2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/smp.h>
22 #include <linux/module.h>
24 #include "tick-internal.h"
27 * Broadcast support for broken x86 hardware, where the local apic
28 * timer stops in C3 state.
31 static struct tick_device tick_broadcast_device
;
32 static cpumask_var_t tick_broadcast_mask
;
33 static cpumask_var_t tick_broadcast_on
;
34 static cpumask_var_t tmpmask
;
35 static DEFINE_RAW_SPINLOCK(tick_broadcast_lock
);
36 static int tick_broadcast_forced
;
38 #ifdef CONFIG_TICK_ONESHOT
39 static void tick_broadcast_clear_oneshot(int cpu
);
40 static void tick_resume_broadcast_oneshot(struct clock_event_device
*bc
);
42 static inline void tick_broadcast_clear_oneshot(int cpu
) { }
43 static inline void tick_resume_broadcast_oneshot(struct clock_event_device
*bc
) { }
47 * Debugging: see timer_list.c
49 struct tick_device
*tick_get_broadcast_device(void)
51 return &tick_broadcast_device
;
54 struct cpumask
*tick_get_broadcast_mask(void)
56 return tick_broadcast_mask
;
60 * Start the device in periodic mode
62 static void tick_broadcast_start_periodic(struct clock_event_device
*bc
)
65 tick_setup_periodic(bc
, 1);
69 * Check, if the device can be utilized as broadcast device:
71 static bool tick_check_broadcast_device(struct clock_event_device
*curdev
,
72 struct clock_event_device
*newdev
)
74 if ((newdev
->features
& CLOCK_EVT_FEAT_DUMMY
) ||
75 (newdev
->features
& CLOCK_EVT_FEAT_PERCPU
) ||
76 (newdev
->features
& CLOCK_EVT_FEAT_C3STOP
))
79 if (tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
&&
80 !(newdev
->features
& CLOCK_EVT_FEAT_ONESHOT
))
83 return !curdev
|| newdev
->rating
> curdev
->rating
;
87 * Conditionally install/replace broadcast device
89 void tick_install_broadcast_device(struct clock_event_device
*dev
)
91 struct clock_event_device
*cur
= tick_broadcast_device
.evtdev
;
93 if (!tick_check_broadcast_device(cur
, dev
))
96 if (!try_module_get(dev
->owner
))
99 clockevents_exchange_device(cur
, dev
);
101 cur
->event_handler
= clockevents_handle_noop
;
102 tick_broadcast_device
.evtdev
= dev
;
103 if (!cpumask_empty(tick_broadcast_mask
))
104 tick_broadcast_start_periodic(dev
);
106 * Inform all cpus about this. We might be in a situation
107 * where we did not switch to oneshot mode because the per cpu
108 * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
109 * of a oneshot capable broadcast device. Without that
110 * notification the systems stays stuck in periodic mode
113 if (dev
->features
& CLOCK_EVT_FEAT_ONESHOT
)
118 * Check, if the device is the broadcast device
120 int tick_is_broadcast_device(struct clock_event_device
*dev
)
122 return (dev
&& tick_broadcast_device
.evtdev
== dev
);
125 int tick_broadcast_update_freq(struct clock_event_device
*dev
, u32 freq
)
129 if (tick_is_broadcast_device(dev
)) {
130 raw_spin_lock(&tick_broadcast_lock
);
131 ret
= __clockevents_update_freq(dev
, freq
);
132 raw_spin_unlock(&tick_broadcast_lock
);
138 static void err_broadcast(const struct cpumask
*mask
)
140 pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
143 static void tick_device_setup_broadcast_func(struct clock_event_device
*dev
)
146 dev
->broadcast
= tick_broadcast
;
147 if (!dev
->broadcast
) {
148 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
150 dev
->broadcast
= err_broadcast
;
155 * Check, if the device is disfunctional and a place holder, which
156 * needs to be handled by the broadcast device.
158 int tick_device_uses_broadcast(struct clock_event_device
*dev
, int cpu
)
160 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
164 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
167 * Devices might be registered with both periodic and oneshot
168 * mode disabled. This signals, that the device needs to be
169 * operated from the broadcast device and is a placeholder for
170 * the cpu local device.
172 if (!tick_device_is_functional(dev
)) {
173 dev
->event_handler
= tick_handle_periodic
;
174 tick_device_setup_broadcast_func(dev
);
175 cpumask_set_cpu(cpu
, tick_broadcast_mask
);
176 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
177 tick_broadcast_start_periodic(bc
);
179 tick_broadcast_setup_oneshot(bc
);
183 * Clear the broadcast bit for this cpu if the
184 * device is not power state affected.
186 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
187 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
189 tick_device_setup_broadcast_func(dev
);
192 * Clear the broadcast bit if the CPU is not in
193 * periodic broadcast on state.
195 if (!cpumask_test_cpu(cpu
, tick_broadcast_on
))
196 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
198 switch (tick_broadcast_device
.mode
) {
199 case TICKDEV_MODE_ONESHOT
:
201 * If the system is in oneshot mode we can
202 * unconditionally clear the oneshot mask bit,
203 * because the CPU is running and therefore
204 * not in an idle state which causes the power
205 * state affected device to stop. Let the
206 * caller initialize the device.
208 tick_broadcast_clear_oneshot(cpu
);
212 case TICKDEV_MODE_PERIODIC
:
214 * If the system is in periodic mode, check
215 * whether the broadcast device can be
218 if (cpumask_empty(tick_broadcast_mask
) && bc
)
219 clockevents_shutdown(bc
);
221 * If we kept the cpu in the broadcast mask,
222 * tell the caller to leave the per cpu device
223 * in shutdown state. The periodic interrupt
224 * is delivered by the broadcast device.
226 ret
= cpumask_test_cpu(cpu
, tick_broadcast_mask
);
234 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
238 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
239 int tick_receive_broadcast(void)
241 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
242 struct clock_event_device
*evt
= td
->evtdev
;
247 if (!evt
->event_handler
)
250 evt
->event_handler(evt
);
256 * Broadcast the event to the cpus, which are set in the mask (mangled).
258 static void tick_do_broadcast(struct cpumask
*mask
)
260 int cpu
= smp_processor_id();
261 struct tick_device
*td
;
264 * Check, if the current cpu is in the mask
266 if (cpumask_test_cpu(cpu
, mask
)) {
267 cpumask_clear_cpu(cpu
, mask
);
268 td
= &per_cpu(tick_cpu_device
, cpu
);
269 td
->evtdev
->event_handler(td
->evtdev
);
272 if (!cpumask_empty(mask
)) {
274 * It might be necessary to actually check whether the devices
275 * have different broadcast functions. For now, just use the
276 * one of the first device. This works as long as we have this
277 * misfeature only on x86 (lapic)
279 td
= &per_cpu(tick_cpu_device
, cpumask_first(mask
));
280 td
->evtdev
->broadcast(mask
);
285 * Periodic broadcast:
286 * - invoke the broadcast handlers
288 static void tick_do_periodic_broadcast(void)
290 cpumask_and(tmpmask
, cpu_online_mask
, tick_broadcast_mask
);
291 tick_do_broadcast(tmpmask
);
295 * Event handler for periodic broadcast ticks
297 static void tick_handle_periodic_broadcast(struct clock_event_device
*dev
)
301 raw_spin_lock(&tick_broadcast_lock
);
303 tick_do_periodic_broadcast();
306 * The device is in periodic mode. No reprogramming necessary:
308 if (dev
->state
== CLOCK_EVT_STATE_PERIODIC
)
312 * Setup the next period for devices, which do not have
313 * periodic mode. We read dev->next_event first and add to it
314 * when the event already expired. clockevents_program_event()
315 * sets dev->next_event only when the event is really
316 * programmed to the device.
318 for (next
= dev
->next_event
; ;) {
319 next
= ktime_add(next
, tick_period
);
321 if (!clockevents_program_event(dev
, next
, false))
323 tick_do_periodic_broadcast();
326 raw_spin_unlock(&tick_broadcast_lock
);
330 * tick_broadcast_control - Enable/disable or force broadcast mode
331 * @mode: The selected broadcast mode
333 * Called when the system enters a state where affected tick devices
334 * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
336 * Called with interrupts disabled, so clockevents_lock is not
337 * required here because the local clock event device cannot go away
340 void tick_broadcast_control(enum tick_broadcast_mode mode
)
342 struct clock_event_device
*bc
, *dev
;
343 struct tick_device
*td
;
346 td
= this_cpu_ptr(&tick_cpu_device
);
350 * Is the device not affected by the powerstate ?
352 if (!dev
|| !(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
355 if (!tick_device_is_functional(dev
))
358 raw_spin_lock(&tick_broadcast_lock
);
359 cpu
= smp_processor_id();
360 bc
= tick_broadcast_device
.evtdev
;
361 bc_stopped
= cpumask_empty(tick_broadcast_mask
);
364 case TICK_BROADCAST_FORCE
:
365 tick_broadcast_forced
= 1;
366 case TICK_BROADCAST_ON
:
367 cpumask_set_cpu(cpu
, tick_broadcast_on
);
368 if (!cpumask_test_and_set_cpu(cpu
, tick_broadcast_mask
)) {
369 if (tick_broadcast_device
.mode
==
370 TICKDEV_MODE_PERIODIC
)
371 clockevents_shutdown(dev
);
375 case TICK_BROADCAST_OFF
:
376 if (tick_broadcast_forced
)
378 cpumask_clear_cpu(cpu
, tick_broadcast_on
);
379 if (!tick_device_is_functional(dev
))
381 if (cpumask_test_and_clear_cpu(cpu
, tick_broadcast_mask
)) {
382 if (tick_broadcast_device
.mode
==
383 TICKDEV_MODE_PERIODIC
)
384 tick_setup_periodic(dev
, 0);
389 if (cpumask_empty(tick_broadcast_mask
)) {
391 clockevents_shutdown(bc
);
392 } else if (bc_stopped
) {
393 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
394 tick_broadcast_start_periodic(bc
);
396 tick_broadcast_setup_oneshot(bc
);
398 raw_spin_unlock(&tick_broadcast_lock
);
400 EXPORT_SYMBOL_GPL(tick_broadcast_control
);
403 * Set the periodic handler depending on broadcast on/off
405 void tick_set_periodic_handler(struct clock_event_device
*dev
, int broadcast
)
408 dev
->event_handler
= tick_handle_periodic
;
410 dev
->event_handler
= tick_handle_periodic_broadcast
;
413 #ifdef CONFIG_HOTPLUG_CPU
415 * Remove a CPU from broadcasting
417 void tick_shutdown_broadcast(unsigned int cpu
)
419 struct clock_event_device
*bc
;
422 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
424 bc
= tick_broadcast_device
.evtdev
;
425 cpumask_clear_cpu(cpu
, tick_broadcast_mask
);
426 cpumask_clear_cpu(cpu
, tick_broadcast_on
);
428 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
) {
429 if (bc
&& cpumask_empty(tick_broadcast_mask
))
430 clockevents_shutdown(bc
);
433 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
437 void tick_suspend_broadcast(void)
439 struct clock_event_device
*bc
;
442 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
444 bc
= tick_broadcast_device
.evtdev
;
446 clockevents_shutdown(bc
);
448 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
452 * This is called from tick_resume_local() on a resuming CPU. That's
453 * called from the core resume function, tick_unfreeze() and the magic XEN
456 * In none of these cases the broadcast device mode can change and the
457 * bit of the resuming CPU in the broadcast mask is safe as well.
459 bool tick_resume_check_broadcast(void)
461 if (tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
)
464 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask
);
467 void tick_resume_broadcast(void)
469 struct clock_event_device
*bc
;
472 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
474 bc
= tick_broadcast_device
.evtdev
;
477 clockevents_tick_resume(bc
);
479 switch (tick_broadcast_device
.mode
) {
480 case TICKDEV_MODE_PERIODIC
:
481 if (!cpumask_empty(tick_broadcast_mask
))
482 tick_broadcast_start_periodic(bc
);
484 case TICKDEV_MODE_ONESHOT
:
485 if (!cpumask_empty(tick_broadcast_mask
))
486 tick_resume_broadcast_oneshot(bc
);
490 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
493 #ifdef CONFIG_TICK_ONESHOT
495 static cpumask_var_t tick_broadcast_oneshot_mask
;
496 static cpumask_var_t tick_broadcast_pending_mask
;
497 static cpumask_var_t tick_broadcast_force_mask
;
500 * Exposed for debugging: see timer_list.c
502 struct cpumask
*tick_get_broadcast_oneshot_mask(void)
504 return tick_broadcast_oneshot_mask
;
508 * Called before going idle with interrupts disabled. Checks whether a
509 * broadcast event from the other core is about to happen. We detected
510 * that in tick_broadcast_oneshot_control(). The callsite can use this
511 * to avoid a deep idle transition as we are about to get the
512 * broadcast IPI right away.
514 int tick_check_broadcast_expired(void)
516 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask
);
520 * Set broadcast interrupt affinity
522 static void tick_broadcast_set_affinity(struct clock_event_device
*bc
,
523 const struct cpumask
*cpumask
)
525 if (!(bc
->features
& CLOCK_EVT_FEAT_DYNIRQ
))
528 if (cpumask_equal(bc
->cpumask
, cpumask
))
531 bc
->cpumask
= cpumask
;
532 irq_set_affinity(bc
->irq
, bc
->cpumask
);
535 static int tick_broadcast_set_event(struct clock_event_device
*bc
, int cpu
,
536 ktime_t expires
, int force
)
540 if (bc
->state
!= CLOCK_EVT_STATE_ONESHOT
)
541 clockevents_set_state(bc
, CLOCK_EVT_STATE_ONESHOT
);
543 ret
= clockevents_program_event(bc
, expires
, force
);
545 tick_broadcast_set_affinity(bc
, cpumask_of(cpu
));
549 static void tick_resume_broadcast_oneshot(struct clock_event_device
*bc
)
551 clockevents_set_state(bc
, CLOCK_EVT_STATE_ONESHOT
);
555 * Called from irq_enter() when idle was interrupted to reenable the
558 void tick_check_oneshot_broadcast_this_cpu(void)
560 if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask
)) {
561 struct tick_device
*td
= this_cpu_ptr(&tick_cpu_device
);
564 * We might be in the middle of switching over from
565 * periodic to oneshot. If the CPU has not yet
566 * switched over, leave the device alone.
568 if (td
->mode
== TICKDEV_MODE_ONESHOT
) {
569 clockevents_set_state(td
->evtdev
,
570 CLOCK_EVT_STATE_ONESHOT
);
576 * Handle oneshot mode broadcasting
578 static void tick_handle_oneshot_broadcast(struct clock_event_device
*dev
)
580 struct tick_device
*td
;
581 ktime_t now
, next_event
;
582 int cpu
, next_cpu
= 0;
584 raw_spin_lock(&tick_broadcast_lock
);
586 dev
->next_event
.tv64
= KTIME_MAX
;
587 next_event
.tv64
= KTIME_MAX
;
588 cpumask_clear(tmpmask
);
590 /* Find all expired events */
591 for_each_cpu(cpu
, tick_broadcast_oneshot_mask
) {
592 td
= &per_cpu(tick_cpu_device
, cpu
);
593 if (td
->evtdev
->next_event
.tv64
<= now
.tv64
) {
594 cpumask_set_cpu(cpu
, tmpmask
);
596 * Mark the remote cpu in the pending mask, so
597 * it can avoid reprogramming the cpu local
598 * timer in tick_broadcast_oneshot_control().
600 cpumask_set_cpu(cpu
, tick_broadcast_pending_mask
);
601 } else if (td
->evtdev
->next_event
.tv64
< next_event
.tv64
) {
602 next_event
.tv64
= td
->evtdev
->next_event
.tv64
;
608 * Remove the current cpu from the pending mask. The event is
609 * delivered immediately in tick_do_broadcast() !
611 cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask
);
613 /* Take care of enforced broadcast requests */
614 cpumask_or(tmpmask
, tmpmask
, tick_broadcast_force_mask
);
615 cpumask_clear(tick_broadcast_force_mask
);
618 * Sanity check. Catch the case where we try to broadcast to
621 if (WARN_ON_ONCE(!cpumask_subset(tmpmask
, cpu_online_mask
)))
622 cpumask_and(tmpmask
, tmpmask
, cpu_online_mask
);
625 * Wakeup the cpus which have an expired event.
627 tick_do_broadcast(tmpmask
);
630 * Two reasons for reprogram:
632 * - The global event did not expire any CPU local
633 * events. This happens in dyntick mode, as the maximum PIT
634 * delta is quite small.
636 * - There are pending events on sleeping CPUs which were not
639 if (next_event
.tv64
!= KTIME_MAX
) {
641 * Rearm the broadcast device. If event expired,
644 if (tick_broadcast_set_event(dev
, next_cpu
, next_event
, 0))
647 raw_spin_unlock(&tick_broadcast_lock
);
650 static int broadcast_needs_cpu(struct clock_event_device
*bc
, int cpu
)
652 if (!(bc
->features
& CLOCK_EVT_FEAT_HRTIMER
))
654 if (bc
->next_event
.tv64
== KTIME_MAX
)
656 return bc
->bound_on
== cpu
? -EBUSY
: 0;
659 static void broadcast_shutdown_local(struct clock_event_device
*bc
,
660 struct clock_event_device
*dev
)
663 * For hrtimer based broadcasting we cannot shutdown the cpu
664 * local device if our own event is the first one to expire or
665 * if we own the broadcast timer.
667 if (bc
->features
& CLOCK_EVT_FEAT_HRTIMER
) {
668 if (broadcast_needs_cpu(bc
, smp_processor_id()))
670 if (dev
->next_event
.tv64
< bc
->next_event
.tv64
)
673 clockevents_set_state(dev
, CLOCK_EVT_STATE_SHUTDOWN
);
677 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
678 * @state: The target state (enter/exit)
680 * The system enters/leaves a state, where affected devices might stop
681 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
683 * Called with interrupts disabled, so clockevents_lock is not
684 * required here because the local clock event device cannot go away
687 int tick_broadcast_oneshot_control(enum tick_broadcast_state state
)
689 struct clock_event_device
*bc
, *dev
;
690 struct tick_device
*td
;
695 * Periodic mode does not care about the enter/exit of power
698 if (tick_broadcast_device
.mode
== TICKDEV_MODE_PERIODIC
)
702 * We are called with preemtion disabled from the depth of the
703 * idle code, so we can't be moved away.
705 td
= this_cpu_ptr(&tick_cpu_device
);
708 if (!(dev
->features
& CLOCK_EVT_FEAT_C3STOP
))
711 raw_spin_lock(&tick_broadcast_lock
);
712 bc
= tick_broadcast_device
.evtdev
;
713 cpu
= smp_processor_id();
715 if (state
== TICK_BROADCAST_ENTER
) {
716 if (!cpumask_test_and_set_cpu(cpu
, tick_broadcast_oneshot_mask
)) {
717 WARN_ON_ONCE(cpumask_test_cpu(cpu
, tick_broadcast_pending_mask
));
718 broadcast_shutdown_local(bc
, dev
);
720 * We only reprogram the broadcast timer if we
721 * did not mark ourself in the force mask and
722 * if the cpu local event is earlier than the
723 * broadcast event. If the current CPU is in
724 * the force mask, then we are going to be
725 * woken by the IPI right away.
727 if (!cpumask_test_cpu(cpu
, tick_broadcast_force_mask
) &&
728 dev
->next_event
.tv64
< bc
->next_event
.tv64
)
729 tick_broadcast_set_event(bc
, cpu
, dev
->next_event
, 1);
732 * If the current CPU owns the hrtimer broadcast
733 * mechanism, it cannot go deep idle and we remove the
734 * CPU from the broadcast mask. We don't have to go
735 * through the EXIT path as the local timer is not
738 ret
= broadcast_needs_cpu(bc
, cpu
);
740 cpumask_clear_cpu(cpu
, tick_broadcast_oneshot_mask
);
742 if (cpumask_test_and_clear_cpu(cpu
, tick_broadcast_oneshot_mask
)) {
743 clockevents_set_state(dev
, CLOCK_EVT_STATE_ONESHOT
);
745 * The cpu which was handling the broadcast
746 * timer marked this cpu in the broadcast
747 * pending mask and fired the broadcast
748 * IPI. So we are going to handle the expired
749 * event anyway via the broadcast IPI
750 * handler. No need to reprogram the timer
751 * with an already expired event.
753 if (cpumask_test_and_clear_cpu(cpu
,
754 tick_broadcast_pending_mask
))
758 * Bail out if there is no next event.
760 if (dev
->next_event
.tv64
== KTIME_MAX
)
763 * If the pending bit is not set, then we are
764 * either the CPU handling the broadcast
765 * interrupt or we got woken by something else.
767 * We are not longer in the broadcast mask, so
768 * if the cpu local expiry time is already
769 * reached, we would reprogram the cpu local
770 * timer with an already expired event.
772 * This can lead to a ping-pong when we return
773 * to idle and therefor rearm the broadcast
774 * timer before the cpu local timer was able
775 * to fire. This happens because the forced
776 * reprogramming makes sure that the event
777 * will happen in the future and depending on
778 * the min_delta setting this might be far
779 * enough out that the ping-pong starts.
781 * If the cpu local next_event has expired
782 * then we know that the broadcast timer
783 * next_event has expired as well and
784 * broadcast is about to be handled. So we
785 * avoid reprogramming and enforce that the
786 * broadcast handler, which did not run yet,
787 * will invoke the cpu local handler.
789 * We cannot call the handler directly from
790 * here, because we might be in a NOHZ phase
791 * and we did not go through the irq_enter()
795 if (dev
->next_event
.tv64
<= now
.tv64
) {
796 cpumask_set_cpu(cpu
, tick_broadcast_force_mask
);
800 * We got woken by something else. Reprogram
801 * the cpu local timer device.
803 tick_program_event(dev
->next_event
, 1);
807 raw_spin_unlock(&tick_broadcast_lock
);
810 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control
);
813 * Reset the one shot broadcast for a cpu
815 * Called with tick_broadcast_lock held
817 static void tick_broadcast_clear_oneshot(int cpu
)
819 cpumask_clear_cpu(cpu
, tick_broadcast_oneshot_mask
);
820 cpumask_clear_cpu(cpu
, tick_broadcast_pending_mask
);
823 static void tick_broadcast_init_next_event(struct cpumask
*mask
,
826 struct tick_device
*td
;
829 for_each_cpu(cpu
, mask
) {
830 td
= &per_cpu(tick_cpu_device
, cpu
);
832 td
->evtdev
->next_event
= expires
;
837 * tick_broadcast_setup_oneshot - setup the broadcast device
839 void tick_broadcast_setup_oneshot(struct clock_event_device
*bc
)
841 int cpu
= smp_processor_id();
843 /* Set it up only once ! */
844 if (bc
->event_handler
!= tick_handle_oneshot_broadcast
) {
845 int was_periodic
= bc
->state
== CLOCK_EVT_STATE_PERIODIC
;
847 bc
->event_handler
= tick_handle_oneshot_broadcast
;
850 * We must be careful here. There might be other CPUs
851 * waiting for periodic broadcast. We need to set the
852 * oneshot_mask bits for those and program the
853 * broadcast device to fire.
855 cpumask_copy(tmpmask
, tick_broadcast_mask
);
856 cpumask_clear_cpu(cpu
, tmpmask
);
857 cpumask_or(tick_broadcast_oneshot_mask
,
858 tick_broadcast_oneshot_mask
, tmpmask
);
860 if (was_periodic
&& !cpumask_empty(tmpmask
)) {
861 clockevents_set_state(bc
, CLOCK_EVT_STATE_ONESHOT
);
862 tick_broadcast_init_next_event(tmpmask
,
864 tick_broadcast_set_event(bc
, cpu
, tick_next_period
, 1);
866 bc
->next_event
.tv64
= KTIME_MAX
;
869 * The first cpu which switches to oneshot mode sets
870 * the bit for all other cpus which are in the general
871 * (periodic) broadcast mask. So the bit is set and
872 * would prevent the first broadcast enter after this
873 * to program the bc device.
875 tick_broadcast_clear_oneshot(cpu
);
880 * Select oneshot operating mode for the broadcast device
882 void tick_broadcast_switch_to_oneshot(void)
884 struct clock_event_device
*bc
;
887 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
889 tick_broadcast_device
.mode
= TICKDEV_MODE_ONESHOT
;
890 bc
= tick_broadcast_device
.evtdev
;
892 tick_broadcast_setup_oneshot(bc
);
894 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
897 #ifdef CONFIG_HOTPLUG_CPU
898 void hotplug_cpu__broadcast_tick_pull(int deadcpu
)
900 struct clock_event_device
*bc
;
903 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
904 bc
= tick_broadcast_device
.evtdev
;
906 if (bc
&& broadcast_needs_cpu(bc
, deadcpu
)) {
907 /* This moves the broadcast assignment to this CPU: */
908 clockevents_program_event(bc
, bc
->next_event
, 1);
910 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
914 * Remove a dead CPU from broadcasting
916 void tick_shutdown_broadcast_oneshot(unsigned int cpu
)
920 raw_spin_lock_irqsave(&tick_broadcast_lock
, flags
);
923 * Clear the broadcast masks for the dead cpu, but do not stop
924 * the broadcast device!
926 cpumask_clear_cpu(cpu
, tick_broadcast_oneshot_mask
);
927 cpumask_clear_cpu(cpu
, tick_broadcast_pending_mask
);
928 cpumask_clear_cpu(cpu
, tick_broadcast_force_mask
);
930 raw_spin_unlock_irqrestore(&tick_broadcast_lock
, flags
);
935 * Check, whether the broadcast device is in one shot mode
937 int tick_broadcast_oneshot_active(void)
939 return tick_broadcast_device
.mode
== TICKDEV_MODE_ONESHOT
;
943 * Check whether the broadcast device supports oneshot.
945 bool tick_broadcast_oneshot_available(void)
947 struct clock_event_device
*bc
= tick_broadcast_device
.evtdev
;
949 return bc
? bc
->features
& CLOCK_EVT_FEAT_ONESHOT
: false;
954 void __init
tick_broadcast_init(void)
956 zalloc_cpumask_var(&tick_broadcast_mask
, GFP_NOWAIT
);
957 zalloc_cpumask_var(&tick_broadcast_on
, GFP_NOWAIT
);
958 zalloc_cpumask_var(&tmpmask
, GFP_NOWAIT
);
959 #ifdef CONFIG_TICK_ONESHOT
960 zalloc_cpumask_var(&tick_broadcast_oneshot_mask
, GFP_NOWAIT
);
961 zalloc_cpumask_var(&tick_broadcast_pending_mask
, GFP_NOWAIT
);
962 zalloc_cpumask_var(&tick_broadcast_force_mask
, GFP_NOWAIT
);