coresight: cti: Fix error handling in probe
[linux/fpc-iii.git] / mm / readahead.c
blob3c9a8dd7c56c86f9b868d8d9d7e745602a38ea75
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
5 * Copyright (C) 2002, Linus Torvalds
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
11 #include <linux/kernel.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
17 #include <linux/task_io_accounting_ops.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 #include <linux/mm_inline.h>
23 #include <linux/blk-cgroup.h>
24 #include <linux/fadvise.h>
25 #include <linux/sched/mm.h>
27 #include "internal.h"
30 * Initialise a struct file's readahead state. Assumes that the caller has
31 * memset *ra to zero.
33 void
34 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
36 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
37 ra->prev_pos = -1;
39 EXPORT_SYMBOL_GPL(file_ra_state_init);
42 * see if a page needs releasing upon read_cache_pages() failure
43 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
44 * before calling, such as the NFS fs marking pages that are cached locally
45 * on disk, thus we need to give the fs a chance to clean up in the event of
46 * an error
48 static void read_cache_pages_invalidate_page(struct address_space *mapping,
49 struct page *page)
51 if (page_has_private(page)) {
52 if (!trylock_page(page))
53 BUG();
54 page->mapping = mapping;
55 do_invalidatepage(page, 0, PAGE_SIZE);
56 page->mapping = NULL;
57 unlock_page(page);
59 put_page(page);
63 * release a list of pages, invalidating them first if need be
65 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
66 struct list_head *pages)
68 struct page *victim;
70 while (!list_empty(pages)) {
71 victim = lru_to_page(pages);
72 list_del(&victim->lru);
73 read_cache_pages_invalidate_page(mapping, victim);
77 /**
78 * read_cache_pages - populate an address space with some pages & start reads against them
79 * @mapping: the address_space
80 * @pages: The address of a list_head which contains the target pages. These
81 * pages have their ->index populated and are otherwise uninitialised.
82 * @filler: callback routine for filling a single page.
83 * @data: private data for the callback routine.
85 * Hides the details of the LRU cache etc from the filesystems.
87 * Returns: %0 on success, error return by @filler otherwise
89 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
90 int (*filler)(void *, struct page *), void *data)
92 struct page *page;
93 int ret = 0;
95 while (!list_empty(pages)) {
96 page = lru_to_page(pages);
97 list_del(&page->lru);
98 if (add_to_page_cache_lru(page, mapping, page->index,
99 readahead_gfp_mask(mapping))) {
100 read_cache_pages_invalidate_page(mapping, page);
101 continue;
103 put_page(page);
105 ret = filler(data, page);
106 if (unlikely(ret)) {
107 read_cache_pages_invalidate_pages(mapping, pages);
108 break;
110 task_io_account_read(PAGE_SIZE);
112 return ret;
115 EXPORT_SYMBOL(read_cache_pages);
117 static void read_pages(struct readahead_control *rac, struct list_head *pages,
118 bool skip_page)
120 const struct address_space_operations *aops = rac->mapping->a_ops;
121 struct page *page;
122 struct blk_plug plug;
124 if (!readahead_count(rac))
125 goto out;
127 blk_start_plug(&plug);
129 if (aops->readahead) {
130 aops->readahead(rac);
131 /* Clean up the remaining pages */
132 while ((page = readahead_page(rac))) {
133 unlock_page(page);
134 put_page(page);
136 } else if (aops->readpages) {
137 aops->readpages(rac->file, rac->mapping, pages,
138 readahead_count(rac));
139 /* Clean up the remaining pages */
140 put_pages_list(pages);
141 rac->_index += rac->_nr_pages;
142 rac->_nr_pages = 0;
143 } else {
144 while ((page = readahead_page(rac))) {
145 aops->readpage(rac->file, page);
146 put_page(page);
150 blk_finish_plug(&plug);
152 BUG_ON(!list_empty(pages));
153 BUG_ON(readahead_count(rac));
155 out:
156 if (skip_page)
157 rac->_index++;
161 * page_cache_readahead_unbounded - Start unchecked readahead.
162 * @mapping: File address space.
163 * @file: This instance of the open file; used for authentication.
164 * @index: First page index to read.
165 * @nr_to_read: The number of pages to read.
166 * @lookahead_size: Where to start the next readahead.
168 * This function is for filesystems to call when they want to start
169 * readahead beyond a file's stated i_size. This is almost certainly
170 * not the function you want to call. Use page_cache_async_readahead()
171 * or page_cache_sync_readahead() instead.
173 * Context: File is referenced by caller. Mutexes may be held by caller.
174 * May sleep, but will not reenter filesystem to reclaim memory.
176 void page_cache_readahead_unbounded(struct address_space *mapping,
177 struct file *file, pgoff_t index, unsigned long nr_to_read,
178 unsigned long lookahead_size)
180 LIST_HEAD(page_pool);
181 gfp_t gfp_mask = readahead_gfp_mask(mapping);
182 struct readahead_control rac = {
183 .mapping = mapping,
184 .file = file,
185 ._index = index,
187 unsigned long i;
190 * Partway through the readahead operation, we will have added
191 * locked pages to the page cache, but will not yet have submitted
192 * them for I/O. Adding another page may need to allocate memory,
193 * which can trigger memory reclaim. Telling the VM we're in
194 * the middle of a filesystem operation will cause it to not
195 * touch file-backed pages, preventing a deadlock. Most (all?)
196 * filesystems already specify __GFP_NOFS in their mapping's
197 * gfp_mask, but let's be explicit here.
199 unsigned int nofs = memalloc_nofs_save();
202 * Preallocate as many pages as we will need.
204 for (i = 0; i < nr_to_read; i++) {
205 struct page *page = xa_load(&mapping->i_pages, index + i);
207 BUG_ON(index + i != rac._index + rac._nr_pages);
209 if (page && !xa_is_value(page)) {
211 * Page already present? Kick off the current batch
212 * of contiguous pages before continuing with the
213 * next batch. This page may be the one we would
214 * have intended to mark as Readahead, but we don't
215 * have a stable reference to this page, and it's
216 * not worth getting one just for that.
218 read_pages(&rac, &page_pool, true);
219 continue;
222 page = __page_cache_alloc(gfp_mask);
223 if (!page)
224 break;
225 if (mapping->a_ops->readpages) {
226 page->index = index + i;
227 list_add(&page->lru, &page_pool);
228 } else if (add_to_page_cache_lru(page, mapping, index + i,
229 gfp_mask) < 0) {
230 put_page(page);
231 read_pages(&rac, &page_pool, true);
232 continue;
234 if (i == nr_to_read - lookahead_size)
235 SetPageReadahead(page);
236 rac._nr_pages++;
240 * Now start the IO. We ignore I/O errors - if the page is not
241 * uptodate then the caller will launch readpage again, and
242 * will then handle the error.
244 read_pages(&rac, &page_pool, false);
245 memalloc_nofs_restore(nofs);
247 EXPORT_SYMBOL_GPL(page_cache_readahead_unbounded);
250 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates
251 * the pages first, then submits them for I/O. This avoids the very bad
252 * behaviour which would occur if page allocations are causing VM writeback.
253 * We really don't want to intermingle reads and writes like that.
255 void __do_page_cache_readahead(struct address_space *mapping,
256 struct file *file, pgoff_t index, unsigned long nr_to_read,
257 unsigned long lookahead_size)
259 struct inode *inode = mapping->host;
260 loff_t isize = i_size_read(inode);
261 pgoff_t end_index; /* The last page we want to read */
263 if (isize == 0)
264 return;
266 end_index = (isize - 1) >> PAGE_SHIFT;
267 if (index > end_index)
268 return;
269 /* Don't read past the page containing the last byte of the file */
270 if (nr_to_read > end_index - index)
271 nr_to_read = end_index - index + 1;
273 page_cache_readahead_unbounded(mapping, file, index, nr_to_read,
274 lookahead_size);
278 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
279 * memory at once.
281 void force_page_cache_readahead(struct address_space *mapping,
282 struct file *filp, pgoff_t index, unsigned long nr_to_read)
284 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
285 struct file_ra_state *ra = &filp->f_ra;
286 unsigned long max_pages;
288 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages &&
289 !mapping->a_ops->readahead))
290 return;
293 * If the request exceeds the readahead window, allow the read to
294 * be up to the optimal hardware IO size
296 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
297 nr_to_read = min(nr_to_read, max_pages);
298 while (nr_to_read) {
299 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
301 if (this_chunk > nr_to_read)
302 this_chunk = nr_to_read;
303 __do_page_cache_readahead(mapping, filp, index, this_chunk, 0);
305 index += this_chunk;
306 nr_to_read -= this_chunk;
311 * Set the initial window size, round to next power of 2 and square
312 * for small size, x 4 for medium, and x 2 for large
313 * for 128k (32 page) max ra
314 * 1-8 page = 32k initial, > 8 page = 128k initial
316 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
318 unsigned long newsize = roundup_pow_of_two(size);
320 if (newsize <= max / 32)
321 newsize = newsize * 4;
322 else if (newsize <= max / 4)
323 newsize = newsize * 2;
324 else
325 newsize = max;
327 return newsize;
331 * Get the previous window size, ramp it up, and
332 * return it as the new window size.
334 static unsigned long get_next_ra_size(struct file_ra_state *ra,
335 unsigned long max)
337 unsigned long cur = ra->size;
339 if (cur < max / 16)
340 return 4 * cur;
341 if (cur <= max / 2)
342 return 2 * cur;
343 return max;
347 * On-demand readahead design.
349 * The fields in struct file_ra_state represent the most-recently-executed
350 * readahead attempt:
352 * |<----- async_size ---------|
353 * |------------------- size -------------------->|
354 * |==================#===========================|
355 * ^start ^page marked with PG_readahead
357 * To overlap application thinking time and disk I/O time, we do
358 * `readahead pipelining': Do not wait until the application consumed all
359 * readahead pages and stalled on the missing page at readahead_index;
360 * Instead, submit an asynchronous readahead I/O as soon as there are
361 * only async_size pages left in the readahead window. Normally async_size
362 * will be equal to size, for maximum pipelining.
364 * In interleaved sequential reads, concurrent streams on the same fd can
365 * be invalidating each other's readahead state. So we flag the new readahead
366 * page at (start+size-async_size) with PG_readahead, and use it as readahead
367 * indicator. The flag won't be set on already cached pages, to avoid the
368 * readahead-for-nothing fuss, saving pointless page cache lookups.
370 * prev_pos tracks the last visited byte in the _previous_ read request.
371 * It should be maintained by the caller, and will be used for detecting
372 * small random reads. Note that the readahead algorithm checks loosely
373 * for sequential patterns. Hence interleaved reads might be served as
374 * sequential ones.
376 * There is a special-case: if the first page which the application tries to
377 * read happens to be the first page of the file, it is assumed that a linear
378 * read is about to happen and the window is immediately set to the initial size
379 * based on I/O request size and the max_readahead.
381 * The code ramps up the readahead size aggressively at first, but slow down as
382 * it approaches max_readhead.
386 * Count contiguously cached pages from @index-1 to @index-@max,
387 * this count is a conservative estimation of
388 * - length of the sequential read sequence, or
389 * - thrashing threshold in memory tight systems
391 static pgoff_t count_history_pages(struct address_space *mapping,
392 pgoff_t index, unsigned long max)
394 pgoff_t head;
396 rcu_read_lock();
397 head = page_cache_prev_miss(mapping, index - 1, max);
398 rcu_read_unlock();
400 return index - 1 - head;
404 * page cache context based read-ahead
406 static int try_context_readahead(struct address_space *mapping,
407 struct file_ra_state *ra,
408 pgoff_t index,
409 unsigned long req_size,
410 unsigned long max)
412 pgoff_t size;
414 size = count_history_pages(mapping, index, max);
417 * not enough history pages:
418 * it could be a random read
420 if (size <= req_size)
421 return 0;
424 * starts from beginning of file:
425 * it is a strong indication of long-run stream (or whole-file-read)
427 if (size >= index)
428 size *= 2;
430 ra->start = index;
431 ra->size = min(size + req_size, max);
432 ra->async_size = 1;
434 return 1;
438 * A minimal readahead algorithm for trivial sequential/random reads.
440 static void ondemand_readahead(struct address_space *mapping,
441 struct file_ra_state *ra, struct file *filp,
442 bool hit_readahead_marker, pgoff_t index,
443 unsigned long req_size)
445 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
446 unsigned long max_pages = ra->ra_pages;
447 unsigned long add_pages;
448 pgoff_t prev_index;
451 * If the request exceeds the readahead window, allow the read to
452 * be up to the optimal hardware IO size
454 if (req_size > max_pages && bdi->io_pages > max_pages)
455 max_pages = min(req_size, bdi->io_pages);
458 * start of file
460 if (!index)
461 goto initial_readahead;
464 * It's the expected callback index, assume sequential access.
465 * Ramp up sizes, and push forward the readahead window.
467 if ((index == (ra->start + ra->size - ra->async_size) ||
468 index == (ra->start + ra->size))) {
469 ra->start += ra->size;
470 ra->size = get_next_ra_size(ra, max_pages);
471 ra->async_size = ra->size;
472 goto readit;
476 * Hit a marked page without valid readahead state.
477 * E.g. interleaved reads.
478 * Query the pagecache for async_size, which normally equals to
479 * readahead size. Ramp it up and use it as the new readahead size.
481 if (hit_readahead_marker) {
482 pgoff_t start;
484 rcu_read_lock();
485 start = page_cache_next_miss(mapping, index + 1, max_pages);
486 rcu_read_unlock();
488 if (!start || start - index > max_pages)
489 return;
491 ra->start = start;
492 ra->size = start - index; /* old async_size */
493 ra->size += req_size;
494 ra->size = get_next_ra_size(ra, max_pages);
495 ra->async_size = ra->size;
496 goto readit;
500 * oversize read
502 if (req_size > max_pages)
503 goto initial_readahead;
506 * sequential cache miss
507 * trivial case: (index - prev_index) == 1
508 * unaligned reads: (index - prev_index) == 0
510 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
511 if (index - prev_index <= 1UL)
512 goto initial_readahead;
515 * Query the page cache and look for the traces(cached history pages)
516 * that a sequential stream would leave behind.
518 if (try_context_readahead(mapping, ra, index, req_size, max_pages))
519 goto readit;
522 * standalone, small random read
523 * Read as is, and do not pollute the readahead state.
525 __do_page_cache_readahead(mapping, filp, index, req_size, 0);
526 return;
528 initial_readahead:
529 ra->start = index;
530 ra->size = get_init_ra_size(req_size, max_pages);
531 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
533 readit:
535 * Will this read hit the readahead marker made by itself?
536 * If so, trigger the readahead marker hit now, and merge
537 * the resulted next readahead window into the current one.
538 * Take care of maximum IO pages as above.
540 if (index == ra->start && ra->size == ra->async_size) {
541 add_pages = get_next_ra_size(ra, max_pages);
542 if (ra->size + add_pages <= max_pages) {
543 ra->async_size = add_pages;
544 ra->size += add_pages;
545 } else {
546 ra->size = max_pages;
547 ra->async_size = max_pages >> 1;
551 ra_submit(ra, mapping, filp);
555 * page_cache_sync_readahead - generic file readahead
556 * @mapping: address_space which holds the pagecache and I/O vectors
557 * @ra: file_ra_state which holds the readahead state
558 * @filp: passed on to ->readpage() and ->readpages()
559 * @index: Index of first page to be read.
560 * @req_count: Total number of pages being read by the caller.
562 * page_cache_sync_readahead() should be called when a cache miss happened:
563 * it will submit the read. The readahead logic may decide to piggyback more
564 * pages onto the read request if access patterns suggest it will improve
565 * performance.
567 void page_cache_sync_readahead(struct address_space *mapping,
568 struct file_ra_state *ra, struct file *filp,
569 pgoff_t index, unsigned long req_count)
571 /* no read-ahead */
572 if (!ra->ra_pages)
573 return;
575 if (blk_cgroup_congested())
576 return;
578 /* be dumb */
579 if (filp && (filp->f_mode & FMODE_RANDOM)) {
580 force_page_cache_readahead(mapping, filp, index, req_count);
581 return;
584 /* do read-ahead */
585 ondemand_readahead(mapping, ra, filp, false, index, req_count);
587 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
590 * page_cache_async_readahead - file readahead for marked pages
591 * @mapping: address_space which holds the pagecache and I/O vectors
592 * @ra: file_ra_state which holds the readahead state
593 * @filp: passed on to ->readpage() and ->readpages()
594 * @page: The page at @index which triggered the readahead call.
595 * @index: Index of first page to be read.
596 * @req_count: Total number of pages being read by the caller.
598 * page_cache_async_readahead() should be called when a page is used which
599 * is marked as PageReadahead; this is a marker to suggest that the application
600 * has used up enough of the readahead window that we should start pulling in
601 * more pages.
603 void
604 page_cache_async_readahead(struct address_space *mapping,
605 struct file_ra_state *ra, struct file *filp,
606 struct page *page, pgoff_t index,
607 unsigned long req_count)
609 /* no read-ahead */
610 if (!ra->ra_pages)
611 return;
614 * Same bit is used for PG_readahead and PG_reclaim.
616 if (PageWriteback(page))
617 return;
619 ClearPageReadahead(page);
622 * Defer asynchronous read-ahead on IO congestion.
624 if (inode_read_congested(mapping->host))
625 return;
627 if (blk_cgroup_congested())
628 return;
630 /* do read-ahead */
631 ondemand_readahead(mapping, ra, filp, true, index, req_count);
633 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
635 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
637 ssize_t ret;
638 struct fd f;
640 ret = -EBADF;
641 f = fdget(fd);
642 if (!f.file || !(f.file->f_mode & FMODE_READ))
643 goto out;
646 * The readahead() syscall is intended to run only on files
647 * that can execute readahead. If readahead is not possible
648 * on this file, then we must return -EINVAL.
650 ret = -EINVAL;
651 if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
652 !S_ISREG(file_inode(f.file)->i_mode))
653 goto out;
655 ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
656 out:
657 fdput(f);
658 return ret;
661 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
663 return ksys_readahead(fd, offset, count);