceed until we've updated the superblock... */
4784 wait_event(conf
->wait_for_overlap
,
4785 atomic_read(&conf
->reshape_stripes
) == 0);
4786 mddev
->reshape_position
= conf
->reshape_progress
;
4787 mddev
->curr_resync_completed
= sector_nr
;
4788 conf
->reshape_checkpoint
= jiffies
;
4789 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4790 md_wakeup_thread(mddev
->thread
);
4791 wait_event(mddev
->sb_wait
,
4792 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4793 || kthread_should_stop());
4794 spin_lock_irq(&conf
->device_lock
);
4795 conf
->reshape_safe
= mddev
->reshape_position
;
4796 spin_unlock_irq(&conf
->device_lock
);
4797 wake_up(&conf
->wait_for_overlap
);
4798 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4800 return reshape_sectors
;
4803 /* FIXME go_faster isn't used */
4804 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4806 struct r5conf
*conf
= mddev
->private;
4807 struct stripe_head
*sh
;
4808 sector_t max_sector
= mddev
->dev_sectors
;
4809 sector_t sync_blocks
;
4810 int still_degraded
= 0;
4813 if (sector_nr
>= max_sector
) {
4814 /* just being told to finish up .. nothing much to do */
4816 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4821 if (mddev
->curr_resync
< max_sector
) /* aborted */
4822 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4824 else /* completed sync */
4826 bitmap_close_sync(mddev
->bitmap
);
4831 /* Allow raid5_quiesce to complete */
4832 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4834 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4835 return reshape_request(mddev
, sector_nr
, skipped
);
4837 /* No need to check resync_max as we never do more than one
4838 * stripe, and as resync_max will always be on a chunk boundary,
4839 * if the check in md_do_sync didn't fire, there is no chance
4840 * of overstepping resync_max here
4843 /* if there is too many failed drives and we are trying
4844 * to resync, then assert that we are finished, because there is
4845 * nothing we can do.
4847 if (mddev
->degraded
>= conf
->max_degraded
&&
4848 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4849 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4853 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4855 !bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4856 sync_blocks
>= STRIPE_SECTORS
) {
4857 /* we can skip this block, and probably more */
4858 sync_blocks
/= STRIPE_SECTORS
;
4860 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4863 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4865 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4867 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4868 /* make sure we don't swamp the stripe cache if someone else
4869 * is trying to get access
4871 schedule_timeout_uninterruptible(1);
4873 /* Need to check if array will still be degraded after recovery/resync
4874 * We don't need to check the 'failed' flag as when that gets set,
4877 for (i
= 0; i
< conf
->raid_disks
; i
++)
4878 if (conf
->disks
[i
].rdev
== NULL
)
4881 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4883 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
4888 return STRIPE_SECTORS
;
4891 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
4893 /* We may not be able to submit a whole bio at once as there
4894 * may not be enough stripe_heads available.
4895 * We cannot pre-allocate enough stripe_heads as we may need
4896 * more than exist in the cache (if we allow ever large chunks).
4897 * So we do one stripe head at a time and record in
4898 * ->bi_hw_segments how many have been done.
4900 * We *know* that this entire raid_bio is in one chunk, so
4901 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4903 struct stripe_head
*sh
;
4905 sector_t sector
, logical_sector
, last_sector
;
4910 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4911 sector
= raid5_compute_sector(conf
, logical_sector
,
4913 last_sector
= bio_end_sector(raid_bio
);
4915 for (; logical_sector
< last_sector
;
4916 logical_sector
+= STRIPE_SECTORS
,
4917 sector
+= STRIPE_SECTORS
,
4920 if (scnt
< raid5_bi_processed_stripes(raid_bio
))
4921 /* already done this stripe */
4924 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4927 /* failed to get a stripe - must wait */
4928 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
4929 conf
->retry_read_aligned
= raid_bio
;
4933 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4935 raid5_set_bi_processed_stripes(raid_bio
, scnt
);
4936 conf
->retry_read_aligned
= raid_bio
;
4940 set_bit(R5_ReadNoMerge
, &sh
->dev
[dd_idx
].flags
);
4945 remaining
= raid5_dec_bi_active_stripes(raid_bio
);
4946 if (remaining
== 0) {
4947 trace_block_bio_complete(bdev_get_queue(raid_bio
->bi_bdev
),
4949 bio_endio(raid_bio
, 0);
4951 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4952 wake_up(&conf
->wait_for_stripe
);
4956 static int handle_active_stripes(struct r5conf
*conf
, int group
,
4957 struct r5worker
*worker
)
4959 struct stripe_head
*batch
[MAX_STRIPE_BATCH
], *sh
;
4960 int i
, batch_size
= 0;
4962 while (batch_size
< MAX_STRIPE_BATCH
&&
4963 (sh
= __get_priority_stripe(conf
, group
)) != NULL
)
4964 batch
[batch_size
++] = sh
;
4966 if (batch_size
== 0)
4968 spin_unlock_irq(&conf
->device_lock
);
4970 for (i
= 0; i
< batch_size
; i
++)
4971 handle_stripe(batch
[i
]);
4975 spin_lock_irq(&conf
->device_lock
);
4976 for (i
= 0; i
< batch_size
; i
++)
4977 __release_stripe(conf
, batch
[i
]);
4981 static void raid5_do_work(struct work_struct
*work
)
4983 struct r5worker
*worker
= container_of(work
, struct r5worker
, work
);
4984 struct r5worker_group
*group
= worker
->group
;
4985 struct r5conf
*conf
= group
->conf
;
4986 int group_id
= group
- conf
->worker_groups
;
4988 struct blk_plug plug
;
4990 pr_debug("+++ raid5worker active\n");
4992 blk_start_plug(&plug
);
4994 spin_lock_irq(&conf
->device_lock
);
4996 int batch_size
, released
;
4998 released
= release_stripe_list(conf
);
5000 batch_size
= handle_active_stripes(conf
, group_id
, worker
);
5001 worker
->working
= false;
5002 if (!batch_size
&& !released
)
5004 handled
+= batch_size
;
5006 pr_debug("%d stripes handled\n", handled
);
5008 spin_unlock_irq(&conf
->device_lock
);
5009 blk_finish_plug(&plug
);
5011 pr_debug("--- raid5worker inactive\n");
5015 * This is our raid5 kernel thread.
5017 * We scan the hash table for stripes which can be handled now.
5018 * During the scan, completed stripes are saved for us by the interrupt
5019 * handler, so that they will not have to wait for our next wakeup.
5021 static void raid5d(struct md_thread
*thread
)
5023 struct mddev
*mddev
= thread
->mddev
;
5024 struct r5conf
*conf
= mddev
->private;
5026 struct blk_plug plug
;
5028 pr_debug("+++ raid5d active\n");
5030 md_check_recovery(mddev
);
5032 blk_start_plug(&plug
);
5034 spin_lock_irq(&conf
->device_lock
);
5037 int batch_size
, released
;
5039 released
= release_stripe_list(conf
);
5042 !list_empty(&conf
->bitmap_list
)) {
5043 /* Now is a good time to flush some bitmap updates */
5045 spin_unlock_irq(&conf
->device_lock
);
5046 bitmap_unplug(mddev
->bitmap
);
5047 spin_lock_irq(&conf
->device_lock
);
5048 conf
->seq_write
= conf
->seq_flush
;
5049 activate_bit_delay(conf
);
5051 raid5_activate_delayed(conf
);
5053 while ((bio
= remove_bio_from_retry(conf
))) {
5055 spin_unlock_irq(&conf
->device_lock
);
5056 ok
= retry_aligned_read(conf
, bio
);
5057 spin_lock_irq(&conf
->device_lock
);
5063 batch_size
= handle_active_stripes(conf
, ANY_GROUP
, NULL
);
5064 if (!batch_size
&& !released
)
5066 handled
+= batch_size
;
5068 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
)) {
5069 spin_unlock_irq(&conf
->device_lock
);
5070 md_check_recovery(mddev
);
5071 spin_lock_irq(&conf
->device_lock
);
5074 pr_debug("%d stripes handled\n", handled
);
5076 spin_unlock_irq(&conf
->device_lock
);
5078 async_tx_issue_pending_all();
5079 blk_finish_plug(&plug
);
5081 pr_debug("--- raid5d inactive\n");
5085 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
5087 struct r5conf
*conf
= mddev
->private;
5089 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
5095 raid5_set_cache_size(struct mddev
*mddev
, int size
)
5097 struct r5conf
*conf
= mddev
->private;
5100 if (size
<= 16 || size
> 32768)
5102 while (size
< conf
->max_nr_stripes
) {
5103 if (drop_one_stripe(conf
))
5104 conf
->max_nr_stripes
--;
5108 err
= md_allow_write(mddev
);
5111 while (size
> conf
->max_nr_stripes
) {
5112 if (grow_one_stripe(conf
))
5113 conf
->max_nr_stripes
++;
5118 EXPORT_SYMBOL(raid5_set_cache_size
);
5121 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
5123 struct r5conf
*conf
= mddev
->private;
5127 if (len
>= PAGE_SIZE
)
5132 if (kstrtoul(page
, 10, &new))
5134 err
= raid5_set_cache_size(mddev
, new);
5140 static struct md_sysfs_entry
5141 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
5142 raid5_show_stripe_cache_size
,
5143 raid5_store_stripe_cache_size
);
5146 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
5148 struct r5conf
*conf
= mddev
->private;
5150 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
5156 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
5158 struct r5conf
*conf
= mddev
->private;
5160 if (len
>= PAGE_SIZE
)
5165 if (kstrtoul(page
, 10, &new))
5167 if (new > conf
->max_nr_stripes
)
5169 conf
->bypass_threshold
= new;
5173 static struct md_sysfs_entry
5174 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
5176 raid5_show_preread_threshold
,
5177 raid5_store_preread_threshold
);
5180 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
5182 struct r5conf
*conf
= mddev
->private;
5184 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
5189 static struct md_sysfs_entry
5190 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
5193 raid5_show_group_thread_cnt(struct mddev
*mddev
, char *page
)
5195 struct r5conf
*conf
= mddev
->private;
5197 return sprintf(page
, "%d\n", conf
->worker_cnt_per_group
);
5202 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
);
5204 raid5_store_group_thread_cnt(struct mddev
*mddev
, const char *page
, size_t len
)
5206 struct r5conf
*conf
= mddev
->private;
5209 struct r5worker_group
*old_groups
;
5212 if (len
>= PAGE_SIZE
)
5217 if (kstrtoul(page
, 10, &new))
5220 if (new == conf
->worker_cnt_per_group
)
5223 mddev_suspend(mddev
);
5225 old_groups
= conf
->worker_groups
;
5226 old_group_cnt
= conf
->worker_cnt_per_group
;
5228 conf
->worker_groups
= NULL
;
5229 err
= alloc_thread_groups(conf
, new);
5231 conf
->worker_groups
= old_groups
;
5232 conf
->worker_cnt_per_group
= old_group_cnt
;
5235 kfree(old_groups
[0].workers
);
5239 mddev_resume(mddev
);
5246 static struct md_sysfs_entry
5247 raid5_group_thread_cnt
= __ATTR(group_thread_cnt
, S_IRUGO
| S_IWUSR
,
5248 raid5_show_group_thread_cnt
,
5249 raid5_store_group_thread_cnt
);
5251 static struct attribute
*raid5_attrs
[] = {
5252 &raid5_stripecache_size
.attr
,
5253 &raid5_stripecache_active
.attr
,
5254 &raid5_preread_bypass_threshold
.attr
,
5255 &raid5_group_thread_cnt
.attr
,
5258 static struct attribute_group raid5_attrs_group
= {
5260 .attrs
= raid5_attrs
,
5263 static int alloc_thread_groups(struct r5conf
*conf
, int cnt
)
5267 struct r5worker
*workers
;
5269 conf
->worker_cnt_per_group
= cnt
;
5271 conf
->worker_groups
= NULL
;
5274 conf
->group_cnt
= num_possible_nodes();
5275 size
= sizeof(struct r5worker
) * cnt
;
5276 workers
= kzalloc(size
* conf
->group_cnt
, GFP_NOIO
);
5277 conf
->worker_groups
= kzalloc(sizeof(struct r5worker_group
) *
5278 conf
->group_cnt
, GFP_NOIO
);
5279 if (!conf
->worker_groups
|| !workers
) {
5281 kfree(conf
->worker_groups
);
5282 conf
->worker_groups
= NULL
;
5286 for (i
= 0; i
< conf
->group_cnt
; i
++) {
5287 struct r5worker_group
*group
;
5289 group
= &conf
->worker_groups
[i
];
5290 INIT_LIST_HEAD(&group
->handle_list
);
5292 group
->workers
= workers
+ i
* cnt
;
5294 for (j
= 0; j
< cnt
; j
++) {
5295 group
->workers
[j
].group
= group
;
5296 INIT_WORK(&group
->workers
[j
].work
, raid5_do_work
);
5303 static void free_thread_groups(struct r5conf
*conf
)
5305 if (conf
->worker_groups
)
5306 kfree(conf
->worker_groups
[0].workers
);
5307 kfree(conf
->worker_groups
);
5308 conf
->worker_groups
= NULL
;
5312 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
5314 struct r5conf
*conf
= mddev
->private;
5317 sectors
= mddev
->dev_sectors
;
5319 /* size is defined by the smallest of previous and new size */
5320 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
5322 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5323 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
5324 return sectors
* (raid_disks
- conf
->max_degraded
);
5327 static void raid5_free_percpu(struct r5conf
*conf
)
5329 struct raid5_percpu
*percpu
;
5336 for_each_possible_cpu(cpu
) {
5337 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
5338 safe_put_page(percpu
->spare_page
);
5339 kfree(percpu
->scribble
);
5341 #ifdef CONFIG_HOTPLUG_CPU
5342 unregister_cpu_notifier(&conf
->cpu_notify
);
5346 free_percpu(conf
->percpu
);
5349 static void free_conf(struct r5conf
*conf
)
5351 free_thread_groups(conf
);
5352 shrink_stripes(conf
);
5353 raid5_free_percpu(conf
);
5355 kfree(conf
->stripe_hashtbl
);
5359 #ifdef CONFIG_HOTPLUG_CPU
5360 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
5363 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
5364 long cpu
= (long)hcpu
;
5365 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
5368 case CPU_UP_PREPARE
:
5369 case CPU_UP_PREPARE_FROZEN
:
5370 if (conf
->level
== 6 && !percpu
->spare_page
)
5371 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
5372 if (!percpu
->scribble
)
5373 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
5375 if (!percpu
->scribble
||
5376 (conf
->level
== 6 && !percpu
->spare_page
)) {
5377 safe_put_page(percpu
->spare_page
);
5378 kfree(percpu
->scribble
);
5379 pr_err("%s: failed memory allocation for cpu%ld\n",
5381 return notifier_from_errno(-ENOMEM
);
5385 case CPU_DEAD_FROZEN
:
5386 safe_put_page(percpu
->spare_page
);
5387 kfree(percpu
->scribble
);
5388 percpu
->spare_page
= NULL
;
5389 percpu
->scribble
= NULL
;
5398 static int raid5_alloc_percpu(struct r5conf
*conf
)
5401 struct page
*spare_page
;
5402 struct raid5_percpu __percpu
*allcpus
;
5406 allcpus
= alloc_percpu(struct raid5_percpu
);
5409 conf
->percpu
= allcpus
;
5413 for_each_present_cpu(cpu
) {
5414 if (conf
->level
== 6) {
5415 spare_page
= alloc_page(GFP_KERNEL
);
5420 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
5422 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
5427 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
5429 #ifdef CONFIG_HOTPLUG_CPU
5430 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
5431 conf
->cpu_notify
.priority
= 0;
5433 err
= register_cpu_notifier(&conf
->cpu_notify
);
5440 static struct r5conf
*setup_conf(struct mddev
*mddev
)
5442 struct r5conf
*conf
;
5443 int raid_disk
, memory
, max_disks
;
5444 struct md_rdev
*rdev
;
5445 struct disk_info
*disk
;
5448 if (mddev
->new_level
!= 5
5449 && mddev
->new_level
!= 4
5450 && mddev
->new_level
!= 6) {
5451 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5452 mdname(mddev
), mddev
->new_level
);
5453 return ERR_PTR(-EIO
);
5455 if ((mddev
->new_level
== 5
5456 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
5457 (mddev
->new_level
== 6
5458 && !algorithm_valid_raid6(mddev
->new_layout
))) {
5459 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
5460 mdname(mddev
), mddev
->new_layout
);
5461 return ERR_PTR(-EIO
);
5463 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
5464 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5465 mdname(mddev
), mddev
->raid_disks
);
5466 return ERR_PTR(-EINVAL
);
5469 if (!mddev
->new_chunk_sectors
||
5470 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
5471 !is_power_of_2(mddev
->new_chunk_sectors
)) {
5472 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
5473 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
5474 return ERR_PTR(-EINVAL
);
5477 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
5480 /* Don't enable multi-threading by default*/
5481 if (alloc_thread_groups(conf
, 0))
5483 spin_lock_init(&conf
->device_lock
);
5484 seqcount_init(&conf
->gen_lock
);
5485 init_waitqueue_head(&conf
->wait_for_stripe
);
5486 init_waitqueue_head(&conf
->wait_for_overlap
);
5487 INIT_LIST_HEAD(&conf
->handle_list
);
5488 INIT_LIST_HEAD(&conf
->hold_list
);
5489 INIT_LIST_HEAD(&conf
->delayed_list
);
5490 INIT_LIST_HEAD(&conf
->bitmap_list
);
5491 INIT_LIST_HEAD(&conf
->inactive_list
);
5492 init_llist_head(&conf
->released_stripes
);
5493 atomic_set(&conf
->active_stripes
, 0);
5494 atomic_set(&conf
->preread_active_stripes
, 0);
5495 atomic_set(&conf
->active_aligned_reads
, 0);
5496 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
5497 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
5499 conf
->raid_disks
= mddev
->raid_disks
;
5500 if (mddev
->reshape_position
== MaxSector
)
5501 conf
->previous_raid_disks
= mddev
->raid_disks
;
5503 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
5504 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
5505 conf
->scribble_len
= scribble_len(max_disks
);
5507 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
5512 conf
->mddev
= mddev
;
5514 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
5517 conf
->level
= mddev
->new_level
;
5518 if (raid5_alloc_percpu(conf
) != 0)
5521 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
5523 rdev_for_each(rdev
, mddev
) {
5524 raid_disk
= rdev
->raid_disk
;
5525 if (raid_disk
>= max_disks
5528 disk
= conf
->disks
+ raid_disk
;
5530 if (test_bit(Replacement
, &rdev
->flags
)) {
5531 if (disk
->replacement
)
5533 disk
->replacement
= rdev
;
5540 if (test_bit(In_sync
, &rdev
->flags
)) {
5541 char b
[BDEVNAME_SIZE
];
5542 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
5544 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
5545 } else if (rdev
->saved_raid_disk
!= raid_disk
)
5546 /* Cannot rely on bitmap to complete recovery */
5550 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5551 conf
->level
= mddev
->new_level
;
5552 if (conf
->level
== 6)
5553 conf
->max_degraded
= 2;
5555 conf
->max_degraded
= 1;
5556 conf
->algorithm
= mddev
->new_layout
;
5557 conf
->max_nr_stripes
= NR_STRIPES
;
5558 conf
->reshape_progress
= mddev
->reshape_position
;
5559 if (conf
->reshape_progress
!= MaxSector
) {
5560 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
5561 conf
->prev_algo
= mddev
->layout
;
5564 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
5565 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
5566 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
5568 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5569 mdname(mddev
), memory
);
5572 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
5573 mdname(mddev
), memory
);
5575 sprintf(pers_name
, "raid%d", mddev
->new_level
);
5576 conf
->thread
= md_register_thread(raid5d
, mddev
, pers_name
);
5577 if (!conf
->thread
) {
5579 "md/raid:%s: couldn't allocate thread.\n",
5589 return ERR_PTR(-EIO
);
5591 return ERR_PTR(-ENOMEM
);
5595 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
5598 case ALGORITHM_PARITY_0
:
5599 if (raid_disk
< max_degraded
)
5602 case ALGORITHM_PARITY_N
:
5603 if (raid_disk
>= raid_disks
- max_degraded
)
5606 case ALGORITHM_PARITY_0_6
:
5607 if (raid_disk
== 0 ||
5608 raid_disk
== raid_disks
- 1)
5611 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5612 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5613 case ALGORITHM_LEFT_SYMMETRIC_6
:
5614 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5615 if (raid_disk
== raid_disks
- 1)
5621 static int run(struct mddev
*mddev
)
5623 struct r5conf
*conf
;
5624 int working_disks
= 0;
5625 int dirty_parity_disks
= 0;
5626 struct md_rdev
*rdev
;
5627 sector_t reshape_offset
= 0;
5629 long long min_offset_diff
= 0;
5632 if (mddev
->recovery_cp
!= MaxSector
)
5633 printk(KERN_NOTICE
"md/raid:%s: not clean"
5634 " -- starting background reconstruction\n",
5637 rdev_for_each(rdev
, mddev
) {
5639 if (rdev
->raid_disk
< 0)
5641 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
5643 min_offset_diff
= diff
;
5645 } else if (mddev
->reshape_backwards
&&
5646 diff
< min_offset_diff
)
5647 min_offset_diff
= diff
;
5648 else if (!mddev
->reshape_backwards
&&
5649 diff
> min_offset_diff
)
5650 min_offset_diff
= diff
;
5653 if (mddev
->reshape_position
!= MaxSector
) {
5654 /* Check that we can continue the reshape.
5655 * Difficulties arise if the stripe we would write to
5656 * next is at or after the stripe we would read from next.
5657 * For a reshape that changes the number of devices, this
5658 * is only possible for a very short time, and mdadm makes
5659 * sure that time appears to have past before assembling
5660 * the array. So we fail if that time hasn't passed.
5661 * For a reshape that keeps the number of devices the same
5662 * mdadm must be monitoring the reshape can keeping the
5663 * critical areas read-only and backed up. It will start
5664 * the array in read-only mode, so we check for that.
5666 sector_t here_new
, here_old
;
5668 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
5670 if (mddev
->new_level
!= mddev
->level
) {
5671 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
5672 "required - aborting.\n",
5676 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
5677 /* reshape_position must be on a new-stripe boundary, and one
5678 * further up in new geometry must map after here in old
5681 here_new
= mddev
->reshape_position
;
5682 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
5683 (mddev
->raid_disks
- max_degraded
))) {
5684 printk(KERN_ERR
"md/raid:%s: reshape_position not "
5685 "on a stripe boundary\n", mdname(mddev
));
5688 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
5689 /* here_new is the stripe we will write to */
5690 here_old
= mddev
->reshape_position
;
5691 sector_div(here_old
, mddev
->chunk_sectors
*
5692 (old_disks
-max_degraded
));
5693 /* here_old is the first stripe that we might need to read
5695 if (mddev
->delta_disks
== 0) {
5696 if ((here_new
* mddev
->new_chunk_sectors
!=
5697 here_old
* mddev
->chunk_sectors
)) {
5698 printk(KERN_ERR
"md/raid:%s: reshape position is"
5699 " confused - aborting\n", mdname(mddev
));
5702 /* We cannot be sure it is safe to start an in-place
5703 * reshape. It is only safe if user-space is monitoring
5704 * and taking constant backups.
5705 * mdadm always starts a situation like this in
5706 * readonly mode so it can take control before
5707 * allowing any writes. So just check for that.
5709 if (abs(min_offset_diff
) >= mddev
->chunk_sectors
&&
5710 abs(min_offset_diff
) >= mddev
->new_chunk_sectors
)
5711 /* not really in-place - so OK */;
5712 else if (mddev
->ro
== 0) {
5713 printk(KERN_ERR
"md/raid:%s: in-place reshape "
5714 "must be started in read-only mode "
5719 } else if (mddev
->reshape_backwards
5720 ? (here_new
* mddev
->new_chunk_sectors
+ min_offset_diff
<=
5721 here_old
* mddev
->chunk_sectors
)
5722 : (here_new
* mddev
->new_chunk_sectors
>=
5723 here_old
* mddev
->chunk_sectors
+ (-min_offset_diff
))) {
5724 /* Reading from the same stripe as writing to - bad */
5725 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
5726 "auto-recovery - aborting.\n",
5730 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
5732 /* OK, we should be able to continue; */
5734 BUG_ON(mddev
->level
!= mddev
->new_level
);
5735 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
5736 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
5737 BUG_ON(mddev
->delta_disks
!= 0);
5740 if (mddev
->private == NULL
)
5741 conf
= setup_conf(mddev
);
5743 conf
= mddev
->private;
5746 return PTR_ERR(conf
);
5748 conf
->min_offset_diff
= min_offset_diff
;
5749 mddev
->thread
= conf
->thread
;
5750 conf
->thread
= NULL
;
5751 mddev
->private = conf
;
5753 for (i
= 0; i
< conf
->raid_disks
&& conf
->previous_raid_disks
;
5755 rdev
= conf
->disks
[i
].rdev
;
5756 if (!rdev
&& conf
->disks
[i
].replacement
) {
5757 /* The replacement is all we have yet */
5758 rdev
= conf
->disks
[i
].replacement
;
5759 conf
->disks
[i
].replacement
= NULL
;
5760 clear_bit(Replacement
, &rdev
->flags
);
5761 conf
->disks
[i
].rdev
= rdev
;
5765 if (conf
->disks
[i
].replacement
&&
5766 conf
->reshape_progress
!= MaxSector
) {
5767 /* replacements and reshape simply do not mix. */
5768 printk(KERN_ERR
"md: cannot handle concurrent "
5769 "replacement and reshape.\n");
5772 if (test_bit(In_sync
, &rdev
->flags
)) {
5776 /* This disc is not fully in-sync. However if it
5777 * just stored parity (beyond the recovery_offset),
5778 * when we don't need to be concerned about the
5779 * array being dirty.
5780 * When reshape goes 'backwards', we never have
5781 * partially completed devices, so we only need
5782 * to worry about reshape going forwards.
5784 /* Hack because v0.91 doesn't store recovery_offset properly. */
5785 if (mddev
->major_version
== 0 &&
5786 mddev
->minor_version
> 90)
5787 rdev
->recovery_offset
= reshape_offset
;
5789 if (rdev
->recovery_offset
< reshape_offset
) {
5790 /* We need to check old and new layout */
5791 if (!only_parity(rdev
->raid_disk
,
5794 conf
->max_degraded
))
5797 if (!only_parity(rdev
->raid_disk
,
5799 conf
->previous_raid_disks
,
5800 conf
->max_degraded
))
5802 dirty_parity_disks
++;
5806 * 0 for a fully functional array, 1 or 2 for a degraded array.
5808 mddev
->degraded
= calc_degraded(conf
);
5810 if (has_failed(conf
)) {
5811 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
5812 " (%d/%d failed)\n",
5813 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
5817 /* device size must be a multiple of chunk size */
5818 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
5819 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
5821 if (mddev
->degraded
> dirty_parity_disks
&&
5822 mddev
->recovery_cp
!= MaxSector
) {
5823 if (mddev
->ok_start_degraded
)
5825 "md/raid:%s: starting dirty degraded array"
5826 " - data corruption possible.\n",
5830 "md/raid:%s: cannot start dirty degraded array.\n",
5836 if (mddev
->degraded
== 0)
5837 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
5838 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
5839 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
5842 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
5843 " out of %d devices, algorithm %d\n",
5844 mdname(mddev
), conf
->level
,
5845 mddev
->raid_disks
- mddev
->degraded
,
5846 mddev
->raid_disks
, mddev
->new_layout
);
5848 print_raid5_conf(conf
);
5850 if (conf
->reshape_progress
!= MaxSector
) {
5851 conf
->reshape_safe
= conf
->reshape_progress
;
5852 atomic_set(&conf
->reshape_stripes
, 0);
5853 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5854 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5855 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5856 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5857 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5862 /* Ok, everything is just fine now */
5863 if (mddev
->to_remove
== &raid5_attrs_group
)
5864 mddev
->to_remove
= NULL
;
5865 else if (mddev
->kobj
.sd
&&
5866 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
5868 "raid5: failed to create sysfs attributes for %s\n",
5870 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5874 bool discard_supported
= true;
5875 /* read-ahead size must cover two whole stripes, which
5876 * is 2 * (datadisks) * chunksize where 'n' is the
5877 * number of raid devices
5879 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
5880 int stripe
= data_disks
*
5881 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
5882 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5883 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5885 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5887 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
5888 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
5890 chunk_size
= mddev
->chunk_sectors
<< 9;
5891 blk_queue_io_min(mddev
->queue
, chunk_size
);
5892 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5893 (conf
->raid_disks
- conf
->max_degraded
));
5895 * We can only discard a whole stripe. It doesn't make sense to
5896 * discard data disk but write parity disk
5898 stripe
= stripe
* PAGE_SIZE
;
5899 /* Round up to power of 2, as discard handling
5900 * currently assumes that */
5901 while ((stripe
-1) & stripe
)
5902 stripe
= (stripe
| (stripe
-1)) + 1;
5903 mddev
->queue
->limits
.discard_alignment
= stripe
;
5904 mddev
->queue
->limits
.discard_granularity
= stripe
;
5906 * unaligned part of discard request will be ignored, so can't
5907 * guarantee discard_zerors_data
5909 mddev
->queue
->limits
.discard_zeroes_data
= 0;
5911 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
5913 rdev_for_each(rdev
, mddev
) {
5914 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5915 rdev
->data_offset
<< 9);
5916 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5917 rdev
->new_data_offset
<< 9);
5919 * discard_zeroes_data is required, otherwise data
5920 * could be lost. Consider a scenario: discard a stripe
5921 * (the stripe could be inconsistent if
5922 * discard_zeroes_data is 0); write one disk of the
5923 * stripe (the stripe could be inconsistent again
5924 * depending on which disks are used to calculate
5925 * parity); the disk is broken; The stripe data of this
5928 if (!blk_queue_discard(bdev_get_queue(rdev
->bdev
)) ||
5929 !bdev_get_queue(rdev
->bdev
)->
5930 limits
.discard_zeroes_data
)
5931 discard_supported
= false;
5934 if (discard_supported
&&
5935 mddev
->queue
->limits
.max_discard_sectors
>= stripe
&&
5936 mddev
->queue
->limits
.discard_granularity
>= stripe
)
5937 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
5940 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
5946 md_unregister_thread(&mddev
->thread
);
5947 print_raid5_conf(conf
);
5949 mddev
->private = NULL
;
5950 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
5954 static int stop(struct mddev
*mddev
)
5956 struct r5conf
*conf
= mddev
->private;
5958 md_unregister_thread(&mddev
->thread
);
5960 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5962 mddev
->private = NULL
;
5963 mddev
->to_remove
= &raid5_attrs_group
;
5967 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
5969 struct r5conf
*conf
= mddev
->private;
5972 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5973 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5974 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5975 for (i
= 0; i
< conf
->raid_disks
; i
++)
5976 seq_printf (seq
, "%s",
5977 conf
->disks
[i
].rdev
&&
5978 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5979 seq_printf (seq
, "]");
5982 static void print_raid5_conf (struct r5conf
*conf
)
5985 struct disk_info
*tmp
;
5987 printk(KERN_DEBUG
"RAID conf printout:\n");
5989 printk("(conf==NULL)\n");
5992 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
5994 conf
->raid_disks
- conf
->mddev
->degraded
);
5996 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5997 char b
[BDEVNAME_SIZE
];
5998 tmp
= conf
->disks
+ i
;
6000 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
6001 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
6002 bdevname(tmp
->rdev
->bdev
, b
));
6006 static int raid5_spare_active(struct mddev
*mddev
)
6009 struct r5conf
*conf
= mddev
->private;
6010 struct disk_info
*tmp
;
6012 unsigned long flags
;
6014 for (i
= 0; i
< conf
->raid_disks
; i
++) {
6015 tmp
= conf
->disks
+ i
;
6016 if (tmp
->replacement
6017 && tmp
->replacement
->recovery_offset
== MaxSector
6018 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
6019 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
6020 /* Replacement has just become active. */
6022 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
6025 /* Replaced device not technically faulty,
6026 * but we need to be sure it gets removed
6027 * and never re-added.
6029 set_bit(Faulty
, &tmp
->rdev
->flags
);
6030 sysfs_notify_dirent_safe(
6031 tmp
->rdev
->sysfs_state
);
6033 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
6034 } else if (tmp
->rdev
6035 && tmp
->rdev
->recovery_offset
== MaxSector
6036 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
6037 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
6039 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
6042 spin_lock_irqsave(&conf
->device_lock
, flags
);
6043 mddev
->degraded
= calc_degraded(conf
);
6044 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
6045 print_raid5_conf(conf
);
6049 static int raid5_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
6051 struct r5conf
*conf
= mddev
->private;
6053 int number
= rdev
->raid_disk
;
6054 struct md_rdev
**rdevp
;
6055 struct disk_info
*p
= conf
->disks
+ number
;
6057 print_raid5_conf(conf
);
6058 if (rdev
== p
->rdev
)
6060 else if (rdev
== p
->replacement
)
6061 rdevp
= &p
->replacement
;
6065 if (number
>= conf
->raid_disks
&&
6066 conf
->reshape_progress
== MaxSector
)
6067 clear_bit(In_sync
, &rdev
->flags
);
6069 if (test_bit(In_sync
, &rdev
->flags
) ||
6070 atomic_read(&rdev
->nr_pending
)) {
6074 /* Only remove non-faulty devices if recovery
6077 if (!test_bit(Faulty
, &rdev
->flags
) &&
6078 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
6079 !has_failed(conf
) &&
6080 (!p
->replacement
|| p
->replacement
== rdev
) &&
6081 number
< conf
->raid_disks
) {
6087 if (atomic_read(&rdev
->nr_pending
)) {
6088 /* lost the race, try later */
6091 } else if (p
->replacement
) {
6092 /* We must have just cleared 'rdev' */
6093 p
->rdev
= p
->replacement
;
6094 clear_bit(Replacement
, &p
->replacement
->flags
);
6095 smp_mb(); /* Make sure other CPUs may see both as identical
6096 * but will never see neither - if they are careful
6098 p
->replacement
= NULL
;
6099 clear_bit(WantReplacement
, &rdev
->flags
);
6101 /* We might have just removed the Replacement as faulty-
6102 * clear the bit just in case
6104 clear_bit(WantReplacement
, &rdev
->flags
);
6107 print_raid5_conf(conf
);
6111 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
6113 struct r5conf
*conf
= mddev
->private;
6116 struct disk_info
*p
;
6118 int last
= conf
->raid_disks
- 1;
6120 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
6123 if (rdev
->saved_raid_disk
< 0 && has_failed(conf
))
6124 /* no point adding a device */
6127 if (rdev
->raid_disk
>= 0)
6128 first
= last
= rdev
->raid_disk
;
6131 * find the disk ... but prefer rdev->saved_raid_disk
6134 if (rdev
->saved_raid_disk
>= 0 &&
6135 rdev
->saved_raid_disk
>= first
&&
6136 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
6137 first
= rdev
->saved_raid_disk
;
6139 for (disk
= first
; disk
<= last
; disk
++) {
6140 p
= conf
->disks
+ disk
;
6141 if (p
->rdev
== NULL
) {
6142 clear_bit(In_sync
, &rdev
->flags
);
6143 rdev
->raid_disk
= disk
;
6145 if (rdev
->saved_raid_disk
!= disk
)
6147 rcu_assign_pointer(p
->rdev
, rdev
);
6151 for (disk
= first
; disk
<= last
; disk
++) {
6152 p
= conf
->disks
+ disk
;
6153 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
6154 p
->replacement
== NULL
) {
6155 clear_bit(In_sync
, &rdev
->flags
);
6156 set_bit(Replacement
, &rdev
->flags
);
6157 rdev
->raid_disk
= disk
;
6160 rcu_assign_pointer(p
->replacement
, rdev
);
6165 print_raid5_conf(conf
);
6169 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
6171 /* no resync is happening, and there is enough space
6172 * on all devices, so we can resize.
6173 * We need to make sure resync covers any new space.
6174 * If the array is shrinking we should possibly wait until
6175 * any io in the removed space completes, but it hardly seems
6179 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
6180 newsize
= raid5_size(mddev
, sectors
, mddev
->raid_disks
);
6181 if (mddev
->external_size
&&
6182 mddev
->array_sectors
> newsize
)
6184 if (mddev
->bitmap
) {
6185 int ret
= bitmap_resize(mddev
->bitmap
, sectors
, 0, 0);
6189 md_set_array_sectors(mddev
, newsize
);
6190 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
6191 revalidate_disk(mddev
->gendisk
);
6192 if (sectors
> mddev
->dev_sectors
&&
6193 mddev
->recovery_cp
> mddev
->dev_sectors
) {
6194 mddev
->recovery_cp
= mddev
->dev_sectors
;
6195 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
6197 mddev
->dev_sectors
= sectors
;
6198 mddev
->resync_max_sectors
= sectors
;
6202 static int check_stripe_cache(struct mddev
*mddev
)
6204 /* Can only proceed if there are plenty of stripe_heads.
6205 * We need a minimum of one full stripe,, and for sensible progress
6206 * it is best to have about 4 times that.
6207 * If we require 4 times, then the default 256 4K stripe_heads will
6208 * allow for chunk sizes up to 256K, which is probably OK.
6209 * If the chunk size is greater, user-space should request more
6210 * stripe_heads first.
6212 struct r5conf
*conf
= mddev
->private;
6213 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
6214 > conf
->max_nr_stripes
||
6215 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
6216 > conf
->max_nr_stripes
) {
6217 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6219 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
6226 static int check_reshape(struct mddev
*mddev
)
6228 struct r5conf
*conf
= mddev
->private;
6230 if (mddev
->delta_disks
== 0 &&
6231 mddev
->new_layout
== mddev
->layout
&&
6232 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
6233 return 0; /* nothing to do */
6234 if (has_failed(conf
))
6236 if (mddev
->delta_disks
< 0 && mddev
->reshape_position
== MaxSector
) {
6237 /* We might be able to shrink, but the devices must
6238 * be made bigger first.
6239 * For raid6, 4 is the minimum size.
6240 * Otherwise 2 is the minimum
6243 if (mddev
->level
== 6)
6245 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
6249 if (!check_stripe_cache(mddev
))
6252 return resize_stripes(conf
, (conf
->previous_raid_disks
6253 + mddev
->delta_disks
));
6256 static int raid5_start_reshape(struct mddev
*mddev
)
6258 struct r5conf
*conf
= mddev
->private;
6259 struct md_rdev
*rdev
;
6261 unsigned long flags
;
6263 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
6266 if (!check_stripe_cache(mddev
))
6269 if (has_failed(conf
))
6272 rdev_for_each(rdev
, mddev
) {
6273 if (!test_bit(In_sync
, &rdev
->flags
)
6274 && !test_bit(Faulty
, &rdev
->flags
))
6278 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
6279 /* Not enough devices even to make a degraded array
6284 /* Refuse to reduce size of the array. Any reductions in
6285 * array size must be through explicit setting of array_size
6288 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
6289 < mddev
->array_sectors
) {
6290 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
6291 "before number of disks\n", mdname(mddev
));
6295 atomic_set(&conf
->reshape_stripes
, 0);
6296 spin_lock_irq(&conf
->device_lock
);
6297 write_seqcount_begin(&conf
->gen_lock
);
6298 conf
->previous_raid_disks
= conf
->raid_disks
;
6299 conf
->raid_disks
+= mddev
->delta_disks
;
6300 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
6301 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
6302 conf
->prev_algo
= conf
->algorithm
;
6303 conf
->algorithm
= mddev
->new_layout
;
6305 /* Code that selects data_offset needs to see the generation update
6306 * if reshape_progress has been set - so a memory barrier needed.
6309 if (mddev
->reshape_backwards
)
6310 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
6312 conf
->reshape_progress
= 0;
6313 conf
->reshape_safe
= conf
->reshape_progress
;
6314 write_seqcount_end(&conf
->gen_lock
);
6315 spin_unlock_irq(&conf
->device_lock
);
6317 /* Now make sure any requests that proceeded on the assumption
6318 * the reshape wasn't running - like Discard or Read - have
6321 mddev_suspend(mddev
);
6322 mddev_resume(mddev
);
6324 /* Add some new drives, as many as will fit.
6325 * We know there are enough to make the newly sized array work.
6326 * Don't add devices if we are reducing the number of
6327 * devices in the array. This is because it is not possible
6328 * to correctly record the "partially reconstructed" state of
6329 * such devices during the reshape and confusion could result.
6331 if (mddev
->delta_disks
>= 0) {
6332 rdev_for_each(rdev
, mddev
)
6333 if (rdev
->raid_disk
< 0 &&
6334 !test_bit(Faulty
, &rdev
->flags
)) {
6335 if (raid5_add_disk(mddev
, rdev
) == 0) {
6337 >= conf
->previous_raid_disks
)
6338 set_bit(In_sync
, &rdev
->flags
);
6340 rdev
->recovery_offset
= 0;
6342 if (sysfs_link_rdev(mddev
, rdev
))
6343 /* Failure here is OK */;
6345 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
6346 && !test_bit(Faulty
, &rdev
->flags
)) {
6347 /* This is a spare that was manually added */
6348 set_bit(In_sync
, &rdev
->flags
);
6351 /* When a reshape changes the number of devices,
6352 * ->degraded is measured against the larger of the
6353 * pre and post number of devices.
6355 spin_lock_irqsave(&conf
->device_lock
, flags
);
6356 mddev
->degraded
= calc_degraded(conf
);
6357 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
6359 mddev
->raid_disks
= conf
->raid_disks
;
6360 mddev
->reshape_position
= conf
->reshape_progress
;
6361 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
6363 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
6364 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
6365 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
6366 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
6367 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
6369 if (!mddev
->sync_thread
) {
6370 mddev
->recovery
= 0;
6371 spin_lock_irq(&conf
->device_lock
);
6372 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
6373 rdev_for_each(rdev
, mddev
)
6374 rdev
->new_data_offset
= rdev
->data_offset
;
6376 conf
->reshape_progress
= MaxSector
;
6377 mddev
->reshape_position
= MaxSector
;
6378 spin_unlock_irq(&conf
->device_lock
);
6381 conf
->reshape_checkpoint
= jiffies
;
6382 md_wakeup_thread(mddev
->sync_thread
);
6383 md_new_event(mddev
);
6387 /* This is called from the reshape thread and should make any
6388 * changes needed in 'conf'
6390 static void end_reshape(struct r5conf
*conf
)
6393 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
6394 struct md_rdev
*rdev
;
6396 spin_lock_irq(&conf
->device_lock
);
6397 conf
->previous_raid_disks
= conf
->raid_disks
;
6398 rdev_for_each(rdev
, conf
->mddev
)
6399 rdev
->data_offset
= rdev
->new_data_offset
;
6401 conf
->reshape_progress
= MaxSector
;
6402 spin_unlock_irq(&conf
->device_lock
);
6403 wake_up(&conf
->wait_for_overlap
);
6405 /* read-ahead size must cover two whole stripes, which is
6406 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6408 if (conf
->mddev
->queue
) {
6409 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
6410 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
6412 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
6413 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
6418 /* This is called from the raid5d thread with mddev_lock held.
6419 * It makes config changes to the device.
6421 static void raid5_finish_reshape(struct mddev
*mddev
)
6423 struct r5conf
*conf
= mddev
->private;
6425 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
6427 if (mddev
->delta_disks
> 0) {
6428 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
6429 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
6430 revalidate_disk(mddev
->gendisk
);
6433 spin_lock_irq(&conf
->device_lock
);
6434 mddev
->degraded
= calc_degraded(conf
);
6435 spin_unlock_irq(&conf
->device_lock
);
6436 for (d
= conf
->raid_disks
;
6437 d
< conf
->raid_disks
- mddev
->delta_disks
;
6439 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
6441 clear_bit(In_sync
, &rdev
->flags
);
6442 rdev
= conf
->disks
[d
].replacement
;
6444 clear_bit(In_sync
, &rdev
->flags
);
6447 mddev
->layout
= conf
->algorithm
;
6448 mddev
->chunk_sectors
= conf
->chunk_sectors
;
6449 mddev
->reshape_position
= MaxSector
;
6450 mddev
->delta_disks
= 0;
6451 mddev
->reshape_backwards
= 0;
6455 static void raid5_quiesce(struct mddev
*mddev
, int state
)
6457 struct r5conf
*conf
= mddev
->private;
6460 case 2: /* resume for a suspend */
6461 wake_up(&conf
->wait_for_overlap
);
6464 case 1: /* stop all writes */
6465 spin_lock_irq(&conf
->device_lock
);
6466 /* '2' tells resync/reshape to pause so that all
6467 * active stripes can drain
6470 wait_event_lock_irq(conf
->wait_for_stripe
,
6471 atomic_read(&conf
->active_stripes
) == 0 &&
6472 atomic_read(&conf
->active_aligned_reads
) == 0,
6475 spin_unlock_irq(&conf
->device_lock
);
6476 /* allow reshape to continue */
6477 wake_up(&conf
->wait_for_overlap
);
6480 case 0: /* re-enable writes */
6481 spin_lock_irq(&conf
->device_lock
);
6483 wake_up(&conf
->wait_for_stripe
);
6484 wake_up(&conf
->wait_for_overlap
);
6485 spin_unlock_irq(&conf
->device_lock
);
6491 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
6493 struct r0conf
*raid0_conf
= mddev
->private;
6496 /* for raid0 takeover only one zone is supported */
6497 if (raid0_conf
->nr_strip_zones
> 1) {
6498 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6500 return ERR_PTR(-EINVAL
);
6503 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
6504 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
6505 mddev
->dev_sectors
= sectors
;
6506 mddev
->new_level
= level
;
6507 mddev
->new_layout
= ALGORITHM_PARITY_N
;
6508 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
6509 mddev
->raid_disks
+= 1;
6510 mddev
->delta_disks
= 1;
6511 /* make sure it will be not marked as dirty */
6512 mddev
->recovery_cp
= MaxSector
;
6514 return setup_conf(mddev
);
6518 static void *raid5_takeover_raid1(struct mddev
*mddev
)
6522 if (mddev
->raid_disks
!= 2 ||
6523 mddev
->degraded
> 1)
6524 return ERR_PTR(-EINVAL
);
6526 /* Should check if there are write-behind devices? */
6528 chunksect
= 64*2; /* 64K by default */
6530 /* The array must be an exact multiple of chunksize */
6531 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
6534 if ((chunksect
<<9) < STRIPE_SIZE
)
6535 /* array size does not allow a suitable chunk size */
6536 return ERR_PTR(-EINVAL
);
6538 mddev
->new_level
= 5;
6539 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
6540 mddev
->new_chunk_sectors
= chunksect
;
6542 return setup_conf(mddev
);
6545 static void *raid5_takeover_raid6(struct mddev
*mddev
)
6549 switch (mddev
->layout
) {
6550 case ALGORITHM_LEFT_ASYMMETRIC_6
:
6551 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
6553 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
6554 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
6556 case ALGORITHM_LEFT_SYMMETRIC_6
:
6557 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
6559 case ALGORITHM_RIGHT_SYMMETRIC_6
:
6560 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
6562 case ALGORITHM_PARITY_0_6
:
6563 new_layout
= ALGORITHM_PARITY_0
;
6565 case ALGORITHM_PARITY_N
:
6566 new_layout
= ALGORITHM_PARITY_N
;
6569 return ERR_PTR(-EINVAL
);
6571 mddev
->new_level
= 5;
6572 mddev
->new_layout
= new_layout
;
6573 mddev
->delta_disks
= -1;
6574 mddev
->raid_disks
-= 1;
6575 return setup_conf(mddev
);
6579 static int raid5_check_reshape(struct mddev
*mddev
)
6581 /* For a 2-drive array, the layout and chunk size can be changed
6582 * immediately as not restriping is needed.
6583 * For larger arrays we record the new value - after validation
6584 * to be used by a reshape pass.
6586 struct r5conf
*conf
= mddev
->private;
6587 int new_chunk
= mddev
->new_chunk_sectors
;
6589 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
6591 if (new_chunk
> 0) {
6592 if (!is_power_of_2(new_chunk
))
6594 if (new_chunk
< (PAGE_SIZE
>>9))
6596 if (mddev
->array_sectors
& (new_chunk
-1))
6597 /* not factor of array size */
6601 /* They look valid */
6603 if (mddev
->raid_disks
== 2) {
6604 /* can make the change immediately */
6605 if (mddev
->new_layout
>= 0) {
6606 conf
->algorithm
= mddev
->new_layout
;
6607 mddev
->layout
= mddev
->new_layout
;
6609 if (new_chunk
> 0) {
6610 conf
->chunk_sectors
= new_chunk
;
6611 mddev
->chunk_sectors
= new_chunk
;
6613 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
6614 md_wakeup_thread(mddev
->thread
);
6616 return check_reshape(mddev
);
6619 static int raid6_check_reshape(struct mddev
*mddev
)
6621 int new_chunk
= mddev
->new_chunk_sectors
;
6623 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
6625 if (new_chunk
> 0) {
6626 if (!is_power_of_2(new_chunk
))
6628 if (new_chunk
< (PAGE_SIZE
>> 9))
6630 if (mddev
->array_sectors
& (new_chunk
-1))
6631 /* not factor of array size */
6635 /* They look valid */
6636 return check_reshape(mddev
);
6639 static void *raid5_takeover(struct mddev
*mddev
)
6641 /* raid5 can take over:
6642 * raid0 - if there is only one strip zone - make it a raid4 layout
6643 * raid1 - if there are two drives. We need to know the chunk size
6644 * raid4 - trivial - just use a raid4 layout.
6645 * raid6 - Providing it is a *_6 layout
6647 if (mddev
->level
== 0)
6648 return raid45_takeover_raid0(mddev
, 5);
6649 if (mddev
->level
== 1)
6650 return raid5_takeover_raid1(mddev
);
6651 if (mddev
->level
== 4) {
6652 mddev
->new_layout
= ALGORITHM_PARITY_N
;
6653 mddev
->new_level
= 5;
6654 return setup_conf(mddev
);
6656 if (mddev
->level
== 6)
6657 return raid5_takeover_raid6(mddev
);
6659 return ERR_PTR(-EINVAL
);
6662 static void *raid4_takeover(struct mddev
*mddev
)
6664 /* raid4 can take over:
6665 * raid0 - if there is only one strip zone
6666 * raid5 - if layout is right
6668 if (mddev
->level
== 0)
6669 return raid45_takeover_raid0(mddev
, 4);
6670 if (mddev
->level
== 5 &&
6671 mddev
->layout
== ALGORITHM_PARITY_N
) {
6672 mddev
->new_layout
= 0;
6673 mddev
->new_level
= 4;
6674 return setup_conf(mddev
);
6676 return ERR_PTR(-EINVAL
);
6679 static struct md_personality raid5_personality
;
6681 static void *raid6_takeover(struct mddev
*mddev
)
6683 /* Currently can only take over a raid5. We map the
6684 * personality to an equivalent raid6 personality
6685 * with the Q block at the end.
6689 if (mddev
->pers
!= &raid5_personality
)
6690 return ERR_PTR(-EINVAL
);
6691 if (mddev
->degraded
> 1)
6692 return ERR_PTR(-EINVAL
);
6693 if (mddev
->raid_disks
> 253)
6694 return ERR_PTR(-EINVAL
);
6695 if (mddev
->raid_disks
< 3)
6696 return ERR_PTR(-EINVAL
);
6698 switch (mddev
->layout
) {
6699 case ALGORITHM_LEFT_ASYMMETRIC
:
6700 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
6702 case ALGORITHM_RIGHT_ASYMMETRIC
:
6703 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
6705 case ALGORITHM_LEFT_SYMMETRIC
:
6706 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
6708 case ALGORITHM_RIGHT_SYMMETRIC
:
6709 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
6711 case ALGORITHM_PARITY_0
:
6712 new_layout
= ALGORITHM_PARITY_0_6
;
6714 case ALGORITHM_PARITY_N
:
6715 new_layout
= ALGORITHM_PARITY_N
;
6718 return ERR_PTR(-EINVAL
);
6720 mddev
->new_level
= 6;
6721 mddev
->new_layout
= new_layout
;
6722 mddev
->delta_disks
= 1;
6723 mddev
->raid_disks
+= 1;
6724 return setup_conf(mddev
);
6728 static struct md_personality raid6_personality
=
6732 .owner
= THIS_MODULE
,
6733 .make_request
= make_request
,
6737 .error_handler
= error
,
6738 .hot_add_disk
= raid5_add_disk
,
6739 .hot_remove_disk
= raid5_remove_disk
,
6740 .spare_active
= raid5_spare_active
,
6741 .sync_request
= sync_request
,
6742 .resize
= raid5_resize
,
6744 .check_reshape
= raid6_check_reshape
,
6745 .start_reshape
= raid5_start_reshape
,
6746 .finish_reshape
= raid5_finish_reshape
,
6747 .quiesce
= raid5_quiesce
,
6748 .takeover
= raid6_takeover
,
6750 static struct md_personality raid5_personality
=
6754 .owner
= THIS_MODULE
,
6755 .make_request
= make_request
,
6759 .error_handler
= error
,
6760 .hot_add_disk
= raid5_add_disk
,
6761 .hot_remove_disk
= raid5_remove_disk
,
6762 .spare_active
= raid5_spare_active
,
6763 .sync_request
= sync_request
,
6764 .resize
= raid5_resize
,
6766 .check_reshape
= raid5_check_reshape
,
6767 .start_reshape
= raid5_start_reshape
,
6768 .finish_reshape
= raid5_finish_reshape
,
6769 .quiesce
= raid5_quiesce
,
6770 .takeover
= raid5_takeover
,
6773 static struct md_personality raid4_personality
=
6777 .owner
= THIS_MODULE
,
6778 .make_request
= make_request
,
6782 .error_handler
= error
,
6783 .hot_add_disk
= raid5_add_disk
,
6784 .hot_remove_disk
= raid5_remove_disk
,
6785 .spare_active
= raid5_spare_active
,
6786 .sync_request
= sync_request
,
6787 .resize
= raid5_resize
,
6789 .check_reshape
= raid5_check_reshape
,
6790 .start_reshape
= raid5_start_reshape
,
6791 .finish_reshape
= raid5_finish_reshape
,
6792 .quiesce
= raid5_quiesce
,
6793 .takeover
= raid4_takeover
,
6796 static int __init
raid5_init(void)
6798 raid5_wq
= alloc_workqueue("raid5wq",
6799 WQ_UNBOUND
|WQ_MEM_RECLAIM
|WQ_CPU_INTENSIVE
|WQ_SYSFS
, 0);
6802 register_md_personality(&raid6_personality
);
6803 register_md_personality(&raid5_personality
);
6804 register_md_personality(&raid4_personality
);
6808 static void raid5_exit(void)
6810 unregister_md_personality(&raid6_personality
);
6811 unregister_md_personality(&raid5_personality
);
6812 unregister_md_personality(&raid4_personality
);
6813 destroy_workqueue(raid5_wq
);
6816 module_init(raid5_init
);
6817 module_exit(raid5_exit
);
6818 MODULE_LICENSE("GPL");
6819 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6820 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6821 MODULE_ALIAS("md-raid5");
6822 MODULE_ALIAS("md-raid4");
6823 MODULE_ALIAS("md-level-5");
6824 MODULE_ALIAS("md-level-4");
6825 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6826 MODULE_ALIAS("md-raid6");
6827 MODULE_ALIAS("md-level-6");
6829 /* This used to be two separate modules, they were: */
6830 MODULE_ALIAS("raid5");
6831 MODULE_ALIAS("raid6");