1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/target.h>
58 static struct workqueue_struct
*target_completion_wq
;
59 static struct kmem_cache
*se_sess_cache
;
60 struct kmem_cache
*se_ua_cache
;
61 struct kmem_cache
*t10_pr_reg_cache
;
62 struct kmem_cache
*t10_alua_lu_gp_cache
;
63 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
64 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
65 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
67 static void transport_complete_task_attr(struct se_cmd
*cmd
);
68 static void transport_handle_queue_full(struct se_cmd
*cmd
,
69 struct se_device
*dev
);
70 static int transport_put_cmd(struct se_cmd
*cmd
);
71 static void target_complete_ok_work(struct work_struct
*work
);
73 int init_se_kmem_caches(void)
75 se_sess_cache
= kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session
), __alignof__(struct se_session
),
79 pr_err("kmem_cache_create() for struct se_session"
83 se_ua_cache
= kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua
), __alignof__(struct se_ua
),
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache
;
90 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration
),
92 __alignof__(struct t10_pr_registration
), 0, NULL
);
93 if (!t10_pr_reg_cache
) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 goto out_free_ua_cache
;
98 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
101 if (!t10_alua_lu_gp_cache
) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 goto out_free_pr_reg_cache
;
106 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member
),
108 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
109 if (!t10_alua_lu_gp_mem_cache
) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 goto out_free_lu_gp_cache
;
114 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp
),
116 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
117 if (!t10_alua_tg_pt_gp_cache
) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 goto out_free_lu_gp_mem_cache
;
122 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
123 "t10_alua_tg_pt_gp_mem_cache",
124 sizeof(struct t10_alua_tg_pt_gp_member
),
125 __alignof__(struct t10_alua_tg_pt_gp_member
),
127 if (!t10_alua_tg_pt_gp_mem_cache
) {
128 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 goto out_free_tg_pt_gp_cache
;
133 target_completion_wq
= alloc_workqueue("target_completion",
135 if (!target_completion_wq
)
136 goto out_free_tg_pt_gp_mem_cache
;
140 out_free_tg_pt_gp_mem_cache
:
141 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
142 out_free_tg_pt_gp_cache
:
143 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
144 out_free_lu_gp_mem_cache
:
145 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
146 out_free_lu_gp_cache
:
147 kmem_cache_destroy(t10_alua_lu_gp_cache
);
148 out_free_pr_reg_cache
:
149 kmem_cache_destroy(t10_pr_reg_cache
);
151 kmem_cache_destroy(se_ua_cache
);
153 kmem_cache_destroy(se_sess_cache
);
158 void release_se_kmem_caches(void)
160 destroy_workqueue(target_completion_wq
);
161 kmem_cache_destroy(se_sess_cache
);
162 kmem_cache_destroy(se_ua_cache
);
163 kmem_cache_destroy(t10_pr_reg_cache
);
164 kmem_cache_destroy(t10_alua_lu_gp_cache
);
165 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
167 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
170 /* This code ensures unique mib indexes are handed out. */
171 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
172 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
175 * Allocate a new row index for the entry type specified
177 u32
scsi_get_new_index(scsi_index_t type
)
181 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
183 spin_lock(&scsi_mib_index_lock
);
184 new_index
= ++scsi_mib_index
[type
];
185 spin_unlock(&scsi_mib_index_lock
);
190 void transport_subsystem_check_init(void)
193 static int sub_api_initialized
;
195 if (sub_api_initialized
)
198 ret
= request_module("target_core_iblock");
200 pr_err("Unable to load target_core_iblock\n");
202 ret
= request_module("target_core_file");
204 pr_err("Unable to load target_core_file\n");
206 ret
= request_module("target_core_pscsi");
208 pr_err("Unable to load target_core_pscsi\n");
210 sub_api_initialized
= 1;
213 struct se_session
*transport_init_session(void)
215 struct se_session
*se_sess
;
217 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
219 pr_err("Unable to allocate struct se_session from"
221 return ERR_PTR(-ENOMEM
);
223 INIT_LIST_HEAD(&se_sess
->sess_list
);
224 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
225 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
226 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
227 spin_lock_init(&se_sess
->sess_cmd_lock
);
228 kref_init(&se_sess
->sess_kref
);
232 EXPORT_SYMBOL(transport_init_session
);
234 int transport_alloc_session_tags(struct se_session
*se_sess
,
235 unsigned int tag_num
, unsigned int tag_size
)
239 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
240 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
241 if (!se_sess
->sess_cmd_map
) {
242 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
243 if (!se_sess
->sess_cmd_map
) {
244 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
249 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
251 pr_err("Unable to init se_sess->sess_tag_pool,"
252 " tag_num: %u\n", tag_num
);
253 if (is_vmalloc_addr(se_sess
->sess_cmd_map
))
254 vfree(se_sess
->sess_cmd_map
);
256 kfree(se_sess
->sess_cmd_map
);
257 se_sess
->sess_cmd_map
= NULL
;
263 EXPORT_SYMBOL(transport_alloc_session_tags
);
265 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
266 unsigned int tag_size
)
268 struct se_session
*se_sess
;
271 se_sess
= transport_init_session();
275 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
277 transport_free_session(se_sess
);
278 return ERR_PTR(-ENOMEM
);
283 EXPORT_SYMBOL(transport_init_session_tags
);
286 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
288 void __transport_register_session(
289 struct se_portal_group
*se_tpg
,
290 struct se_node_acl
*se_nacl
,
291 struct se_session
*se_sess
,
292 void *fabric_sess_ptr
)
294 unsigned char buf
[PR_REG_ISID_LEN
];
296 se_sess
->se_tpg
= se_tpg
;
297 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
299 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
301 * Only set for struct se_session's that will actually be moving I/O.
302 * eg: *NOT* discovery sessions.
306 * If the fabric module supports an ISID based TransportID,
307 * save this value in binary from the fabric I_T Nexus now.
309 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
310 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
311 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
312 &buf
[0], PR_REG_ISID_LEN
);
313 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
315 kref_get(&se_nacl
->acl_kref
);
317 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
319 * The se_nacl->nacl_sess pointer will be set to the
320 * last active I_T Nexus for each struct se_node_acl.
322 se_nacl
->nacl_sess
= se_sess
;
324 list_add_tail(&se_sess
->sess_acl_list
,
325 &se_nacl
->acl_sess_list
);
326 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
328 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
330 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
331 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
333 EXPORT_SYMBOL(__transport_register_session
);
335 void transport_register_session(
336 struct se_portal_group
*se_tpg
,
337 struct se_node_acl
*se_nacl
,
338 struct se_session
*se_sess
,
339 void *fabric_sess_ptr
)
343 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
344 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
345 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
347 EXPORT_SYMBOL(transport_register_session
);
349 static void target_release_session(struct kref
*kref
)
351 struct se_session
*se_sess
= container_of(kref
,
352 struct se_session
, sess_kref
);
353 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
355 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
358 void target_get_session(struct se_session
*se_sess
)
360 kref_get(&se_sess
->sess_kref
);
362 EXPORT_SYMBOL(target_get_session
);
364 void target_put_session(struct se_session
*se_sess
)
366 struct se_portal_group
*tpg
= se_sess
->se_tpg
;
368 if (tpg
->se_tpg_tfo
->put_session
!= NULL
) {
369 tpg
->se_tpg_tfo
->put_session(se_sess
);
372 kref_put(&se_sess
->sess_kref
, target_release_session
);
374 EXPORT_SYMBOL(target_put_session
);
376 static void target_complete_nacl(struct kref
*kref
)
378 struct se_node_acl
*nacl
= container_of(kref
,
379 struct se_node_acl
, acl_kref
);
381 complete(&nacl
->acl_free_comp
);
384 void target_put_nacl(struct se_node_acl
*nacl
)
386 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
389 void transport_deregister_session_configfs(struct se_session
*se_sess
)
391 struct se_node_acl
*se_nacl
;
394 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
396 se_nacl
= se_sess
->se_node_acl
;
398 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
399 if (se_nacl
->acl_stop
== 0)
400 list_del(&se_sess
->sess_acl_list
);
402 * If the session list is empty, then clear the pointer.
403 * Otherwise, set the struct se_session pointer from the tail
404 * element of the per struct se_node_acl active session list.
406 if (list_empty(&se_nacl
->acl_sess_list
))
407 se_nacl
->nacl_sess
= NULL
;
409 se_nacl
->nacl_sess
= container_of(
410 se_nacl
->acl_sess_list
.prev
,
411 struct se_session
, sess_acl_list
);
413 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
416 EXPORT_SYMBOL(transport_deregister_session_configfs
);
418 void transport_free_session(struct se_session
*se_sess
)
420 if (se_sess
->sess_cmd_map
) {
421 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
422 if (is_vmalloc_addr(se_sess
->sess_cmd_map
))
423 vfree(se_sess
->sess_cmd_map
);
425 kfree(se_sess
->sess_cmd_map
);
427 kmem_cache_free(se_sess_cache
, se_sess
);
429 EXPORT_SYMBOL(transport_free_session
);
431 void transport_deregister_session(struct se_session
*se_sess
)
433 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
434 struct target_core_fabric_ops
*se_tfo
;
435 struct se_node_acl
*se_nacl
;
437 bool comp_nacl
= true;
440 transport_free_session(se_sess
);
443 se_tfo
= se_tpg
->se_tpg_tfo
;
445 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
446 list_del(&se_sess
->sess_list
);
447 se_sess
->se_tpg
= NULL
;
448 se_sess
->fabric_sess_ptr
= NULL
;
449 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
452 * Determine if we need to do extra work for this initiator node's
453 * struct se_node_acl if it had been previously dynamically generated.
455 se_nacl
= se_sess
->se_node_acl
;
457 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
458 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
459 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
460 list_del(&se_nacl
->acl_list
);
461 se_tpg
->num_node_acls
--;
462 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
463 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
464 core_free_device_list_for_node(se_nacl
, se_tpg
);
465 se_tfo
->tpg_release_fabric_acl(se_tpg
, se_nacl
);
468 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
471 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
473 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
474 se_tpg
->se_tpg_tfo
->get_fabric_name());
476 * If last kref is dropping now for an explict NodeACL, awake sleeping
477 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
480 if (se_nacl
&& comp_nacl
== true)
481 target_put_nacl(se_nacl
);
483 transport_free_session(se_sess
);
485 EXPORT_SYMBOL(transport_deregister_session
);
488 * Called with cmd->t_state_lock held.
490 static void target_remove_from_state_list(struct se_cmd
*cmd
)
492 struct se_device
*dev
= cmd
->se_dev
;
498 if (cmd
->transport_state
& CMD_T_BUSY
)
501 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
502 if (cmd
->state_active
) {
503 list_del(&cmd
->state_list
);
504 cmd
->state_active
= false;
506 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
509 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
514 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
516 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
519 * Determine if IOCTL context caller in requesting the stopping of this
520 * command for LUN shutdown purposes.
522 if (cmd
->transport_state
& CMD_T_LUN_STOP
) {
523 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
524 __func__
, __LINE__
, cmd
->se_tfo
->get_task_tag(cmd
));
526 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
527 if (remove_from_lists
)
528 target_remove_from_state_list(cmd
);
529 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
531 complete(&cmd
->transport_lun_stop_comp
);
535 if (remove_from_lists
) {
536 target_remove_from_state_list(cmd
);
539 * Clear struct se_cmd->se_lun before the handoff to FE.
545 * Determine if frontend context caller is requesting the stopping of
546 * this command for frontend exceptions.
548 if (cmd
->transport_state
& CMD_T_STOP
) {
549 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
551 cmd
->se_tfo
->get_task_tag(cmd
));
553 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
555 complete(&cmd
->t_transport_stop_comp
);
559 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
560 if (remove_from_lists
) {
562 * Some fabric modules like tcm_loop can release
563 * their internally allocated I/O reference now and
566 * Fabric modules are expected to return '1' here if the
567 * se_cmd being passed is released at this point,
568 * or zero if not being released.
570 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
571 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
572 return cmd
->se_tfo
->check_stop_free(cmd
);
576 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
580 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
582 return transport_cmd_check_stop(cmd
, true, false);
585 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
587 struct se_lun
*lun
= cmd
->se_lun
;
593 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
594 if (!list_empty(&cmd
->se_lun_node
))
595 list_del_init(&cmd
->se_lun_node
);
596 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
599 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
601 if (transport_cmd_check_stop_to_fabric(cmd
))
604 transport_put_cmd(cmd
);
607 static void target_complete_failure_work(struct work_struct
*work
)
609 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
611 transport_generic_request_failure(cmd
,
612 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
616 * Used when asking transport to copy Sense Data from the underlying
617 * Linux/SCSI struct scsi_cmnd
619 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
621 struct se_device
*dev
= cmd
->se_dev
;
623 WARN_ON(!cmd
->se_lun
);
628 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
631 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
633 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
634 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
635 return cmd
->sense_buffer
;
638 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
640 struct se_device
*dev
= cmd
->se_dev
;
641 int success
= scsi_status
== GOOD
;
644 cmd
->scsi_status
= scsi_status
;
647 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
648 cmd
->transport_state
&= ~CMD_T_BUSY
;
650 if (dev
&& dev
->transport
->transport_complete
) {
651 dev
->transport
->transport_complete(cmd
,
653 transport_get_sense_buffer(cmd
));
654 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
659 * See if we are waiting to complete for an exception condition.
661 if (cmd
->transport_state
& CMD_T_REQUEST_STOP
) {
662 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
663 complete(&cmd
->task_stop_comp
);
668 cmd
->transport_state
|= CMD_T_FAILED
;
671 * Check for case where an explict ABORT_TASK has been received
672 * and transport_wait_for_tasks() will be waiting for completion..
674 if (cmd
->transport_state
& CMD_T_ABORTED
&&
675 cmd
->transport_state
& CMD_T_STOP
) {
676 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
677 complete(&cmd
->t_transport_stop_comp
);
679 } else if (cmd
->transport_state
& CMD_T_FAILED
) {
680 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
682 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
685 cmd
->t_state
= TRANSPORT_COMPLETE
;
686 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
687 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
689 queue_work(target_completion_wq
, &cmd
->work
);
691 EXPORT_SYMBOL(target_complete_cmd
);
693 static void target_add_to_state_list(struct se_cmd
*cmd
)
695 struct se_device
*dev
= cmd
->se_dev
;
698 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
699 if (!cmd
->state_active
) {
700 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
701 cmd
->state_active
= true;
703 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
707 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
709 static void transport_write_pending_qf(struct se_cmd
*cmd
);
710 static void transport_complete_qf(struct se_cmd
*cmd
);
712 void target_qf_do_work(struct work_struct
*work
)
714 struct se_device
*dev
= container_of(work
, struct se_device
,
716 LIST_HEAD(qf_cmd_list
);
717 struct se_cmd
*cmd
, *cmd_tmp
;
719 spin_lock_irq(&dev
->qf_cmd_lock
);
720 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
721 spin_unlock_irq(&dev
->qf_cmd_lock
);
723 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
724 list_del(&cmd
->se_qf_node
);
725 atomic_dec(&dev
->dev_qf_count
);
726 smp_mb__after_atomic_dec();
728 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
729 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
730 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
731 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
734 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
735 transport_write_pending_qf(cmd
);
736 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
737 transport_complete_qf(cmd
);
741 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
743 switch (cmd
->data_direction
) {
746 case DMA_FROM_DEVICE
:
750 case DMA_BIDIRECTIONAL
:
759 void transport_dump_dev_state(
760 struct se_device
*dev
,
764 *bl
+= sprintf(b
+ *bl
, "Status: ");
765 if (dev
->export_count
)
766 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
768 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
770 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
771 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
772 dev
->dev_attrib
.block_size
,
773 dev
->dev_attrib
.hw_max_sectors
);
774 *bl
+= sprintf(b
+ *bl
, " ");
777 void transport_dump_vpd_proto_id(
779 unsigned char *p_buf
,
782 unsigned char buf
[VPD_TMP_BUF_SIZE
];
785 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
786 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
788 switch (vpd
->protocol_identifier
) {
790 sprintf(buf
+len
, "Fibre Channel\n");
793 sprintf(buf
+len
, "Parallel SCSI\n");
796 sprintf(buf
+len
, "SSA\n");
799 sprintf(buf
+len
, "IEEE 1394\n");
802 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
806 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
809 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
812 sprintf(buf
+len
, "Automation/Drive Interface Transport"
816 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
819 sprintf(buf
+len
, "Unknown 0x%02x\n",
820 vpd
->protocol_identifier
);
825 strncpy(p_buf
, buf
, p_buf_len
);
831 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
834 * Check if the Protocol Identifier Valid (PIV) bit is set..
836 * from spc3r23.pdf section 7.5.1
838 if (page_83
[1] & 0x80) {
839 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
840 vpd
->protocol_identifier_set
= 1;
841 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
844 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
846 int transport_dump_vpd_assoc(
848 unsigned char *p_buf
,
851 unsigned char buf
[VPD_TMP_BUF_SIZE
];
855 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
856 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
858 switch (vpd
->association
) {
860 sprintf(buf
+len
, "addressed logical unit\n");
863 sprintf(buf
+len
, "target port\n");
866 sprintf(buf
+len
, "SCSI target device\n");
869 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
875 strncpy(p_buf
, buf
, p_buf_len
);
882 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
885 * The VPD identification association..
887 * from spc3r23.pdf Section 7.6.3.1 Table 297
889 vpd
->association
= (page_83
[1] & 0x30);
890 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
892 EXPORT_SYMBOL(transport_set_vpd_assoc
);
894 int transport_dump_vpd_ident_type(
896 unsigned char *p_buf
,
899 unsigned char buf
[VPD_TMP_BUF_SIZE
];
903 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
904 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
906 switch (vpd
->device_identifier_type
) {
908 sprintf(buf
+len
, "Vendor specific\n");
911 sprintf(buf
+len
, "T10 Vendor ID based\n");
914 sprintf(buf
+len
, "EUI-64 based\n");
917 sprintf(buf
+len
, "NAA\n");
920 sprintf(buf
+len
, "Relative target port identifier\n");
923 sprintf(buf
+len
, "SCSI name string\n");
926 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
927 vpd
->device_identifier_type
);
933 if (p_buf_len
< strlen(buf
)+1)
935 strncpy(p_buf
, buf
, p_buf_len
);
943 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
946 * The VPD identifier type..
948 * from spc3r23.pdf Section 7.6.3.1 Table 298
950 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
951 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
953 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
955 int transport_dump_vpd_ident(
957 unsigned char *p_buf
,
960 unsigned char buf
[VPD_TMP_BUF_SIZE
];
963 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
965 switch (vpd
->device_identifier_code_set
) {
966 case 0x01: /* Binary */
967 snprintf(buf
, sizeof(buf
),
968 "T10 VPD Binary Device Identifier: %s\n",
969 &vpd
->device_identifier
[0]);
971 case 0x02: /* ASCII */
972 snprintf(buf
, sizeof(buf
),
973 "T10 VPD ASCII Device Identifier: %s\n",
974 &vpd
->device_identifier
[0]);
976 case 0x03: /* UTF-8 */
977 snprintf(buf
, sizeof(buf
),
978 "T10 VPD UTF-8 Device Identifier: %s\n",
979 &vpd
->device_identifier
[0]);
982 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
983 " 0x%02x", vpd
->device_identifier_code_set
);
989 strncpy(p_buf
, buf
, p_buf_len
);
997 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
999 static const char hex_str
[] = "0123456789abcdef";
1000 int j
= 0, i
= 4; /* offset to start of the identifier */
1003 * The VPD Code Set (encoding)
1005 * from spc3r23.pdf Section 7.6.3.1 Table 296
1007 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1008 switch (vpd
->device_identifier_code_set
) {
1009 case 0x01: /* Binary */
1010 vpd
->device_identifier
[j
++] =
1011 hex_str
[vpd
->device_identifier_type
];
1012 while (i
< (4 + page_83
[3])) {
1013 vpd
->device_identifier
[j
++] =
1014 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1015 vpd
->device_identifier
[j
++] =
1016 hex_str
[page_83
[i
] & 0x0f];
1020 case 0x02: /* ASCII */
1021 case 0x03: /* UTF-8 */
1022 while (i
< (4 + page_83
[3]))
1023 vpd
->device_identifier
[j
++] = page_83
[i
++];
1029 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1031 EXPORT_SYMBOL(transport_set_vpd_ident
);
1034 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1036 struct se_device
*dev
= cmd
->se_dev
;
1038 if (cmd
->unknown_data_length
) {
1039 cmd
->data_length
= size
;
1040 } else if (size
!= cmd
->data_length
) {
1041 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1042 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1043 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1044 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1046 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1047 pr_err("Rejecting underflow/overflow"
1049 return TCM_INVALID_CDB_FIELD
;
1052 * Reject READ_* or WRITE_* with overflow/underflow for
1053 * type SCF_SCSI_DATA_CDB.
1055 if (dev
->dev_attrib
.block_size
!= 512) {
1056 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1057 " CDB on non 512-byte sector setup subsystem"
1058 " plugin: %s\n", dev
->transport
->name
);
1059 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1060 return TCM_INVALID_CDB_FIELD
;
1063 * For the overflow case keep the existing fabric provided
1064 * ->data_length. Otherwise for the underflow case, reset
1065 * ->data_length to the smaller SCSI expected data transfer
1068 if (size
> cmd
->data_length
) {
1069 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1070 cmd
->residual_count
= (size
- cmd
->data_length
);
1072 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1073 cmd
->residual_count
= (cmd
->data_length
- size
);
1074 cmd
->data_length
= size
;
1083 * Used by fabric modules containing a local struct se_cmd within their
1084 * fabric dependent per I/O descriptor.
1086 void transport_init_se_cmd(
1088 struct target_core_fabric_ops
*tfo
,
1089 struct se_session
*se_sess
,
1093 unsigned char *sense_buffer
)
1095 INIT_LIST_HEAD(&cmd
->se_lun_node
);
1096 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1097 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1098 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1099 INIT_LIST_HEAD(&cmd
->state_list
);
1100 init_completion(&cmd
->transport_lun_fe_stop_comp
);
1101 init_completion(&cmd
->transport_lun_stop_comp
);
1102 init_completion(&cmd
->t_transport_stop_comp
);
1103 init_completion(&cmd
->cmd_wait_comp
);
1104 init_completion(&cmd
->task_stop_comp
);
1105 spin_lock_init(&cmd
->t_state_lock
);
1106 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1109 cmd
->se_sess
= se_sess
;
1110 cmd
->data_length
= data_length
;
1111 cmd
->data_direction
= data_direction
;
1112 cmd
->sam_task_attr
= task_attr
;
1113 cmd
->sense_buffer
= sense_buffer
;
1115 cmd
->state_active
= false;
1117 EXPORT_SYMBOL(transport_init_se_cmd
);
1119 static sense_reason_t
1120 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1122 struct se_device
*dev
= cmd
->se_dev
;
1125 * Check if SAM Task Attribute emulation is enabled for this
1126 * struct se_device storage object
1128 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1131 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1132 pr_debug("SAM Task Attribute ACA"
1133 " emulation is not supported\n");
1134 return TCM_INVALID_CDB_FIELD
;
1137 * Used to determine when ORDERED commands should go from
1138 * Dormant to Active status.
1140 cmd
->se_ordered_id
= atomic_inc_return(&dev
->dev_ordered_id
);
1141 smp_mb__after_atomic_inc();
1142 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1143 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1144 dev
->transport
->name
);
1149 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1151 struct se_device
*dev
= cmd
->se_dev
;
1155 * Ensure that the received CDB is less than the max (252 + 8) bytes
1156 * for VARIABLE_LENGTH_CMD
1158 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1159 pr_err("Received SCSI CDB with command_size: %d that"
1160 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1161 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1162 return TCM_INVALID_CDB_FIELD
;
1165 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1166 * allocate the additional extended CDB buffer now.. Otherwise
1167 * setup the pointer from __t_task_cdb to t_task_cdb.
1169 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1170 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1172 if (!cmd
->t_task_cdb
) {
1173 pr_err("Unable to allocate cmd->t_task_cdb"
1174 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1175 scsi_command_size(cdb
),
1176 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1177 return TCM_OUT_OF_RESOURCES
;
1180 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1182 * Copy the original CDB into cmd->
1184 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1186 trace_target_sequencer_start(cmd
);
1189 * Check for an existing UNIT ATTENTION condition
1191 ret
= target_scsi3_ua_check(cmd
);
1195 ret
= target_alua_state_check(cmd
);
1199 ret
= target_check_reservation(cmd
);
1201 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1205 ret
= dev
->transport
->parse_cdb(cmd
);
1209 ret
= transport_check_alloc_task_attr(cmd
);
1213 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1215 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1216 if (cmd
->se_lun
->lun_sep
)
1217 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1218 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1221 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1224 * Used by fabric module frontends to queue tasks directly.
1225 * Many only be used from process context only
1227 int transport_handle_cdb_direct(
1234 pr_err("cmd->se_lun is NULL\n");
1237 if (in_interrupt()) {
1239 pr_err("transport_generic_handle_cdb cannot be called"
1240 " from interrupt context\n");
1244 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1245 * outstanding descriptors are handled correctly during shutdown via
1246 * transport_wait_for_tasks()
1248 * Also, we don't take cmd->t_state_lock here as we only expect
1249 * this to be called for initial descriptor submission.
1251 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1252 cmd
->transport_state
|= CMD_T_ACTIVE
;
1255 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1256 * so follow TRANSPORT_NEW_CMD processing thread context usage
1257 * and call transport_generic_request_failure() if necessary..
1259 ret
= transport_generic_new_cmd(cmd
);
1261 transport_generic_request_failure(cmd
, ret
);
1264 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1267 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1268 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1270 if (!sgl
|| !sgl_count
)
1274 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1275 * scatterlists already have been set to follow what the fabric
1276 * passes for the original expected data transfer length.
1278 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1279 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1280 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1281 return TCM_INVALID_CDB_FIELD
;
1284 cmd
->t_data_sg
= sgl
;
1285 cmd
->t_data_nents
= sgl_count
;
1287 if (sgl_bidi
&& sgl_bidi_count
) {
1288 cmd
->t_bidi_data_sg
= sgl_bidi
;
1289 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1291 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1296 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1297 * se_cmd + use pre-allocated SGL memory.
1299 * @se_cmd: command descriptor to submit
1300 * @se_sess: associated se_sess for endpoint
1301 * @cdb: pointer to SCSI CDB
1302 * @sense: pointer to SCSI sense buffer
1303 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1304 * @data_length: fabric expected data transfer length
1305 * @task_addr: SAM task attribute
1306 * @data_dir: DMA data direction
1307 * @flags: flags for command submission from target_sc_flags_tables
1308 * @sgl: struct scatterlist memory for unidirectional mapping
1309 * @sgl_count: scatterlist count for unidirectional mapping
1310 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1311 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1313 * Returns non zero to signal active I/O shutdown failure. All other
1314 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1315 * but still return zero here.
1317 * This may only be called from process context, and also currently
1318 * assumes internal allocation of fabric payload buffer by target-core.
1320 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1321 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1322 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1323 struct scatterlist
*sgl
, u32 sgl_count
,
1324 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1326 struct se_portal_group
*se_tpg
;
1330 se_tpg
= se_sess
->se_tpg
;
1332 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1333 BUG_ON(in_interrupt());
1335 * Initialize se_cmd for target operation. From this point
1336 * exceptions are handled by sending exception status via
1337 * target_core_fabric_ops->queue_status() callback
1339 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1340 data_length
, data_dir
, task_attr
, sense
);
1341 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1342 se_cmd
->unknown_data_length
= 1;
1344 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1345 * se_sess->sess_cmd_list. A second kref_get here is necessary
1346 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1347 * kref_put() to happen during fabric packet acknowledgement.
1349 ret
= target_get_sess_cmd(se_sess
, se_cmd
, (flags
& TARGET_SCF_ACK_KREF
));
1353 * Signal bidirectional data payloads to target-core
1355 if (flags
& TARGET_SCF_BIDI_OP
)
1356 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1358 * Locate se_lun pointer and attach it to struct se_cmd
1360 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1362 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1363 target_put_sess_cmd(se_sess
, se_cmd
);
1367 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1369 transport_generic_request_failure(se_cmd
, rc
);
1373 * When a non zero sgl_count has been passed perform SGL passthrough
1374 * mapping for pre-allocated fabric memory instead of having target
1375 * core perform an internal SGL allocation..
1377 if (sgl_count
!= 0) {
1381 * A work-around for tcm_loop as some userspace code via
1382 * scsi-generic do not memset their associated read buffers,
1383 * so go ahead and do that here for type non-data CDBs. Also
1384 * note that this is currently guaranteed to be a single SGL
1385 * for this case by target core in target_setup_cmd_from_cdb()
1386 * -> transport_generic_cmd_sequencer().
1388 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1389 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1390 unsigned char *buf
= NULL
;
1393 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1396 memset(buf
, 0, sgl
->length
);
1397 kunmap(sg_page(sgl
));
1401 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1402 sgl_bidi
, sgl_bidi_count
);
1404 transport_generic_request_failure(se_cmd
, rc
);
1409 * Check if we need to delay processing because of ALUA
1410 * Active/NonOptimized primary access state..
1412 core_alua_check_nonop_delay(se_cmd
);
1414 transport_handle_cdb_direct(se_cmd
);
1417 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1420 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1422 * @se_cmd: command descriptor to submit
1423 * @se_sess: associated se_sess for endpoint
1424 * @cdb: pointer to SCSI CDB
1425 * @sense: pointer to SCSI sense buffer
1426 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1427 * @data_length: fabric expected data transfer length
1428 * @task_addr: SAM task attribute
1429 * @data_dir: DMA data direction
1430 * @flags: flags for command submission from target_sc_flags_tables
1432 * Returns non zero to signal active I/O shutdown failure. All other
1433 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1434 * but still return zero here.
1436 * This may only be called from process context, and also currently
1437 * assumes internal allocation of fabric payload buffer by target-core.
1439 * It also assumes interal target core SGL memory allocation.
1441 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1442 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1443 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1445 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1446 unpacked_lun
, data_length
, task_attr
, data_dir
,
1447 flags
, NULL
, 0, NULL
, 0);
1449 EXPORT_SYMBOL(target_submit_cmd
);
1451 static void target_complete_tmr_failure(struct work_struct
*work
)
1453 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1455 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1456 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1458 transport_cmd_check_stop_to_fabric(se_cmd
);
1462 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1465 * @se_cmd: command descriptor to submit
1466 * @se_sess: associated se_sess for endpoint
1467 * @sense: pointer to SCSI sense buffer
1468 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1469 * @fabric_context: fabric context for TMR req
1470 * @tm_type: Type of TM request
1471 * @gfp: gfp type for caller
1472 * @tag: referenced task tag for TMR_ABORT_TASK
1473 * @flags: submit cmd flags
1475 * Callable from all contexts.
1478 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1479 unsigned char *sense
, u32 unpacked_lun
,
1480 void *fabric_tmr_ptr
, unsigned char tm_type
,
1481 gfp_t gfp
, unsigned int tag
, int flags
)
1483 struct se_portal_group
*se_tpg
;
1486 se_tpg
= se_sess
->se_tpg
;
1489 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1490 0, DMA_NONE
, MSG_SIMPLE_TAG
, sense
);
1492 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1493 * allocation failure.
1495 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1499 if (tm_type
== TMR_ABORT_TASK
)
1500 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1502 /* See target_submit_cmd for commentary */
1503 ret
= target_get_sess_cmd(se_sess
, se_cmd
, (flags
& TARGET_SCF_ACK_KREF
));
1505 core_tmr_release_req(se_cmd
->se_tmr_req
);
1509 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1512 * For callback during failure handling, push this work off
1513 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1515 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1516 schedule_work(&se_cmd
->work
);
1519 transport_generic_handle_tmr(se_cmd
);
1522 EXPORT_SYMBOL(target_submit_tmr
);
1525 * If the cmd is active, request it to be stopped and sleep until it
1528 bool target_stop_cmd(struct se_cmd
*cmd
, unsigned long *flags
)
1530 bool was_active
= false;
1532 if (cmd
->transport_state
& CMD_T_BUSY
) {
1533 cmd
->transport_state
|= CMD_T_REQUEST_STOP
;
1534 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1536 pr_debug("cmd %p waiting to complete\n", cmd
);
1537 wait_for_completion(&cmd
->task_stop_comp
);
1538 pr_debug("cmd %p stopped successfully\n", cmd
);
1540 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1541 cmd
->transport_state
&= ~CMD_T_REQUEST_STOP
;
1542 cmd
->transport_state
&= ~CMD_T_BUSY
;
1550 * Handle SAM-esque emulation for generic transport request failures.
1552 void transport_generic_request_failure(struct se_cmd
*cmd
,
1553 sense_reason_t sense_reason
)
1557 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1558 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1559 cmd
->t_task_cdb
[0]);
1560 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1561 cmd
->se_tfo
->get_cmd_state(cmd
),
1562 cmd
->t_state
, sense_reason
);
1563 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1564 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1565 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1566 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1569 * For SAM Task Attribute emulation for failed struct se_cmd
1571 transport_complete_task_attr(cmd
);
1573 * Handle special case for COMPARE_AND_WRITE failure, where the
1574 * callback is expected to drop the per device ->caw_mutex.
1576 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1577 cmd
->transport_complete_callback
)
1578 cmd
->transport_complete_callback(cmd
);
1580 switch (sense_reason
) {
1581 case TCM_NON_EXISTENT_LUN
:
1582 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1583 case TCM_INVALID_CDB_FIELD
:
1584 case TCM_INVALID_PARAMETER_LIST
:
1585 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1586 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1587 case TCM_UNKNOWN_MODE_PAGE
:
1588 case TCM_WRITE_PROTECTED
:
1589 case TCM_ADDRESS_OUT_OF_RANGE
:
1590 case TCM_CHECK_CONDITION_ABORT_CMD
:
1591 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1592 case TCM_CHECK_CONDITION_NOT_READY
:
1594 case TCM_OUT_OF_RESOURCES
:
1595 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1597 case TCM_RESERVATION_CONFLICT
:
1599 * No SENSE Data payload for this case, set SCSI Status
1600 * and queue the response to $FABRIC_MOD.
1602 * Uses linux/include/scsi/scsi.h SAM status codes defs
1604 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1606 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1607 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1610 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1613 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2)
1614 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
1615 cmd
->orig_fe_lun
, 0x2C,
1616 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1618 trace_target_cmd_complete(cmd
);
1619 ret
= cmd
->se_tfo
-> queue_status(cmd
);
1620 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1624 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1625 cmd
->t_task_cdb
[0], sense_reason
);
1626 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1630 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1631 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1635 transport_lun_remove_cmd(cmd
);
1636 if (!transport_cmd_check_stop_to_fabric(cmd
))
1641 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1642 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1644 EXPORT_SYMBOL(transport_generic_request_failure
);
1646 void __target_execute_cmd(struct se_cmd
*cmd
)
1650 if (cmd
->execute_cmd
) {
1651 ret
= cmd
->execute_cmd(cmd
);
1653 spin_lock_irq(&cmd
->t_state_lock
);
1654 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1655 spin_unlock_irq(&cmd
->t_state_lock
);
1657 transport_generic_request_failure(cmd
, ret
);
1662 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1664 struct se_device
*dev
= cmd
->se_dev
;
1666 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1670 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1671 * to allow the passed struct se_cmd list of tasks to the front of the list.
1673 switch (cmd
->sam_task_attr
) {
1675 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1676 "se_ordered_id: %u\n",
1677 cmd
->t_task_cdb
[0], cmd
->se_ordered_id
);
1679 case MSG_ORDERED_TAG
:
1680 atomic_inc(&dev
->dev_ordered_sync
);
1681 smp_mb__after_atomic_inc();
1683 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1684 " se_ordered_id: %u\n",
1685 cmd
->t_task_cdb
[0], cmd
->se_ordered_id
);
1688 * Execute an ORDERED command if no other older commands
1689 * exist that need to be completed first.
1691 if (!atomic_read(&dev
->simple_cmds
))
1696 * For SIMPLE and UNTAGGED Task Attribute commands
1698 atomic_inc(&dev
->simple_cmds
);
1699 smp_mb__after_atomic_inc();
1703 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1706 spin_lock(&dev
->delayed_cmd_lock
);
1707 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1708 spin_unlock(&dev
->delayed_cmd_lock
);
1710 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1711 " delayed CMD list, se_ordered_id: %u\n",
1712 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
1713 cmd
->se_ordered_id
);
1717 void target_execute_cmd(struct se_cmd
*cmd
)
1720 * If the received CDB has aleady been aborted stop processing it here.
1722 if (transport_check_aborted_status(cmd
, 1)) {
1723 complete(&cmd
->transport_lun_stop_comp
);
1728 * Determine if IOCTL context caller in requesting the stopping of this
1729 * command for LUN shutdown purposes.
1731 spin_lock_irq(&cmd
->t_state_lock
);
1732 if (cmd
->transport_state
& CMD_T_LUN_STOP
) {
1733 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1734 __func__
, __LINE__
, cmd
->se_tfo
->get_task_tag(cmd
));
1736 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
1737 spin_unlock_irq(&cmd
->t_state_lock
);
1738 complete(&cmd
->transport_lun_stop_comp
);
1742 * Determine if frontend context caller is requesting the stopping of
1743 * this command for frontend exceptions.
1745 if (cmd
->transport_state
& CMD_T_STOP
) {
1746 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1748 cmd
->se_tfo
->get_task_tag(cmd
));
1750 spin_unlock_irq(&cmd
->t_state_lock
);
1751 complete(&cmd
->t_transport_stop_comp
);
1755 cmd
->t_state
= TRANSPORT_PROCESSING
;
1756 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1757 spin_unlock_irq(&cmd
->t_state_lock
);
1759 if (target_handle_task_attr(cmd
)) {
1760 spin_lock_irq(&cmd
->t_state_lock
);
1761 cmd
->transport_state
&= ~CMD_T_BUSY
|CMD_T_SENT
;
1762 spin_unlock_irq(&cmd
->t_state_lock
);
1766 __target_execute_cmd(cmd
);
1768 EXPORT_SYMBOL(target_execute_cmd
);
1771 * Process all commands up to the last received ORDERED task attribute which
1772 * requires another blocking boundary
1774 static void target_restart_delayed_cmds(struct se_device
*dev
)
1779 spin_lock(&dev
->delayed_cmd_lock
);
1780 if (list_empty(&dev
->delayed_cmd_list
)) {
1781 spin_unlock(&dev
->delayed_cmd_lock
);
1785 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1786 struct se_cmd
, se_delayed_node
);
1787 list_del(&cmd
->se_delayed_node
);
1788 spin_unlock(&dev
->delayed_cmd_lock
);
1790 __target_execute_cmd(cmd
);
1792 if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
)
1798 * Called from I/O completion to determine which dormant/delayed
1799 * and ordered cmds need to have their tasks added to the execution queue.
1801 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1803 struct se_device
*dev
= cmd
->se_dev
;
1805 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1808 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
1809 atomic_dec(&dev
->simple_cmds
);
1810 smp_mb__after_atomic_dec();
1811 dev
->dev_cur_ordered_id
++;
1812 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1813 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
1814 cmd
->se_ordered_id
);
1815 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
1816 dev
->dev_cur_ordered_id
++;
1817 pr_debug("Incremented dev_cur_ordered_id: %u for"
1818 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
1819 cmd
->se_ordered_id
);
1820 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
1821 atomic_dec(&dev
->dev_ordered_sync
);
1822 smp_mb__after_atomic_dec();
1824 dev
->dev_cur_ordered_id
++;
1825 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1826 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
1829 target_restart_delayed_cmds(dev
);
1832 static void transport_complete_qf(struct se_cmd
*cmd
)
1836 transport_complete_task_attr(cmd
);
1838 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1839 trace_target_cmd_complete(cmd
);
1840 ret
= cmd
->se_tfo
->queue_status(cmd
);
1845 switch (cmd
->data_direction
) {
1846 case DMA_FROM_DEVICE
:
1847 trace_target_cmd_complete(cmd
);
1848 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1851 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1852 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1856 /* Fall through for DMA_TO_DEVICE */
1858 trace_target_cmd_complete(cmd
);
1859 ret
= cmd
->se_tfo
->queue_status(cmd
);
1867 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1870 transport_lun_remove_cmd(cmd
);
1871 transport_cmd_check_stop_to_fabric(cmd
);
1874 static void transport_handle_queue_full(
1876 struct se_device
*dev
)
1878 spin_lock_irq(&dev
->qf_cmd_lock
);
1879 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
1880 atomic_inc(&dev
->dev_qf_count
);
1881 smp_mb__after_atomic_inc();
1882 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
1884 schedule_work(&cmd
->se_dev
->qf_work_queue
);
1887 static void target_complete_ok_work(struct work_struct
*work
)
1889 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
1893 * Check if we need to move delayed/dormant tasks from cmds on the
1894 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1897 transport_complete_task_attr(cmd
);
1900 * Check to schedule QUEUE_FULL work, or execute an existing
1901 * cmd->transport_qf_callback()
1903 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
1904 schedule_work(&cmd
->se_dev
->qf_work_queue
);
1907 * Check if we need to send a sense buffer from
1908 * the struct se_cmd in question.
1910 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1911 WARN_ON(!cmd
->scsi_status
);
1912 ret
= transport_send_check_condition_and_sense(
1914 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1917 transport_lun_remove_cmd(cmd
);
1918 transport_cmd_check_stop_to_fabric(cmd
);
1922 * Check for a callback, used by amongst other things
1923 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1925 if (cmd
->transport_complete_callback
) {
1928 rc
= cmd
->transport_complete_callback(cmd
);
1929 if (!rc
&& !(cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE_POST
)) {
1932 ret
= transport_send_check_condition_and_sense(cmd
,
1934 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1937 transport_lun_remove_cmd(cmd
);
1938 transport_cmd_check_stop_to_fabric(cmd
);
1943 switch (cmd
->data_direction
) {
1944 case DMA_FROM_DEVICE
:
1945 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1946 if (cmd
->se_lun
->lun_sep
) {
1947 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
1950 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1952 trace_target_cmd_complete(cmd
);
1953 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1954 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1958 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1959 if (cmd
->se_lun
->lun_sep
) {
1960 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
1963 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1965 * Check if we need to send READ payload for BIDI-COMMAND
1967 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1968 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1969 if (cmd
->se_lun
->lun_sep
) {
1970 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
1973 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1974 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1975 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1979 /* Fall through for DMA_TO_DEVICE */
1981 trace_target_cmd_complete(cmd
);
1982 ret
= cmd
->se_tfo
->queue_status(cmd
);
1983 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1990 transport_lun_remove_cmd(cmd
);
1991 transport_cmd_check_stop_to_fabric(cmd
);
1995 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1996 " data_direction: %d\n", cmd
, cmd
->data_direction
);
1997 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1998 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2001 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
2003 struct scatterlist
*sg
;
2006 for_each_sg(sgl
, sg
, nents
, count
)
2007 __free_page(sg_page(sg
));
2012 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2015 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2016 * emulation, and free + reset pointers if necessary..
2018 if (!cmd
->t_data_sg_orig
)
2021 kfree(cmd
->t_data_sg
);
2022 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2023 cmd
->t_data_sg_orig
= NULL
;
2024 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2025 cmd
->t_data_nents_orig
= 0;
2028 static inline void transport_free_pages(struct se_cmd
*cmd
)
2030 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2031 transport_reset_sgl_orig(cmd
);
2034 transport_reset_sgl_orig(cmd
);
2036 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2037 cmd
->t_data_sg
= NULL
;
2038 cmd
->t_data_nents
= 0;
2040 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2041 cmd
->t_bidi_data_sg
= NULL
;
2042 cmd
->t_bidi_data_nents
= 0;
2046 * transport_release_cmd - free a command
2047 * @cmd: command to free
2049 * This routine unconditionally frees a command, and reference counting
2050 * or list removal must be done in the caller.
2052 static int transport_release_cmd(struct se_cmd
*cmd
)
2054 BUG_ON(!cmd
->se_tfo
);
2056 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2057 core_tmr_release_req(cmd
->se_tmr_req
);
2058 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2059 kfree(cmd
->t_task_cdb
);
2061 * If this cmd has been setup with target_get_sess_cmd(), drop
2062 * the kref and call ->release_cmd() in kref callback.
2064 return target_put_sess_cmd(cmd
->se_sess
, cmd
);
2068 * transport_put_cmd - release a reference to a command
2069 * @cmd: command to release
2071 * This routine releases our reference to the command and frees it if possible.
2073 static int transport_put_cmd(struct se_cmd
*cmd
)
2075 transport_free_pages(cmd
);
2076 return transport_release_cmd(cmd
);
2079 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2081 struct scatterlist
*sg
= cmd
->t_data_sg
;
2082 struct page
**pages
;
2086 * We need to take into account a possible offset here for fabrics like
2087 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2088 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2090 if (!cmd
->t_data_nents
)
2094 if (cmd
->t_data_nents
== 1)
2095 return kmap(sg_page(sg
)) + sg
->offset
;
2097 /* >1 page. use vmap */
2098 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2102 /* convert sg[] to pages[] */
2103 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2104 pages
[i
] = sg_page(sg
);
2107 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2109 if (!cmd
->t_data_vmap
)
2112 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2114 EXPORT_SYMBOL(transport_kmap_data_sg
);
2116 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2118 if (!cmd
->t_data_nents
) {
2120 } else if (cmd
->t_data_nents
== 1) {
2121 kunmap(sg_page(cmd
->t_data_sg
));
2125 vunmap(cmd
->t_data_vmap
);
2126 cmd
->t_data_vmap
= NULL
;
2128 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2131 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2134 struct scatterlist
*sg
;
2136 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2140 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2141 sg
= kmalloc(sizeof(struct scatterlist
) * nent
, GFP_KERNEL
);
2145 sg_init_table(sg
, nent
);
2148 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2149 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2153 sg_set_page(&sg
[i
], page
, page_len
, 0);
2164 __free_page(sg_page(&sg
[i
]));
2171 * Allocate any required resources to execute the command. For writes we
2172 * might not have the payload yet, so notify the fabric via a call to
2173 * ->write_pending instead. Otherwise place it on the execution queue.
2176 transport_generic_new_cmd(struct se_cmd
*cmd
)
2181 * Determine is the TCM fabric module has already allocated physical
2182 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2185 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2187 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2189 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2190 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2193 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2194 bidi_length
= cmd
->t_task_nolb
*
2195 cmd
->se_dev
->dev_attrib
.block_size
;
2197 bidi_length
= cmd
->data_length
;
2199 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2200 &cmd
->t_bidi_data_nents
,
2201 bidi_length
, zero_flag
);
2203 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2206 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2207 cmd
->data_length
, zero_flag
);
2209 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2212 * If this command is not a write we can execute it right here,
2213 * for write buffers we need to notify the fabric driver first
2214 * and let it call back once the write buffers are ready.
2216 target_add_to_state_list(cmd
);
2217 if (cmd
->data_direction
!= DMA_TO_DEVICE
) {
2218 target_execute_cmd(cmd
);
2221 transport_cmd_check_stop(cmd
, false, true);
2223 ret
= cmd
->se_tfo
->write_pending(cmd
);
2224 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2227 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2230 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2233 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2234 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2235 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2238 EXPORT_SYMBOL(transport_generic_new_cmd
);
2240 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2244 ret
= cmd
->se_tfo
->write_pending(cmd
);
2245 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2246 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2248 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2252 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2254 unsigned long flags
;
2257 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2258 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2259 transport_wait_for_tasks(cmd
);
2261 ret
= transport_release_cmd(cmd
);
2264 transport_wait_for_tasks(cmd
);
2266 * Handle WRITE failure case where transport_generic_new_cmd()
2267 * has already added se_cmd to state_list, but fabric has
2268 * failed command before I/O submission.
2270 if (cmd
->state_active
) {
2271 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2272 target_remove_from_state_list(cmd
);
2273 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2277 transport_lun_remove_cmd(cmd
);
2279 ret
= transport_put_cmd(cmd
);
2283 EXPORT_SYMBOL(transport_generic_free_cmd
);
2285 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2286 * @se_sess: session to reference
2287 * @se_cmd: command descriptor to add
2288 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2290 int target_get_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
,
2293 unsigned long flags
;
2296 kref_init(&se_cmd
->cmd_kref
);
2298 * Add a second kref if the fabric caller is expecting to handle
2299 * fabric acknowledgement that requires two target_put_sess_cmd()
2300 * invocations before se_cmd descriptor release.
2302 if (ack_kref
== true) {
2303 kref_get(&se_cmd
->cmd_kref
);
2304 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2307 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2308 if (se_sess
->sess_tearing_down
) {
2312 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2314 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2317 EXPORT_SYMBOL(target_get_sess_cmd
);
2319 static void target_release_cmd_kref(struct kref
*kref
)
2321 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2322 struct se_session
*se_sess
= se_cmd
->se_sess
;
2324 if (list_empty(&se_cmd
->se_cmd_list
)) {
2325 spin_unlock(&se_sess
->sess_cmd_lock
);
2326 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2329 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
2330 spin_unlock(&se_sess
->sess_cmd_lock
);
2331 complete(&se_cmd
->cmd_wait_comp
);
2334 list_del(&se_cmd
->se_cmd_list
);
2335 spin_unlock(&se_sess
->sess_cmd_lock
);
2337 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2340 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2341 * @se_sess: session to reference
2342 * @se_cmd: command descriptor to drop
2344 int target_put_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
2346 return kref_put_spinlock_irqsave(&se_cmd
->cmd_kref
, target_release_cmd_kref
,
2347 &se_sess
->sess_cmd_lock
);
2349 EXPORT_SYMBOL(target_put_sess_cmd
);
2351 /* target_sess_cmd_list_set_waiting - Flag all commands in
2352 * sess_cmd_list to complete cmd_wait_comp. Set
2353 * sess_tearing_down so no more commands are queued.
2354 * @se_sess: session to flag
2356 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2358 struct se_cmd
*se_cmd
;
2359 unsigned long flags
;
2361 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2362 if (se_sess
->sess_tearing_down
) {
2363 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2366 se_sess
->sess_tearing_down
= 1;
2367 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2369 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
2370 se_cmd
->cmd_wait_set
= 1;
2372 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2374 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2376 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2377 * @se_sess: session to wait for active I/O
2379 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2381 struct se_cmd
*se_cmd
, *tmp_cmd
;
2382 unsigned long flags
;
2384 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2385 &se_sess
->sess_wait_list
, se_cmd_list
) {
2386 list_del(&se_cmd
->se_cmd_list
);
2388 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2389 " %d\n", se_cmd
, se_cmd
->t_state
,
2390 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2392 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2393 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2394 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2395 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2397 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2400 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2401 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2402 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2405 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2407 /* transport_lun_wait_for_tasks():
2409 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2410 * an struct se_lun to be successfully shutdown.
2412 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
2414 unsigned long flags
;
2418 * If the frontend has already requested this struct se_cmd to
2419 * be stopped, we can safely ignore this struct se_cmd.
2421 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2422 if (cmd
->transport_state
& CMD_T_STOP
) {
2423 cmd
->transport_state
&= ~CMD_T_LUN_STOP
;
2425 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2426 cmd
->se_tfo
->get_task_tag(cmd
));
2427 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2428 transport_cmd_check_stop(cmd
, false, false);
2431 cmd
->transport_state
|= CMD_T_LUN_FE_STOP
;
2432 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2434 // XXX: audit task_flags checks.
2435 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2436 if ((cmd
->transport_state
& CMD_T_BUSY
) &&
2437 (cmd
->transport_state
& CMD_T_SENT
)) {
2438 if (!target_stop_cmd(cmd
, &flags
))
2441 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2443 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2446 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2447 cmd
->se_tfo
->get_task_tag(cmd
));
2448 wait_for_completion(&cmd
->transport_lun_stop_comp
);
2449 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2450 cmd
->se_tfo
->get_task_tag(cmd
));
2456 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
2458 struct se_cmd
*cmd
= NULL
;
2459 unsigned long lun_flags
, cmd_flags
;
2461 * Do exception processing and return CHECK_CONDITION status to the
2464 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
2465 while (!list_empty(&lun
->lun_cmd_list
)) {
2466 cmd
= list_first_entry(&lun
->lun_cmd_list
,
2467 struct se_cmd
, se_lun_node
);
2468 list_del_init(&cmd
->se_lun_node
);
2470 spin_lock(&cmd
->t_state_lock
);
2471 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2472 "_lun_stop for ITT: 0x%08x\n",
2473 cmd
->se_lun
->unpacked_lun
,
2474 cmd
->se_tfo
->get_task_tag(cmd
));
2475 cmd
->transport_state
|= CMD_T_LUN_STOP
;
2476 spin_unlock(&cmd
->t_state_lock
);
2478 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
2481 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2482 cmd
->se_tfo
->get_task_tag(cmd
),
2483 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2487 * If the Storage engine still owns the iscsi_cmd_t, determine
2488 * and/or stop its context.
2490 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2491 "_lun_wait_for_tasks()\n", cmd
->se_lun
->unpacked_lun
,
2492 cmd
->se_tfo
->get_task_tag(cmd
));
2494 if (transport_lun_wait_for_tasks(cmd
, cmd
->se_lun
) < 0) {
2495 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
2499 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2500 "_wait_for_tasks(): SUCCESS\n",
2501 cmd
->se_lun
->unpacked_lun
,
2502 cmd
->se_tfo
->get_task_tag(cmd
));
2504 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
2505 if (!(cmd
->transport_state
& CMD_T_DEV_ACTIVE
)) {
2506 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
2509 cmd
->transport_state
&= ~CMD_T_DEV_ACTIVE
;
2510 target_remove_from_state_list(cmd
);
2511 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
2514 * The Storage engine stopped this struct se_cmd before it was
2515 * send to the fabric frontend for delivery back to the
2516 * Initiator Node. Return this SCSI CDB back with an
2517 * CHECK_CONDITION status.
2520 transport_send_check_condition_and_sense(cmd
,
2521 TCM_NON_EXISTENT_LUN
, 0);
2523 * If the fabric frontend is waiting for this iscsi_cmd_t to
2524 * be released, notify the waiting thread now that LU has
2525 * finished accessing it.
2527 spin_lock_irqsave(&cmd
->t_state_lock
, cmd_flags
);
2528 if (cmd
->transport_state
& CMD_T_LUN_FE_STOP
) {
2529 pr_debug("SE_LUN[%d] - Detected FE stop for"
2530 " struct se_cmd: %p ITT: 0x%08x\n",
2532 cmd
, cmd
->se_tfo
->get_task_tag(cmd
));
2534 spin_unlock_irqrestore(&cmd
->t_state_lock
,
2536 transport_cmd_check_stop(cmd
, false, false);
2537 complete(&cmd
->transport_lun_fe_stop_comp
);
2538 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
2541 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2542 lun
->unpacked_lun
, cmd
->se_tfo
->get_task_tag(cmd
));
2544 spin_unlock_irqrestore(&cmd
->t_state_lock
, cmd_flags
);
2545 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
2547 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
2550 static int transport_clear_lun_thread(void *p
)
2552 struct se_lun
*lun
= p
;
2554 __transport_clear_lun_from_sessions(lun
);
2555 complete(&lun
->lun_shutdown_comp
);
2560 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
2562 struct task_struct
*kt
;
2564 kt
= kthread_run(transport_clear_lun_thread
, lun
,
2565 "tcm_cl_%u", lun
->unpacked_lun
);
2567 pr_err("Unable to start clear_lun thread\n");
2570 wait_for_completion(&lun
->lun_shutdown_comp
);
2576 * transport_wait_for_tasks - wait for completion to occur
2577 * @cmd: command to wait
2579 * Called from frontend fabric context to wait for storage engine
2580 * to pause and/or release frontend generated struct se_cmd.
2582 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2584 unsigned long flags
;
2586 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2587 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2588 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2589 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2593 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2594 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2595 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2599 * If we are already stopped due to an external event (ie: LUN shutdown)
2600 * sleep until the connection can have the passed struct se_cmd back.
2601 * The cmd->transport_lun_stopped_sem will be upped by
2602 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2603 * has completed its operation on the struct se_cmd.
2605 if (cmd
->transport_state
& CMD_T_LUN_STOP
) {
2606 pr_debug("wait_for_tasks: Stopping"
2607 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2608 "_stop_comp); for ITT: 0x%08x\n",
2609 cmd
->se_tfo
->get_task_tag(cmd
));
2611 * There is a special case for WRITES where a FE exception +
2612 * LUN shutdown means ConfigFS context is still sleeping on
2613 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2614 * We go ahead and up transport_lun_stop_comp just to be sure
2617 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2618 complete(&cmd
->transport_lun_stop_comp
);
2619 wait_for_completion(&cmd
->transport_lun_fe_stop_comp
);
2620 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2622 target_remove_from_state_list(cmd
);
2624 * At this point, the frontend who was the originator of this
2625 * struct se_cmd, now owns the structure and can be released through
2626 * normal means below.
2628 pr_debug("wait_for_tasks: Stopped"
2629 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2630 "stop_comp); for ITT: 0x%08x\n",
2631 cmd
->se_tfo
->get_task_tag(cmd
));
2633 cmd
->transport_state
&= ~CMD_T_LUN_STOP
;
2636 if (!(cmd
->transport_state
& CMD_T_ACTIVE
)) {
2637 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2641 cmd
->transport_state
|= CMD_T_STOP
;
2643 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2644 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2645 cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
2646 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2648 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2650 wait_for_completion(&cmd
->t_transport_stop_comp
);
2652 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2653 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2655 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2656 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2657 cmd
->se_tfo
->get_task_tag(cmd
));
2659 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2663 EXPORT_SYMBOL(transport_wait_for_tasks
);
2665 static int transport_get_sense_codes(
2670 *asc
= cmd
->scsi_asc
;
2671 *ascq
= cmd
->scsi_ascq
;
2677 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2678 sense_reason_t reason
, int from_transport
)
2680 unsigned char *buffer
= cmd
->sense_buffer
;
2681 unsigned long flags
;
2682 u8 asc
= 0, ascq
= 0;
2684 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2685 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2686 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2689 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2690 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2692 if (!reason
&& from_transport
)
2695 if (!from_transport
)
2696 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2699 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2700 * SENSE KEY values from include/scsi/scsi.h
2706 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2708 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2709 /* NO ADDITIONAL SENSE INFORMATION */
2710 buffer
[SPC_ASC_KEY_OFFSET
] = 0;
2711 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0;
2713 case TCM_NON_EXISTENT_LUN
:
2716 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2717 /* ILLEGAL REQUEST */
2718 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2719 /* LOGICAL UNIT NOT SUPPORTED */
2720 buffer
[SPC_ASC_KEY_OFFSET
] = 0x25;
2722 case TCM_UNSUPPORTED_SCSI_OPCODE
:
2723 case TCM_SECTOR_COUNT_TOO_MANY
:
2726 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2727 /* ILLEGAL REQUEST */
2728 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2729 /* INVALID COMMAND OPERATION CODE */
2730 buffer
[SPC_ASC_KEY_OFFSET
] = 0x20;
2732 case TCM_UNKNOWN_MODE_PAGE
:
2735 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2736 /* ILLEGAL REQUEST */
2737 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2738 /* INVALID FIELD IN CDB */
2739 buffer
[SPC_ASC_KEY_OFFSET
] = 0x24;
2741 case TCM_CHECK_CONDITION_ABORT_CMD
:
2744 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2745 /* ABORTED COMMAND */
2746 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2747 /* BUS DEVICE RESET FUNCTION OCCURRED */
2748 buffer
[SPC_ASC_KEY_OFFSET
] = 0x29;
2749 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x03;
2751 case TCM_INCORRECT_AMOUNT_OF_DATA
:
2754 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2755 /* ABORTED COMMAND */
2756 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2758 buffer
[SPC_ASC_KEY_OFFSET
] = 0x0c;
2759 /* NOT ENOUGH UNSOLICITED DATA */
2760 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x0d;
2762 case TCM_INVALID_CDB_FIELD
:
2765 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2766 /* ILLEGAL REQUEST */
2767 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2768 /* INVALID FIELD IN CDB */
2769 buffer
[SPC_ASC_KEY_OFFSET
] = 0x24;
2771 case TCM_INVALID_PARAMETER_LIST
:
2774 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2775 /* ILLEGAL REQUEST */
2776 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2777 /* INVALID FIELD IN PARAMETER LIST */
2778 buffer
[SPC_ASC_KEY_OFFSET
] = 0x26;
2780 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
2783 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2784 /* ILLEGAL REQUEST */
2785 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2786 /* PARAMETER LIST LENGTH ERROR */
2787 buffer
[SPC_ASC_KEY_OFFSET
] = 0x1a;
2789 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
2792 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2793 /* ABORTED COMMAND */
2794 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2796 buffer
[SPC_ASC_KEY_OFFSET
] = 0x0c;
2797 /* UNEXPECTED_UNSOLICITED_DATA */
2798 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x0c;
2800 case TCM_SERVICE_CRC_ERROR
:
2803 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2804 /* ABORTED COMMAND */
2805 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2806 /* PROTOCOL SERVICE CRC ERROR */
2807 buffer
[SPC_ASC_KEY_OFFSET
] = 0x47;
2809 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x05;
2811 case TCM_SNACK_REJECTED
:
2814 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2815 /* ABORTED COMMAND */
2816 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2818 buffer
[SPC_ASC_KEY_OFFSET
] = 0x11;
2819 /* FAILED RETRANSMISSION REQUEST */
2820 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x13;
2822 case TCM_WRITE_PROTECTED
:
2825 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2827 buffer
[SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
2828 /* WRITE PROTECTED */
2829 buffer
[SPC_ASC_KEY_OFFSET
] = 0x27;
2831 case TCM_ADDRESS_OUT_OF_RANGE
:
2834 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2835 /* ILLEGAL REQUEST */
2836 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2837 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2838 buffer
[SPC_ASC_KEY_OFFSET
] = 0x21;
2840 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
2843 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2844 /* UNIT ATTENTION */
2845 buffer
[SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
2846 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2847 buffer
[SPC_ASC_KEY_OFFSET
] = asc
;
2848 buffer
[SPC_ASCQ_KEY_OFFSET
] = ascq
;
2850 case TCM_CHECK_CONDITION_NOT_READY
:
2853 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2855 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2856 transport_get_sense_codes(cmd
, &asc
, &ascq
);
2857 buffer
[SPC_ASC_KEY_OFFSET
] = asc
;
2858 buffer
[SPC_ASCQ_KEY_OFFSET
] = ascq
;
2860 case TCM_MISCOMPARE_VERIFY
:
2863 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2864 buffer
[SPC_SENSE_KEY_OFFSET
] = MISCOMPARE
;
2865 /* MISCOMPARE DURING VERIFY OPERATION */
2866 buffer
[SPC_ASC_KEY_OFFSET
] = 0x1d;
2867 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x00;
2869 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
2873 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2875 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2876 * Solaris initiators. Returning NOT READY instead means the
2877 * operations will be retried a finite number of times and we
2878 * can survive intermittent errors.
2880 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2881 /* LOGICAL UNIT COMMUNICATION FAILURE */
2882 buffer
[SPC_ASC_KEY_OFFSET
] = 0x08;
2886 * This code uses linux/include/scsi/scsi.h SAM status codes!
2888 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2890 * Automatically padded, this value is encoded in the fabric's
2891 * data_length response PDU containing the SCSI defined sense data.
2893 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2896 trace_target_cmd_complete(cmd
);
2897 return cmd
->se_tfo
->queue_status(cmd
);
2899 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2901 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2903 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2906 if (!send_status
|| (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
2909 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2910 cmd
->t_task_cdb
[0], cmd
->se_tfo
->get_task_tag(cmd
));
2912 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
2913 trace_target_cmd_complete(cmd
);
2914 cmd
->se_tfo
->queue_status(cmd
);
2918 EXPORT_SYMBOL(transport_check_aborted_status
);
2920 void transport_send_task_abort(struct se_cmd
*cmd
)
2922 unsigned long flags
;
2924 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2925 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
| SCF_SENT_DELAYED_TAS
)) {
2926 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2929 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2932 * If there are still expected incoming fabric WRITEs, we wait
2933 * until until they have completed before sending a TASK_ABORTED
2934 * response. This response with TASK_ABORTED status will be
2935 * queued back to fabric module by transport_check_aborted_status().
2937 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
2938 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
2939 cmd
->transport_state
|= CMD_T_ABORTED
;
2940 smp_mb__after_atomic_inc();
2943 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2945 transport_lun_remove_cmd(cmd
);
2947 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2948 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
2949 cmd
->se_tfo
->get_task_tag(cmd
));
2951 trace_target_cmd_complete(cmd
);
2952 cmd
->se_tfo
->queue_status(cmd
);
2955 static void target_tmr_work(struct work_struct
*work
)
2957 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2958 struct se_device
*dev
= cmd
->se_dev
;
2959 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
2962 switch (tmr
->function
) {
2963 case TMR_ABORT_TASK
:
2964 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
2966 case TMR_ABORT_TASK_SET
:
2968 case TMR_CLEAR_TASK_SET
:
2969 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
2972 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
2973 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
2974 TMR_FUNCTION_REJECTED
;
2976 case TMR_TARGET_WARM_RESET
:
2977 tmr
->response
= TMR_FUNCTION_REJECTED
;
2979 case TMR_TARGET_COLD_RESET
:
2980 tmr
->response
= TMR_FUNCTION_REJECTED
;
2983 pr_err("Uknown TMR function: 0x%02x.\n",
2985 tmr
->response
= TMR_FUNCTION_REJECTED
;
2989 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
2990 cmd
->se_tfo
->queue_tm_rsp(cmd
);
2992 transport_cmd_check_stop_to_fabric(cmd
);
2995 int transport_generic_handle_tmr(
2998 INIT_WORK(&cmd
->work
, target_tmr_work
);
2999 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
3002 EXPORT_SYMBOL(transport_generic_handle_tmr
);