Merge tag 'nfs-for-3.13-2' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux/fpc-iii.git] / drivers / target / target_core_transport.c
blob81e945eefbbdd0572181d84e3cd9d014895e4eb7
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/blkdev.h>
32 #include <linux/spinlock.h>
33 #include <linux/kthread.h>
34 #include <linux/in.h>
35 #include <linux/cdrom.h>
36 #include <linux/module.h>
37 #include <linux/ratelimit.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_tcq.h>
45 #include <target/target_core_base.h>
46 #include <target/target_core_backend.h>
47 #include <target/target_core_fabric.h>
48 #include <target/target_core_configfs.h>
50 #include "target_core_internal.h"
51 #include "target_core_alua.h"
52 #include "target_core_pr.h"
53 #include "target_core_ua.h"
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/target.h>
58 static struct workqueue_struct *target_completion_wq;
59 static struct kmem_cache *se_sess_cache;
60 struct kmem_cache *se_ua_cache;
61 struct kmem_cache *t10_pr_reg_cache;
62 struct kmem_cache *t10_alua_lu_gp_cache;
63 struct kmem_cache *t10_alua_lu_gp_mem_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_cache;
65 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
67 static void transport_complete_task_attr(struct se_cmd *cmd);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69 struct se_device *dev);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
73 int init_se_kmem_caches(void)
75 se_sess_cache = kmem_cache_create("se_sess_cache",
76 sizeof(struct se_session), __alignof__(struct se_session),
77 0, NULL);
78 if (!se_sess_cache) {
79 pr_err("kmem_cache_create() for struct se_session"
80 " failed\n");
81 goto out;
83 se_ua_cache = kmem_cache_create("se_ua_cache",
84 sizeof(struct se_ua), __alignof__(struct se_ua),
85 0, NULL);
86 if (!se_ua_cache) {
87 pr_err("kmem_cache_create() for struct se_ua failed\n");
88 goto out_free_sess_cache;
90 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91 sizeof(struct t10_pr_registration),
92 __alignof__(struct t10_pr_registration), 0, NULL);
93 if (!t10_pr_reg_cache) {
94 pr_err("kmem_cache_create() for struct t10_pr_registration"
95 " failed\n");
96 goto out_free_ua_cache;
98 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100 0, NULL);
101 if (!t10_alua_lu_gp_cache) {
102 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103 " failed\n");
104 goto out_free_pr_reg_cache;
106 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107 sizeof(struct t10_alua_lu_gp_member),
108 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109 if (!t10_alua_lu_gp_mem_cache) {
110 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111 "cache failed\n");
112 goto out_free_lu_gp_cache;
114 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115 sizeof(struct t10_alua_tg_pt_gp),
116 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117 if (!t10_alua_tg_pt_gp_cache) {
118 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119 "cache failed\n");
120 goto out_free_lu_gp_mem_cache;
122 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
123 "t10_alua_tg_pt_gp_mem_cache",
124 sizeof(struct t10_alua_tg_pt_gp_member),
125 __alignof__(struct t10_alua_tg_pt_gp_member),
126 0, NULL);
127 if (!t10_alua_tg_pt_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
129 "mem_t failed\n");
130 goto out_free_tg_pt_gp_cache;
133 target_completion_wq = alloc_workqueue("target_completion",
134 WQ_MEM_RECLAIM, 0);
135 if (!target_completion_wq)
136 goto out_free_tg_pt_gp_mem_cache;
138 return 0;
140 out_free_tg_pt_gp_mem_cache:
141 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
142 out_free_tg_pt_gp_cache:
143 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
144 out_free_lu_gp_mem_cache:
145 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
146 out_free_lu_gp_cache:
147 kmem_cache_destroy(t10_alua_lu_gp_cache);
148 out_free_pr_reg_cache:
149 kmem_cache_destroy(t10_pr_reg_cache);
150 out_free_ua_cache:
151 kmem_cache_destroy(se_ua_cache);
152 out_free_sess_cache:
153 kmem_cache_destroy(se_sess_cache);
154 out:
155 return -ENOMEM;
158 void release_se_kmem_caches(void)
160 destroy_workqueue(target_completion_wq);
161 kmem_cache_destroy(se_sess_cache);
162 kmem_cache_destroy(se_ua_cache);
163 kmem_cache_destroy(t10_pr_reg_cache);
164 kmem_cache_destroy(t10_alua_lu_gp_cache);
165 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
170 /* This code ensures unique mib indexes are handed out. */
171 static DEFINE_SPINLOCK(scsi_mib_index_lock);
172 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
175 * Allocate a new row index for the entry type specified
177 u32 scsi_get_new_index(scsi_index_t type)
179 u32 new_index;
181 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
183 spin_lock(&scsi_mib_index_lock);
184 new_index = ++scsi_mib_index[type];
185 spin_unlock(&scsi_mib_index_lock);
187 return new_index;
190 void transport_subsystem_check_init(void)
192 int ret;
193 static int sub_api_initialized;
195 if (sub_api_initialized)
196 return;
198 ret = request_module("target_core_iblock");
199 if (ret != 0)
200 pr_err("Unable to load target_core_iblock\n");
202 ret = request_module("target_core_file");
203 if (ret != 0)
204 pr_err("Unable to load target_core_file\n");
206 ret = request_module("target_core_pscsi");
207 if (ret != 0)
208 pr_err("Unable to load target_core_pscsi\n");
210 sub_api_initialized = 1;
213 struct se_session *transport_init_session(void)
215 struct se_session *se_sess;
217 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
218 if (!se_sess) {
219 pr_err("Unable to allocate struct se_session from"
220 " se_sess_cache\n");
221 return ERR_PTR(-ENOMEM);
223 INIT_LIST_HEAD(&se_sess->sess_list);
224 INIT_LIST_HEAD(&se_sess->sess_acl_list);
225 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
226 INIT_LIST_HEAD(&se_sess->sess_wait_list);
227 spin_lock_init(&se_sess->sess_cmd_lock);
228 kref_init(&se_sess->sess_kref);
230 return se_sess;
232 EXPORT_SYMBOL(transport_init_session);
234 int transport_alloc_session_tags(struct se_session *se_sess,
235 unsigned int tag_num, unsigned int tag_size)
237 int rc;
239 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
240 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
241 if (!se_sess->sess_cmd_map) {
242 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
243 if (!se_sess->sess_cmd_map) {
244 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
245 return -ENOMEM;
249 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
250 if (rc < 0) {
251 pr_err("Unable to init se_sess->sess_tag_pool,"
252 " tag_num: %u\n", tag_num);
253 if (is_vmalloc_addr(se_sess->sess_cmd_map))
254 vfree(se_sess->sess_cmd_map);
255 else
256 kfree(se_sess->sess_cmd_map);
257 se_sess->sess_cmd_map = NULL;
258 return -ENOMEM;
261 return 0;
263 EXPORT_SYMBOL(transport_alloc_session_tags);
265 struct se_session *transport_init_session_tags(unsigned int tag_num,
266 unsigned int tag_size)
268 struct se_session *se_sess;
269 int rc;
271 se_sess = transport_init_session();
272 if (IS_ERR(se_sess))
273 return se_sess;
275 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
276 if (rc < 0) {
277 transport_free_session(se_sess);
278 return ERR_PTR(-ENOMEM);
281 return se_sess;
283 EXPORT_SYMBOL(transport_init_session_tags);
286 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
288 void __transport_register_session(
289 struct se_portal_group *se_tpg,
290 struct se_node_acl *se_nacl,
291 struct se_session *se_sess,
292 void *fabric_sess_ptr)
294 unsigned char buf[PR_REG_ISID_LEN];
296 se_sess->se_tpg = se_tpg;
297 se_sess->fabric_sess_ptr = fabric_sess_ptr;
299 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
301 * Only set for struct se_session's that will actually be moving I/O.
302 * eg: *NOT* discovery sessions.
304 if (se_nacl) {
306 * If the fabric module supports an ISID based TransportID,
307 * save this value in binary from the fabric I_T Nexus now.
309 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
310 memset(&buf[0], 0, PR_REG_ISID_LEN);
311 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
312 &buf[0], PR_REG_ISID_LEN);
313 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
315 kref_get(&se_nacl->acl_kref);
317 spin_lock_irq(&se_nacl->nacl_sess_lock);
319 * The se_nacl->nacl_sess pointer will be set to the
320 * last active I_T Nexus for each struct se_node_acl.
322 se_nacl->nacl_sess = se_sess;
324 list_add_tail(&se_sess->sess_acl_list,
325 &se_nacl->acl_sess_list);
326 spin_unlock_irq(&se_nacl->nacl_sess_lock);
328 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
330 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
331 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
333 EXPORT_SYMBOL(__transport_register_session);
335 void transport_register_session(
336 struct se_portal_group *se_tpg,
337 struct se_node_acl *se_nacl,
338 struct se_session *se_sess,
339 void *fabric_sess_ptr)
341 unsigned long flags;
343 spin_lock_irqsave(&se_tpg->session_lock, flags);
344 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
345 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
347 EXPORT_SYMBOL(transport_register_session);
349 static void target_release_session(struct kref *kref)
351 struct se_session *se_sess = container_of(kref,
352 struct se_session, sess_kref);
353 struct se_portal_group *se_tpg = se_sess->se_tpg;
355 se_tpg->se_tpg_tfo->close_session(se_sess);
358 void target_get_session(struct se_session *se_sess)
360 kref_get(&se_sess->sess_kref);
362 EXPORT_SYMBOL(target_get_session);
364 void target_put_session(struct se_session *se_sess)
366 struct se_portal_group *tpg = se_sess->se_tpg;
368 if (tpg->se_tpg_tfo->put_session != NULL) {
369 tpg->se_tpg_tfo->put_session(se_sess);
370 return;
372 kref_put(&se_sess->sess_kref, target_release_session);
374 EXPORT_SYMBOL(target_put_session);
376 static void target_complete_nacl(struct kref *kref)
378 struct se_node_acl *nacl = container_of(kref,
379 struct se_node_acl, acl_kref);
381 complete(&nacl->acl_free_comp);
384 void target_put_nacl(struct se_node_acl *nacl)
386 kref_put(&nacl->acl_kref, target_complete_nacl);
389 void transport_deregister_session_configfs(struct se_session *se_sess)
391 struct se_node_acl *se_nacl;
392 unsigned long flags;
394 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
396 se_nacl = se_sess->se_node_acl;
397 if (se_nacl) {
398 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
399 if (se_nacl->acl_stop == 0)
400 list_del(&se_sess->sess_acl_list);
402 * If the session list is empty, then clear the pointer.
403 * Otherwise, set the struct se_session pointer from the tail
404 * element of the per struct se_node_acl active session list.
406 if (list_empty(&se_nacl->acl_sess_list))
407 se_nacl->nacl_sess = NULL;
408 else {
409 se_nacl->nacl_sess = container_of(
410 se_nacl->acl_sess_list.prev,
411 struct se_session, sess_acl_list);
413 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
416 EXPORT_SYMBOL(transport_deregister_session_configfs);
418 void transport_free_session(struct se_session *se_sess)
420 if (se_sess->sess_cmd_map) {
421 percpu_ida_destroy(&se_sess->sess_tag_pool);
422 if (is_vmalloc_addr(se_sess->sess_cmd_map))
423 vfree(se_sess->sess_cmd_map);
424 else
425 kfree(se_sess->sess_cmd_map);
427 kmem_cache_free(se_sess_cache, se_sess);
429 EXPORT_SYMBOL(transport_free_session);
431 void transport_deregister_session(struct se_session *se_sess)
433 struct se_portal_group *se_tpg = se_sess->se_tpg;
434 struct target_core_fabric_ops *se_tfo;
435 struct se_node_acl *se_nacl;
436 unsigned long flags;
437 bool comp_nacl = true;
439 if (!se_tpg) {
440 transport_free_session(se_sess);
441 return;
443 se_tfo = se_tpg->se_tpg_tfo;
445 spin_lock_irqsave(&se_tpg->session_lock, flags);
446 list_del(&se_sess->sess_list);
447 se_sess->se_tpg = NULL;
448 se_sess->fabric_sess_ptr = NULL;
449 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
452 * Determine if we need to do extra work for this initiator node's
453 * struct se_node_acl if it had been previously dynamically generated.
455 se_nacl = se_sess->se_node_acl;
457 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
458 if (se_nacl && se_nacl->dynamic_node_acl) {
459 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
460 list_del(&se_nacl->acl_list);
461 se_tpg->num_node_acls--;
462 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
463 core_tpg_wait_for_nacl_pr_ref(se_nacl);
464 core_free_device_list_for_node(se_nacl, se_tpg);
465 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
467 comp_nacl = false;
468 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
471 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
473 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
474 se_tpg->se_tpg_tfo->get_fabric_name());
476 * If last kref is dropping now for an explict NodeACL, awake sleeping
477 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
478 * removal context.
480 if (se_nacl && comp_nacl == true)
481 target_put_nacl(se_nacl);
483 transport_free_session(se_sess);
485 EXPORT_SYMBOL(transport_deregister_session);
488 * Called with cmd->t_state_lock held.
490 static void target_remove_from_state_list(struct se_cmd *cmd)
492 struct se_device *dev = cmd->se_dev;
493 unsigned long flags;
495 if (!dev)
496 return;
498 if (cmd->transport_state & CMD_T_BUSY)
499 return;
501 spin_lock_irqsave(&dev->execute_task_lock, flags);
502 if (cmd->state_active) {
503 list_del(&cmd->state_list);
504 cmd->state_active = false;
506 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
509 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
510 bool write_pending)
512 unsigned long flags;
514 spin_lock_irqsave(&cmd->t_state_lock, flags);
515 if (write_pending)
516 cmd->t_state = TRANSPORT_WRITE_PENDING;
519 * Determine if IOCTL context caller in requesting the stopping of this
520 * command for LUN shutdown purposes.
522 if (cmd->transport_state & CMD_T_LUN_STOP) {
523 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
524 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
526 cmd->transport_state &= ~CMD_T_ACTIVE;
527 if (remove_from_lists)
528 target_remove_from_state_list(cmd);
529 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
531 complete(&cmd->transport_lun_stop_comp);
532 return 1;
535 if (remove_from_lists) {
536 target_remove_from_state_list(cmd);
539 * Clear struct se_cmd->se_lun before the handoff to FE.
541 cmd->se_lun = NULL;
545 * Determine if frontend context caller is requesting the stopping of
546 * this command for frontend exceptions.
548 if (cmd->transport_state & CMD_T_STOP) {
549 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
550 __func__, __LINE__,
551 cmd->se_tfo->get_task_tag(cmd));
553 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
555 complete(&cmd->t_transport_stop_comp);
556 return 1;
559 cmd->transport_state &= ~CMD_T_ACTIVE;
560 if (remove_from_lists) {
562 * Some fabric modules like tcm_loop can release
563 * their internally allocated I/O reference now and
564 * struct se_cmd now.
566 * Fabric modules are expected to return '1' here if the
567 * se_cmd being passed is released at this point,
568 * or zero if not being released.
570 if (cmd->se_tfo->check_stop_free != NULL) {
571 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
572 return cmd->se_tfo->check_stop_free(cmd);
576 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
577 return 0;
580 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
582 return transport_cmd_check_stop(cmd, true, false);
585 static void transport_lun_remove_cmd(struct se_cmd *cmd)
587 struct se_lun *lun = cmd->se_lun;
588 unsigned long flags;
590 if (!lun)
591 return;
593 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
594 if (!list_empty(&cmd->se_lun_node))
595 list_del_init(&cmd->se_lun_node);
596 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
599 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
601 if (transport_cmd_check_stop_to_fabric(cmd))
602 return;
603 if (remove)
604 transport_put_cmd(cmd);
607 static void target_complete_failure_work(struct work_struct *work)
609 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
611 transport_generic_request_failure(cmd,
612 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
616 * Used when asking transport to copy Sense Data from the underlying
617 * Linux/SCSI struct scsi_cmnd
619 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
621 struct se_device *dev = cmd->se_dev;
623 WARN_ON(!cmd->se_lun);
625 if (!dev)
626 return NULL;
628 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
629 return NULL;
631 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
633 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
634 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
635 return cmd->sense_buffer;
638 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
640 struct se_device *dev = cmd->se_dev;
641 int success = scsi_status == GOOD;
642 unsigned long flags;
644 cmd->scsi_status = scsi_status;
647 spin_lock_irqsave(&cmd->t_state_lock, flags);
648 cmd->transport_state &= ~CMD_T_BUSY;
650 if (dev && dev->transport->transport_complete) {
651 dev->transport->transport_complete(cmd,
652 cmd->t_data_sg,
653 transport_get_sense_buffer(cmd));
654 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
655 success = 1;
659 * See if we are waiting to complete for an exception condition.
661 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
662 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
663 complete(&cmd->task_stop_comp);
664 return;
667 if (!success)
668 cmd->transport_state |= CMD_T_FAILED;
671 * Check for case where an explict ABORT_TASK has been received
672 * and transport_wait_for_tasks() will be waiting for completion..
674 if (cmd->transport_state & CMD_T_ABORTED &&
675 cmd->transport_state & CMD_T_STOP) {
676 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
677 complete(&cmd->t_transport_stop_comp);
678 return;
679 } else if (cmd->transport_state & CMD_T_FAILED) {
680 INIT_WORK(&cmd->work, target_complete_failure_work);
681 } else {
682 INIT_WORK(&cmd->work, target_complete_ok_work);
685 cmd->t_state = TRANSPORT_COMPLETE;
686 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
687 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
689 queue_work(target_completion_wq, &cmd->work);
691 EXPORT_SYMBOL(target_complete_cmd);
693 static void target_add_to_state_list(struct se_cmd *cmd)
695 struct se_device *dev = cmd->se_dev;
696 unsigned long flags;
698 spin_lock_irqsave(&dev->execute_task_lock, flags);
699 if (!cmd->state_active) {
700 list_add_tail(&cmd->state_list, &dev->state_list);
701 cmd->state_active = true;
703 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
707 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
709 static void transport_write_pending_qf(struct se_cmd *cmd);
710 static void transport_complete_qf(struct se_cmd *cmd);
712 void target_qf_do_work(struct work_struct *work)
714 struct se_device *dev = container_of(work, struct se_device,
715 qf_work_queue);
716 LIST_HEAD(qf_cmd_list);
717 struct se_cmd *cmd, *cmd_tmp;
719 spin_lock_irq(&dev->qf_cmd_lock);
720 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
721 spin_unlock_irq(&dev->qf_cmd_lock);
723 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
724 list_del(&cmd->se_qf_node);
725 atomic_dec(&dev->dev_qf_count);
726 smp_mb__after_atomic_dec();
728 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
729 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
730 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
731 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
732 : "UNKNOWN");
734 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
735 transport_write_pending_qf(cmd);
736 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
737 transport_complete_qf(cmd);
741 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
743 switch (cmd->data_direction) {
744 case DMA_NONE:
745 return "NONE";
746 case DMA_FROM_DEVICE:
747 return "READ";
748 case DMA_TO_DEVICE:
749 return "WRITE";
750 case DMA_BIDIRECTIONAL:
751 return "BIDI";
752 default:
753 break;
756 return "UNKNOWN";
759 void transport_dump_dev_state(
760 struct se_device *dev,
761 char *b,
762 int *bl)
764 *bl += sprintf(b + *bl, "Status: ");
765 if (dev->export_count)
766 *bl += sprintf(b + *bl, "ACTIVATED");
767 else
768 *bl += sprintf(b + *bl, "DEACTIVATED");
770 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
771 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
772 dev->dev_attrib.block_size,
773 dev->dev_attrib.hw_max_sectors);
774 *bl += sprintf(b + *bl, " ");
777 void transport_dump_vpd_proto_id(
778 struct t10_vpd *vpd,
779 unsigned char *p_buf,
780 int p_buf_len)
782 unsigned char buf[VPD_TMP_BUF_SIZE];
783 int len;
785 memset(buf, 0, VPD_TMP_BUF_SIZE);
786 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
788 switch (vpd->protocol_identifier) {
789 case 0x00:
790 sprintf(buf+len, "Fibre Channel\n");
791 break;
792 case 0x10:
793 sprintf(buf+len, "Parallel SCSI\n");
794 break;
795 case 0x20:
796 sprintf(buf+len, "SSA\n");
797 break;
798 case 0x30:
799 sprintf(buf+len, "IEEE 1394\n");
800 break;
801 case 0x40:
802 sprintf(buf+len, "SCSI Remote Direct Memory Access"
803 " Protocol\n");
804 break;
805 case 0x50:
806 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
807 break;
808 case 0x60:
809 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
810 break;
811 case 0x70:
812 sprintf(buf+len, "Automation/Drive Interface Transport"
813 " Protocol\n");
814 break;
815 case 0x80:
816 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
817 break;
818 default:
819 sprintf(buf+len, "Unknown 0x%02x\n",
820 vpd->protocol_identifier);
821 break;
824 if (p_buf)
825 strncpy(p_buf, buf, p_buf_len);
826 else
827 pr_debug("%s", buf);
830 void
831 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
834 * Check if the Protocol Identifier Valid (PIV) bit is set..
836 * from spc3r23.pdf section 7.5.1
838 if (page_83[1] & 0x80) {
839 vpd->protocol_identifier = (page_83[0] & 0xf0);
840 vpd->protocol_identifier_set = 1;
841 transport_dump_vpd_proto_id(vpd, NULL, 0);
844 EXPORT_SYMBOL(transport_set_vpd_proto_id);
846 int transport_dump_vpd_assoc(
847 struct t10_vpd *vpd,
848 unsigned char *p_buf,
849 int p_buf_len)
851 unsigned char buf[VPD_TMP_BUF_SIZE];
852 int ret = 0;
853 int len;
855 memset(buf, 0, VPD_TMP_BUF_SIZE);
856 len = sprintf(buf, "T10 VPD Identifier Association: ");
858 switch (vpd->association) {
859 case 0x00:
860 sprintf(buf+len, "addressed logical unit\n");
861 break;
862 case 0x10:
863 sprintf(buf+len, "target port\n");
864 break;
865 case 0x20:
866 sprintf(buf+len, "SCSI target device\n");
867 break;
868 default:
869 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
870 ret = -EINVAL;
871 break;
874 if (p_buf)
875 strncpy(p_buf, buf, p_buf_len);
876 else
877 pr_debug("%s", buf);
879 return ret;
882 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
885 * The VPD identification association..
887 * from spc3r23.pdf Section 7.6.3.1 Table 297
889 vpd->association = (page_83[1] & 0x30);
890 return transport_dump_vpd_assoc(vpd, NULL, 0);
892 EXPORT_SYMBOL(transport_set_vpd_assoc);
894 int transport_dump_vpd_ident_type(
895 struct t10_vpd *vpd,
896 unsigned char *p_buf,
897 int p_buf_len)
899 unsigned char buf[VPD_TMP_BUF_SIZE];
900 int ret = 0;
901 int len;
903 memset(buf, 0, VPD_TMP_BUF_SIZE);
904 len = sprintf(buf, "T10 VPD Identifier Type: ");
906 switch (vpd->device_identifier_type) {
907 case 0x00:
908 sprintf(buf+len, "Vendor specific\n");
909 break;
910 case 0x01:
911 sprintf(buf+len, "T10 Vendor ID based\n");
912 break;
913 case 0x02:
914 sprintf(buf+len, "EUI-64 based\n");
915 break;
916 case 0x03:
917 sprintf(buf+len, "NAA\n");
918 break;
919 case 0x04:
920 sprintf(buf+len, "Relative target port identifier\n");
921 break;
922 case 0x08:
923 sprintf(buf+len, "SCSI name string\n");
924 break;
925 default:
926 sprintf(buf+len, "Unsupported: 0x%02x\n",
927 vpd->device_identifier_type);
928 ret = -EINVAL;
929 break;
932 if (p_buf) {
933 if (p_buf_len < strlen(buf)+1)
934 return -EINVAL;
935 strncpy(p_buf, buf, p_buf_len);
936 } else {
937 pr_debug("%s", buf);
940 return ret;
943 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
946 * The VPD identifier type..
948 * from spc3r23.pdf Section 7.6.3.1 Table 298
950 vpd->device_identifier_type = (page_83[1] & 0x0f);
951 return transport_dump_vpd_ident_type(vpd, NULL, 0);
953 EXPORT_SYMBOL(transport_set_vpd_ident_type);
955 int transport_dump_vpd_ident(
956 struct t10_vpd *vpd,
957 unsigned char *p_buf,
958 int p_buf_len)
960 unsigned char buf[VPD_TMP_BUF_SIZE];
961 int ret = 0;
963 memset(buf, 0, VPD_TMP_BUF_SIZE);
965 switch (vpd->device_identifier_code_set) {
966 case 0x01: /* Binary */
967 snprintf(buf, sizeof(buf),
968 "T10 VPD Binary Device Identifier: %s\n",
969 &vpd->device_identifier[0]);
970 break;
971 case 0x02: /* ASCII */
972 snprintf(buf, sizeof(buf),
973 "T10 VPD ASCII Device Identifier: %s\n",
974 &vpd->device_identifier[0]);
975 break;
976 case 0x03: /* UTF-8 */
977 snprintf(buf, sizeof(buf),
978 "T10 VPD UTF-8 Device Identifier: %s\n",
979 &vpd->device_identifier[0]);
980 break;
981 default:
982 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
983 " 0x%02x", vpd->device_identifier_code_set);
984 ret = -EINVAL;
985 break;
988 if (p_buf)
989 strncpy(p_buf, buf, p_buf_len);
990 else
991 pr_debug("%s", buf);
993 return ret;
997 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
999 static const char hex_str[] = "0123456789abcdef";
1000 int j = 0, i = 4; /* offset to start of the identifier */
1003 * The VPD Code Set (encoding)
1005 * from spc3r23.pdf Section 7.6.3.1 Table 296
1007 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1008 switch (vpd->device_identifier_code_set) {
1009 case 0x01: /* Binary */
1010 vpd->device_identifier[j++] =
1011 hex_str[vpd->device_identifier_type];
1012 while (i < (4 + page_83[3])) {
1013 vpd->device_identifier[j++] =
1014 hex_str[(page_83[i] & 0xf0) >> 4];
1015 vpd->device_identifier[j++] =
1016 hex_str[page_83[i] & 0x0f];
1017 i++;
1019 break;
1020 case 0x02: /* ASCII */
1021 case 0x03: /* UTF-8 */
1022 while (i < (4 + page_83[3]))
1023 vpd->device_identifier[j++] = page_83[i++];
1024 break;
1025 default:
1026 break;
1029 return transport_dump_vpd_ident(vpd, NULL, 0);
1031 EXPORT_SYMBOL(transport_set_vpd_ident);
1033 sense_reason_t
1034 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1036 struct se_device *dev = cmd->se_dev;
1038 if (cmd->unknown_data_length) {
1039 cmd->data_length = size;
1040 } else if (size != cmd->data_length) {
1041 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1042 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1043 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1044 cmd->data_length, size, cmd->t_task_cdb[0]);
1046 if (cmd->data_direction == DMA_TO_DEVICE) {
1047 pr_err("Rejecting underflow/overflow"
1048 " WRITE data\n");
1049 return TCM_INVALID_CDB_FIELD;
1052 * Reject READ_* or WRITE_* with overflow/underflow for
1053 * type SCF_SCSI_DATA_CDB.
1055 if (dev->dev_attrib.block_size != 512) {
1056 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1057 " CDB on non 512-byte sector setup subsystem"
1058 " plugin: %s\n", dev->transport->name);
1059 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1060 return TCM_INVALID_CDB_FIELD;
1063 * For the overflow case keep the existing fabric provided
1064 * ->data_length. Otherwise for the underflow case, reset
1065 * ->data_length to the smaller SCSI expected data transfer
1066 * length.
1068 if (size > cmd->data_length) {
1069 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1070 cmd->residual_count = (size - cmd->data_length);
1071 } else {
1072 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1073 cmd->residual_count = (cmd->data_length - size);
1074 cmd->data_length = size;
1078 return 0;
1083 * Used by fabric modules containing a local struct se_cmd within their
1084 * fabric dependent per I/O descriptor.
1086 void transport_init_se_cmd(
1087 struct se_cmd *cmd,
1088 struct target_core_fabric_ops *tfo,
1089 struct se_session *se_sess,
1090 u32 data_length,
1091 int data_direction,
1092 int task_attr,
1093 unsigned char *sense_buffer)
1095 INIT_LIST_HEAD(&cmd->se_lun_node);
1096 INIT_LIST_HEAD(&cmd->se_delayed_node);
1097 INIT_LIST_HEAD(&cmd->se_qf_node);
1098 INIT_LIST_HEAD(&cmd->se_cmd_list);
1099 INIT_LIST_HEAD(&cmd->state_list);
1100 init_completion(&cmd->transport_lun_fe_stop_comp);
1101 init_completion(&cmd->transport_lun_stop_comp);
1102 init_completion(&cmd->t_transport_stop_comp);
1103 init_completion(&cmd->cmd_wait_comp);
1104 init_completion(&cmd->task_stop_comp);
1105 spin_lock_init(&cmd->t_state_lock);
1106 cmd->transport_state = CMD_T_DEV_ACTIVE;
1108 cmd->se_tfo = tfo;
1109 cmd->se_sess = se_sess;
1110 cmd->data_length = data_length;
1111 cmd->data_direction = data_direction;
1112 cmd->sam_task_attr = task_attr;
1113 cmd->sense_buffer = sense_buffer;
1115 cmd->state_active = false;
1117 EXPORT_SYMBOL(transport_init_se_cmd);
1119 static sense_reason_t
1120 transport_check_alloc_task_attr(struct se_cmd *cmd)
1122 struct se_device *dev = cmd->se_dev;
1125 * Check if SAM Task Attribute emulation is enabled for this
1126 * struct se_device storage object
1128 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1129 return 0;
1131 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1132 pr_debug("SAM Task Attribute ACA"
1133 " emulation is not supported\n");
1134 return TCM_INVALID_CDB_FIELD;
1137 * Used to determine when ORDERED commands should go from
1138 * Dormant to Active status.
1140 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1141 smp_mb__after_atomic_inc();
1142 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1143 cmd->se_ordered_id, cmd->sam_task_attr,
1144 dev->transport->name);
1145 return 0;
1148 sense_reason_t
1149 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1151 struct se_device *dev = cmd->se_dev;
1152 sense_reason_t ret;
1155 * Ensure that the received CDB is less than the max (252 + 8) bytes
1156 * for VARIABLE_LENGTH_CMD
1158 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1159 pr_err("Received SCSI CDB with command_size: %d that"
1160 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1161 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1162 return TCM_INVALID_CDB_FIELD;
1165 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1166 * allocate the additional extended CDB buffer now.. Otherwise
1167 * setup the pointer from __t_task_cdb to t_task_cdb.
1169 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1170 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1171 GFP_KERNEL);
1172 if (!cmd->t_task_cdb) {
1173 pr_err("Unable to allocate cmd->t_task_cdb"
1174 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1175 scsi_command_size(cdb),
1176 (unsigned long)sizeof(cmd->__t_task_cdb));
1177 return TCM_OUT_OF_RESOURCES;
1179 } else
1180 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1182 * Copy the original CDB into cmd->
1184 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1186 trace_target_sequencer_start(cmd);
1189 * Check for an existing UNIT ATTENTION condition
1191 ret = target_scsi3_ua_check(cmd);
1192 if (ret)
1193 return ret;
1195 ret = target_alua_state_check(cmd);
1196 if (ret)
1197 return ret;
1199 ret = target_check_reservation(cmd);
1200 if (ret) {
1201 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1202 return ret;
1205 ret = dev->transport->parse_cdb(cmd);
1206 if (ret)
1207 return ret;
1209 ret = transport_check_alloc_task_attr(cmd);
1210 if (ret)
1211 return ret;
1213 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1215 spin_lock(&cmd->se_lun->lun_sep_lock);
1216 if (cmd->se_lun->lun_sep)
1217 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1218 spin_unlock(&cmd->se_lun->lun_sep_lock);
1219 return 0;
1221 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1224 * Used by fabric module frontends to queue tasks directly.
1225 * Many only be used from process context only
1227 int transport_handle_cdb_direct(
1228 struct se_cmd *cmd)
1230 sense_reason_t ret;
1232 if (!cmd->se_lun) {
1233 dump_stack();
1234 pr_err("cmd->se_lun is NULL\n");
1235 return -EINVAL;
1237 if (in_interrupt()) {
1238 dump_stack();
1239 pr_err("transport_generic_handle_cdb cannot be called"
1240 " from interrupt context\n");
1241 return -EINVAL;
1244 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1245 * outstanding descriptors are handled correctly during shutdown via
1246 * transport_wait_for_tasks()
1248 * Also, we don't take cmd->t_state_lock here as we only expect
1249 * this to be called for initial descriptor submission.
1251 cmd->t_state = TRANSPORT_NEW_CMD;
1252 cmd->transport_state |= CMD_T_ACTIVE;
1255 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1256 * so follow TRANSPORT_NEW_CMD processing thread context usage
1257 * and call transport_generic_request_failure() if necessary..
1259 ret = transport_generic_new_cmd(cmd);
1260 if (ret)
1261 transport_generic_request_failure(cmd, ret);
1262 return 0;
1264 EXPORT_SYMBOL(transport_handle_cdb_direct);
1266 sense_reason_t
1267 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1268 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1270 if (!sgl || !sgl_count)
1271 return 0;
1274 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1275 * scatterlists already have been set to follow what the fabric
1276 * passes for the original expected data transfer length.
1278 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1279 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1280 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1281 return TCM_INVALID_CDB_FIELD;
1284 cmd->t_data_sg = sgl;
1285 cmd->t_data_nents = sgl_count;
1287 if (sgl_bidi && sgl_bidi_count) {
1288 cmd->t_bidi_data_sg = sgl_bidi;
1289 cmd->t_bidi_data_nents = sgl_bidi_count;
1291 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1292 return 0;
1296 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1297 * se_cmd + use pre-allocated SGL memory.
1299 * @se_cmd: command descriptor to submit
1300 * @se_sess: associated se_sess for endpoint
1301 * @cdb: pointer to SCSI CDB
1302 * @sense: pointer to SCSI sense buffer
1303 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1304 * @data_length: fabric expected data transfer length
1305 * @task_addr: SAM task attribute
1306 * @data_dir: DMA data direction
1307 * @flags: flags for command submission from target_sc_flags_tables
1308 * @sgl: struct scatterlist memory for unidirectional mapping
1309 * @sgl_count: scatterlist count for unidirectional mapping
1310 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1311 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1313 * Returns non zero to signal active I/O shutdown failure. All other
1314 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1315 * but still return zero here.
1317 * This may only be called from process context, and also currently
1318 * assumes internal allocation of fabric payload buffer by target-core.
1320 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1321 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1322 u32 data_length, int task_attr, int data_dir, int flags,
1323 struct scatterlist *sgl, u32 sgl_count,
1324 struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1326 struct se_portal_group *se_tpg;
1327 sense_reason_t rc;
1328 int ret;
1330 se_tpg = se_sess->se_tpg;
1331 BUG_ON(!se_tpg);
1332 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1333 BUG_ON(in_interrupt());
1335 * Initialize se_cmd for target operation. From this point
1336 * exceptions are handled by sending exception status via
1337 * target_core_fabric_ops->queue_status() callback
1339 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1340 data_length, data_dir, task_attr, sense);
1341 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1342 se_cmd->unknown_data_length = 1;
1344 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1345 * se_sess->sess_cmd_list. A second kref_get here is necessary
1346 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1347 * kref_put() to happen during fabric packet acknowledgement.
1349 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1350 if (ret)
1351 return ret;
1353 * Signal bidirectional data payloads to target-core
1355 if (flags & TARGET_SCF_BIDI_OP)
1356 se_cmd->se_cmd_flags |= SCF_BIDI;
1358 * Locate se_lun pointer and attach it to struct se_cmd
1360 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1361 if (rc) {
1362 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1363 target_put_sess_cmd(se_sess, se_cmd);
1364 return 0;
1367 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1368 if (rc != 0) {
1369 transport_generic_request_failure(se_cmd, rc);
1370 return 0;
1373 * When a non zero sgl_count has been passed perform SGL passthrough
1374 * mapping for pre-allocated fabric memory instead of having target
1375 * core perform an internal SGL allocation..
1377 if (sgl_count != 0) {
1378 BUG_ON(!sgl);
1381 * A work-around for tcm_loop as some userspace code via
1382 * scsi-generic do not memset their associated read buffers,
1383 * so go ahead and do that here for type non-data CDBs. Also
1384 * note that this is currently guaranteed to be a single SGL
1385 * for this case by target core in target_setup_cmd_from_cdb()
1386 * -> transport_generic_cmd_sequencer().
1388 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1389 se_cmd->data_direction == DMA_FROM_DEVICE) {
1390 unsigned char *buf = NULL;
1392 if (sgl)
1393 buf = kmap(sg_page(sgl)) + sgl->offset;
1395 if (buf) {
1396 memset(buf, 0, sgl->length);
1397 kunmap(sg_page(sgl));
1401 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1402 sgl_bidi, sgl_bidi_count);
1403 if (rc != 0) {
1404 transport_generic_request_failure(se_cmd, rc);
1405 return 0;
1409 * Check if we need to delay processing because of ALUA
1410 * Active/NonOptimized primary access state..
1412 core_alua_check_nonop_delay(se_cmd);
1414 transport_handle_cdb_direct(se_cmd);
1415 return 0;
1417 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1420 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1422 * @se_cmd: command descriptor to submit
1423 * @se_sess: associated se_sess for endpoint
1424 * @cdb: pointer to SCSI CDB
1425 * @sense: pointer to SCSI sense buffer
1426 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1427 * @data_length: fabric expected data transfer length
1428 * @task_addr: SAM task attribute
1429 * @data_dir: DMA data direction
1430 * @flags: flags for command submission from target_sc_flags_tables
1432 * Returns non zero to signal active I/O shutdown failure. All other
1433 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1434 * but still return zero here.
1436 * This may only be called from process context, and also currently
1437 * assumes internal allocation of fabric payload buffer by target-core.
1439 * It also assumes interal target core SGL memory allocation.
1441 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1442 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1443 u32 data_length, int task_attr, int data_dir, int flags)
1445 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1446 unpacked_lun, data_length, task_attr, data_dir,
1447 flags, NULL, 0, NULL, 0);
1449 EXPORT_SYMBOL(target_submit_cmd);
1451 static void target_complete_tmr_failure(struct work_struct *work)
1453 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1455 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1456 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1458 transport_cmd_check_stop_to_fabric(se_cmd);
1462 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1463 * for TMR CDBs
1465 * @se_cmd: command descriptor to submit
1466 * @se_sess: associated se_sess for endpoint
1467 * @sense: pointer to SCSI sense buffer
1468 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1469 * @fabric_context: fabric context for TMR req
1470 * @tm_type: Type of TM request
1471 * @gfp: gfp type for caller
1472 * @tag: referenced task tag for TMR_ABORT_TASK
1473 * @flags: submit cmd flags
1475 * Callable from all contexts.
1478 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1479 unsigned char *sense, u32 unpacked_lun,
1480 void *fabric_tmr_ptr, unsigned char tm_type,
1481 gfp_t gfp, unsigned int tag, int flags)
1483 struct se_portal_group *se_tpg;
1484 int ret;
1486 se_tpg = se_sess->se_tpg;
1487 BUG_ON(!se_tpg);
1489 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1490 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1492 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1493 * allocation failure.
1495 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1496 if (ret < 0)
1497 return -ENOMEM;
1499 if (tm_type == TMR_ABORT_TASK)
1500 se_cmd->se_tmr_req->ref_task_tag = tag;
1502 /* See target_submit_cmd for commentary */
1503 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1504 if (ret) {
1505 core_tmr_release_req(se_cmd->se_tmr_req);
1506 return ret;
1509 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1510 if (ret) {
1512 * For callback during failure handling, push this work off
1513 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1515 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1516 schedule_work(&se_cmd->work);
1517 return 0;
1519 transport_generic_handle_tmr(se_cmd);
1520 return 0;
1522 EXPORT_SYMBOL(target_submit_tmr);
1525 * If the cmd is active, request it to be stopped and sleep until it
1526 * has completed.
1528 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1530 bool was_active = false;
1532 if (cmd->transport_state & CMD_T_BUSY) {
1533 cmd->transport_state |= CMD_T_REQUEST_STOP;
1534 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1536 pr_debug("cmd %p waiting to complete\n", cmd);
1537 wait_for_completion(&cmd->task_stop_comp);
1538 pr_debug("cmd %p stopped successfully\n", cmd);
1540 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1541 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1542 cmd->transport_state &= ~CMD_T_BUSY;
1543 was_active = true;
1546 return was_active;
1550 * Handle SAM-esque emulation for generic transport request failures.
1552 void transport_generic_request_failure(struct se_cmd *cmd,
1553 sense_reason_t sense_reason)
1555 int ret = 0;
1557 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1558 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1559 cmd->t_task_cdb[0]);
1560 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1561 cmd->se_tfo->get_cmd_state(cmd),
1562 cmd->t_state, sense_reason);
1563 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1564 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1565 (cmd->transport_state & CMD_T_STOP) != 0,
1566 (cmd->transport_state & CMD_T_SENT) != 0);
1569 * For SAM Task Attribute emulation for failed struct se_cmd
1571 transport_complete_task_attr(cmd);
1573 * Handle special case for COMPARE_AND_WRITE failure, where the
1574 * callback is expected to drop the per device ->caw_mutex.
1576 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1577 cmd->transport_complete_callback)
1578 cmd->transport_complete_callback(cmd);
1580 switch (sense_reason) {
1581 case TCM_NON_EXISTENT_LUN:
1582 case TCM_UNSUPPORTED_SCSI_OPCODE:
1583 case TCM_INVALID_CDB_FIELD:
1584 case TCM_INVALID_PARAMETER_LIST:
1585 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1586 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1587 case TCM_UNKNOWN_MODE_PAGE:
1588 case TCM_WRITE_PROTECTED:
1589 case TCM_ADDRESS_OUT_OF_RANGE:
1590 case TCM_CHECK_CONDITION_ABORT_CMD:
1591 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1592 case TCM_CHECK_CONDITION_NOT_READY:
1593 break;
1594 case TCM_OUT_OF_RESOURCES:
1595 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1596 break;
1597 case TCM_RESERVATION_CONFLICT:
1599 * No SENSE Data payload for this case, set SCSI Status
1600 * and queue the response to $FABRIC_MOD.
1602 * Uses linux/include/scsi/scsi.h SAM status codes defs
1604 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1606 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1607 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1608 * CONFLICT STATUS.
1610 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1612 if (cmd->se_sess &&
1613 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1614 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1615 cmd->orig_fe_lun, 0x2C,
1616 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1618 trace_target_cmd_complete(cmd);
1619 ret = cmd->se_tfo-> queue_status(cmd);
1620 if (ret == -EAGAIN || ret == -ENOMEM)
1621 goto queue_full;
1622 goto check_stop;
1623 default:
1624 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1625 cmd->t_task_cdb[0], sense_reason);
1626 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1627 break;
1630 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1631 if (ret == -EAGAIN || ret == -ENOMEM)
1632 goto queue_full;
1634 check_stop:
1635 transport_lun_remove_cmd(cmd);
1636 if (!transport_cmd_check_stop_to_fabric(cmd))
1638 return;
1640 queue_full:
1641 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1642 transport_handle_queue_full(cmd, cmd->se_dev);
1644 EXPORT_SYMBOL(transport_generic_request_failure);
1646 void __target_execute_cmd(struct se_cmd *cmd)
1648 sense_reason_t ret;
1650 if (cmd->execute_cmd) {
1651 ret = cmd->execute_cmd(cmd);
1652 if (ret) {
1653 spin_lock_irq(&cmd->t_state_lock);
1654 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1655 spin_unlock_irq(&cmd->t_state_lock);
1657 transport_generic_request_failure(cmd, ret);
1662 static bool target_handle_task_attr(struct se_cmd *cmd)
1664 struct se_device *dev = cmd->se_dev;
1666 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1667 return false;
1670 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1671 * to allow the passed struct se_cmd list of tasks to the front of the list.
1673 switch (cmd->sam_task_attr) {
1674 case MSG_HEAD_TAG:
1675 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1676 "se_ordered_id: %u\n",
1677 cmd->t_task_cdb[0], cmd->se_ordered_id);
1678 return false;
1679 case MSG_ORDERED_TAG:
1680 atomic_inc(&dev->dev_ordered_sync);
1681 smp_mb__after_atomic_inc();
1683 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1684 " se_ordered_id: %u\n",
1685 cmd->t_task_cdb[0], cmd->se_ordered_id);
1688 * Execute an ORDERED command if no other older commands
1689 * exist that need to be completed first.
1691 if (!atomic_read(&dev->simple_cmds))
1692 return false;
1693 break;
1694 default:
1696 * For SIMPLE and UNTAGGED Task Attribute commands
1698 atomic_inc(&dev->simple_cmds);
1699 smp_mb__after_atomic_inc();
1700 break;
1703 if (atomic_read(&dev->dev_ordered_sync) == 0)
1704 return false;
1706 spin_lock(&dev->delayed_cmd_lock);
1707 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1708 spin_unlock(&dev->delayed_cmd_lock);
1710 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1711 " delayed CMD list, se_ordered_id: %u\n",
1712 cmd->t_task_cdb[0], cmd->sam_task_attr,
1713 cmd->se_ordered_id);
1714 return true;
1717 void target_execute_cmd(struct se_cmd *cmd)
1720 * If the received CDB has aleady been aborted stop processing it here.
1722 if (transport_check_aborted_status(cmd, 1)) {
1723 complete(&cmd->transport_lun_stop_comp);
1724 return;
1728 * Determine if IOCTL context caller in requesting the stopping of this
1729 * command for LUN shutdown purposes.
1731 spin_lock_irq(&cmd->t_state_lock);
1732 if (cmd->transport_state & CMD_T_LUN_STOP) {
1733 pr_debug("%s:%d CMD_T_LUN_STOP for ITT: 0x%08x\n",
1734 __func__, __LINE__, cmd->se_tfo->get_task_tag(cmd));
1736 cmd->transport_state &= ~CMD_T_ACTIVE;
1737 spin_unlock_irq(&cmd->t_state_lock);
1738 complete(&cmd->transport_lun_stop_comp);
1739 return;
1742 * Determine if frontend context caller is requesting the stopping of
1743 * this command for frontend exceptions.
1745 if (cmd->transport_state & CMD_T_STOP) {
1746 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1747 __func__, __LINE__,
1748 cmd->se_tfo->get_task_tag(cmd));
1750 spin_unlock_irq(&cmd->t_state_lock);
1751 complete(&cmd->t_transport_stop_comp);
1752 return;
1755 cmd->t_state = TRANSPORT_PROCESSING;
1756 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1757 spin_unlock_irq(&cmd->t_state_lock);
1759 if (target_handle_task_attr(cmd)) {
1760 spin_lock_irq(&cmd->t_state_lock);
1761 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1762 spin_unlock_irq(&cmd->t_state_lock);
1763 return;
1766 __target_execute_cmd(cmd);
1768 EXPORT_SYMBOL(target_execute_cmd);
1771 * Process all commands up to the last received ORDERED task attribute which
1772 * requires another blocking boundary
1774 static void target_restart_delayed_cmds(struct se_device *dev)
1776 for (;;) {
1777 struct se_cmd *cmd;
1779 spin_lock(&dev->delayed_cmd_lock);
1780 if (list_empty(&dev->delayed_cmd_list)) {
1781 spin_unlock(&dev->delayed_cmd_lock);
1782 break;
1785 cmd = list_entry(dev->delayed_cmd_list.next,
1786 struct se_cmd, se_delayed_node);
1787 list_del(&cmd->se_delayed_node);
1788 spin_unlock(&dev->delayed_cmd_lock);
1790 __target_execute_cmd(cmd);
1792 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1793 break;
1798 * Called from I/O completion to determine which dormant/delayed
1799 * and ordered cmds need to have their tasks added to the execution queue.
1801 static void transport_complete_task_attr(struct se_cmd *cmd)
1803 struct se_device *dev = cmd->se_dev;
1805 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1806 return;
1808 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1809 atomic_dec(&dev->simple_cmds);
1810 smp_mb__after_atomic_dec();
1811 dev->dev_cur_ordered_id++;
1812 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1813 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1814 cmd->se_ordered_id);
1815 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1816 dev->dev_cur_ordered_id++;
1817 pr_debug("Incremented dev_cur_ordered_id: %u for"
1818 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1819 cmd->se_ordered_id);
1820 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1821 atomic_dec(&dev->dev_ordered_sync);
1822 smp_mb__after_atomic_dec();
1824 dev->dev_cur_ordered_id++;
1825 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1826 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1829 target_restart_delayed_cmds(dev);
1832 static void transport_complete_qf(struct se_cmd *cmd)
1834 int ret = 0;
1836 transport_complete_task_attr(cmd);
1838 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1839 trace_target_cmd_complete(cmd);
1840 ret = cmd->se_tfo->queue_status(cmd);
1841 if (ret)
1842 goto out;
1845 switch (cmd->data_direction) {
1846 case DMA_FROM_DEVICE:
1847 trace_target_cmd_complete(cmd);
1848 ret = cmd->se_tfo->queue_data_in(cmd);
1849 break;
1850 case DMA_TO_DEVICE:
1851 if (cmd->se_cmd_flags & SCF_BIDI) {
1852 ret = cmd->se_tfo->queue_data_in(cmd);
1853 if (ret < 0)
1854 break;
1856 /* Fall through for DMA_TO_DEVICE */
1857 case DMA_NONE:
1858 trace_target_cmd_complete(cmd);
1859 ret = cmd->se_tfo->queue_status(cmd);
1860 break;
1861 default:
1862 break;
1865 out:
1866 if (ret < 0) {
1867 transport_handle_queue_full(cmd, cmd->se_dev);
1868 return;
1870 transport_lun_remove_cmd(cmd);
1871 transport_cmd_check_stop_to_fabric(cmd);
1874 static void transport_handle_queue_full(
1875 struct se_cmd *cmd,
1876 struct se_device *dev)
1878 spin_lock_irq(&dev->qf_cmd_lock);
1879 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1880 atomic_inc(&dev->dev_qf_count);
1881 smp_mb__after_atomic_inc();
1882 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1884 schedule_work(&cmd->se_dev->qf_work_queue);
1887 static void target_complete_ok_work(struct work_struct *work)
1889 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1890 int ret;
1893 * Check if we need to move delayed/dormant tasks from cmds on the
1894 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1895 * Attribute.
1897 transport_complete_task_attr(cmd);
1900 * Check to schedule QUEUE_FULL work, or execute an existing
1901 * cmd->transport_qf_callback()
1903 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1904 schedule_work(&cmd->se_dev->qf_work_queue);
1907 * Check if we need to send a sense buffer from
1908 * the struct se_cmd in question.
1910 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1911 WARN_ON(!cmd->scsi_status);
1912 ret = transport_send_check_condition_and_sense(
1913 cmd, 0, 1);
1914 if (ret == -EAGAIN || ret == -ENOMEM)
1915 goto queue_full;
1917 transport_lun_remove_cmd(cmd);
1918 transport_cmd_check_stop_to_fabric(cmd);
1919 return;
1922 * Check for a callback, used by amongst other things
1923 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1925 if (cmd->transport_complete_callback) {
1926 sense_reason_t rc;
1928 rc = cmd->transport_complete_callback(cmd);
1929 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1930 return;
1931 } else if (rc) {
1932 ret = transport_send_check_condition_and_sense(cmd,
1933 rc, 0);
1934 if (ret == -EAGAIN || ret == -ENOMEM)
1935 goto queue_full;
1937 transport_lun_remove_cmd(cmd);
1938 transport_cmd_check_stop_to_fabric(cmd);
1939 return;
1943 switch (cmd->data_direction) {
1944 case DMA_FROM_DEVICE:
1945 spin_lock(&cmd->se_lun->lun_sep_lock);
1946 if (cmd->se_lun->lun_sep) {
1947 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1948 cmd->data_length;
1950 spin_unlock(&cmd->se_lun->lun_sep_lock);
1952 trace_target_cmd_complete(cmd);
1953 ret = cmd->se_tfo->queue_data_in(cmd);
1954 if (ret == -EAGAIN || ret == -ENOMEM)
1955 goto queue_full;
1956 break;
1957 case DMA_TO_DEVICE:
1958 spin_lock(&cmd->se_lun->lun_sep_lock);
1959 if (cmd->se_lun->lun_sep) {
1960 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1961 cmd->data_length;
1963 spin_unlock(&cmd->se_lun->lun_sep_lock);
1965 * Check if we need to send READ payload for BIDI-COMMAND
1967 if (cmd->se_cmd_flags & SCF_BIDI) {
1968 spin_lock(&cmd->se_lun->lun_sep_lock);
1969 if (cmd->se_lun->lun_sep) {
1970 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1971 cmd->data_length;
1973 spin_unlock(&cmd->se_lun->lun_sep_lock);
1974 ret = cmd->se_tfo->queue_data_in(cmd);
1975 if (ret == -EAGAIN || ret == -ENOMEM)
1976 goto queue_full;
1977 break;
1979 /* Fall through for DMA_TO_DEVICE */
1980 case DMA_NONE:
1981 trace_target_cmd_complete(cmd);
1982 ret = cmd->se_tfo->queue_status(cmd);
1983 if (ret == -EAGAIN || ret == -ENOMEM)
1984 goto queue_full;
1985 break;
1986 default:
1987 break;
1990 transport_lun_remove_cmd(cmd);
1991 transport_cmd_check_stop_to_fabric(cmd);
1992 return;
1994 queue_full:
1995 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
1996 " data_direction: %d\n", cmd, cmd->data_direction);
1997 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1998 transport_handle_queue_full(cmd, cmd->se_dev);
2001 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2003 struct scatterlist *sg;
2004 int count;
2006 for_each_sg(sgl, sg, nents, count)
2007 __free_page(sg_page(sg));
2009 kfree(sgl);
2012 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2015 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2016 * emulation, and free + reset pointers if necessary..
2018 if (!cmd->t_data_sg_orig)
2019 return;
2021 kfree(cmd->t_data_sg);
2022 cmd->t_data_sg = cmd->t_data_sg_orig;
2023 cmd->t_data_sg_orig = NULL;
2024 cmd->t_data_nents = cmd->t_data_nents_orig;
2025 cmd->t_data_nents_orig = 0;
2028 static inline void transport_free_pages(struct se_cmd *cmd)
2030 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2031 transport_reset_sgl_orig(cmd);
2032 return;
2034 transport_reset_sgl_orig(cmd);
2036 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2037 cmd->t_data_sg = NULL;
2038 cmd->t_data_nents = 0;
2040 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2041 cmd->t_bidi_data_sg = NULL;
2042 cmd->t_bidi_data_nents = 0;
2046 * transport_release_cmd - free a command
2047 * @cmd: command to free
2049 * This routine unconditionally frees a command, and reference counting
2050 * or list removal must be done in the caller.
2052 static int transport_release_cmd(struct se_cmd *cmd)
2054 BUG_ON(!cmd->se_tfo);
2056 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2057 core_tmr_release_req(cmd->se_tmr_req);
2058 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2059 kfree(cmd->t_task_cdb);
2061 * If this cmd has been setup with target_get_sess_cmd(), drop
2062 * the kref and call ->release_cmd() in kref callback.
2064 return target_put_sess_cmd(cmd->se_sess, cmd);
2068 * transport_put_cmd - release a reference to a command
2069 * @cmd: command to release
2071 * This routine releases our reference to the command and frees it if possible.
2073 static int transport_put_cmd(struct se_cmd *cmd)
2075 transport_free_pages(cmd);
2076 return transport_release_cmd(cmd);
2079 void *transport_kmap_data_sg(struct se_cmd *cmd)
2081 struct scatterlist *sg = cmd->t_data_sg;
2082 struct page **pages;
2083 int i;
2086 * We need to take into account a possible offset here for fabrics like
2087 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2088 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2090 if (!cmd->t_data_nents)
2091 return NULL;
2093 BUG_ON(!sg);
2094 if (cmd->t_data_nents == 1)
2095 return kmap(sg_page(sg)) + sg->offset;
2097 /* >1 page. use vmap */
2098 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2099 if (!pages)
2100 return NULL;
2102 /* convert sg[] to pages[] */
2103 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2104 pages[i] = sg_page(sg);
2107 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2108 kfree(pages);
2109 if (!cmd->t_data_vmap)
2110 return NULL;
2112 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2114 EXPORT_SYMBOL(transport_kmap_data_sg);
2116 void transport_kunmap_data_sg(struct se_cmd *cmd)
2118 if (!cmd->t_data_nents) {
2119 return;
2120 } else if (cmd->t_data_nents == 1) {
2121 kunmap(sg_page(cmd->t_data_sg));
2122 return;
2125 vunmap(cmd->t_data_vmap);
2126 cmd->t_data_vmap = NULL;
2128 EXPORT_SYMBOL(transport_kunmap_data_sg);
2131 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2132 bool zero_page)
2134 struct scatterlist *sg;
2135 struct page *page;
2136 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2137 unsigned int nent;
2138 int i = 0;
2140 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2141 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2142 if (!sg)
2143 return -ENOMEM;
2145 sg_init_table(sg, nent);
2147 while (length) {
2148 u32 page_len = min_t(u32, length, PAGE_SIZE);
2149 page = alloc_page(GFP_KERNEL | zero_flag);
2150 if (!page)
2151 goto out;
2153 sg_set_page(&sg[i], page, page_len, 0);
2154 length -= page_len;
2155 i++;
2157 *sgl = sg;
2158 *nents = nent;
2159 return 0;
2161 out:
2162 while (i > 0) {
2163 i--;
2164 __free_page(sg_page(&sg[i]));
2166 kfree(sg);
2167 return -ENOMEM;
2171 * Allocate any required resources to execute the command. For writes we
2172 * might not have the payload yet, so notify the fabric via a call to
2173 * ->write_pending instead. Otherwise place it on the execution queue.
2175 sense_reason_t
2176 transport_generic_new_cmd(struct se_cmd *cmd)
2178 int ret = 0;
2181 * Determine is the TCM fabric module has already allocated physical
2182 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2183 * beforehand.
2185 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2186 cmd->data_length) {
2187 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2189 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2190 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2191 u32 bidi_length;
2193 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2194 bidi_length = cmd->t_task_nolb *
2195 cmd->se_dev->dev_attrib.block_size;
2196 else
2197 bidi_length = cmd->data_length;
2199 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2200 &cmd->t_bidi_data_nents,
2201 bidi_length, zero_flag);
2202 if (ret < 0)
2203 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2206 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2207 cmd->data_length, zero_flag);
2208 if (ret < 0)
2209 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2212 * If this command is not a write we can execute it right here,
2213 * for write buffers we need to notify the fabric driver first
2214 * and let it call back once the write buffers are ready.
2216 target_add_to_state_list(cmd);
2217 if (cmd->data_direction != DMA_TO_DEVICE) {
2218 target_execute_cmd(cmd);
2219 return 0;
2221 transport_cmd_check_stop(cmd, false, true);
2223 ret = cmd->se_tfo->write_pending(cmd);
2224 if (ret == -EAGAIN || ret == -ENOMEM)
2225 goto queue_full;
2227 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2228 WARN_ON(ret);
2230 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2232 queue_full:
2233 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2234 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2235 transport_handle_queue_full(cmd, cmd->se_dev);
2236 return 0;
2238 EXPORT_SYMBOL(transport_generic_new_cmd);
2240 static void transport_write_pending_qf(struct se_cmd *cmd)
2242 int ret;
2244 ret = cmd->se_tfo->write_pending(cmd);
2245 if (ret == -EAGAIN || ret == -ENOMEM) {
2246 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2247 cmd);
2248 transport_handle_queue_full(cmd, cmd->se_dev);
2252 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2254 unsigned long flags;
2255 int ret = 0;
2257 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2258 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2259 transport_wait_for_tasks(cmd);
2261 ret = transport_release_cmd(cmd);
2262 } else {
2263 if (wait_for_tasks)
2264 transport_wait_for_tasks(cmd);
2266 * Handle WRITE failure case where transport_generic_new_cmd()
2267 * has already added se_cmd to state_list, but fabric has
2268 * failed command before I/O submission.
2270 if (cmd->state_active) {
2271 spin_lock_irqsave(&cmd->t_state_lock, flags);
2272 target_remove_from_state_list(cmd);
2273 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2276 if (cmd->se_lun)
2277 transport_lun_remove_cmd(cmd);
2279 ret = transport_put_cmd(cmd);
2281 return ret;
2283 EXPORT_SYMBOL(transport_generic_free_cmd);
2285 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2286 * @se_sess: session to reference
2287 * @se_cmd: command descriptor to add
2288 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2290 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2291 bool ack_kref)
2293 unsigned long flags;
2294 int ret = 0;
2296 kref_init(&se_cmd->cmd_kref);
2298 * Add a second kref if the fabric caller is expecting to handle
2299 * fabric acknowledgement that requires two target_put_sess_cmd()
2300 * invocations before se_cmd descriptor release.
2302 if (ack_kref == true) {
2303 kref_get(&se_cmd->cmd_kref);
2304 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2307 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2308 if (se_sess->sess_tearing_down) {
2309 ret = -ESHUTDOWN;
2310 goto out;
2312 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2313 out:
2314 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2315 return ret;
2317 EXPORT_SYMBOL(target_get_sess_cmd);
2319 static void target_release_cmd_kref(struct kref *kref)
2321 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2322 struct se_session *se_sess = se_cmd->se_sess;
2324 if (list_empty(&se_cmd->se_cmd_list)) {
2325 spin_unlock(&se_sess->sess_cmd_lock);
2326 se_cmd->se_tfo->release_cmd(se_cmd);
2327 return;
2329 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2330 spin_unlock(&se_sess->sess_cmd_lock);
2331 complete(&se_cmd->cmd_wait_comp);
2332 return;
2334 list_del(&se_cmd->se_cmd_list);
2335 spin_unlock(&se_sess->sess_cmd_lock);
2337 se_cmd->se_tfo->release_cmd(se_cmd);
2340 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2341 * @se_sess: session to reference
2342 * @se_cmd: command descriptor to drop
2344 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2346 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2347 &se_sess->sess_cmd_lock);
2349 EXPORT_SYMBOL(target_put_sess_cmd);
2351 /* target_sess_cmd_list_set_waiting - Flag all commands in
2352 * sess_cmd_list to complete cmd_wait_comp. Set
2353 * sess_tearing_down so no more commands are queued.
2354 * @se_sess: session to flag
2356 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2358 struct se_cmd *se_cmd;
2359 unsigned long flags;
2361 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2362 if (se_sess->sess_tearing_down) {
2363 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2364 return;
2366 se_sess->sess_tearing_down = 1;
2367 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2369 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2370 se_cmd->cmd_wait_set = 1;
2372 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2374 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2376 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2377 * @se_sess: session to wait for active I/O
2379 void target_wait_for_sess_cmds(struct se_session *se_sess)
2381 struct se_cmd *se_cmd, *tmp_cmd;
2382 unsigned long flags;
2384 list_for_each_entry_safe(se_cmd, tmp_cmd,
2385 &se_sess->sess_wait_list, se_cmd_list) {
2386 list_del(&se_cmd->se_cmd_list);
2388 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2389 " %d\n", se_cmd, se_cmd->t_state,
2390 se_cmd->se_tfo->get_cmd_state(se_cmd));
2392 wait_for_completion(&se_cmd->cmd_wait_comp);
2393 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2394 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2395 se_cmd->se_tfo->get_cmd_state(se_cmd));
2397 se_cmd->se_tfo->release_cmd(se_cmd);
2400 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2401 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2402 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2405 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2407 /* transport_lun_wait_for_tasks():
2409 * Called from ConfigFS context to stop the passed struct se_cmd to allow
2410 * an struct se_lun to be successfully shutdown.
2412 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
2414 unsigned long flags;
2415 int ret = 0;
2418 * If the frontend has already requested this struct se_cmd to
2419 * be stopped, we can safely ignore this struct se_cmd.
2421 spin_lock_irqsave(&cmd->t_state_lock, flags);
2422 if (cmd->transport_state & CMD_T_STOP) {
2423 cmd->transport_state &= ~CMD_T_LUN_STOP;
2425 pr_debug("ConfigFS ITT[0x%08x] - CMD_T_STOP, skipping\n",
2426 cmd->se_tfo->get_task_tag(cmd));
2427 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2428 transport_cmd_check_stop(cmd, false, false);
2429 return -EPERM;
2431 cmd->transport_state |= CMD_T_LUN_FE_STOP;
2432 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2434 // XXX: audit task_flags checks.
2435 spin_lock_irqsave(&cmd->t_state_lock, flags);
2436 if ((cmd->transport_state & CMD_T_BUSY) &&
2437 (cmd->transport_state & CMD_T_SENT)) {
2438 if (!target_stop_cmd(cmd, &flags))
2439 ret++;
2441 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2443 pr_debug("ConfigFS: cmd: %p stop tasks ret:"
2444 " %d\n", cmd, ret);
2445 if (!ret) {
2446 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
2447 cmd->se_tfo->get_task_tag(cmd));
2448 wait_for_completion(&cmd->transport_lun_stop_comp);
2449 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
2450 cmd->se_tfo->get_task_tag(cmd));
2453 return 0;
2456 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
2458 struct se_cmd *cmd = NULL;
2459 unsigned long lun_flags, cmd_flags;
2461 * Do exception processing and return CHECK_CONDITION status to the
2462 * Initiator Port.
2464 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2465 while (!list_empty(&lun->lun_cmd_list)) {
2466 cmd = list_first_entry(&lun->lun_cmd_list,
2467 struct se_cmd, se_lun_node);
2468 list_del_init(&cmd->se_lun_node);
2470 spin_lock(&cmd->t_state_lock);
2471 pr_debug("SE_LUN[%d] - Setting cmd->transport"
2472 "_lun_stop for ITT: 0x%08x\n",
2473 cmd->se_lun->unpacked_lun,
2474 cmd->se_tfo->get_task_tag(cmd));
2475 cmd->transport_state |= CMD_T_LUN_STOP;
2476 spin_unlock(&cmd->t_state_lock);
2478 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2480 if (!cmd->se_lun) {
2481 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
2482 cmd->se_tfo->get_task_tag(cmd),
2483 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2484 BUG();
2487 * If the Storage engine still owns the iscsi_cmd_t, determine
2488 * and/or stop its context.
2490 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
2491 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
2492 cmd->se_tfo->get_task_tag(cmd));
2494 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
2495 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2496 continue;
2499 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
2500 "_wait_for_tasks(): SUCCESS\n",
2501 cmd->se_lun->unpacked_lun,
2502 cmd->se_tfo->get_task_tag(cmd));
2504 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2505 if (!(cmd->transport_state & CMD_T_DEV_ACTIVE)) {
2506 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2507 goto check_cond;
2509 cmd->transport_state &= ~CMD_T_DEV_ACTIVE;
2510 target_remove_from_state_list(cmd);
2511 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2514 * The Storage engine stopped this struct se_cmd before it was
2515 * send to the fabric frontend for delivery back to the
2516 * Initiator Node. Return this SCSI CDB back with an
2517 * CHECK_CONDITION status.
2519 check_cond:
2520 transport_send_check_condition_and_sense(cmd,
2521 TCM_NON_EXISTENT_LUN, 0);
2523 * If the fabric frontend is waiting for this iscsi_cmd_t to
2524 * be released, notify the waiting thread now that LU has
2525 * finished accessing it.
2527 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
2528 if (cmd->transport_state & CMD_T_LUN_FE_STOP) {
2529 pr_debug("SE_LUN[%d] - Detected FE stop for"
2530 " struct se_cmd: %p ITT: 0x%08x\n",
2531 lun->unpacked_lun,
2532 cmd, cmd->se_tfo->get_task_tag(cmd));
2534 spin_unlock_irqrestore(&cmd->t_state_lock,
2535 cmd_flags);
2536 transport_cmd_check_stop(cmd, false, false);
2537 complete(&cmd->transport_lun_fe_stop_comp);
2538 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2539 continue;
2541 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
2542 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
2544 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
2545 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
2547 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
2550 static int transport_clear_lun_thread(void *p)
2552 struct se_lun *lun = p;
2554 __transport_clear_lun_from_sessions(lun);
2555 complete(&lun->lun_shutdown_comp);
2557 return 0;
2560 int transport_clear_lun_from_sessions(struct se_lun *lun)
2562 struct task_struct *kt;
2564 kt = kthread_run(transport_clear_lun_thread, lun,
2565 "tcm_cl_%u", lun->unpacked_lun);
2566 if (IS_ERR(kt)) {
2567 pr_err("Unable to start clear_lun thread\n");
2568 return PTR_ERR(kt);
2570 wait_for_completion(&lun->lun_shutdown_comp);
2572 return 0;
2576 * transport_wait_for_tasks - wait for completion to occur
2577 * @cmd: command to wait
2579 * Called from frontend fabric context to wait for storage engine
2580 * to pause and/or release frontend generated struct se_cmd.
2582 bool transport_wait_for_tasks(struct se_cmd *cmd)
2584 unsigned long flags;
2586 spin_lock_irqsave(&cmd->t_state_lock, flags);
2587 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2588 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2589 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2590 return false;
2593 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2594 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2595 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2596 return false;
2599 * If we are already stopped due to an external event (ie: LUN shutdown)
2600 * sleep until the connection can have the passed struct se_cmd back.
2601 * The cmd->transport_lun_stopped_sem will be upped by
2602 * transport_clear_lun_from_sessions() once the ConfigFS context caller
2603 * has completed its operation on the struct se_cmd.
2605 if (cmd->transport_state & CMD_T_LUN_STOP) {
2606 pr_debug("wait_for_tasks: Stopping"
2607 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
2608 "_stop_comp); for ITT: 0x%08x\n",
2609 cmd->se_tfo->get_task_tag(cmd));
2611 * There is a special case for WRITES where a FE exception +
2612 * LUN shutdown means ConfigFS context is still sleeping on
2613 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
2614 * We go ahead and up transport_lun_stop_comp just to be sure
2615 * here.
2617 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2618 complete(&cmd->transport_lun_stop_comp);
2619 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
2620 spin_lock_irqsave(&cmd->t_state_lock, flags);
2622 target_remove_from_state_list(cmd);
2624 * At this point, the frontend who was the originator of this
2625 * struct se_cmd, now owns the structure and can be released through
2626 * normal means below.
2628 pr_debug("wait_for_tasks: Stopped"
2629 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
2630 "stop_comp); for ITT: 0x%08x\n",
2631 cmd->se_tfo->get_task_tag(cmd));
2633 cmd->transport_state &= ~CMD_T_LUN_STOP;
2636 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2637 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2638 return false;
2641 cmd->transport_state |= CMD_T_STOP;
2643 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2644 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2645 cmd, cmd->se_tfo->get_task_tag(cmd),
2646 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2648 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2650 wait_for_completion(&cmd->t_transport_stop_comp);
2652 spin_lock_irqsave(&cmd->t_state_lock, flags);
2653 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2655 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2656 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2657 cmd->se_tfo->get_task_tag(cmd));
2659 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2661 return true;
2663 EXPORT_SYMBOL(transport_wait_for_tasks);
2665 static int transport_get_sense_codes(
2666 struct se_cmd *cmd,
2667 u8 *asc,
2668 u8 *ascq)
2670 *asc = cmd->scsi_asc;
2671 *ascq = cmd->scsi_ascq;
2673 return 0;
2677 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2678 sense_reason_t reason, int from_transport)
2680 unsigned char *buffer = cmd->sense_buffer;
2681 unsigned long flags;
2682 u8 asc = 0, ascq = 0;
2684 spin_lock_irqsave(&cmd->t_state_lock, flags);
2685 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2686 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2687 return 0;
2689 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2690 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2692 if (!reason && from_transport)
2693 goto after_reason;
2695 if (!from_transport)
2696 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2699 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2700 * SENSE KEY values from include/scsi/scsi.h
2702 switch (reason) {
2703 case TCM_NO_SENSE:
2704 /* CURRENT ERROR */
2705 buffer[0] = 0x70;
2706 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2707 /* Not Ready */
2708 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2709 /* NO ADDITIONAL SENSE INFORMATION */
2710 buffer[SPC_ASC_KEY_OFFSET] = 0;
2711 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2712 break;
2713 case TCM_NON_EXISTENT_LUN:
2714 /* CURRENT ERROR */
2715 buffer[0] = 0x70;
2716 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2717 /* ILLEGAL REQUEST */
2718 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2719 /* LOGICAL UNIT NOT SUPPORTED */
2720 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2721 break;
2722 case TCM_UNSUPPORTED_SCSI_OPCODE:
2723 case TCM_SECTOR_COUNT_TOO_MANY:
2724 /* CURRENT ERROR */
2725 buffer[0] = 0x70;
2726 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2727 /* ILLEGAL REQUEST */
2728 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2729 /* INVALID COMMAND OPERATION CODE */
2730 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2731 break;
2732 case TCM_UNKNOWN_MODE_PAGE:
2733 /* CURRENT ERROR */
2734 buffer[0] = 0x70;
2735 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2736 /* ILLEGAL REQUEST */
2737 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2738 /* INVALID FIELD IN CDB */
2739 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2740 break;
2741 case TCM_CHECK_CONDITION_ABORT_CMD:
2742 /* CURRENT ERROR */
2743 buffer[0] = 0x70;
2744 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2745 /* ABORTED COMMAND */
2746 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2747 /* BUS DEVICE RESET FUNCTION OCCURRED */
2748 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2749 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2750 break;
2751 case TCM_INCORRECT_AMOUNT_OF_DATA:
2752 /* CURRENT ERROR */
2753 buffer[0] = 0x70;
2754 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2755 /* ABORTED COMMAND */
2756 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2757 /* WRITE ERROR */
2758 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2759 /* NOT ENOUGH UNSOLICITED DATA */
2760 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2761 break;
2762 case TCM_INVALID_CDB_FIELD:
2763 /* CURRENT ERROR */
2764 buffer[0] = 0x70;
2765 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2766 /* ILLEGAL REQUEST */
2767 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2768 /* INVALID FIELD IN CDB */
2769 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2770 break;
2771 case TCM_INVALID_PARAMETER_LIST:
2772 /* CURRENT ERROR */
2773 buffer[0] = 0x70;
2774 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2775 /* ILLEGAL REQUEST */
2776 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2777 /* INVALID FIELD IN PARAMETER LIST */
2778 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2779 break;
2780 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2781 /* CURRENT ERROR */
2782 buffer[0] = 0x70;
2783 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2784 /* ILLEGAL REQUEST */
2785 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2786 /* PARAMETER LIST LENGTH ERROR */
2787 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2788 break;
2789 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2790 /* CURRENT ERROR */
2791 buffer[0] = 0x70;
2792 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2793 /* ABORTED COMMAND */
2794 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2795 /* WRITE ERROR */
2796 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2797 /* UNEXPECTED_UNSOLICITED_DATA */
2798 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2799 break;
2800 case TCM_SERVICE_CRC_ERROR:
2801 /* CURRENT ERROR */
2802 buffer[0] = 0x70;
2803 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2804 /* ABORTED COMMAND */
2805 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2806 /* PROTOCOL SERVICE CRC ERROR */
2807 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2808 /* N/A */
2809 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2810 break;
2811 case TCM_SNACK_REJECTED:
2812 /* CURRENT ERROR */
2813 buffer[0] = 0x70;
2814 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2815 /* ABORTED COMMAND */
2816 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2817 /* READ ERROR */
2818 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2819 /* FAILED RETRANSMISSION REQUEST */
2820 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2821 break;
2822 case TCM_WRITE_PROTECTED:
2823 /* CURRENT ERROR */
2824 buffer[0] = 0x70;
2825 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2826 /* DATA PROTECT */
2827 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2828 /* WRITE PROTECTED */
2829 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2830 break;
2831 case TCM_ADDRESS_OUT_OF_RANGE:
2832 /* CURRENT ERROR */
2833 buffer[0] = 0x70;
2834 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2835 /* ILLEGAL REQUEST */
2836 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2837 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2838 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2839 break;
2840 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2841 /* CURRENT ERROR */
2842 buffer[0] = 0x70;
2843 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2844 /* UNIT ATTENTION */
2845 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2846 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2847 buffer[SPC_ASC_KEY_OFFSET] = asc;
2848 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2849 break;
2850 case TCM_CHECK_CONDITION_NOT_READY:
2851 /* CURRENT ERROR */
2852 buffer[0] = 0x70;
2853 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2854 /* Not Ready */
2855 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2856 transport_get_sense_codes(cmd, &asc, &ascq);
2857 buffer[SPC_ASC_KEY_OFFSET] = asc;
2858 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2859 break;
2860 case TCM_MISCOMPARE_VERIFY:
2861 /* CURRENT ERROR */
2862 buffer[0] = 0x70;
2863 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2864 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2865 /* MISCOMPARE DURING VERIFY OPERATION */
2866 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2867 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2868 break;
2869 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2870 default:
2871 /* CURRENT ERROR */
2872 buffer[0] = 0x70;
2873 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2875 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2876 * Solaris initiators. Returning NOT READY instead means the
2877 * operations will be retried a finite number of times and we
2878 * can survive intermittent errors.
2880 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2881 /* LOGICAL UNIT COMMUNICATION FAILURE */
2882 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2883 break;
2886 * This code uses linux/include/scsi/scsi.h SAM status codes!
2888 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2890 * Automatically padded, this value is encoded in the fabric's
2891 * data_length response PDU containing the SCSI defined sense data.
2893 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2895 after_reason:
2896 trace_target_cmd_complete(cmd);
2897 return cmd->se_tfo->queue_status(cmd);
2899 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2901 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2903 if (!(cmd->transport_state & CMD_T_ABORTED))
2904 return 0;
2906 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2907 return 1;
2909 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2910 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2912 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2913 trace_target_cmd_complete(cmd);
2914 cmd->se_tfo->queue_status(cmd);
2916 return 1;
2918 EXPORT_SYMBOL(transport_check_aborted_status);
2920 void transport_send_task_abort(struct se_cmd *cmd)
2922 unsigned long flags;
2924 spin_lock_irqsave(&cmd->t_state_lock, flags);
2925 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2926 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2927 return;
2929 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2932 * If there are still expected incoming fabric WRITEs, we wait
2933 * until until they have completed before sending a TASK_ABORTED
2934 * response. This response with TASK_ABORTED status will be
2935 * queued back to fabric module by transport_check_aborted_status().
2937 if (cmd->data_direction == DMA_TO_DEVICE) {
2938 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2939 cmd->transport_state |= CMD_T_ABORTED;
2940 smp_mb__after_atomic_inc();
2943 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2945 transport_lun_remove_cmd(cmd);
2947 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2948 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2949 cmd->se_tfo->get_task_tag(cmd));
2951 trace_target_cmd_complete(cmd);
2952 cmd->se_tfo->queue_status(cmd);
2955 static void target_tmr_work(struct work_struct *work)
2957 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2958 struct se_device *dev = cmd->se_dev;
2959 struct se_tmr_req *tmr = cmd->se_tmr_req;
2960 int ret;
2962 switch (tmr->function) {
2963 case TMR_ABORT_TASK:
2964 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2965 break;
2966 case TMR_ABORT_TASK_SET:
2967 case TMR_CLEAR_ACA:
2968 case TMR_CLEAR_TASK_SET:
2969 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2970 break;
2971 case TMR_LUN_RESET:
2972 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2973 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2974 TMR_FUNCTION_REJECTED;
2975 break;
2976 case TMR_TARGET_WARM_RESET:
2977 tmr->response = TMR_FUNCTION_REJECTED;
2978 break;
2979 case TMR_TARGET_COLD_RESET:
2980 tmr->response = TMR_FUNCTION_REJECTED;
2981 break;
2982 default:
2983 pr_err("Uknown TMR function: 0x%02x.\n",
2984 tmr->function);
2985 tmr->response = TMR_FUNCTION_REJECTED;
2986 break;
2989 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2990 cmd->se_tfo->queue_tm_rsp(cmd);
2992 transport_cmd_check_stop_to_fabric(cmd);
2995 int transport_generic_handle_tmr(
2996 struct se_cmd *cmd)
2998 INIT_WORK(&cmd->work, target_tmr_work);
2999 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3000 return 0;
3002 EXPORT_SYMBOL(transport_generic_handle_tmr);