Linux 2.6.31.6
[linux/fpc-iii.git] / arch / mips / sni / time.c
blob0d9ec1a5c24aa679df38fa0faabdf5c1046d3b0d
1 #include <linux/types.h>
2 #include <linux/interrupt.h>
3 #include <linux/smp.h>
4 #include <linux/time.h>
5 #include <linux/clockchips.h>
7 #include <asm/i8253.h>
8 #include <asm/sni.h>
9 #include <asm/time.h>
10 #include <asm-generic/rtc.h>
12 #define SNI_CLOCK_TICK_RATE 3686400
13 #define SNI_COUNTER2_DIV 64
14 #define SNI_COUNTER0_DIV ((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ)
16 static void a20r_set_mode(enum clock_event_mode mode,
17 struct clock_event_device *evt)
19 switch (mode) {
20 case CLOCK_EVT_MODE_PERIODIC:
21 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34;
22 wmb();
23 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV;
24 wmb();
25 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8;
26 wmb();
28 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4;
29 wmb();
30 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV;
31 wmb();
32 *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8;
33 wmb();
35 break;
36 case CLOCK_EVT_MODE_ONESHOT:
37 case CLOCK_EVT_MODE_UNUSED:
38 case CLOCK_EVT_MODE_SHUTDOWN:
39 break;
40 case CLOCK_EVT_MODE_RESUME:
41 break;
45 static struct clock_event_device a20r_clockevent_device = {
46 .name = "a20r-timer",
47 .features = CLOCK_EVT_FEAT_PERIODIC,
49 /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */
51 .rating = 300,
52 .irq = SNI_A20R_IRQ_TIMER,
53 .set_mode = a20r_set_mode,
56 static irqreturn_t a20r_interrupt(int irq, void *dev_id)
58 struct clock_event_device *cd = dev_id;
60 *(volatile u8 *)A20R_PT_TIM0_ACK = 0;
61 wmb();
63 cd->event_handler(cd);
65 return IRQ_HANDLED;
68 static struct irqaction a20r_irqaction = {
69 .handler = a20r_interrupt,
70 .flags = IRQF_DISABLED | IRQF_PERCPU,
71 .name = "a20r-timer",
75 * a20r platform uses 2 counters to divide the input frequency.
76 * Counter 2 output is connected to Counter 0 & 1 input.
78 static void __init sni_a20r_timer_setup(void)
80 struct clock_event_device *cd = &a20r_clockevent_device;
81 struct irqaction *action = &a20r_irqaction;
82 unsigned int cpu = smp_processor_id();
84 cd->cpumask = cpumask_of(cpu);
85 clockevents_register_device(cd);
86 action->dev_id = cd;
87 setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction);
90 #define SNI_8254_TICK_RATE 1193182UL
92 #define SNI_8254_TCSAMP_COUNTER ((SNI_8254_TICK_RATE / HZ) + 255)
94 static __init unsigned long dosample(void)
96 u32 ct0, ct1;
97 volatile u8 msb, lsb;
99 /* Start the counter. */
100 outb_p(0x34, 0x43);
101 outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40);
102 outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40);
104 /* Get initial counter invariant */
105 ct0 = read_c0_count();
107 /* Latch and spin until top byte of counter0 is zero */
108 do {
109 outb(0x00, 0x43);
110 lsb = inb(0x40);
111 msb = inb(0x40);
112 ct1 = read_c0_count();
113 } while (msb);
115 /* Stop the counter. */
116 outb(0x38, 0x43);
118 * Return the difference, this is how far the r4k counter increments
119 * for every 1/HZ seconds. We round off the nearest 1 MHz of master
120 * clock (= 1000000 / HZ / 2).
122 /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/
123 return (ct1 - ct0) / (500000/HZ) * (500000/HZ);
127 * Here we need to calibrate the cycle counter to at least be close.
129 void __init plat_time_init(void)
131 unsigned long r4k_ticks[3];
132 unsigned long r4k_tick;
135 * Figure out the r4k offset, the algorithm is very simple and works in
136 * _all_ cases as long as the 8254 counter register itself works ok (as
137 * an interrupt driving timer it does not because of bug, this is why
138 * we are using the onchip r4k counter/compare register to serve this
139 * purpose, but for r4k_offset calculation it will work ok for us).
140 * There are other very complicated ways of performing this calculation
141 * but this one works just fine so I am not going to futz around. ;-)
143 printk(KERN_INFO "Calibrating system timer... ");
144 dosample(); /* Prime cache. */
145 dosample(); /* Prime cache. */
146 /* Zero is NOT an option. */
147 do {
148 r4k_ticks[0] = dosample();
149 } while (!r4k_ticks[0]);
150 do {
151 r4k_ticks[1] = dosample();
152 } while (!r4k_ticks[1]);
154 if (r4k_ticks[0] != r4k_ticks[1]) {
155 printk("warning: timer counts differ, retrying... ");
156 r4k_ticks[2] = dosample();
157 if (r4k_ticks[2] == r4k_ticks[0]
158 || r4k_ticks[2] == r4k_ticks[1])
159 r4k_tick = r4k_ticks[2];
160 else {
161 printk("disagreement, using average... ");
162 r4k_tick = (r4k_ticks[0] + r4k_ticks[1]
163 + r4k_ticks[2]) / 3;
165 } else
166 r4k_tick = r4k_ticks[0];
168 printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick,
169 (int) (r4k_tick / (500000 / HZ)),
170 (int) (r4k_tick % (500000 / HZ)));
172 mips_hpt_frequency = r4k_tick * HZ;
174 switch (sni_brd_type) {
175 case SNI_BRD_10:
176 case SNI_BRD_10NEW:
177 case SNI_BRD_TOWER_OASIC:
178 case SNI_BRD_MINITOWER:
179 sni_a20r_timer_setup();
180 break;
182 setup_pit_timer();
185 unsigned long read_persistent_clock(void)
187 return -1;