Linux 2.6.31.6
[linux/fpc-iii.git] / arch / sparc / kernel / irq_64.c
blob8daab33fc17d1808a0abd55bce2d4ac98af0a5c7
1 /* irq.c: UltraSparc IRQ handling/init/registry.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
5 * Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
6 */
8 #include <linux/module.h>
9 #include <linux/sched.h>
10 #include <linux/linkage.h>
11 #include <linux/ptrace.h>
12 #include <linux/errno.h>
13 #include <linux/kernel_stat.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
25 #include <asm/ptrace.h>
26 #include <asm/processor.h>
27 #include <asm/atomic.h>
28 #include <asm/system.h>
29 #include <asm/irq.h>
30 #include <asm/io.h>
31 #include <asm/iommu.h>
32 #include <asm/upa.h>
33 #include <asm/oplib.h>
34 #include <asm/prom.h>
35 #include <asm/timer.h>
36 #include <asm/smp.h>
37 #include <asm/starfire.h>
38 #include <asm/uaccess.h>
39 #include <asm/cache.h>
40 #include <asm/cpudata.h>
41 #include <asm/auxio.h>
42 #include <asm/head.h>
43 #include <asm/hypervisor.h>
44 #include <asm/cacheflush.h>
46 #include "entry.h"
47 #include "cpumap.h"
49 #define NUM_IVECS (IMAP_INR + 1)
51 struct ino_bucket *ivector_table;
52 unsigned long ivector_table_pa;
54 /* On several sun4u processors, it is illegal to mix bypass and
55 * non-bypass accesses. Therefore we access all INO buckets
56 * using bypass accesses only.
58 static unsigned long bucket_get_chain_pa(unsigned long bucket_pa)
60 unsigned long ret;
62 __asm__ __volatile__("ldxa [%1] %2, %0"
63 : "=&r" (ret)
64 : "r" (bucket_pa +
65 offsetof(struct ino_bucket,
66 __irq_chain_pa)),
67 "i" (ASI_PHYS_USE_EC));
69 return ret;
72 static void bucket_clear_chain_pa(unsigned long bucket_pa)
74 __asm__ __volatile__("stxa %%g0, [%0] %1"
75 : /* no outputs */
76 : "r" (bucket_pa +
77 offsetof(struct ino_bucket,
78 __irq_chain_pa)),
79 "i" (ASI_PHYS_USE_EC));
82 static unsigned int bucket_get_virt_irq(unsigned long bucket_pa)
84 unsigned int ret;
86 __asm__ __volatile__("lduwa [%1] %2, %0"
87 : "=&r" (ret)
88 : "r" (bucket_pa +
89 offsetof(struct ino_bucket,
90 __virt_irq)),
91 "i" (ASI_PHYS_USE_EC));
93 return ret;
96 static void bucket_set_virt_irq(unsigned long bucket_pa,
97 unsigned int virt_irq)
99 __asm__ __volatile__("stwa %0, [%1] %2"
100 : /* no outputs */
101 : "r" (virt_irq),
102 "r" (bucket_pa +
103 offsetof(struct ino_bucket,
104 __virt_irq)),
105 "i" (ASI_PHYS_USE_EC));
108 #define irq_work_pa(__cpu) &(trap_block[(__cpu)].irq_worklist_pa)
110 static struct {
111 unsigned int dev_handle;
112 unsigned int dev_ino;
113 unsigned int in_use;
114 } virt_irq_table[NR_IRQS];
115 static DEFINE_SPINLOCK(virt_irq_alloc_lock);
117 unsigned char virt_irq_alloc(unsigned int dev_handle,
118 unsigned int dev_ino)
120 unsigned long flags;
121 unsigned char ent;
123 BUILD_BUG_ON(NR_IRQS >= 256);
125 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
127 for (ent = 1; ent < NR_IRQS; ent++) {
128 if (!virt_irq_table[ent].in_use)
129 break;
131 if (ent >= NR_IRQS) {
132 printk(KERN_ERR "IRQ: Out of virtual IRQs.\n");
133 ent = 0;
134 } else {
135 virt_irq_table[ent].dev_handle = dev_handle;
136 virt_irq_table[ent].dev_ino = dev_ino;
137 virt_irq_table[ent].in_use = 1;
140 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
142 return ent;
145 #ifdef CONFIG_PCI_MSI
146 void virt_irq_free(unsigned int virt_irq)
148 unsigned long flags;
150 if (virt_irq >= NR_IRQS)
151 return;
153 spin_lock_irqsave(&virt_irq_alloc_lock, flags);
155 virt_irq_table[virt_irq].in_use = 0;
157 spin_unlock_irqrestore(&virt_irq_alloc_lock, flags);
159 #endif
162 * /proc/interrupts printing:
165 int show_interrupts(struct seq_file *p, void *v)
167 int i = *(loff_t *) v, j;
168 struct irqaction * action;
169 unsigned long flags;
171 if (i == 0) {
172 seq_printf(p, " ");
173 for_each_online_cpu(j)
174 seq_printf(p, "CPU%d ",j);
175 seq_putc(p, '\n');
178 if (i < NR_IRQS) {
179 spin_lock_irqsave(&irq_desc[i].lock, flags);
180 action = irq_desc[i].action;
181 if (!action)
182 goto skip;
183 seq_printf(p, "%3d: ",i);
184 #ifndef CONFIG_SMP
185 seq_printf(p, "%10u ", kstat_irqs(i));
186 #else
187 for_each_online_cpu(j)
188 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
189 #endif
190 seq_printf(p, " %9s", irq_desc[i].chip->typename);
191 seq_printf(p, " %s", action->name);
193 for (action=action->next; action; action = action->next)
194 seq_printf(p, ", %s", action->name);
196 seq_putc(p, '\n');
197 skip:
198 spin_unlock_irqrestore(&irq_desc[i].lock, flags);
199 } else if (i == NR_IRQS) {
200 seq_printf(p, "NMI: ");
201 for_each_online_cpu(j)
202 seq_printf(p, "%10u ", cpu_data(j).__nmi_count);
203 seq_printf(p, " Non-maskable interrupts\n");
205 return 0;
208 static unsigned int sun4u_compute_tid(unsigned long imap, unsigned long cpuid)
210 unsigned int tid;
212 if (this_is_starfire) {
213 tid = starfire_translate(imap, cpuid);
214 tid <<= IMAP_TID_SHIFT;
215 tid &= IMAP_TID_UPA;
216 } else {
217 if (tlb_type == cheetah || tlb_type == cheetah_plus) {
218 unsigned long ver;
220 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
221 if ((ver >> 32UL) == __JALAPENO_ID ||
222 (ver >> 32UL) == __SERRANO_ID) {
223 tid = cpuid << IMAP_TID_SHIFT;
224 tid &= IMAP_TID_JBUS;
225 } else {
226 unsigned int a = cpuid & 0x1f;
227 unsigned int n = (cpuid >> 5) & 0x1f;
229 tid = ((a << IMAP_AID_SHIFT) |
230 (n << IMAP_NID_SHIFT));
231 tid &= (IMAP_AID_SAFARI |
232 IMAP_NID_SAFARI);;
234 } else {
235 tid = cpuid << IMAP_TID_SHIFT;
236 tid &= IMAP_TID_UPA;
240 return tid;
243 struct irq_handler_data {
244 unsigned long iclr;
245 unsigned long imap;
247 void (*pre_handler)(unsigned int, void *, void *);
248 void *arg1;
249 void *arg2;
252 #ifdef CONFIG_SMP
253 static int irq_choose_cpu(unsigned int virt_irq)
255 cpumask_t mask;
256 int cpuid;
258 cpumask_copy(&mask, irq_desc[virt_irq].affinity);
259 if (cpus_equal(mask, cpu_online_map)) {
260 cpuid = map_to_cpu(virt_irq);
261 } else {
262 cpumask_t tmp;
264 cpus_and(tmp, cpu_online_map, mask);
265 cpuid = cpus_empty(tmp) ? map_to_cpu(virt_irq) : first_cpu(tmp);
268 return cpuid;
270 #else
271 static int irq_choose_cpu(unsigned int virt_irq)
273 return real_hard_smp_processor_id();
275 #endif
277 static void sun4u_irq_enable(unsigned int virt_irq)
279 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
281 if (likely(data)) {
282 unsigned long cpuid, imap, val;
283 unsigned int tid;
285 cpuid = irq_choose_cpu(virt_irq);
286 imap = data->imap;
288 tid = sun4u_compute_tid(imap, cpuid);
290 val = upa_readq(imap);
291 val &= ~(IMAP_TID_UPA | IMAP_TID_JBUS |
292 IMAP_AID_SAFARI | IMAP_NID_SAFARI);
293 val |= tid | IMAP_VALID;
294 upa_writeq(val, imap);
295 upa_writeq(ICLR_IDLE, data->iclr);
299 static int sun4u_set_affinity(unsigned int virt_irq,
300 const struct cpumask *mask)
302 sun4u_irq_enable(virt_irq);
304 return 0;
307 /* Don't do anything. The desc->status check for IRQ_DISABLED in
308 * handler_irq() will skip the handler call and that will leave the
309 * interrupt in the sent state. The next ->enable() call will hit the
310 * ICLR register to reset the state machine.
312 * This scheme is necessary, instead of clearing the Valid bit in the
313 * IMAP register, to handle the case of IMAP registers being shared by
314 * multiple INOs (and thus ICLR registers). Since we use a different
315 * virtual IRQ for each shared IMAP instance, the generic code thinks
316 * there is only one user so it prematurely calls ->disable() on
317 * free_irq().
319 * We have to provide an explicit ->disable() method instead of using
320 * NULL to get the default. The reason is that if the generic code
321 * sees that, it also hooks up a default ->shutdown method which
322 * invokes ->mask() which we do not want. See irq_chip_set_defaults().
324 static void sun4u_irq_disable(unsigned int virt_irq)
328 static void sun4u_irq_eoi(unsigned int virt_irq)
330 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
331 struct irq_desc *desc = irq_desc + virt_irq;
333 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
334 return;
336 if (likely(data))
337 upa_writeq(ICLR_IDLE, data->iclr);
340 static void sun4v_irq_enable(unsigned int virt_irq)
342 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
343 unsigned long cpuid = irq_choose_cpu(virt_irq);
344 int err;
346 err = sun4v_intr_settarget(ino, cpuid);
347 if (err != HV_EOK)
348 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
349 "err(%d)\n", ino, cpuid, err);
350 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
351 if (err != HV_EOK)
352 printk(KERN_ERR "sun4v_intr_setstate(%x): "
353 "err(%d)\n", ino, err);
354 err = sun4v_intr_setenabled(ino, HV_INTR_ENABLED);
355 if (err != HV_EOK)
356 printk(KERN_ERR "sun4v_intr_setenabled(%x): err(%d)\n",
357 ino, err);
360 static int sun4v_set_affinity(unsigned int virt_irq,
361 const struct cpumask *mask)
363 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
364 unsigned long cpuid = irq_choose_cpu(virt_irq);
365 int err;
367 err = sun4v_intr_settarget(ino, cpuid);
368 if (err != HV_EOK)
369 printk(KERN_ERR "sun4v_intr_settarget(%x,%lu): "
370 "err(%d)\n", ino, cpuid, err);
372 return 0;
375 static void sun4v_irq_disable(unsigned int virt_irq)
377 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
378 int err;
380 err = sun4v_intr_setenabled(ino, HV_INTR_DISABLED);
381 if (err != HV_EOK)
382 printk(KERN_ERR "sun4v_intr_setenabled(%x): "
383 "err(%d)\n", ino, err);
386 static void sun4v_irq_eoi(unsigned int virt_irq)
388 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
389 struct irq_desc *desc = irq_desc + virt_irq;
390 int err;
392 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
393 return;
395 err = sun4v_intr_setstate(ino, HV_INTR_STATE_IDLE);
396 if (err != HV_EOK)
397 printk(KERN_ERR "sun4v_intr_setstate(%x): "
398 "err(%d)\n", ino, err);
401 static void sun4v_virq_enable(unsigned int virt_irq)
403 unsigned long cpuid, dev_handle, dev_ino;
404 int err;
406 cpuid = irq_choose_cpu(virt_irq);
408 dev_handle = virt_irq_table[virt_irq].dev_handle;
409 dev_ino = virt_irq_table[virt_irq].dev_ino;
411 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
412 if (err != HV_EOK)
413 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
414 "err(%d)\n",
415 dev_handle, dev_ino, cpuid, err);
416 err = sun4v_vintr_set_state(dev_handle, dev_ino,
417 HV_INTR_STATE_IDLE);
418 if (err != HV_EOK)
419 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
420 "HV_INTR_STATE_IDLE): err(%d)\n",
421 dev_handle, dev_ino, err);
422 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
423 HV_INTR_ENABLED);
424 if (err != HV_EOK)
425 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
426 "HV_INTR_ENABLED): err(%d)\n",
427 dev_handle, dev_ino, err);
430 static int sun4v_virt_set_affinity(unsigned int virt_irq,
431 const struct cpumask *mask)
433 unsigned long cpuid, dev_handle, dev_ino;
434 int err;
436 cpuid = irq_choose_cpu(virt_irq);
438 dev_handle = virt_irq_table[virt_irq].dev_handle;
439 dev_ino = virt_irq_table[virt_irq].dev_ino;
441 err = sun4v_vintr_set_target(dev_handle, dev_ino, cpuid);
442 if (err != HV_EOK)
443 printk(KERN_ERR "sun4v_vintr_set_target(%lx,%lx,%lu): "
444 "err(%d)\n",
445 dev_handle, dev_ino, cpuid, err);
447 return 0;
450 static void sun4v_virq_disable(unsigned int virt_irq)
452 unsigned long dev_handle, dev_ino;
453 int err;
455 dev_handle = virt_irq_table[virt_irq].dev_handle;
456 dev_ino = virt_irq_table[virt_irq].dev_ino;
458 err = sun4v_vintr_set_valid(dev_handle, dev_ino,
459 HV_INTR_DISABLED);
460 if (err != HV_EOK)
461 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
462 "HV_INTR_DISABLED): err(%d)\n",
463 dev_handle, dev_ino, err);
466 static void sun4v_virq_eoi(unsigned int virt_irq)
468 struct irq_desc *desc = irq_desc + virt_irq;
469 unsigned long dev_handle, dev_ino;
470 int err;
472 if (unlikely(desc->status & (IRQ_DISABLED|IRQ_INPROGRESS)))
473 return;
475 dev_handle = virt_irq_table[virt_irq].dev_handle;
476 dev_ino = virt_irq_table[virt_irq].dev_ino;
478 err = sun4v_vintr_set_state(dev_handle, dev_ino,
479 HV_INTR_STATE_IDLE);
480 if (err != HV_EOK)
481 printk(KERN_ERR "sun4v_vintr_set_state(%lx,%lx,"
482 "HV_INTR_STATE_IDLE): err(%d)\n",
483 dev_handle, dev_ino, err);
486 static struct irq_chip sun4u_irq = {
487 .typename = "sun4u",
488 .enable = sun4u_irq_enable,
489 .disable = sun4u_irq_disable,
490 .eoi = sun4u_irq_eoi,
491 .set_affinity = sun4u_set_affinity,
494 static struct irq_chip sun4v_irq = {
495 .typename = "sun4v",
496 .enable = sun4v_irq_enable,
497 .disable = sun4v_irq_disable,
498 .eoi = sun4v_irq_eoi,
499 .set_affinity = sun4v_set_affinity,
502 static struct irq_chip sun4v_virq = {
503 .typename = "vsun4v",
504 .enable = sun4v_virq_enable,
505 .disable = sun4v_virq_disable,
506 .eoi = sun4v_virq_eoi,
507 .set_affinity = sun4v_virt_set_affinity,
510 static void pre_flow_handler(unsigned int virt_irq,
511 struct irq_desc *desc)
513 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
514 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
516 data->pre_handler(ino, data->arg1, data->arg2);
518 handle_fasteoi_irq(virt_irq, desc);
521 void irq_install_pre_handler(int virt_irq,
522 void (*func)(unsigned int, void *, void *),
523 void *arg1, void *arg2)
525 struct irq_handler_data *data = get_irq_chip_data(virt_irq);
526 struct irq_desc *desc = irq_desc + virt_irq;
528 data->pre_handler = func;
529 data->arg1 = arg1;
530 data->arg2 = arg2;
532 desc->handle_irq = pre_flow_handler;
535 unsigned int build_irq(int inofixup, unsigned long iclr, unsigned long imap)
537 struct ino_bucket *bucket;
538 struct irq_handler_data *data;
539 unsigned int virt_irq;
540 int ino;
542 BUG_ON(tlb_type == hypervisor);
544 ino = (upa_readq(imap) & (IMAP_IGN | IMAP_INO)) + inofixup;
545 bucket = &ivector_table[ino];
546 virt_irq = bucket_get_virt_irq(__pa(bucket));
547 if (!virt_irq) {
548 virt_irq = virt_irq_alloc(0, ino);
549 bucket_set_virt_irq(__pa(bucket), virt_irq);
550 set_irq_chip_and_handler_name(virt_irq,
551 &sun4u_irq,
552 handle_fasteoi_irq,
553 "IVEC");
556 data = get_irq_chip_data(virt_irq);
557 if (unlikely(data))
558 goto out;
560 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
561 if (unlikely(!data)) {
562 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
563 prom_halt();
565 set_irq_chip_data(virt_irq, data);
567 data->imap = imap;
568 data->iclr = iclr;
570 out:
571 return virt_irq;
574 static unsigned int sun4v_build_common(unsigned long sysino,
575 struct irq_chip *chip)
577 struct ino_bucket *bucket;
578 struct irq_handler_data *data;
579 unsigned int virt_irq;
581 BUG_ON(tlb_type != hypervisor);
583 bucket = &ivector_table[sysino];
584 virt_irq = bucket_get_virt_irq(__pa(bucket));
585 if (!virt_irq) {
586 virt_irq = virt_irq_alloc(0, sysino);
587 bucket_set_virt_irq(__pa(bucket), virt_irq);
588 set_irq_chip_and_handler_name(virt_irq, chip,
589 handle_fasteoi_irq,
590 "IVEC");
593 data = get_irq_chip_data(virt_irq);
594 if (unlikely(data))
595 goto out;
597 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
598 if (unlikely(!data)) {
599 prom_printf("IRQ: kzalloc(irq_handler_data) failed.\n");
600 prom_halt();
602 set_irq_chip_data(virt_irq, data);
604 /* Catch accidental accesses to these things. IMAP/ICLR handling
605 * is done by hypervisor calls on sun4v platforms, not by direct
606 * register accesses.
608 data->imap = ~0UL;
609 data->iclr = ~0UL;
611 out:
612 return virt_irq;
615 unsigned int sun4v_build_irq(u32 devhandle, unsigned int devino)
617 unsigned long sysino = sun4v_devino_to_sysino(devhandle, devino);
619 return sun4v_build_common(sysino, &sun4v_irq);
622 unsigned int sun4v_build_virq(u32 devhandle, unsigned int devino)
624 struct irq_handler_data *data;
625 unsigned long hv_err, cookie;
626 struct ino_bucket *bucket;
627 struct irq_desc *desc;
628 unsigned int virt_irq;
630 bucket = kzalloc(sizeof(struct ino_bucket), GFP_ATOMIC);
631 if (unlikely(!bucket))
632 return 0;
633 __flush_dcache_range((unsigned long) bucket,
634 ((unsigned long) bucket +
635 sizeof(struct ino_bucket)));
637 virt_irq = virt_irq_alloc(devhandle, devino);
638 bucket_set_virt_irq(__pa(bucket), virt_irq);
640 set_irq_chip_and_handler_name(virt_irq, &sun4v_virq,
641 handle_fasteoi_irq,
642 "IVEC");
644 data = kzalloc(sizeof(struct irq_handler_data), GFP_ATOMIC);
645 if (unlikely(!data))
646 return 0;
648 /* In order to make the LDC channel startup sequence easier,
649 * especially wrt. locking, we do not let request_irq() enable
650 * the interrupt.
652 desc = irq_desc + virt_irq;
653 desc->status |= IRQ_NOAUTOEN;
655 set_irq_chip_data(virt_irq, data);
657 /* Catch accidental accesses to these things. IMAP/ICLR handling
658 * is done by hypervisor calls on sun4v platforms, not by direct
659 * register accesses.
661 data->imap = ~0UL;
662 data->iclr = ~0UL;
664 cookie = ~__pa(bucket);
665 hv_err = sun4v_vintr_set_cookie(devhandle, devino, cookie);
666 if (hv_err) {
667 prom_printf("IRQ: Fatal, cannot set cookie for [%x:%x] "
668 "err=%lu\n", devhandle, devino, hv_err);
669 prom_halt();
672 return virt_irq;
675 void ack_bad_irq(unsigned int virt_irq)
677 unsigned int ino = virt_irq_table[virt_irq].dev_ino;
679 if (!ino)
680 ino = 0xdeadbeef;
682 printk(KERN_CRIT "Unexpected IRQ from ino[%x] virt_irq[%u]\n",
683 ino, virt_irq);
686 void *hardirq_stack[NR_CPUS];
687 void *softirq_stack[NR_CPUS];
689 static __attribute__((always_inline)) void *set_hardirq_stack(void)
691 void *orig_sp, *sp = hardirq_stack[smp_processor_id()];
693 __asm__ __volatile__("mov %%sp, %0" : "=r" (orig_sp));
694 if (orig_sp < sp ||
695 orig_sp > (sp + THREAD_SIZE)) {
696 sp += THREAD_SIZE - 192 - STACK_BIAS;
697 __asm__ __volatile__("mov %0, %%sp" : : "r" (sp));
700 return orig_sp;
702 static __attribute__((always_inline)) void restore_hardirq_stack(void *orig_sp)
704 __asm__ __volatile__("mov %0, %%sp" : : "r" (orig_sp));
707 void handler_irq(int irq, struct pt_regs *regs)
709 unsigned long pstate, bucket_pa;
710 struct pt_regs *old_regs;
711 void *orig_sp;
713 clear_softint(1 << irq);
715 old_regs = set_irq_regs(regs);
716 irq_enter();
718 /* Grab an atomic snapshot of the pending IVECs. */
719 __asm__ __volatile__("rdpr %%pstate, %0\n\t"
720 "wrpr %0, %3, %%pstate\n\t"
721 "ldx [%2], %1\n\t"
722 "stx %%g0, [%2]\n\t"
723 "wrpr %0, 0x0, %%pstate\n\t"
724 : "=&r" (pstate), "=&r" (bucket_pa)
725 : "r" (irq_work_pa(smp_processor_id())),
726 "i" (PSTATE_IE)
727 : "memory");
729 orig_sp = set_hardirq_stack();
731 while (bucket_pa) {
732 struct irq_desc *desc;
733 unsigned long next_pa;
734 unsigned int virt_irq;
736 next_pa = bucket_get_chain_pa(bucket_pa);
737 virt_irq = bucket_get_virt_irq(bucket_pa);
738 bucket_clear_chain_pa(bucket_pa);
740 desc = irq_desc + virt_irq;
742 if (!(desc->status & IRQ_DISABLED))
743 desc->handle_irq(virt_irq, desc);
745 bucket_pa = next_pa;
748 restore_hardirq_stack(orig_sp);
750 irq_exit();
751 set_irq_regs(old_regs);
754 void do_softirq(void)
756 unsigned long flags;
758 if (in_interrupt())
759 return;
761 local_irq_save(flags);
763 if (local_softirq_pending()) {
764 void *orig_sp, *sp = softirq_stack[smp_processor_id()];
766 sp += THREAD_SIZE - 192 - STACK_BIAS;
768 __asm__ __volatile__("mov %%sp, %0\n\t"
769 "mov %1, %%sp"
770 : "=&r" (orig_sp)
771 : "r" (sp));
772 __do_softirq();
773 __asm__ __volatile__("mov %0, %%sp"
774 : : "r" (orig_sp));
777 local_irq_restore(flags);
780 #ifdef CONFIG_HOTPLUG_CPU
781 void fixup_irqs(void)
783 unsigned int irq;
785 for (irq = 0; irq < NR_IRQS; irq++) {
786 unsigned long flags;
788 spin_lock_irqsave(&irq_desc[irq].lock, flags);
789 if (irq_desc[irq].action &&
790 !(irq_desc[irq].status & IRQ_PER_CPU)) {
791 if (irq_desc[irq].chip->set_affinity)
792 irq_desc[irq].chip->set_affinity(irq,
793 irq_desc[irq].affinity);
795 spin_unlock_irqrestore(&irq_desc[irq].lock, flags);
798 tick_ops->disable_irq();
800 #endif
802 struct sun5_timer {
803 u64 count0;
804 u64 limit0;
805 u64 count1;
806 u64 limit1;
809 static struct sun5_timer *prom_timers;
810 static u64 prom_limit0, prom_limit1;
812 static void map_prom_timers(void)
814 struct device_node *dp;
815 const unsigned int *addr;
817 /* PROM timer node hangs out in the top level of device siblings... */
818 dp = of_find_node_by_path("/");
819 dp = dp->child;
820 while (dp) {
821 if (!strcmp(dp->name, "counter-timer"))
822 break;
823 dp = dp->sibling;
826 /* Assume if node is not present, PROM uses different tick mechanism
827 * which we should not care about.
829 if (!dp) {
830 prom_timers = (struct sun5_timer *) 0;
831 return;
834 /* If PROM is really using this, it must be mapped by him. */
835 addr = of_get_property(dp, "address", NULL);
836 if (!addr) {
837 prom_printf("PROM does not have timer mapped, trying to continue.\n");
838 prom_timers = (struct sun5_timer *) 0;
839 return;
841 prom_timers = (struct sun5_timer *) ((unsigned long)addr[0]);
844 static void kill_prom_timer(void)
846 if (!prom_timers)
847 return;
849 /* Save them away for later. */
850 prom_limit0 = prom_timers->limit0;
851 prom_limit1 = prom_timers->limit1;
853 /* Just as in sun4c/sun4m PROM uses timer which ticks at IRQ 14.
854 * We turn both off here just to be paranoid.
856 prom_timers->limit0 = 0;
857 prom_timers->limit1 = 0;
859 /* Wheee, eat the interrupt packet too... */
860 __asm__ __volatile__(
861 " mov 0x40, %%g2\n"
862 " ldxa [%%g0] %0, %%g1\n"
863 " ldxa [%%g2] %1, %%g1\n"
864 " stxa %%g0, [%%g0] %0\n"
865 " membar #Sync\n"
866 : /* no outputs */
867 : "i" (ASI_INTR_RECEIVE), "i" (ASI_INTR_R)
868 : "g1", "g2");
871 void notrace init_irqwork_curcpu(void)
873 int cpu = hard_smp_processor_id();
875 trap_block[cpu].irq_worklist_pa = 0UL;
878 /* Please be very careful with register_one_mondo() and
879 * sun4v_register_mondo_queues().
881 * On SMP this gets invoked from the CPU trampoline before
882 * the cpu has fully taken over the trap table from OBP,
883 * and it's kernel stack + %g6 thread register state is
884 * not fully cooked yet.
886 * Therefore you cannot make any OBP calls, not even prom_printf,
887 * from these two routines.
889 static void __cpuinit notrace register_one_mondo(unsigned long paddr, unsigned long type, unsigned long qmask)
891 unsigned long num_entries = (qmask + 1) / 64;
892 unsigned long status;
894 status = sun4v_cpu_qconf(type, paddr, num_entries);
895 if (status != HV_EOK) {
896 prom_printf("SUN4V: sun4v_cpu_qconf(%lu:%lx:%lu) failed, "
897 "err %lu\n", type, paddr, num_entries, status);
898 prom_halt();
902 void __cpuinit notrace sun4v_register_mondo_queues(int this_cpu)
904 struct trap_per_cpu *tb = &trap_block[this_cpu];
906 register_one_mondo(tb->cpu_mondo_pa, HV_CPU_QUEUE_CPU_MONDO,
907 tb->cpu_mondo_qmask);
908 register_one_mondo(tb->dev_mondo_pa, HV_CPU_QUEUE_DEVICE_MONDO,
909 tb->dev_mondo_qmask);
910 register_one_mondo(tb->resum_mondo_pa, HV_CPU_QUEUE_RES_ERROR,
911 tb->resum_qmask);
912 register_one_mondo(tb->nonresum_mondo_pa, HV_CPU_QUEUE_NONRES_ERROR,
913 tb->nonresum_qmask);
916 /* Each queue region must be a power of 2 multiple of 64 bytes in
917 * size. The base real address must be aligned to the size of the
918 * region. Thus, an 8KB queue must be 8KB aligned, for example.
920 static void __init alloc_one_queue(unsigned long *pa_ptr, unsigned long qmask)
922 unsigned long size = PAGE_ALIGN(qmask + 1);
923 unsigned long order = get_order(size);
924 unsigned long p;
926 p = __get_free_pages(GFP_KERNEL, order);
927 if (!p) {
928 prom_printf("SUN4V: Error, cannot allocate queue.\n");
929 prom_halt();
932 *pa_ptr = __pa(p);
935 static void __init init_cpu_send_mondo_info(struct trap_per_cpu *tb)
937 #ifdef CONFIG_SMP
938 unsigned long page;
940 BUILD_BUG_ON((NR_CPUS * sizeof(u16)) > (PAGE_SIZE - 64));
942 page = get_zeroed_page(GFP_KERNEL);
943 if (!page) {
944 prom_printf("SUN4V: Error, cannot allocate cpu mondo page.\n");
945 prom_halt();
948 tb->cpu_mondo_block_pa = __pa(page);
949 tb->cpu_list_pa = __pa(page + 64);
950 #endif
953 /* Allocate mondo and error queues for all possible cpus. */
954 static void __init sun4v_init_mondo_queues(void)
956 int cpu;
958 for_each_possible_cpu(cpu) {
959 struct trap_per_cpu *tb = &trap_block[cpu];
961 alloc_one_queue(&tb->cpu_mondo_pa, tb->cpu_mondo_qmask);
962 alloc_one_queue(&tb->dev_mondo_pa, tb->dev_mondo_qmask);
963 alloc_one_queue(&tb->resum_mondo_pa, tb->resum_qmask);
964 alloc_one_queue(&tb->resum_kernel_buf_pa, tb->resum_qmask);
965 alloc_one_queue(&tb->nonresum_mondo_pa, tb->nonresum_qmask);
966 alloc_one_queue(&tb->nonresum_kernel_buf_pa,
967 tb->nonresum_qmask);
971 static void __init init_send_mondo_info(void)
973 int cpu;
975 for_each_possible_cpu(cpu) {
976 struct trap_per_cpu *tb = &trap_block[cpu];
978 init_cpu_send_mondo_info(tb);
982 static struct irqaction timer_irq_action = {
983 .name = "timer",
986 /* Only invoked on boot processor. */
987 void __init init_IRQ(void)
989 unsigned long size;
991 map_prom_timers();
992 kill_prom_timer();
994 size = sizeof(struct ino_bucket) * NUM_IVECS;
995 ivector_table = kzalloc(size, GFP_KERNEL);
996 if (!ivector_table) {
997 prom_printf("Fatal error, cannot allocate ivector_table\n");
998 prom_halt();
1000 __flush_dcache_range((unsigned long) ivector_table,
1001 ((unsigned long) ivector_table) + size);
1003 ivector_table_pa = __pa(ivector_table);
1005 if (tlb_type == hypervisor)
1006 sun4v_init_mondo_queues();
1008 init_send_mondo_info();
1010 if (tlb_type == hypervisor) {
1011 /* Load up the boot cpu's entries. */
1012 sun4v_register_mondo_queues(hard_smp_processor_id());
1015 /* We need to clear any IRQ's pending in the soft interrupt
1016 * registers, a spurious one could be left around from the
1017 * PROM timer which we just disabled.
1019 clear_softint(get_softint());
1021 /* Now that ivector table is initialized, it is safe
1022 * to receive IRQ vector traps. We will normally take
1023 * one or two right now, in case some device PROM used
1024 * to boot us wants to speak to us. We just ignore them.
1026 __asm__ __volatile__("rdpr %%pstate, %%g1\n\t"
1027 "or %%g1, %0, %%g1\n\t"
1028 "wrpr %%g1, 0x0, %%pstate"
1029 : /* No outputs */
1030 : "i" (PSTATE_IE)
1031 : "g1");
1033 irq_desc[0].action = &timer_irq_action;