Linux 2.6.31.6
[linux/fpc-iii.git] / arch / ia64 / sn / kernel / bte.c
blobc6d6b62db66c99c05c4cc5ee8c84f19c4a768d5b
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2000-2007 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 #include <linux/module.h>
10 #include <asm/sn/nodepda.h>
11 #include <asm/sn/addrs.h>
12 #include <asm/sn/arch.h>
13 #include <asm/sn/sn_cpuid.h>
14 #include <asm/sn/pda.h>
15 #include <asm/sn/shubio.h>
16 #include <asm/nodedata.h>
17 #include <asm/delay.h>
19 #include <linux/bootmem.h>
20 #include <linux/string.h>
21 #include <linux/sched.h>
23 #include <asm/sn/bte.h>
25 #ifndef L1_CACHE_MASK
26 #define L1_CACHE_MASK (L1_CACHE_BYTES - 1)
27 #endif
29 /* two interfaces on two btes */
30 #define MAX_INTERFACES_TO_TRY 4
31 #define MAX_NODES_TO_TRY 2
33 static struct bteinfo_s *bte_if_on_node(nasid_t nasid, int interface)
35 nodepda_t *tmp_nodepda;
37 if (nasid_to_cnodeid(nasid) == -1)
38 return (struct bteinfo_s *)NULL;
40 tmp_nodepda = NODEPDA(nasid_to_cnodeid(nasid));
41 return &tmp_nodepda->bte_if[interface];
45 static inline void bte_start_transfer(struct bteinfo_s *bte, u64 len, u64 mode)
47 if (is_shub2()) {
48 BTE_CTRL_STORE(bte, (IBLS_BUSY | ((len) | (mode) << 24)));
49 } else {
50 BTE_LNSTAT_STORE(bte, len);
51 BTE_CTRL_STORE(bte, mode);
55 /************************************************************************
56 * Block Transfer Engine copy related functions.
58 ***********************************************************************/
61 * bte_copy(src, dest, len, mode, notification)
63 * Use the block transfer engine to move kernel memory from src to dest
64 * using the assigned mode.
66 * Parameters:
67 * src - physical address of the transfer source.
68 * dest - physical address of the transfer destination.
69 * len - number of bytes to transfer from source to dest.
70 * mode - hardware defined. See reference information
71 * for IBCT0/1 in the SHUB Programmers Reference
72 * notification - kernel virtual address of the notification cache
73 * line. If NULL, the default is used and
74 * the bte_copy is synchronous.
76 * NOTE: This function requires src, dest, and len to
77 * be cacheline aligned.
79 bte_result_t bte_copy(u64 src, u64 dest, u64 len, u64 mode, void *notification)
81 u64 transfer_size;
82 u64 transfer_stat;
83 u64 notif_phys_addr;
84 struct bteinfo_s *bte;
85 bte_result_t bte_status;
86 unsigned long irq_flags;
87 unsigned long itc_end = 0;
88 int nasid_to_try[MAX_NODES_TO_TRY];
89 int my_nasid = cpuid_to_nasid(raw_smp_processor_id());
90 int bte_if_index, nasid_index;
91 int bte_first, btes_per_node = BTES_PER_NODE;
93 BTE_PRINTK(("bte_copy(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%p)\n",
94 src, dest, len, mode, notification));
96 if (len == 0) {
97 return BTE_SUCCESS;
100 BUG_ON(len & L1_CACHE_MASK);
101 BUG_ON(src & L1_CACHE_MASK);
102 BUG_ON(dest & L1_CACHE_MASK);
103 BUG_ON(len > BTE_MAX_XFER);
106 * Start with interface corresponding to cpu number
108 bte_first = raw_smp_processor_id() % btes_per_node;
110 if (mode & BTE_USE_DEST) {
111 /* try remote then local */
112 nasid_to_try[0] = NASID_GET(dest);
113 if (mode & BTE_USE_ANY) {
114 nasid_to_try[1] = my_nasid;
115 } else {
116 nasid_to_try[1] = (int)NULL;
118 } else {
119 /* try local then remote */
120 nasid_to_try[0] = my_nasid;
121 if (mode & BTE_USE_ANY) {
122 nasid_to_try[1] = NASID_GET(dest);
123 } else {
124 nasid_to_try[1] = (int)NULL;
128 retry_bteop:
129 do {
130 local_irq_save(irq_flags);
132 bte_if_index = bte_first;
133 nasid_index = 0;
135 /* Attempt to lock one of the BTE interfaces. */
136 while (nasid_index < MAX_NODES_TO_TRY) {
137 bte = bte_if_on_node(nasid_to_try[nasid_index],bte_if_index);
139 if (bte == NULL) {
140 nasid_index++;
141 continue;
144 if (spin_trylock(&bte->spinlock)) {
145 if (!(*bte->most_rcnt_na & BTE_WORD_AVAILABLE) ||
146 (BTE_LNSTAT_LOAD(bte) & BTE_ACTIVE)) {
147 /* Got the lock but BTE still busy */
148 spin_unlock(&bte->spinlock);
149 } else {
150 /* we got the lock and it's not busy */
151 break;
155 bte_if_index = (bte_if_index + 1) % btes_per_node; /* Next interface */
156 if (bte_if_index == bte_first) {
158 * We've tried all interfaces on this node
160 nasid_index++;
163 bte = NULL;
166 if (bte != NULL) {
167 break;
170 local_irq_restore(irq_flags);
172 if (!(mode & BTE_WACQUIRE)) {
173 return BTEFAIL_NOTAVAIL;
175 } while (1);
177 if (notification == NULL) {
178 /* User does not want to be notified. */
179 bte->most_rcnt_na = &bte->notify;
180 } else {
181 bte->most_rcnt_na = notification;
184 /* Calculate the number of cache lines to transfer. */
185 transfer_size = ((len >> L1_CACHE_SHIFT) & BTE_LEN_MASK);
187 /* Initialize the notification to a known value. */
188 *bte->most_rcnt_na = BTE_WORD_BUSY;
189 notif_phys_addr = (u64)bte->most_rcnt_na;
191 /* Set the source and destination registers */
192 BTE_PRINTKV(("IBSA = 0x%lx)\n", src));
193 BTE_SRC_STORE(bte, src);
194 BTE_PRINTKV(("IBDA = 0x%lx)\n", dest));
195 BTE_DEST_STORE(bte, dest);
197 /* Set the notification register */
198 BTE_PRINTKV(("IBNA = 0x%lx)\n", notif_phys_addr));
199 BTE_NOTIF_STORE(bte, notif_phys_addr);
201 /* Initiate the transfer */
202 BTE_PRINTK(("IBCT = 0x%lx)\n", BTE_VALID_MODE(mode)));
203 bte_start_transfer(bte, transfer_size, BTE_VALID_MODE(mode));
205 itc_end = ia64_get_itc() + (40000000 * local_cpu_data->cyc_per_usec);
207 spin_unlock_irqrestore(&bte->spinlock, irq_flags);
209 if (notification != NULL) {
210 return BTE_SUCCESS;
213 while ((transfer_stat = *bte->most_rcnt_na) == BTE_WORD_BUSY) {
214 cpu_relax();
215 if (ia64_get_itc() > itc_end) {
216 BTE_PRINTK(("BTE timeout nasid 0x%x bte%d IBLS = 0x%lx na 0x%lx\n",
217 NASID_GET(bte->bte_base_addr), bte->bte_num,
218 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na) );
219 bte->bte_error_count++;
220 bte->bh_error = IBLS_ERROR;
221 bte_error_handler((unsigned long)NODEPDA(bte->bte_cnode));
222 *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
223 goto retry_bteop;
227 BTE_PRINTKV((" Delay Done. IBLS = 0x%lx, most_rcnt_na = 0x%lx\n",
228 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
230 if (transfer_stat & IBLS_ERROR) {
231 bte_status = BTE_GET_ERROR_STATUS(transfer_stat);
232 } else {
233 bte_status = BTE_SUCCESS;
235 *bte->most_rcnt_na = BTE_WORD_AVAILABLE;
237 BTE_PRINTK(("Returning status is 0x%lx and most_rcnt_na is 0x%lx\n",
238 BTE_LNSTAT_LOAD(bte), *bte->most_rcnt_na));
240 return bte_status;
243 EXPORT_SYMBOL(bte_copy);
246 * bte_unaligned_copy(src, dest, len, mode)
248 * use the block transfer engine to move kernel
249 * memory from src to dest using the assigned mode.
251 * Parameters:
252 * src - physical address of the transfer source.
253 * dest - physical address of the transfer destination.
254 * len - number of bytes to transfer from source to dest.
255 * mode - hardware defined. See reference information
256 * for IBCT0/1 in the SGI documentation.
258 * NOTE: If the source, dest, and len are all cache line aligned,
259 * then it would be _FAR_ preferable to use bte_copy instead.
261 bte_result_t bte_unaligned_copy(u64 src, u64 dest, u64 len, u64 mode)
263 int destFirstCacheOffset;
264 u64 headBteSource;
265 u64 headBteLen;
266 u64 headBcopySrcOffset;
267 u64 headBcopyDest;
268 u64 headBcopyLen;
269 u64 footBteSource;
270 u64 footBteLen;
271 u64 footBcopyDest;
272 u64 footBcopyLen;
273 bte_result_t rv;
274 char *bteBlock, *bteBlock_unaligned;
276 if (len == 0) {
277 return BTE_SUCCESS;
280 /* temporary buffer used during unaligned transfers */
281 bteBlock_unaligned = kmalloc(len + 3 * L1_CACHE_BYTES, GFP_KERNEL);
282 if (bteBlock_unaligned == NULL) {
283 return BTEFAIL_NOTAVAIL;
285 bteBlock = (char *)L1_CACHE_ALIGN((u64) bteBlock_unaligned);
287 headBcopySrcOffset = src & L1_CACHE_MASK;
288 destFirstCacheOffset = dest & L1_CACHE_MASK;
291 * At this point, the transfer is broken into
292 * (up to) three sections. The first section is
293 * from the start address to the first physical
294 * cache line, the second is from the first physical
295 * cache line to the last complete cache line,
296 * and the third is from the last cache line to the
297 * end of the buffer. The first and third sections
298 * are handled by bte copying into a temporary buffer
299 * and then bcopy'ing the necessary section into the
300 * final location. The middle section is handled with
301 * a standard bte copy.
303 * One nasty exception to the above rule is when the
304 * source and destination are not symmetrically
305 * mis-aligned. If the source offset from the first
306 * cache line is different from the destination offset,
307 * we make the first section be the entire transfer
308 * and the bcopy the entire block into place.
310 if (headBcopySrcOffset == destFirstCacheOffset) {
313 * Both the source and destination are the same
314 * distance from a cache line boundary so we can
315 * use the bte to transfer the bulk of the
316 * data.
318 headBteSource = src & ~L1_CACHE_MASK;
319 headBcopyDest = dest;
320 if (headBcopySrcOffset) {
321 headBcopyLen =
322 (len >
323 (L1_CACHE_BYTES -
324 headBcopySrcOffset) ? L1_CACHE_BYTES
325 - headBcopySrcOffset : len);
326 headBteLen = L1_CACHE_BYTES;
327 } else {
328 headBcopyLen = 0;
329 headBteLen = 0;
332 if (len > headBcopyLen) {
333 footBcopyLen = (len - headBcopyLen) & L1_CACHE_MASK;
334 footBteLen = L1_CACHE_BYTES;
336 footBteSource = src + len - footBcopyLen;
337 footBcopyDest = dest + len - footBcopyLen;
339 if (footBcopyDest == (headBcopyDest + headBcopyLen)) {
341 * We have two contiguous bcopy
342 * blocks. Merge them.
344 headBcopyLen += footBcopyLen;
345 headBteLen += footBteLen;
346 } else if (footBcopyLen > 0) {
347 rv = bte_copy(footBteSource,
348 ia64_tpa((unsigned long)bteBlock),
349 footBteLen, mode, NULL);
350 if (rv != BTE_SUCCESS) {
351 kfree(bteBlock_unaligned);
352 return rv;
355 memcpy(__va(footBcopyDest),
356 (char *)bteBlock, footBcopyLen);
358 } else {
359 footBcopyLen = 0;
360 footBteLen = 0;
363 if (len > (headBcopyLen + footBcopyLen)) {
364 /* now transfer the middle. */
365 rv = bte_copy((src + headBcopyLen),
366 (dest +
367 headBcopyLen),
368 (len - headBcopyLen -
369 footBcopyLen), mode, NULL);
370 if (rv != BTE_SUCCESS) {
371 kfree(bteBlock_unaligned);
372 return rv;
376 } else {
379 * The transfer is not symmetric, we will
380 * allocate a buffer large enough for all the
381 * data, bte_copy into that buffer and then
382 * bcopy to the destination.
385 headBcopySrcOffset = src & L1_CACHE_MASK;
386 headBcopyDest = dest;
387 headBcopyLen = len;
389 headBteSource = src - headBcopySrcOffset;
390 /* Add the leading and trailing bytes from source */
391 headBteLen = L1_CACHE_ALIGN(len + headBcopySrcOffset);
394 if (headBcopyLen > 0) {
395 rv = bte_copy(headBteSource,
396 ia64_tpa((unsigned long)bteBlock), headBteLen,
397 mode, NULL);
398 if (rv != BTE_SUCCESS) {
399 kfree(bteBlock_unaligned);
400 return rv;
403 memcpy(__va(headBcopyDest), ((char *)bteBlock +
404 headBcopySrcOffset), headBcopyLen);
406 kfree(bteBlock_unaligned);
407 return BTE_SUCCESS;
410 EXPORT_SYMBOL(bte_unaligned_copy);
412 /************************************************************************
413 * Block Transfer Engine initialization functions.
415 ***********************************************************************/
418 * bte_init_node(nodepda, cnode)
420 * Initialize the nodepda structure with BTE base addresses and
421 * spinlocks.
423 void bte_init_node(nodepda_t * mynodepda, cnodeid_t cnode)
425 int i;
428 * Indicate that all the block transfer engines on this node
429 * are available.
433 * Allocate one bte_recover_t structure per node. It holds
434 * the recovery lock for node. All the bte interface structures
435 * will point at this one bte_recover structure to get the lock.
437 spin_lock_init(&mynodepda->bte_recovery_lock);
438 init_timer(&mynodepda->bte_recovery_timer);
439 mynodepda->bte_recovery_timer.function = bte_error_handler;
440 mynodepda->bte_recovery_timer.data = (unsigned long)mynodepda;
442 for (i = 0; i < BTES_PER_NODE; i++) {
443 u64 *base_addr;
445 /* Which link status register should we use? */
446 base_addr = (u64 *)
447 REMOTE_HUB_ADDR(cnodeid_to_nasid(cnode), BTE_BASE_ADDR(i));
448 mynodepda->bte_if[i].bte_base_addr = base_addr;
449 mynodepda->bte_if[i].bte_source_addr = BTE_SOURCE_ADDR(base_addr);
450 mynodepda->bte_if[i].bte_destination_addr = BTE_DEST_ADDR(base_addr);
451 mynodepda->bte_if[i].bte_control_addr = BTE_CTRL_ADDR(base_addr);
452 mynodepda->bte_if[i].bte_notify_addr = BTE_NOTIF_ADDR(base_addr);
455 * Initialize the notification and spinlock
456 * so the first transfer can occur.
458 mynodepda->bte_if[i].most_rcnt_na =
459 &(mynodepda->bte_if[i].notify);
460 mynodepda->bte_if[i].notify = BTE_WORD_AVAILABLE;
461 spin_lock_init(&mynodepda->bte_if[i].spinlock);
463 mynodepda->bte_if[i].bte_cnode = cnode;
464 mynodepda->bte_if[i].bte_error_count = 0;
465 mynodepda->bte_if[i].bte_num = i;
466 mynodepda->bte_if[i].cleanup_active = 0;
467 mynodepda->bte_if[i].bh_error = 0;