2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/perf_event.h>
37 #include <linux/ftrace_event.h>
38 #include <linux/hw_breakpoint.h>
42 #include <asm/irq_regs.h>
44 struct remote_function_call
{
45 struct task_struct
*p
;
46 int (*func
)(void *info
);
51 static void remote_function(void *data
)
53 struct remote_function_call
*tfc
= data
;
54 struct task_struct
*p
= tfc
->p
;
58 if (task_cpu(p
) != smp_processor_id() || !task_curr(p
))
62 tfc
->ret
= tfc
->func(tfc
->info
);
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
79 task_function_call(struct task_struct
*p
, int (*func
) (void *info
), void *info
)
81 struct remote_function_call data
= {
85 .ret
= -ESRCH
, /* No such (running) process */
89 smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
99 * Calls the function @func on the remote cpu.
101 * returns: @func return value or -ENXIO when the cpu is offline
103 static int cpu_function_call(int cpu
, int (*func
) (void *info
), void *info
)
105 struct remote_function_call data
= {
109 .ret
= -ENXIO
, /* No such CPU */
112 smp_call_function_single(cpu
, remote_function
, &data
, 1);
117 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
122 * branch priv levels that need permission checks
124 #define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
129 EVENT_FLEXIBLE
= 0x1,
131 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
138 struct static_key_deferred perf_sched_events __read_mostly
;
139 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
140 static DEFINE_PER_CPU(atomic_t
, perf_branch_stack_events
);
142 static atomic_t nr_mmap_events __read_mostly
;
143 static atomic_t nr_comm_events __read_mostly
;
144 static atomic_t nr_task_events __read_mostly
;
146 static LIST_HEAD(pmus
);
147 static DEFINE_MUTEX(pmus_lock
);
148 static struct srcu_struct pmus_srcu
;
151 * perf event paranoia level:
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
154 * 1 - disallow cpu events for unpriv
155 * 2 - disallow kernel profiling for unpriv
157 int sysctl_perf_event_paranoid __read_mostly
= 1;
159 /* Minimum for 512 kiB + 1 user control page */
160 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
163 * max perf event sample rate
165 #define DEFAULT_MAX_SAMPLE_RATE 100000
166 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
167 static int max_samples_per_tick __read_mostly
=
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
170 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
171 void __user
*buffer
, size_t *lenp
,
174 int ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
179 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
184 static atomic64_t perf_event_id
;
186 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
187 enum event_type_t event_type
);
189 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
190 enum event_type_t event_type
,
191 struct task_struct
*task
);
193 static void update_context_time(struct perf_event_context
*ctx
);
194 static u64
perf_event_time(struct perf_event
*event
);
196 static void ring_buffer_attach(struct perf_event
*event
,
197 struct ring_buffer
*rb
);
199 void __weak
perf_event_print_debug(void) { }
201 extern __weak
const char *perf_pmu_name(void)
206 static inline u64
perf_clock(void)
208 return local_clock();
211 static inline struct perf_cpu_context
*
212 __get_cpu_context(struct perf_event_context
*ctx
)
214 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
217 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
218 struct perf_event_context
*ctx
)
220 raw_spin_lock(&cpuctx
->ctx
.lock
);
222 raw_spin_lock(&ctx
->lock
);
225 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
226 struct perf_event_context
*ctx
)
229 raw_spin_unlock(&ctx
->lock
);
230 raw_spin_unlock(&cpuctx
->ctx
.lock
);
233 #ifdef CONFIG_CGROUP_PERF
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
240 static inline struct perf_cgroup
*
241 perf_cgroup_from_task(struct task_struct
*task
)
243 return container_of(task_subsys_state(task
, perf_subsys_id
),
244 struct perf_cgroup
, css
);
248 perf_cgroup_match(struct perf_event
*event
)
250 struct perf_event_context
*ctx
= event
->ctx
;
251 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
253 return !event
->cgrp
|| event
->cgrp
== cpuctx
->cgrp
;
256 static inline bool perf_tryget_cgroup(struct perf_event
*event
)
258 return css_tryget(&event
->cgrp
->css
);
261 static inline void perf_put_cgroup(struct perf_event
*event
)
263 css_put(&event
->cgrp
->css
);
266 static inline void perf_detach_cgroup(struct perf_event
*event
)
268 perf_put_cgroup(event
);
272 static inline int is_cgroup_event(struct perf_event
*event
)
274 return event
->cgrp
!= NULL
;
277 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
279 struct perf_cgroup_info
*t
;
281 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
285 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
287 struct perf_cgroup_info
*info
;
292 info
= this_cpu_ptr(cgrp
->info
);
294 info
->time
+= now
- info
->timestamp
;
295 info
->timestamp
= now
;
298 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
300 struct perf_cgroup
*cgrp_out
= cpuctx
->cgrp
;
302 __update_cgrp_time(cgrp_out
);
305 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
307 struct perf_cgroup
*cgrp
;
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
313 if (!is_cgroup_event(event
))
316 cgrp
= perf_cgroup_from_task(current
);
318 * Do not update time when cgroup is not active
320 if (cgrp
== event
->cgrp
)
321 __update_cgrp_time(event
->cgrp
);
325 perf_cgroup_set_timestamp(struct task_struct
*task
,
326 struct perf_event_context
*ctx
)
328 struct perf_cgroup
*cgrp
;
329 struct perf_cgroup_info
*info
;
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
336 if (!task
|| !ctx
->nr_cgroups
)
339 cgrp
= perf_cgroup_from_task(task
);
340 info
= this_cpu_ptr(cgrp
->info
);
341 info
->timestamp
= ctx
->timestamp
;
344 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
348 * reschedule events based on the cgroup constraint of task.
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
353 void perf_cgroup_switch(struct task_struct
*task
, int mode
)
355 struct perf_cpu_context
*cpuctx
;
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
364 local_irq_save(flags
);
367 * we reschedule only in the presence of cgroup
368 * constrained events.
372 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
373 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
382 if (cpuctx
->ctx
.nr_cgroups
> 0) {
383 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
384 perf_pmu_disable(cpuctx
->ctx
.pmu
);
386 if (mode
& PERF_CGROUP_SWOUT
) {
387 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
395 if (mode
& PERF_CGROUP_SWIN
) {
396 WARN_ON_ONCE(cpuctx
->cgrp
);
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
401 cpuctx
->cgrp
= perf_cgroup_from_task(task
);
402 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
404 perf_pmu_enable(cpuctx
->ctx
.pmu
);
405 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
411 local_irq_restore(flags
);
414 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
415 struct task_struct
*next
)
417 struct perf_cgroup
*cgrp1
;
418 struct perf_cgroup
*cgrp2
= NULL
;
421 * we come here when we know perf_cgroup_events > 0
423 cgrp1
= perf_cgroup_from_task(task
);
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
430 cgrp2
= perf_cgroup_from_task(next
);
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
438 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
441 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
442 struct task_struct
*task
)
444 struct perf_cgroup
*cgrp1
;
445 struct perf_cgroup
*cgrp2
= NULL
;
448 * we come here when we know perf_cgroup_events > 0
450 cgrp1
= perf_cgroup_from_task(task
);
452 /* prev can never be NULL */
453 cgrp2
= perf_cgroup_from_task(prev
);
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
461 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
464 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
465 struct perf_event_attr
*attr
,
466 struct perf_event
*group_leader
)
468 struct perf_cgroup
*cgrp
;
469 struct cgroup_subsys_state
*css
;
471 int ret
= 0, fput_needed
;
473 file
= fget_light(fd
, &fput_needed
);
477 css
= cgroup_css_from_dir(file
, perf_subsys_id
);
483 cgrp
= container_of(css
, struct perf_cgroup
, css
);
486 /* must be done before we fput() the file */
487 if (!perf_tryget_cgroup(event
)) {
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
498 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
499 perf_detach_cgroup(event
);
503 fput_light(file
, fput_needed
);
508 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
510 struct perf_cgroup_info
*t
;
511 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
512 event
->shadow_ctx_time
= now
- t
->timestamp
;
516 perf_cgroup_defer_enabled(struct perf_event
*event
)
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
524 if (is_cgroup_event(event
) && !perf_cgroup_match(event
))
525 event
->cgrp_defer_enabled
= 1;
529 perf_cgroup_mark_enabled(struct perf_event
*event
,
530 struct perf_event_context
*ctx
)
532 struct perf_event
*sub
;
533 u64 tstamp
= perf_event_time(event
);
535 if (!event
->cgrp_defer_enabled
)
538 event
->cgrp_defer_enabled
= 0;
540 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
541 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
542 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
) {
543 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
544 sub
->cgrp_defer_enabled
= 0;
548 #else /* !CONFIG_CGROUP_PERF */
551 perf_cgroup_match(struct perf_event
*event
)
556 static inline void perf_detach_cgroup(struct perf_event
*event
)
559 static inline int is_cgroup_event(struct perf_event
*event
)
564 static inline u64
perf_cgroup_event_cgrp_time(struct perf_event
*event
)
569 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
573 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
577 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
578 struct task_struct
*next
)
582 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
583 struct task_struct
*task
)
587 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
588 struct perf_event_attr
*attr
,
589 struct perf_event
*group_leader
)
595 perf_cgroup_set_timestamp(struct task_struct
*task
,
596 struct perf_event_context
*ctx
)
601 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
606 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
610 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
616 perf_cgroup_defer_enabled(struct perf_event
*event
)
621 perf_cgroup_mark_enabled(struct perf_event
*event
,
622 struct perf_event_context
*ctx
)
627 void perf_pmu_disable(struct pmu
*pmu
)
629 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
631 pmu
->pmu_disable(pmu
);
634 void perf_pmu_enable(struct pmu
*pmu
)
636 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
638 pmu
->pmu_enable(pmu
);
641 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
648 static void perf_pmu_rotate_start(struct pmu
*pmu
)
650 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
651 struct list_head
*head
= &__get_cpu_var(rotation_list
);
653 WARN_ON(!irqs_disabled());
655 if (list_empty(&cpuctx
->rotation_list
))
656 list_add(&cpuctx
->rotation_list
, head
);
659 static void get_ctx(struct perf_event_context
*ctx
)
661 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
664 static void put_ctx(struct perf_event_context
*ctx
)
666 if (atomic_dec_and_test(&ctx
->refcount
)) {
668 put_ctx(ctx
->parent_ctx
);
670 put_task_struct(ctx
->task
);
671 kfree_rcu(ctx
, rcu_head
);
675 static void unclone_ctx(struct perf_event_context
*ctx
)
677 if (ctx
->parent_ctx
) {
678 put_ctx(ctx
->parent_ctx
);
679 ctx
->parent_ctx
= NULL
;
683 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
686 * only top level events have the pid namespace they were created in
689 event
= event
->parent
;
691 return task_tgid_nr_ns(p
, event
->ns
);
694 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
697 * only top level events have the pid namespace they were created in
700 event
= event
->parent
;
702 return task_pid_nr_ns(p
, event
->ns
);
706 * If we inherit events we want to return the parent event id
709 static u64
primary_event_id(struct perf_event
*event
)
714 id
= event
->parent
->id
;
720 * Get the perf_event_context for a task and lock it.
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
724 static struct perf_event_context
*
725 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
727 struct perf_event_context
*ctx
;
731 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
736 * perf_event_task_sched_out, though the
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
743 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
744 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
745 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
749 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
750 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
763 static struct perf_event_context
*
764 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
766 struct perf_event_context
*ctx
;
769 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
772 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
777 static void perf_unpin_context(struct perf_event_context
*ctx
)
781 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
783 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
787 * Update the record of the current time in a context.
789 static void update_context_time(struct perf_event_context
*ctx
)
791 u64 now
= perf_clock();
793 ctx
->time
+= now
- ctx
->timestamp
;
794 ctx
->timestamp
= now
;
797 static u64
perf_event_time(struct perf_event
*event
)
799 struct perf_event_context
*ctx
= event
->ctx
;
801 if (is_cgroup_event(event
))
802 return perf_cgroup_event_time(event
);
804 return ctx
? ctx
->time
: 0;
808 * Update the total_time_enabled and total_time_running fields for a event.
809 * The caller of this function needs to hold the ctx->lock.
811 static void update_event_times(struct perf_event
*event
)
813 struct perf_event_context
*ctx
= event
->ctx
;
816 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
817 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
826 * That is why we treat cgroup events differently
829 if (is_cgroup_event(event
))
830 run_end
= perf_cgroup_event_time(event
);
831 else if (ctx
->is_active
)
834 run_end
= event
->tstamp_stopped
;
836 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
838 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
839 run_end
= event
->tstamp_stopped
;
841 run_end
= perf_event_time(event
);
843 event
->total_time_running
= run_end
- event
->tstamp_running
;
848 * Update total_time_enabled and total_time_running for all events in a group.
850 static void update_group_times(struct perf_event
*leader
)
852 struct perf_event
*event
;
854 update_event_times(leader
);
855 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
856 update_event_times(event
);
859 static struct list_head
*
860 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
862 if (event
->attr
.pinned
)
863 return &ctx
->pinned_groups
;
865 return &ctx
->flexible_groups
;
869 * Add a event from the lists for its context.
870 * Must be called with ctx->mutex and ctx->lock held.
873 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
875 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
876 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
883 if (event
->group_leader
== event
) {
884 struct list_head
*list
;
886 if (is_software_event(event
))
887 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
889 list
= ctx_group_list(event
, ctx
);
890 list_add_tail(&event
->group_entry
, list
);
893 if (is_cgroup_event(event
))
896 if (has_branch_stack(event
))
897 ctx
->nr_branch_stack
++;
899 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
901 perf_pmu_rotate_start(ctx
->pmu
);
903 if (event
->attr
.inherit_stat
)
908 * Called at perf_event creation and when events are attached/detached from a
911 static void perf_event__read_size(struct perf_event
*event
)
913 int entry
= sizeof(u64
); /* value */
917 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
920 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
923 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
924 entry
+= sizeof(u64
);
926 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
927 nr
+= event
->group_leader
->nr_siblings
;
932 event
->read_size
= size
;
935 static void perf_event__header_size(struct perf_event
*event
)
937 struct perf_sample_data
*data
;
938 u64 sample_type
= event
->attr
.sample_type
;
941 perf_event__read_size(event
);
943 if (sample_type
& PERF_SAMPLE_IP
)
944 size
+= sizeof(data
->ip
);
946 if (sample_type
& PERF_SAMPLE_ADDR
)
947 size
+= sizeof(data
->addr
);
949 if (sample_type
& PERF_SAMPLE_PERIOD
)
950 size
+= sizeof(data
->period
);
952 if (sample_type
& PERF_SAMPLE_READ
)
953 size
+= event
->read_size
;
955 event
->header_size
= size
;
958 static void perf_event__id_header_size(struct perf_event
*event
)
960 struct perf_sample_data
*data
;
961 u64 sample_type
= event
->attr
.sample_type
;
964 if (sample_type
& PERF_SAMPLE_TID
)
965 size
+= sizeof(data
->tid_entry
);
967 if (sample_type
& PERF_SAMPLE_TIME
)
968 size
+= sizeof(data
->time
);
970 if (sample_type
& PERF_SAMPLE_ID
)
971 size
+= sizeof(data
->id
);
973 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
974 size
+= sizeof(data
->stream_id
);
976 if (sample_type
& PERF_SAMPLE_CPU
)
977 size
+= sizeof(data
->cpu_entry
);
979 event
->id_header_size
= size
;
982 static void perf_group_attach(struct perf_event
*event
)
984 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
987 * We can have double attach due to group movement in perf_event_open.
989 if (event
->attach_state
& PERF_ATTACH_GROUP
)
992 event
->attach_state
|= PERF_ATTACH_GROUP
;
994 if (group_leader
== event
)
997 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
998 !is_software_event(event
))
999 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
1001 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
1002 group_leader
->nr_siblings
++;
1004 perf_event__header_size(group_leader
);
1006 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
1007 perf_event__header_size(pos
);
1011 * Remove a event from the lists for its context.
1012 * Must be called with ctx->mutex and ctx->lock held.
1015 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1017 struct perf_cpu_context
*cpuctx
;
1019 * We can have double detach due to exit/hot-unplug + close.
1021 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1024 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1026 if (is_cgroup_event(event
)) {
1028 cpuctx
= __get_cpu_context(ctx
);
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1034 if (!ctx
->nr_cgroups
)
1035 cpuctx
->cgrp
= NULL
;
1038 if (has_branch_stack(event
))
1039 ctx
->nr_branch_stack
--;
1042 if (event
->attr
.inherit_stat
)
1045 list_del_rcu(&event
->event_entry
);
1047 if (event
->group_leader
== event
)
1048 list_del_init(&event
->group_entry
);
1050 update_group_times(event
);
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1059 if (event
->state
> PERF_EVENT_STATE_OFF
)
1060 event
->state
= PERF_EVENT_STATE_OFF
;
1063 static void perf_group_detach(struct perf_event
*event
)
1065 struct perf_event
*sibling
, *tmp
;
1066 struct list_head
*list
= NULL
;
1069 * We can have double detach due to exit/hot-unplug + close.
1071 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1074 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1077 * If this is a sibling, remove it from its group.
1079 if (event
->group_leader
!= event
) {
1080 list_del_init(&event
->group_entry
);
1081 event
->group_leader
->nr_siblings
--;
1085 if (!list_empty(&event
->group_entry
))
1086 list
= &event
->group_entry
;
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
1091 * to whatever list we are on.
1093 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
1095 list_move_tail(&sibling
->group_entry
, list
);
1096 sibling
->group_leader
= sibling
;
1098 /* Inherit group flags from the previous leader */
1099 sibling
->group_flags
= event
->group_flags
;
1103 perf_event__header_size(event
->group_leader
);
1105 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
1106 perf_event__header_size(tmp
);
1110 event_filter_match(struct perf_event
*event
)
1112 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id())
1113 && perf_cgroup_match(event
);
1117 event_sched_out(struct perf_event
*event
,
1118 struct perf_cpu_context
*cpuctx
,
1119 struct perf_event_context
*ctx
)
1121 u64 tstamp
= perf_event_time(event
);
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1129 if (event
->state
== PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event
)) {
1131 delta
= tstamp
- event
->tstamp_stopped
;
1132 event
->tstamp_running
+= delta
;
1133 event
->tstamp_stopped
= tstamp
;
1136 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1139 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1140 if (event
->pending_disable
) {
1141 event
->pending_disable
= 0;
1142 event
->state
= PERF_EVENT_STATE_OFF
;
1144 event
->tstamp_stopped
= tstamp
;
1145 event
->pmu
->del(event
, 0);
1148 if (!is_software_event(event
))
1149 cpuctx
->active_oncpu
--;
1151 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1153 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
1154 cpuctx
->exclusive
= 0;
1158 group_sched_out(struct perf_event
*group_event
,
1159 struct perf_cpu_context
*cpuctx
,
1160 struct perf_event_context
*ctx
)
1162 struct perf_event
*event
;
1163 int state
= group_event
->state
;
1165 event_sched_out(group_event
, cpuctx
, ctx
);
1168 * Schedule out siblings (if any):
1170 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
1171 event_sched_out(event
, cpuctx
, ctx
);
1173 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
1174 cpuctx
->exclusive
= 0;
1178 * Cross CPU call to remove a performance event
1180 * We disable the event on the hardware level first. After that we
1181 * remove it from the context list.
1183 static int __perf_remove_from_context(void *info
)
1185 struct perf_event
*event
= info
;
1186 struct perf_event_context
*ctx
= event
->ctx
;
1187 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1189 raw_spin_lock(&ctx
->lock
);
1190 event_sched_out(event
, cpuctx
, ctx
);
1191 list_del_event(event
, ctx
);
1192 if (!ctx
->nr_events
&& cpuctx
->task_ctx
== ctx
) {
1194 cpuctx
->task_ctx
= NULL
;
1196 raw_spin_unlock(&ctx
->lock
);
1203 * Remove the event from a task's (or a CPU's) list of events.
1205 * CPU events are removed with a smp call. For task events we only
1206 * call when the task is on a CPU.
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
1212 * When called from perf_event_exit_task, it's OK because the
1213 * context has been detached from its task.
1215 static void perf_remove_from_context(struct perf_event
*event
)
1217 struct perf_event_context
*ctx
= event
->ctx
;
1218 struct task_struct
*task
= ctx
->task
;
1220 lockdep_assert_held(&ctx
->mutex
);
1224 * Per cpu events are removed via an smp call and
1225 * the removal is always successful.
1227 cpu_function_call(event
->cpu
, __perf_remove_from_context
, event
);
1232 if (!task_function_call(task
, __perf_remove_from_context
, event
))
1235 raw_spin_lock_irq(&ctx
->lock
);
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
1240 if (ctx
->is_active
) {
1241 raw_spin_unlock_irq(&ctx
->lock
);
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
1249 list_del_event(event
, ctx
);
1250 raw_spin_unlock_irq(&ctx
->lock
);
1254 * Cross CPU call to disable a performance event
1256 static int __perf_event_disable(void *info
)
1258 struct perf_event
*event
= info
;
1259 struct perf_event_context
*ctx
= event
->ctx
;
1260 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
1269 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1272 raw_spin_lock(&ctx
->lock
);
1275 * If the event is on, turn it off.
1276 * If it is in error state, leave it in error state.
1278 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
1279 update_context_time(ctx
);
1280 update_cgrp_time_from_event(event
);
1281 update_group_times(event
);
1282 if (event
== event
->group_leader
)
1283 group_sched_out(event
, cpuctx
, ctx
);
1285 event_sched_out(event
, cpuctx
, ctx
);
1286 event
->state
= PERF_EVENT_STATE_OFF
;
1289 raw_spin_unlock(&ctx
->lock
);
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
1299 * remains valid. This condition is satisifed when called through
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
1304 * is the current context on this CPU and preemption is disabled,
1305 * hence we can't get into perf_event_task_sched_out for this context.
1307 void perf_event_disable(struct perf_event
*event
)
1309 struct perf_event_context
*ctx
= event
->ctx
;
1310 struct task_struct
*task
= ctx
->task
;
1314 * Disable the event on the cpu that it's on
1316 cpu_function_call(event
->cpu
, __perf_event_disable
, event
);
1321 if (!task_function_call(task
, __perf_event_disable
, event
))
1324 raw_spin_lock_irq(&ctx
->lock
);
1326 * If the event is still active, we need to retry the cross-call.
1328 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1329 raw_spin_unlock_irq(&ctx
->lock
);
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1342 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1343 update_group_times(event
);
1344 event
->state
= PERF_EVENT_STATE_OFF
;
1346 raw_spin_unlock_irq(&ctx
->lock
);
1348 EXPORT_SYMBOL_GPL(perf_event_disable
);
1350 static void perf_set_shadow_time(struct perf_event
*event
,
1351 struct perf_event_context
*ctx
,
1355 * use the correct time source for the time snapshot
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1365 * tstamp - cgrp->timestamp.
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1373 * But this is a bit hairy.
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1379 if (is_cgroup_event(event
))
1380 perf_cgroup_set_shadow_time(event
, tstamp
);
1382 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
1385 #define MAX_INTERRUPTS (~0ULL)
1387 static void perf_log_throttle(struct perf_event
*event
, int enable
);
1390 event_sched_in(struct perf_event
*event
,
1391 struct perf_cpu_context
*cpuctx
,
1392 struct perf_event_context
*ctx
)
1394 u64 tstamp
= perf_event_time(event
);
1396 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1399 event
->state
= PERF_EVENT_STATE_ACTIVE
;
1400 event
->oncpu
= smp_processor_id();
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1407 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
1408 perf_log_throttle(event
, 1);
1409 event
->hw
.interrupts
= 0;
1413 * The new state must be visible before we turn it on in the hardware:
1417 if (event
->pmu
->add(event
, PERF_EF_START
)) {
1418 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1423 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
1425 perf_set_shadow_time(event
, ctx
, tstamp
);
1427 if (!is_software_event(event
))
1428 cpuctx
->active_oncpu
++;
1430 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
1433 if (event
->attr
.exclusive
)
1434 cpuctx
->exclusive
= 1;
1440 group_sched_in(struct perf_event
*group_event
,
1441 struct perf_cpu_context
*cpuctx
,
1442 struct perf_event_context
*ctx
)
1444 struct perf_event
*event
, *partial_group
= NULL
;
1445 struct pmu
*pmu
= group_event
->pmu
;
1446 u64 now
= ctx
->time
;
1447 bool simulate
= false;
1449 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
1452 pmu
->start_txn(pmu
);
1454 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
1455 pmu
->cancel_txn(pmu
);
1460 * Schedule in siblings as one group (if any):
1462 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1463 if (event_sched_in(event
, cpuctx
, ctx
)) {
1464 partial_group
= event
;
1469 if (!pmu
->commit_txn(pmu
))
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
1487 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
1488 if (event
== partial_group
)
1492 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
1493 event
->tstamp_stopped
= now
;
1495 event_sched_out(event
, cpuctx
, ctx
);
1498 event_sched_out(group_event
, cpuctx
, ctx
);
1500 pmu
->cancel_txn(pmu
);
1506 * Work out whether we can put this event group on the CPU now.
1508 static int group_can_go_on(struct perf_event
*event
,
1509 struct perf_cpu_context
*cpuctx
,
1513 * Groups consisting entirely of software events can always go on.
1515 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
1518 * If an exclusive group is already on, no other hardware
1521 if (cpuctx
->exclusive
)
1524 * If this group is exclusive and there are already
1525 * events on the CPU, it can't go on.
1527 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
1530 * Otherwise, try to add it if all previous groups were able
1536 static void add_event_to_ctx(struct perf_event
*event
,
1537 struct perf_event_context
*ctx
)
1539 u64 tstamp
= perf_event_time(event
);
1541 list_add_event(event
, ctx
);
1542 perf_group_attach(event
);
1543 event
->tstamp_enabled
= tstamp
;
1544 event
->tstamp_running
= tstamp
;
1545 event
->tstamp_stopped
= tstamp
;
1548 static void task_ctx_sched_out(struct perf_event_context
*ctx
);
1550 ctx_sched_in(struct perf_event_context
*ctx
,
1551 struct perf_cpu_context
*cpuctx
,
1552 enum event_type_t event_type
,
1553 struct task_struct
*task
);
1555 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
1556 struct perf_event_context
*ctx
,
1557 struct task_struct
*task
)
1559 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
1561 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
1562 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
1564 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
1568 * Cross CPU call to install and enable a performance event
1570 * Must be called with ctx->mutex held
1572 static int __perf_install_in_context(void *info
)
1574 struct perf_event
*event
= info
;
1575 struct perf_event_context
*ctx
= event
->ctx
;
1576 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1577 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
1578 struct task_struct
*task
= current
;
1580 perf_ctx_lock(cpuctx
, task_ctx
);
1581 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1584 * If there was an active task_ctx schedule it out.
1587 task_ctx_sched_out(task_ctx
);
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1593 if (ctx
->task
&& task_ctx
!= ctx
) {
1595 raw_spin_unlock(&task_ctx
->lock
);
1596 raw_spin_lock(&ctx
->lock
);
1601 cpuctx
->task_ctx
= task_ctx
;
1602 task
= task_ctx
->task
;
1605 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
1607 update_context_time(ctx
);
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1613 update_cgrp_time_from_event(event
);
1615 add_event_to_ctx(event
, ctx
);
1618 * Schedule everything back in
1620 perf_event_sched_in(cpuctx
, task_ctx
, task
);
1622 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1623 perf_ctx_unlock(cpuctx
, task_ctx
);
1629 * Attach a performance event to a context
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
1634 * If the event is attached to a task which is on a CPU we use a smp
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1639 perf_install_in_context(struct perf_event_context
*ctx
,
1640 struct perf_event
*event
,
1643 struct task_struct
*task
= ctx
->task
;
1645 lockdep_assert_held(&ctx
->mutex
);
1651 * Per cpu events are installed via an smp call and
1652 * the install is always successful.
1654 cpu_function_call(cpu
, __perf_install_in_context
, event
);
1659 if (!task_function_call(task
, __perf_install_in_context
, event
))
1662 raw_spin_lock_irq(&ctx
->lock
);
1664 * If we failed to find a running task, but find the context active now
1665 * that we've acquired the ctx->lock, retry.
1667 if (ctx
->is_active
) {
1668 raw_spin_unlock_irq(&ctx
->lock
);
1673 * Since the task isn't running, its safe to add the event, us holding
1674 * the ctx->lock ensures the task won't get scheduled in.
1676 add_event_to_ctx(event
, ctx
);
1677 raw_spin_unlock_irq(&ctx
->lock
);
1681 * Put a event into inactive state and update time fields.
1682 * Enabling the leader of a group effectively enables all
1683 * the group members that aren't explicitly disabled, so we
1684 * have to update their ->tstamp_enabled also.
1685 * Note: this works for group members as well as group leaders
1686 * since the non-leader members' sibling_lists will be empty.
1688 static void __perf_event_mark_enabled(struct perf_event
*event
)
1690 struct perf_event
*sub
;
1691 u64 tstamp
= perf_event_time(event
);
1693 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1694 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1695 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1696 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1697 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1702 * Cross CPU call to enable a performance event
1704 static int __perf_event_enable(void *info
)
1706 struct perf_event
*event
= info
;
1707 struct perf_event_context
*ctx
= event
->ctx
;
1708 struct perf_event
*leader
= event
->group_leader
;
1709 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1712 if (WARN_ON_ONCE(!ctx
->is_active
))
1715 raw_spin_lock(&ctx
->lock
);
1716 update_context_time(ctx
);
1718 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1722 * set current task's cgroup time reference point
1724 perf_cgroup_set_timestamp(current
, ctx
);
1726 __perf_event_mark_enabled(event
);
1728 if (!event_filter_match(event
)) {
1729 if (is_cgroup_event(event
))
1730 perf_cgroup_defer_enabled(event
);
1735 * If the event is in a group and isn't the group leader,
1736 * then don't put it on unless the group is on.
1738 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
1741 if (!group_can_go_on(event
, cpuctx
, 1)) {
1744 if (event
== leader
)
1745 err
= group_sched_in(event
, cpuctx
, ctx
);
1747 err
= event_sched_in(event
, cpuctx
, ctx
);
1752 * If this event can't go on and it's part of a
1753 * group, then the whole group has to come off.
1755 if (leader
!= event
)
1756 group_sched_out(leader
, cpuctx
, ctx
);
1757 if (leader
->attr
.pinned
) {
1758 update_group_times(leader
);
1759 leader
->state
= PERF_EVENT_STATE_ERROR
;
1764 raw_spin_unlock(&ctx
->lock
);
1772 * If event->ctx is a cloned context, callers must make sure that
1773 * every task struct that event->ctx->task could possibly point to
1774 * remains valid. This condition is satisfied when called through
1775 * perf_event_for_each_child or perf_event_for_each as described
1776 * for perf_event_disable.
1778 void perf_event_enable(struct perf_event
*event
)
1780 struct perf_event_context
*ctx
= event
->ctx
;
1781 struct task_struct
*task
= ctx
->task
;
1785 * Enable the event on the cpu that it's on
1787 cpu_function_call(event
->cpu
, __perf_event_enable
, event
);
1791 raw_spin_lock_irq(&ctx
->lock
);
1792 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1796 * If the event is in error state, clear that first.
1797 * That way, if we see the event in error state below, we
1798 * know that it has gone back into error state, as distinct
1799 * from the task having been scheduled away before the
1800 * cross-call arrived.
1802 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1803 event
->state
= PERF_EVENT_STATE_OFF
;
1806 if (!ctx
->is_active
) {
1807 __perf_event_mark_enabled(event
);
1811 raw_spin_unlock_irq(&ctx
->lock
);
1813 if (!task_function_call(task
, __perf_event_enable
, event
))
1816 raw_spin_lock_irq(&ctx
->lock
);
1819 * If the context is active and the event is still off,
1820 * we need to retry the cross-call.
1822 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
) {
1824 * task could have been flipped by a concurrent
1825 * perf_event_context_sched_out()
1832 raw_spin_unlock_irq(&ctx
->lock
);
1834 EXPORT_SYMBOL_GPL(perf_event_enable
);
1836 int perf_event_refresh(struct perf_event
*event
, int refresh
)
1839 * not supported on inherited events
1841 if (event
->attr
.inherit
|| !is_sampling_event(event
))
1844 atomic_add(refresh
, &event
->event_limit
);
1845 perf_event_enable(event
);
1849 EXPORT_SYMBOL_GPL(perf_event_refresh
);
1851 static void ctx_sched_out(struct perf_event_context
*ctx
,
1852 struct perf_cpu_context
*cpuctx
,
1853 enum event_type_t event_type
)
1855 struct perf_event
*event
;
1856 int is_active
= ctx
->is_active
;
1858 ctx
->is_active
&= ~event_type
;
1859 if (likely(!ctx
->nr_events
))
1862 update_context_time(ctx
);
1863 update_cgrp_time_from_cpuctx(cpuctx
);
1864 if (!ctx
->nr_active
)
1867 perf_pmu_disable(ctx
->pmu
);
1868 if ((is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
)) {
1869 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1870 group_sched_out(event
, cpuctx
, ctx
);
1873 if ((is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
)) {
1874 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1875 group_sched_out(event
, cpuctx
, ctx
);
1877 perf_pmu_enable(ctx
->pmu
);
1881 * Test whether two contexts are equivalent, i.e. whether they
1882 * have both been cloned from the same version of the same context
1883 * and they both have the same number of enabled events.
1884 * If the number of enabled events is the same, then the set
1885 * of enabled events should be the same, because these are both
1886 * inherited contexts, therefore we can't access individual events
1887 * in them directly with an fd; we can only enable/disable all
1888 * events via prctl, or enable/disable all events in a family
1889 * via ioctl, which will have the same effect on both contexts.
1891 static int context_equiv(struct perf_event_context
*ctx1
,
1892 struct perf_event_context
*ctx2
)
1894 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1895 && ctx1
->parent_gen
== ctx2
->parent_gen
1896 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1899 static void __perf_event_sync_stat(struct perf_event
*event
,
1900 struct perf_event
*next_event
)
1904 if (!event
->attr
.inherit_stat
)
1908 * Update the event value, we cannot use perf_event_read()
1909 * because we're in the middle of a context switch and have IRQs
1910 * disabled, which upsets smp_call_function_single(), however
1911 * we know the event must be on the current CPU, therefore we
1912 * don't need to use it.
1914 switch (event
->state
) {
1915 case PERF_EVENT_STATE_ACTIVE
:
1916 event
->pmu
->read(event
);
1919 case PERF_EVENT_STATE_INACTIVE
:
1920 update_event_times(event
);
1928 * In order to keep per-task stats reliable we need to flip the event
1929 * values when we flip the contexts.
1931 value
= local64_read(&next_event
->count
);
1932 value
= local64_xchg(&event
->count
, value
);
1933 local64_set(&next_event
->count
, value
);
1935 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1936 swap(event
->total_time_running
, next_event
->total_time_running
);
1939 * Since we swizzled the values, update the user visible data too.
1941 perf_event_update_userpage(event
);
1942 perf_event_update_userpage(next_event
);
1945 #define list_next_entry(pos, member) \
1946 list_entry(pos->member.next, typeof(*pos), member)
1948 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1949 struct perf_event_context
*next_ctx
)
1951 struct perf_event
*event
, *next_event
;
1956 update_context_time(ctx
);
1958 event
= list_first_entry(&ctx
->event_list
,
1959 struct perf_event
, event_entry
);
1961 next_event
= list_first_entry(&next_ctx
->event_list
,
1962 struct perf_event
, event_entry
);
1964 while (&event
->event_entry
!= &ctx
->event_list
&&
1965 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1967 __perf_event_sync_stat(event
, next_event
);
1969 event
= list_next_entry(event
, event_entry
);
1970 next_event
= list_next_entry(next_event
, event_entry
);
1974 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1975 struct task_struct
*next
)
1977 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1978 struct perf_event_context
*next_ctx
;
1979 struct perf_event_context
*parent
;
1980 struct perf_cpu_context
*cpuctx
;
1986 cpuctx
= __get_cpu_context(ctx
);
1987 if (!cpuctx
->task_ctx
)
1991 parent
= rcu_dereference(ctx
->parent_ctx
);
1992 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1993 if (parent
&& next_ctx
&&
1994 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1996 * Looks like the two contexts are clones, so we might be
1997 * able to optimize the context switch. We lock both
1998 * contexts and check that they are clones under the
1999 * lock (including re-checking that neither has been
2000 * uncloned in the meantime). It doesn't matter which
2001 * order we take the locks because no other cpu could
2002 * be trying to lock both of these tasks.
2004 raw_spin_lock(&ctx
->lock
);
2005 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
2006 if (context_equiv(ctx
, next_ctx
)) {
2008 * XXX do we need a memory barrier of sorts
2009 * wrt to rcu_dereference() of perf_event_ctxp
2011 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
2012 next
->perf_event_ctxp
[ctxn
] = ctx
;
2014 next_ctx
->task
= task
;
2017 perf_event_sync_stat(ctx
, next_ctx
);
2019 raw_spin_unlock(&next_ctx
->lock
);
2020 raw_spin_unlock(&ctx
->lock
);
2025 raw_spin_lock(&ctx
->lock
);
2026 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2027 cpuctx
->task_ctx
= NULL
;
2028 raw_spin_unlock(&ctx
->lock
);
2032 #define for_each_task_context_nr(ctxn) \
2033 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2036 * Called from scheduler to remove the events of the current task,
2037 * with interrupts disabled.
2039 * We stop each event and update the event value in event->count.
2041 * This does not protect us against NMI, but disable()
2042 * sets the disabled bit in the control field of event _before_
2043 * accessing the event control register. If a NMI hits, then it will
2044 * not restart the event.
2046 void __perf_event_task_sched_out(struct task_struct
*task
,
2047 struct task_struct
*next
)
2051 for_each_task_context_nr(ctxn
)
2052 perf_event_context_sched_out(task
, ctxn
, next
);
2055 * if cgroup events exist on this CPU, then we need
2056 * to check if we have to switch out PMU state.
2057 * cgroup event are system-wide mode only
2059 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2060 perf_cgroup_sched_out(task
, next
);
2063 static void task_ctx_sched_out(struct perf_event_context
*ctx
)
2065 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2067 if (!cpuctx
->task_ctx
)
2070 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2073 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
2074 cpuctx
->task_ctx
= NULL
;
2078 * Called with IRQs disabled
2080 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2081 enum event_type_t event_type
)
2083 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
2087 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
2088 struct perf_cpu_context
*cpuctx
)
2090 struct perf_event
*event
;
2092 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
2093 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2095 if (!event_filter_match(event
))
2098 /* may need to reset tstamp_enabled */
2099 if (is_cgroup_event(event
))
2100 perf_cgroup_mark_enabled(event
, ctx
);
2102 if (group_can_go_on(event
, cpuctx
, 1))
2103 group_sched_in(event
, cpuctx
, ctx
);
2106 * If this pinned group hasn't been scheduled,
2107 * put it in error state.
2109 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2110 update_group_times(event
);
2111 event
->state
= PERF_EVENT_STATE_ERROR
;
2117 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
2118 struct perf_cpu_context
*cpuctx
)
2120 struct perf_event
*event
;
2123 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
2124 /* Ignore events in OFF or ERROR state */
2125 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2128 * Listen to the 'cpu' scheduling filter constraint
2131 if (!event_filter_match(event
))
2134 /* may need to reset tstamp_enabled */
2135 if (is_cgroup_event(event
))
2136 perf_cgroup_mark_enabled(event
, ctx
);
2138 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
2139 if (group_sched_in(event
, cpuctx
, ctx
))
2146 ctx_sched_in(struct perf_event_context
*ctx
,
2147 struct perf_cpu_context
*cpuctx
,
2148 enum event_type_t event_type
,
2149 struct task_struct
*task
)
2152 int is_active
= ctx
->is_active
;
2154 ctx
->is_active
|= event_type
;
2155 if (likely(!ctx
->nr_events
))
2159 ctx
->timestamp
= now
;
2160 perf_cgroup_set_timestamp(task
, ctx
);
2162 * First go through the list and put on any pinned groups
2163 * in order to give them the best chance of going on.
2165 if (!(is_active
& EVENT_PINNED
) && (event_type
& EVENT_PINNED
))
2166 ctx_pinned_sched_in(ctx
, cpuctx
);
2168 /* Then walk through the lower prio flexible groups */
2169 if (!(is_active
& EVENT_FLEXIBLE
) && (event_type
& EVENT_FLEXIBLE
))
2170 ctx_flexible_sched_in(ctx
, cpuctx
);
2173 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
2174 enum event_type_t event_type
,
2175 struct task_struct
*task
)
2177 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
2179 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
2182 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
2183 struct task_struct
*task
)
2185 struct perf_cpu_context
*cpuctx
;
2187 cpuctx
= __get_cpu_context(ctx
);
2188 if (cpuctx
->task_ctx
== ctx
)
2191 perf_ctx_lock(cpuctx
, ctx
);
2192 perf_pmu_disable(ctx
->pmu
);
2194 * We want to keep the following priority order:
2195 * cpu pinned (that don't need to move), task pinned,
2196 * cpu flexible, task flexible.
2198 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2201 cpuctx
->task_ctx
= ctx
;
2203 perf_event_sched_in(cpuctx
, cpuctx
->task_ctx
, task
);
2205 perf_pmu_enable(ctx
->pmu
);
2206 perf_ctx_unlock(cpuctx
, ctx
);
2209 * Since these rotations are per-cpu, we need to ensure the
2210 * cpu-context we got scheduled on is actually rotating.
2212 perf_pmu_rotate_start(ctx
->pmu
);
2216 * When sampling the branck stack in system-wide, it may be necessary
2217 * to flush the stack on context switch. This happens when the branch
2218 * stack does not tag its entries with the pid of the current task.
2219 * Otherwise it becomes impossible to associate a branch entry with a
2220 * task. This ambiguity is more likely to appear when the branch stack
2221 * supports priv level filtering and the user sets it to monitor only
2222 * at the user level (which could be a useful measurement in system-wide
2223 * mode). In that case, the risk is high of having a branch stack with
2224 * branch from multiple tasks. Flushing may mean dropping the existing
2225 * entries or stashing them somewhere in the PMU specific code layer.
2227 * This function provides the context switch callback to the lower code
2228 * layer. It is invoked ONLY when there is at least one system-wide context
2229 * with at least one active event using taken branch sampling.
2231 static void perf_branch_stack_sched_in(struct task_struct
*prev
,
2232 struct task_struct
*task
)
2234 struct perf_cpu_context
*cpuctx
;
2236 unsigned long flags
;
2238 /* no need to flush branch stack if not changing task */
2242 local_irq_save(flags
);
2246 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
2247 cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2250 * check if the context has at least one
2251 * event using PERF_SAMPLE_BRANCH_STACK
2253 if (cpuctx
->ctx
.nr_branch_stack
> 0
2254 && pmu
->flush_branch_stack
) {
2256 pmu
= cpuctx
->ctx
.pmu
;
2258 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2260 perf_pmu_disable(pmu
);
2262 pmu
->flush_branch_stack();
2264 perf_pmu_enable(pmu
);
2266 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2272 local_irq_restore(flags
);
2276 * Called from scheduler to add the events of the current task
2277 * with interrupts disabled.
2279 * We restore the event value and then enable it.
2281 * This does not protect us against NMI, but enable()
2282 * sets the enabled bit in the control field of event _before_
2283 * accessing the event control register. If a NMI hits, then it will
2284 * keep the event running.
2286 void __perf_event_task_sched_in(struct task_struct
*prev
,
2287 struct task_struct
*task
)
2289 struct perf_event_context
*ctx
;
2292 for_each_task_context_nr(ctxn
) {
2293 ctx
= task
->perf_event_ctxp
[ctxn
];
2297 perf_event_context_sched_in(ctx
, task
);
2300 * if cgroup events exist on this CPU, then we need
2301 * to check if we have to switch in PMU state.
2302 * cgroup event are system-wide mode only
2304 if (atomic_read(&__get_cpu_var(perf_cgroup_events
)))
2305 perf_cgroup_sched_in(prev
, task
);
2307 /* check for system-wide branch_stack events */
2308 if (atomic_read(&__get_cpu_var(perf_branch_stack_events
)))
2309 perf_branch_stack_sched_in(prev
, task
);
2312 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
2314 u64 frequency
= event
->attr
.sample_freq
;
2315 u64 sec
= NSEC_PER_SEC
;
2316 u64 divisor
, dividend
;
2318 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
2320 count_fls
= fls64(count
);
2321 nsec_fls
= fls64(nsec
);
2322 frequency_fls
= fls64(frequency
);
2326 * We got @count in @nsec, with a target of sample_freq HZ
2327 * the target period becomes:
2330 * period = -------------------
2331 * @nsec * sample_freq
2336 * Reduce accuracy by one bit such that @a and @b converge
2337 * to a similar magnitude.
2339 #define REDUCE_FLS(a, b) \
2341 if (a##_fls > b##_fls) { \
2351 * Reduce accuracy until either term fits in a u64, then proceed with
2352 * the other, so that finally we can do a u64/u64 division.
2354 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
2355 REDUCE_FLS(nsec
, frequency
);
2356 REDUCE_FLS(sec
, count
);
2359 if (count_fls
+ sec_fls
> 64) {
2360 divisor
= nsec
* frequency
;
2362 while (count_fls
+ sec_fls
> 64) {
2363 REDUCE_FLS(count
, sec
);
2367 dividend
= count
* sec
;
2369 dividend
= count
* sec
;
2371 while (nsec_fls
+ frequency_fls
> 64) {
2372 REDUCE_FLS(nsec
, frequency
);
2376 divisor
= nsec
* frequency
;
2382 return div64_u64(dividend
, divisor
);
2385 static DEFINE_PER_CPU(int, perf_throttled_count
);
2386 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
2388 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
2390 struct hw_perf_event
*hwc
= &event
->hw
;
2391 s64 period
, sample_period
;
2394 period
= perf_calculate_period(event
, nsec
, count
);
2396 delta
= (s64
)(period
- hwc
->sample_period
);
2397 delta
= (delta
+ 7) / 8; /* low pass filter */
2399 sample_period
= hwc
->sample_period
+ delta
;
2404 hwc
->sample_period
= sample_period
;
2406 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
2408 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2410 local64_set(&hwc
->period_left
, 0);
2413 event
->pmu
->start(event
, PERF_EF_RELOAD
);
2418 * combine freq adjustment with unthrottling to avoid two passes over the
2419 * events. At the same time, make sure, having freq events does not change
2420 * the rate of unthrottling as that would introduce bias.
2422 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
2425 struct perf_event
*event
;
2426 struct hw_perf_event
*hwc
;
2427 u64 now
, period
= TICK_NSEC
;
2431 * only need to iterate over all events iff:
2432 * - context have events in frequency mode (needs freq adjust)
2433 * - there are events to unthrottle on this cpu
2435 if (!(ctx
->nr_freq
|| needs_unthr
))
2438 raw_spin_lock(&ctx
->lock
);
2439 perf_pmu_disable(ctx
->pmu
);
2441 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
2442 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2445 if (!event_filter_match(event
))
2450 if (needs_unthr
&& hwc
->interrupts
== MAX_INTERRUPTS
) {
2451 hwc
->interrupts
= 0;
2452 perf_log_throttle(event
, 1);
2453 event
->pmu
->start(event
, 0);
2456 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
2460 * stop the event and update event->count
2462 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2464 now
= local64_read(&event
->count
);
2465 delta
= now
- hwc
->freq_count_stamp
;
2466 hwc
->freq_count_stamp
= now
;
2470 * reload only if value has changed
2471 * we have stopped the event so tell that
2472 * to perf_adjust_period() to avoid stopping it
2476 perf_adjust_period(event
, period
, delta
, false);
2478 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
2481 perf_pmu_enable(ctx
->pmu
);
2482 raw_spin_unlock(&ctx
->lock
);
2486 * Round-robin a context's events:
2488 static void rotate_ctx(struct perf_event_context
*ctx
)
2491 * Rotate the first entry last of non-pinned groups. Rotation might be
2492 * disabled by the inheritance code.
2494 if (!ctx
->rotate_disable
)
2495 list_rotate_left(&ctx
->flexible_groups
);
2499 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2500 * because they're strictly cpu affine and rotate_start is called with IRQs
2501 * disabled, while rotate_context is called from IRQ context.
2503 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
2505 struct perf_event_context
*ctx
= NULL
;
2506 int rotate
= 0, remove
= 1;
2508 if (cpuctx
->ctx
.nr_events
) {
2510 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
2514 ctx
= cpuctx
->task_ctx
;
2515 if (ctx
&& ctx
->nr_events
) {
2517 if (ctx
->nr_events
!= ctx
->nr_active
)
2524 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
2525 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2527 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2529 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
2531 rotate_ctx(&cpuctx
->ctx
);
2535 perf_event_sched_in(cpuctx
, ctx
, current
);
2537 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2538 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
2541 list_del_init(&cpuctx
->rotation_list
);
2544 void perf_event_task_tick(void)
2546 struct list_head
*head
= &__get_cpu_var(rotation_list
);
2547 struct perf_cpu_context
*cpuctx
, *tmp
;
2548 struct perf_event_context
*ctx
;
2551 WARN_ON(!irqs_disabled());
2553 __this_cpu_inc(perf_throttled_seq
);
2554 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
2556 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
2558 perf_adjust_freq_unthr_context(ctx
, throttled
);
2560 ctx
= cpuctx
->task_ctx
;
2562 perf_adjust_freq_unthr_context(ctx
, throttled
);
2564 if (cpuctx
->jiffies_interval
== 1 ||
2565 !(jiffies
% cpuctx
->jiffies_interval
))
2566 perf_rotate_context(cpuctx
);
2570 static int event_enable_on_exec(struct perf_event
*event
,
2571 struct perf_event_context
*ctx
)
2573 if (!event
->attr
.enable_on_exec
)
2576 event
->attr
.enable_on_exec
= 0;
2577 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
2580 __perf_event_mark_enabled(event
);
2586 * Enable all of a task's events that have been marked enable-on-exec.
2587 * This expects task == current.
2589 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
2591 struct perf_event
*event
;
2592 unsigned long flags
;
2596 local_irq_save(flags
);
2597 if (!ctx
|| !ctx
->nr_events
)
2601 * We must ctxsw out cgroup events to avoid conflict
2602 * when invoking perf_task_event_sched_in() later on
2603 * in this function. Otherwise we end up trying to
2604 * ctxswin cgroup events which are already scheduled
2607 perf_cgroup_sched_out(current
, NULL
);
2609 raw_spin_lock(&ctx
->lock
);
2610 task_ctx_sched_out(ctx
);
2612 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
2613 ret
= event_enable_on_exec(event
, ctx
);
2619 * Unclone this context if we enabled any event.
2624 raw_spin_unlock(&ctx
->lock
);
2627 * Also calls ctxswin for cgroup events, if any:
2629 perf_event_context_sched_in(ctx
, ctx
->task
);
2631 local_irq_restore(flags
);
2635 * Cross CPU call to read the hardware event
2637 static void __perf_event_read(void *info
)
2639 struct perf_event
*event
= info
;
2640 struct perf_event_context
*ctx
= event
->ctx
;
2641 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2644 * If this is a task context, we need to check whether it is
2645 * the current task context of this cpu. If not it has been
2646 * scheduled out before the smp call arrived. In that case
2647 * event->count would have been updated to a recent sample
2648 * when the event was scheduled out.
2650 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
2653 raw_spin_lock(&ctx
->lock
);
2654 if (ctx
->is_active
) {
2655 update_context_time(ctx
);
2656 update_cgrp_time_from_event(event
);
2658 update_event_times(event
);
2659 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2660 event
->pmu
->read(event
);
2661 raw_spin_unlock(&ctx
->lock
);
2664 static inline u64
perf_event_count(struct perf_event
*event
)
2666 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
2669 static u64
perf_event_read(struct perf_event
*event
)
2672 * If event is enabled and currently active on a CPU, update the
2673 * value in the event structure:
2675 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
2676 smp_call_function_single(event
->oncpu
,
2677 __perf_event_read
, event
, 1);
2678 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
2679 struct perf_event_context
*ctx
= event
->ctx
;
2680 unsigned long flags
;
2682 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
2684 * may read while context is not active
2685 * (e.g., thread is blocked), in that case
2686 * we cannot update context time
2688 if (ctx
->is_active
) {
2689 update_context_time(ctx
);
2690 update_cgrp_time_from_event(event
);
2692 update_event_times(event
);
2693 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2696 return perf_event_count(event
);
2700 * Initialize the perf_event context in a task_struct:
2702 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2704 raw_spin_lock_init(&ctx
->lock
);
2705 mutex_init(&ctx
->mutex
);
2706 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2707 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2708 INIT_LIST_HEAD(&ctx
->event_list
);
2709 atomic_set(&ctx
->refcount
, 1);
2712 static struct perf_event_context
*
2713 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2715 struct perf_event_context
*ctx
;
2717 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2721 __perf_event_init_context(ctx
);
2724 get_task_struct(task
);
2731 static struct task_struct
*
2732 find_lively_task_by_vpid(pid_t vpid
)
2734 struct task_struct
*task
;
2741 task
= find_task_by_vpid(vpid
);
2743 get_task_struct(task
);
2747 return ERR_PTR(-ESRCH
);
2749 /* Reuse ptrace permission checks for now. */
2751 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2756 put_task_struct(task
);
2757 return ERR_PTR(err
);
2762 * Returns a matching context with refcount and pincount.
2764 static struct perf_event_context
*
2765 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2767 struct perf_event_context
*ctx
;
2768 struct perf_cpu_context
*cpuctx
;
2769 unsigned long flags
;
2773 /* Must be root to operate on a CPU event: */
2774 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2775 return ERR_PTR(-EACCES
);
2778 * We could be clever and allow to attach a event to an
2779 * offline CPU and activate it when the CPU comes up, but
2782 if (!cpu_online(cpu
))
2783 return ERR_PTR(-ENODEV
);
2785 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2794 ctxn
= pmu
->task_ctx_nr
;
2799 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2803 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2805 ctx
= alloc_perf_context(pmu
, task
);
2811 mutex_lock(&task
->perf_event_mutex
);
2813 * If it has already passed perf_event_exit_task().
2814 * we must see PF_EXITING, it takes this mutex too.
2816 if (task
->flags
& PF_EXITING
)
2818 else if (task
->perf_event_ctxp
[ctxn
])
2823 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
2825 mutex_unlock(&task
->perf_event_mutex
);
2827 if (unlikely(err
)) {
2839 return ERR_PTR(err
);
2842 static void perf_event_free_filter(struct perf_event
*event
);
2844 static void free_event_rcu(struct rcu_head
*head
)
2846 struct perf_event
*event
;
2848 event
= container_of(head
, struct perf_event
, rcu_head
);
2850 put_pid_ns(event
->ns
);
2851 perf_event_free_filter(event
);
2855 static void ring_buffer_put(struct ring_buffer
*rb
);
2857 static void free_event(struct perf_event
*event
)
2859 irq_work_sync(&event
->pending
);
2861 if (!event
->parent
) {
2862 if (event
->attach_state
& PERF_ATTACH_TASK
)
2863 static_key_slow_dec_deferred(&perf_sched_events
);
2864 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2865 atomic_dec(&nr_mmap_events
);
2866 if (event
->attr
.comm
)
2867 atomic_dec(&nr_comm_events
);
2868 if (event
->attr
.task
)
2869 atomic_dec(&nr_task_events
);
2870 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2871 put_callchain_buffers();
2872 if (is_cgroup_event(event
)) {
2873 atomic_dec(&per_cpu(perf_cgroup_events
, event
->cpu
));
2874 static_key_slow_dec_deferred(&perf_sched_events
);
2877 if (has_branch_stack(event
)) {
2878 static_key_slow_dec_deferred(&perf_sched_events
);
2879 /* is system-wide event */
2880 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
2881 atomic_dec(&per_cpu(perf_branch_stack_events
,
2887 ring_buffer_put(event
->rb
);
2891 if (is_cgroup_event(event
))
2892 perf_detach_cgroup(event
);
2895 event
->destroy(event
);
2898 put_ctx(event
->ctx
);
2900 call_rcu(&event
->rcu_head
, free_event_rcu
);
2903 int perf_event_release_kernel(struct perf_event
*event
)
2905 struct perf_event_context
*ctx
= event
->ctx
;
2907 WARN_ON_ONCE(ctx
->parent_ctx
);
2909 * There are two ways this annotation is useful:
2911 * 1) there is a lock recursion from perf_event_exit_task
2912 * see the comment there.
2914 * 2) there is a lock-inversion with mmap_sem through
2915 * perf_event_read_group(), which takes faults while
2916 * holding ctx->mutex, however this is called after
2917 * the last filedesc died, so there is no possibility
2918 * to trigger the AB-BA case.
2920 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2921 raw_spin_lock_irq(&ctx
->lock
);
2922 perf_group_detach(event
);
2923 raw_spin_unlock_irq(&ctx
->lock
);
2924 perf_remove_from_context(event
);
2925 mutex_unlock(&ctx
->mutex
);
2931 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2934 * Called when the last reference to the file is gone.
2936 static int perf_release(struct inode
*inode
, struct file
*file
)
2938 struct perf_event
*event
= file
->private_data
;
2939 struct task_struct
*owner
;
2941 file
->private_data
= NULL
;
2944 owner
= ACCESS_ONCE(event
->owner
);
2946 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2947 * !owner it means the list deletion is complete and we can indeed
2948 * free this event, otherwise we need to serialize on
2949 * owner->perf_event_mutex.
2951 smp_read_barrier_depends();
2954 * Since delayed_put_task_struct() also drops the last
2955 * task reference we can safely take a new reference
2956 * while holding the rcu_read_lock().
2958 get_task_struct(owner
);
2963 mutex_lock(&owner
->perf_event_mutex
);
2965 * We have to re-check the event->owner field, if it is cleared
2966 * we raced with perf_event_exit_task(), acquiring the mutex
2967 * ensured they're done, and we can proceed with freeing the
2971 list_del_init(&event
->owner_entry
);
2972 mutex_unlock(&owner
->perf_event_mutex
);
2973 put_task_struct(owner
);
2976 return perf_event_release_kernel(event
);
2979 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
2981 struct perf_event
*child
;
2987 mutex_lock(&event
->child_mutex
);
2988 total
+= perf_event_read(event
);
2989 *enabled
+= event
->total_time_enabled
+
2990 atomic64_read(&event
->child_total_time_enabled
);
2991 *running
+= event
->total_time_running
+
2992 atomic64_read(&event
->child_total_time_running
);
2994 list_for_each_entry(child
, &event
->child_list
, child_list
) {
2995 total
+= perf_event_read(child
);
2996 *enabled
+= child
->total_time_enabled
;
2997 *running
+= child
->total_time_running
;
2999 mutex_unlock(&event
->child_mutex
);
3003 EXPORT_SYMBOL_GPL(perf_event_read_value
);
3005 static int perf_event_read_group(struct perf_event
*event
,
3006 u64 read_format
, char __user
*buf
)
3008 struct perf_event
*leader
= event
->group_leader
, *sub
;
3009 int n
= 0, size
= 0, ret
= -EFAULT
;
3010 struct perf_event_context
*ctx
= leader
->ctx
;
3012 u64 count
, enabled
, running
;
3014 mutex_lock(&ctx
->mutex
);
3015 count
= perf_event_read_value(leader
, &enabled
, &running
);
3017 values
[n
++] = 1 + leader
->nr_siblings
;
3018 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3019 values
[n
++] = enabled
;
3020 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3021 values
[n
++] = running
;
3022 values
[n
++] = count
;
3023 if (read_format
& PERF_FORMAT_ID
)
3024 values
[n
++] = primary_event_id(leader
);
3026 size
= n
* sizeof(u64
);
3028 if (copy_to_user(buf
, values
, size
))
3033 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3036 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
3037 if (read_format
& PERF_FORMAT_ID
)
3038 values
[n
++] = primary_event_id(sub
);
3040 size
= n
* sizeof(u64
);
3042 if (copy_to_user(buf
+ ret
, values
, size
)) {
3050 mutex_unlock(&ctx
->mutex
);
3055 static int perf_event_read_one(struct perf_event
*event
,
3056 u64 read_format
, char __user
*buf
)
3058 u64 enabled
, running
;
3062 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
3063 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3064 values
[n
++] = enabled
;
3065 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3066 values
[n
++] = running
;
3067 if (read_format
& PERF_FORMAT_ID
)
3068 values
[n
++] = primary_event_id(event
);
3070 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
3073 return n
* sizeof(u64
);
3077 * Read the performance event - simple non blocking version for now
3080 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
3082 u64 read_format
= event
->attr
.read_format
;
3086 * Return end-of-file for a read on a event that is in
3087 * error state (i.e. because it was pinned but it couldn't be
3088 * scheduled on to the CPU at some point).
3090 if (event
->state
== PERF_EVENT_STATE_ERROR
)
3093 if (count
< event
->read_size
)
3096 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3097 if (read_format
& PERF_FORMAT_GROUP
)
3098 ret
= perf_event_read_group(event
, read_format
, buf
);
3100 ret
= perf_event_read_one(event
, read_format
, buf
);
3106 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
3108 struct perf_event
*event
= file
->private_data
;
3110 return perf_read_hw(event
, buf
, count
);
3113 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
3115 struct perf_event
*event
= file
->private_data
;
3116 struct ring_buffer
*rb
;
3117 unsigned int events
= POLL_HUP
;
3120 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3121 * grabs the rb reference but perf_event_set_output() overrides it.
3122 * Here is the timeline for two threads T1, T2:
3123 * t0: T1, rb = rcu_dereference(event->rb)
3124 * t1: T2, old_rb = event->rb
3125 * t2: T2, event->rb = new rb
3126 * t3: T2, ring_buffer_detach(old_rb)
3127 * t4: T1, ring_buffer_attach(rb1)
3128 * t5: T1, poll_wait(event->waitq)
3130 * To avoid this problem, we grab mmap_mutex in perf_poll()
3131 * thereby ensuring that the assignment of the new ring buffer
3132 * and the detachment of the old buffer appear atomic to perf_poll()
3134 mutex_lock(&event
->mmap_mutex
);
3137 rb
= rcu_dereference(event
->rb
);
3139 ring_buffer_attach(event
, rb
);
3140 events
= atomic_xchg(&rb
->poll
, 0);
3144 mutex_unlock(&event
->mmap_mutex
);
3146 poll_wait(file
, &event
->waitq
, wait
);
3151 static void perf_event_reset(struct perf_event
*event
)
3153 (void)perf_event_read(event
);
3154 local64_set(&event
->count
, 0);
3155 perf_event_update_userpage(event
);
3159 * Holding the top-level event's child_mutex means that any
3160 * descendant process that has inherited this event will block
3161 * in sync_child_event if it goes to exit, thus satisfying the
3162 * task existence requirements of perf_event_enable/disable.
3164 static void perf_event_for_each_child(struct perf_event
*event
,
3165 void (*func
)(struct perf_event
*))
3167 struct perf_event
*child
;
3169 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3170 mutex_lock(&event
->child_mutex
);
3172 list_for_each_entry(child
, &event
->child_list
, child_list
)
3174 mutex_unlock(&event
->child_mutex
);
3177 static void perf_event_for_each(struct perf_event
*event
,
3178 void (*func
)(struct perf_event
*))
3180 struct perf_event_context
*ctx
= event
->ctx
;
3181 struct perf_event
*sibling
;
3183 WARN_ON_ONCE(ctx
->parent_ctx
);
3184 mutex_lock(&ctx
->mutex
);
3185 event
= event
->group_leader
;
3187 perf_event_for_each_child(event
, func
);
3188 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
3189 perf_event_for_each_child(sibling
, func
);
3190 mutex_unlock(&ctx
->mutex
);
3193 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
3195 struct perf_event_context
*ctx
= event
->ctx
;
3199 if (!is_sampling_event(event
))
3202 if (copy_from_user(&value
, arg
, sizeof(value
)))
3208 raw_spin_lock_irq(&ctx
->lock
);
3209 if (event
->attr
.freq
) {
3210 if (value
> sysctl_perf_event_sample_rate
) {
3215 event
->attr
.sample_freq
= value
;
3217 event
->attr
.sample_period
= value
;
3218 event
->hw
.sample_period
= value
;
3221 raw_spin_unlock_irq(&ctx
->lock
);
3226 static const struct file_operations perf_fops
;
3228 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
3232 file
= fget_light(fd
, fput_needed
);
3234 return ERR_PTR(-EBADF
);
3236 if (file
->f_op
!= &perf_fops
) {
3237 fput_light(file
, *fput_needed
);
3239 return ERR_PTR(-EBADF
);
3242 return file
->private_data
;
3245 static int perf_event_set_output(struct perf_event
*event
,
3246 struct perf_event
*output_event
);
3247 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
3249 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
3251 struct perf_event
*event
= file
->private_data
;
3252 void (*func
)(struct perf_event
*);
3256 case PERF_EVENT_IOC_ENABLE
:
3257 func
= perf_event_enable
;
3259 case PERF_EVENT_IOC_DISABLE
:
3260 func
= perf_event_disable
;
3262 case PERF_EVENT_IOC_RESET
:
3263 func
= perf_event_reset
;
3266 case PERF_EVENT_IOC_REFRESH
:
3267 return perf_event_refresh(event
, arg
);
3269 case PERF_EVENT_IOC_PERIOD
:
3270 return perf_event_period(event
, (u64 __user
*)arg
);
3272 case PERF_EVENT_IOC_SET_OUTPUT
:
3274 struct perf_event
*output_event
= NULL
;
3275 int fput_needed
= 0;
3279 output_event
= perf_fget_light(arg
, &fput_needed
);
3280 if (IS_ERR(output_event
))
3281 return PTR_ERR(output_event
);
3284 ret
= perf_event_set_output(event
, output_event
);
3286 fput_light(output_event
->filp
, fput_needed
);
3291 case PERF_EVENT_IOC_SET_FILTER
:
3292 return perf_event_set_filter(event
, (void __user
*)arg
);
3298 if (flags
& PERF_IOC_FLAG_GROUP
)
3299 perf_event_for_each(event
, func
);
3301 perf_event_for_each_child(event
, func
);
3306 int perf_event_task_enable(void)
3308 struct perf_event
*event
;
3310 mutex_lock(¤t
->perf_event_mutex
);
3311 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3312 perf_event_for_each_child(event
, perf_event_enable
);
3313 mutex_unlock(¤t
->perf_event_mutex
);
3318 int perf_event_task_disable(void)
3320 struct perf_event
*event
;
3322 mutex_lock(¤t
->perf_event_mutex
);
3323 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
3324 perf_event_for_each_child(event
, perf_event_disable
);
3325 mutex_unlock(¤t
->perf_event_mutex
);
3330 static int perf_event_index(struct perf_event
*event
)
3332 if (event
->hw
.state
& PERF_HES_STOPPED
)
3335 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3338 return event
->pmu
->event_idx(event
);
3341 static void calc_timer_values(struct perf_event
*event
,
3348 *now
= perf_clock();
3349 ctx_time
= event
->shadow_ctx_time
+ *now
;
3350 *enabled
= ctx_time
- event
->tstamp_enabled
;
3351 *running
= ctx_time
- event
->tstamp_running
;
3354 void __weak
arch_perf_update_userpage(struct perf_event_mmap_page
*userpg
, u64 now
)
3359 * Callers need to ensure there can be no nesting of this function, otherwise
3360 * the seqlock logic goes bad. We can not serialize this because the arch
3361 * code calls this from NMI context.
3363 void perf_event_update_userpage(struct perf_event
*event
)
3365 struct perf_event_mmap_page
*userpg
;
3366 struct ring_buffer
*rb
;
3367 u64 enabled
, running
, now
;
3371 * compute total_time_enabled, total_time_running
3372 * based on snapshot values taken when the event
3373 * was last scheduled in.
3375 * we cannot simply called update_context_time()
3376 * because of locking issue as we can be called in
3379 calc_timer_values(event
, &now
, &enabled
, &running
);
3380 rb
= rcu_dereference(event
->rb
);
3384 userpg
= rb
->user_page
;
3387 * Disable preemption so as to not let the corresponding user-space
3388 * spin too long if we get preempted.
3393 userpg
->index
= perf_event_index(event
);
3394 userpg
->offset
= perf_event_count(event
);
3396 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
3398 userpg
->time_enabled
= enabled
+
3399 atomic64_read(&event
->child_total_time_enabled
);
3401 userpg
->time_running
= running
+
3402 atomic64_read(&event
->child_total_time_running
);
3404 arch_perf_update_userpage(userpg
, now
);
3413 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3415 struct perf_event
*event
= vma
->vm_file
->private_data
;
3416 struct ring_buffer
*rb
;
3417 int ret
= VM_FAULT_SIGBUS
;
3419 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3420 if (vmf
->pgoff
== 0)
3426 rb
= rcu_dereference(event
->rb
);
3430 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3433 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
3437 get_page(vmf
->page
);
3438 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3439 vmf
->page
->index
= vmf
->pgoff
;
3448 static void ring_buffer_attach(struct perf_event
*event
,
3449 struct ring_buffer
*rb
)
3451 unsigned long flags
;
3453 if (!list_empty(&event
->rb_entry
))
3456 spin_lock_irqsave(&rb
->event_lock
, flags
);
3457 if (!list_empty(&event
->rb_entry
))
3460 list_add(&event
->rb_entry
, &rb
->event_list
);
3462 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
3465 static void ring_buffer_detach(struct perf_event
*event
,
3466 struct ring_buffer
*rb
)
3468 unsigned long flags
;
3470 if (list_empty(&event
->rb_entry
))
3473 spin_lock_irqsave(&rb
->event_lock
, flags
);
3474 list_del_init(&event
->rb_entry
);
3475 wake_up_all(&event
->waitq
);
3476 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
3479 static void ring_buffer_wakeup(struct perf_event
*event
)
3481 struct ring_buffer
*rb
;
3484 rb
= rcu_dereference(event
->rb
);
3488 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
3489 wake_up_all(&event
->waitq
);
3495 static void rb_free_rcu(struct rcu_head
*rcu_head
)
3497 struct ring_buffer
*rb
;
3499 rb
= container_of(rcu_head
, struct ring_buffer
, rcu_head
);
3503 static struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
3505 struct ring_buffer
*rb
;
3508 rb
= rcu_dereference(event
->rb
);
3510 if (!atomic_inc_not_zero(&rb
->refcount
))
3518 static void ring_buffer_put(struct ring_buffer
*rb
)
3520 struct perf_event
*event
, *n
;
3521 unsigned long flags
;
3523 if (!atomic_dec_and_test(&rb
->refcount
))
3526 spin_lock_irqsave(&rb
->event_lock
, flags
);
3527 list_for_each_entry_safe(event
, n
, &rb
->event_list
, rb_entry
) {
3528 list_del_init(&event
->rb_entry
);
3529 wake_up_all(&event
->waitq
);
3531 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
3533 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
3536 static void perf_mmap_open(struct vm_area_struct
*vma
)
3538 struct perf_event
*event
= vma
->vm_file
->private_data
;
3540 atomic_inc(&event
->mmap_count
);
3543 static void perf_mmap_close(struct vm_area_struct
*vma
)
3545 struct perf_event
*event
= vma
->vm_file
->private_data
;
3547 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
3548 unsigned long size
= perf_data_size(event
->rb
);
3549 struct user_struct
*user
= event
->mmap_user
;
3550 struct ring_buffer
*rb
= event
->rb
;
3552 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
3553 vma
->vm_mm
->pinned_vm
-= event
->mmap_locked
;
3554 rcu_assign_pointer(event
->rb
, NULL
);
3555 ring_buffer_detach(event
, rb
);
3556 mutex_unlock(&event
->mmap_mutex
);
3558 ring_buffer_put(rb
);
3563 static const struct vm_operations_struct perf_mmap_vmops
= {
3564 .open
= perf_mmap_open
,
3565 .close
= perf_mmap_close
,
3566 .fault
= perf_mmap_fault
,
3567 .page_mkwrite
= perf_mmap_fault
,
3570 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3572 struct perf_event
*event
= file
->private_data
;
3573 unsigned long user_locked
, user_lock_limit
;
3574 struct user_struct
*user
= current_user();
3575 unsigned long locked
, lock_limit
;
3576 struct ring_buffer
*rb
;
3577 unsigned long vma_size
;
3578 unsigned long nr_pages
;
3579 long user_extra
, extra
;
3580 int ret
= 0, flags
= 0;
3583 * Don't allow mmap() of inherited per-task counters. This would
3584 * create a performance issue due to all children writing to the
3587 if (event
->cpu
== -1 && event
->attr
.inherit
)
3590 if (!(vma
->vm_flags
& VM_SHARED
))
3593 vma_size
= vma
->vm_end
- vma
->vm_start
;
3594 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3597 * If we have rb pages ensure they're a power-of-two number, so we
3598 * can do bitmasks instead of modulo.
3600 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3603 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3606 if (vma
->vm_pgoff
!= 0)
3609 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3610 mutex_lock(&event
->mmap_mutex
);
3612 if (event
->rb
->nr_pages
== nr_pages
)
3613 atomic_inc(&event
->rb
->refcount
);
3619 user_extra
= nr_pages
+ 1;
3620 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3623 * Increase the limit linearly with more CPUs:
3625 user_lock_limit
*= num_online_cpus();
3627 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3630 if (user_locked
> user_lock_limit
)
3631 extra
= user_locked
- user_lock_limit
;
3633 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3634 lock_limit
>>= PAGE_SHIFT
;
3635 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
3637 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3638 !capable(CAP_IPC_LOCK
)) {
3645 if (vma
->vm_flags
& VM_WRITE
)
3646 flags
|= RING_BUFFER_WRITABLE
;
3648 rb
= rb_alloc(nr_pages
,
3649 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
3656 rcu_assign_pointer(event
->rb
, rb
);
3658 atomic_long_add(user_extra
, &user
->locked_vm
);
3659 event
->mmap_locked
= extra
;
3660 event
->mmap_user
= get_current_user();
3661 vma
->vm_mm
->pinned_vm
+= event
->mmap_locked
;
3663 perf_event_update_userpage(event
);
3667 atomic_inc(&event
->mmap_count
);
3668 mutex_unlock(&event
->mmap_mutex
);
3670 vma
->vm_flags
|= VM_RESERVED
;
3671 vma
->vm_ops
= &perf_mmap_vmops
;
3676 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3678 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3679 struct perf_event
*event
= filp
->private_data
;
3682 mutex_lock(&inode
->i_mutex
);
3683 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3684 mutex_unlock(&inode
->i_mutex
);
3692 static const struct file_operations perf_fops
= {
3693 .llseek
= no_llseek
,
3694 .release
= perf_release
,
3697 .unlocked_ioctl
= perf_ioctl
,
3698 .compat_ioctl
= perf_ioctl
,
3700 .fasync
= perf_fasync
,
3706 * If there's data, ensure we set the poll() state and publish everything
3707 * to user-space before waking everybody up.
3710 void perf_event_wakeup(struct perf_event
*event
)
3712 ring_buffer_wakeup(event
);
3714 if (event
->pending_kill
) {
3715 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3716 event
->pending_kill
= 0;
3720 static void perf_pending_event(struct irq_work
*entry
)
3722 struct perf_event
*event
= container_of(entry
,
3723 struct perf_event
, pending
);
3725 if (event
->pending_disable
) {
3726 event
->pending_disable
= 0;
3727 __perf_event_disable(event
);
3730 if (event
->pending_wakeup
) {
3731 event
->pending_wakeup
= 0;
3732 perf_event_wakeup(event
);
3737 * We assume there is only KVM supporting the callbacks.
3738 * Later on, we might change it to a list if there is
3739 * another virtualization implementation supporting the callbacks.
3741 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3743 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3745 perf_guest_cbs
= cbs
;
3748 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3750 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3752 perf_guest_cbs
= NULL
;
3755 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3757 static void __perf_event_header__init_id(struct perf_event_header
*header
,
3758 struct perf_sample_data
*data
,
3759 struct perf_event
*event
)
3761 u64 sample_type
= event
->attr
.sample_type
;
3763 data
->type
= sample_type
;
3764 header
->size
+= event
->id_header_size
;
3766 if (sample_type
& PERF_SAMPLE_TID
) {
3767 /* namespace issues */
3768 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3769 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3772 if (sample_type
& PERF_SAMPLE_TIME
)
3773 data
->time
= perf_clock();
3775 if (sample_type
& PERF_SAMPLE_ID
)
3776 data
->id
= primary_event_id(event
);
3778 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3779 data
->stream_id
= event
->id
;
3781 if (sample_type
& PERF_SAMPLE_CPU
) {
3782 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3783 data
->cpu_entry
.reserved
= 0;
3787 void perf_event_header__init_id(struct perf_event_header
*header
,
3788 struct perf_sample_data
*data
,
3789 struct perf_event
*event
)
3791 if (event
->attr
.sample_id_all
)
3792 __perf_event_header__init_id(header
, data
, event
);
3795 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
3796 struct perf_sample_data
*data
)
3798 u64 sample_type
= data
->type
;
3800 if (sample_type
& PERF_SAMPLE_TID
)
3801 perf_output_put(handle
, data
->tid_entry
);
3803 if (sample_type
& PERF_SAMPLE_TIME
)
3804 perf_output_put(handle
, data
->time
);
3806 if (sample_type
& PERF_SAMPLE_ID
)
3807 perf_output_put(handle
, data
->id
);
3809 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3810 perf_output_put(handle
, data
->stream_id
);
3812 if (sample_type
& PERF_SAMPLE_CPU
)
3813 perf_output_put(handle
, data
->cpu_entry
);
3816 void perf_event__output_id_sample(struct perf_event
*event
,
3817 struct perf_output_handle
*handle
,
3818 struct perf_sample_data
*sample
)
3820 if (event
->attr
.sample_id_all
)
3821 __perf_event__output_id_sample(handle
, sample
);
3824 static void perf_output_read_one(struct perf_output_handle
*handle
,
3825 struct perf_event
*event
,
3826 u64 enabled
, u64 running
)
3828 u64 read_format
= event
->attr
.read_format
;
3832 values
[n
++] = perf_event_count(event
);
3833 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3834 values
[n
++] = enabled
+
3835 atomic64_read(&event
->child_total_time_enabled
);
3837 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3838 values
[n
++] = running
+
3839 atomic64_read(&event
->child_total_time_running
);
3841 if (read_format
& PERF_FORMAT_ID
)
3842 values
[n
++] = primary_event_id(event
);
3844 __output_copy(handle
, values
, n
* sizeof(u64
));
3848 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3850 static void perf_output_read_group(struct perf_output_handle
*handle
,
3851 struct perf_event
*event
,
3852 u64 enabled
, u64 running
)
3854 struct perf_event
*leader
= event
->group_leader
, *sub
;
3855 u64 read_format
= event
->attr
.read_format
;
3859 values
[n
++] = 1 + leader
->nr_siblings
;
3861 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3862 values
[n
++] = enabled
;
3864 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3865 values
[n
++] = running
;
3867 if (leader
!= event
)
3868 leader
->pmu
->read(leader
);
3870 values
[n
++] = perf_event_count(leader
);
3871 if (read_format
& PERF_FORMAT_ID
)
3872 values
[n
++] = primary_event_id(leader
);
3874 __output_copy(handle
, values
, n
* sizeof(u64
));
3876 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3880 sub
->pmu
->read(sub
);
3882 values
[n
++] = perf_event_count(sub
);
3883 if (read_format
& PERF_FORMAT_ID
)
3884 values
[n
++] = primary_event_id(sub
);
3886 __output_copy(handle
, values
, n
* sizeof(u64
));
3890 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3891 PERF_FORMAT_TOTAL_TIME_RUNNING)
3893 static void perf_output_read(struct perf_output_handle
*handle
,
3894 struct perf_event
*event
)
3896 u64 enabled
= 0, running
= 0, now
;
3897 u64 read_format
= event
->attr
.read_format
;
3900 * compute total_time_enabled, total_time_running
3901 * based on snapshot values taken when the event
3902 * was last scheduled in.
3904 * we cannot simply called update_context_time()
3905 * because of locking issue as we are called in
3908 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
3909 calc_timer_values(event
, &now
, &enabled
, &running
);
3911 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3912 perf_output_read_group(handle
, event
, enabled
, running
);
3914 perf_output_read_one(handle
, event
, enabled
, running
);
3917 void perf_output_sample(struct perf_output_handle
*handle
,
3918 struct perf_event_header
*header
,
3919 struct perf_sample_data
*data
,
3920 struct perf_event
*event
)
3922 u64 sample_type
= data
->type
;
3924 perf_output_put(handle
, *header
);
3926 if (sample_type
& PERF_SAMPLE_IP
)
3927 perf_output_put(handle
, data
->ip
);
3929 if (sample_type
& PERF_SAMPLE_TID
)
3930 perf_output_put(handle
, data
->tid_entry
);
3932 if (sample_type
& PERF_SAMPLE_TIME
)
3933 perf_output_put(handle
, data
->time
);
3935 if (sample_type
& PERF_SAMPLE_ADDR
)
3936 perf_output_put(handle
, data
->addr
);
3938 if (sample_type
& PERF_SAMPLE_ID
)
3939 perf_output_put(handle
, data
->id
);
3941 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3942 perf_output_put(handle
, data
->stream_id
);
3944 if (sample_type
& PERF_SAMPLE_CPU
)
3945 perf_output_put(handle
, data
->cpu_entry
);
3947 if (sample_type
& PERF_SAMPLE_PERIOD
)
3948 perf_output_put(handle
, data
->period
);
3950 if (sample_type
& PERF_SAMPLE_READ
)
3951 perf_output_read(handle
, event
);
3953 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3954 if (data
->callchain
) {
3957 if (data
->callchain
)
3958 size
+= data
->callchain
->nr
;
3960 size
*= sizeof(u64
);
3962 __output_copy(handle
, data
->callchain
, size
);
3965 perf_output_put(handle
, nr
);
3969 if (sample_type
& PERF_SAMPLE_RAW
) {
3971 perf_output_put(handle
, data
->raw
->size
);
3972 __output_copy(handle
, data
->raw
->data
,
3979 .size
= sizeof(u32
),
3982 perf_output_put(handle
, raw
);
3986 if (!event
->attr
.watermark
) {
3987 int wakeup_events
= event
->attr
.wakeup_events
;
3989 if (wakeup_events
) {
3990 struct ring_buffer
*rb
= handle
->rb
;
3991 int events
= local_inc_return(&rb
->events
);
3993 if (events
>= wakeup_events
) {
3994 local_sub(wakeup_events
, &rb
->events
);
3995 local_inc(&rb
->wakeup
);
4000 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
4001 if (data
->br_stack
) {
4004 size
= data
->br_stack
->nr
4005 * sizeof(struct perf_branch_entry
);
4007 perf_output_put(handle
, data
->br_stack
->nr
);
4008 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
4011 * we always store at least the value of nr
4014 perf_output_put(handle
, nr
);
4019 void perf_prepare_sample(struct perf_event_header
*header
,
4020 struct perf_sample_data
*data
,
4021 struct perf_event
*event
,
4022 struct pt_regs
*regs
)
4024 u64 sample_type
= event
->attr
.sample_type
;
4026 header
->type
= PERF_RECORD_SAMPLE
;
4027 header
->size
= sizeof(*header
) + event
->header_size
;
4030 header
->misc
|= perf_misc_flags(regs
);
4032 __perf_event_header__init_id(header
, data
, event
);
4034 if (sample_type
& PERF_SAMPLE_IP
)
4035 data
->ip
= perf_instruction_pointer(regs
);
4037 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
4040 data
->callchain
= perf_callchain(regs
);
4042 if (data
->callchain
)
4043 size
+= data
->callchain
->nr
;
4045 header
->size
+= size
* sizeof(u64
);
4048 if (sample_type
& PERF_SAMPLE_RAW
) {
4049 int size
= sizeof(u32
);
4052 size
+= data
->raw
->size
;
4054 size
+= sizeof(u32
);
4056 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
4057 header
->size
+= size
;
4060 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
4061 int size
= sizeof(u64
); /* nr */
4062 if (data
->br_stack
) {
4063 size
+= data
->br_stack
->nr
4064 * sizeof(struct perf_branch_entry
);
4066 header
->size
+= size
;
4070 static void perf_event_output(struct perf_event
*event
,
4071 struct perf_sample_data
*data
,
4072 struct pt_regs
*regs
)
4074 struct perf_output_handle handle
;
4075 struct perf_event_header header
;
4077 /* protect the callchain buffers */
4080 perf_prepare_sample(&header
, data
, event
, regs
);
4082 if (perf_output_begin(&handle
, event
, header
.size
))
4085 perf_output_sample(&handle
, &header
, data
, event
);
4087 perf_output_end(&handle
);
4097 struct perf_read_event
{
4098 struct perf_event_header header
;
4105 perf_event_read_event(struct perf_event
*event
,
4106 struct task_struct
*task
)
4108 struct perf_output_handle handle
;
4109 struct perf_sample_data sample
;
4110 struct perf_read_event read_event
= {
4112 .type
= PERF_RECORD_READ
,
4114 .size
= sizeof(read_event
) + event
->read_size
,
4116 .pid
= perf_event_pid(event
, task
),
4117 .tid
= perf_event_tid(event
, task
),
4121 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
4122 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
4126 perf_output_put(&handle
, read_event
);
4127 perf_output_read(&handle
, event
);
4128 perf_event__output_id_sample(event
, &handle
, &sample
);
4130 perf_output_end(&handle
);
4134 * task tracking -- fork/exit
4136 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4139 struct perf_task_event
{
4140 struct task_struct
*task
;
4141 struct perf_event_context
*task_ctx
;
4144 struct perf_event_header header
;
4154 static void perf_event_task_output(struct perf_event
*event
,
4155 struct perf_task_event
*task_event
)
4157 struct perf_output_handle handle
;
4158 struct perf_sample_data sample
;
4159 struct task_struct
*task
= task_event
->task
;
4160 int ret
, size
= task_event
->event_id
.header
.size
;
4162 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
4164 ret
= perf_output_begin(&handle
, event
,
4165 task_event
->event_id
.header
.size
);
4169 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
4170 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
4172 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
4173 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
4175 perf_output_put(&handle
, task_event
->event_id
);
4177 perf_event__output_id_sample(event
, &handle
, &sample
);
4179 perf_output_end(&handle
);
4181 task_event
->event_id
.header
.size
= size
;
4184 static int perf_event_task_match(struct perf_event
*event
)
4186 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4189 if (!event_filter_match(event
))
4192 if (event
->attr
.comm
|| event
->attr
.mmap
||
4193 event
->attr
.mmap_data
|| event
->attr
.task
)
4199 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
4200 struct perf_task_event
*task_event
)
4202 struct perf_event
*event
;
4204 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4205 if (perf_event_task_match(event
))
4206 perf_event_task_output(event
, task_event
);
4210 static void perf_event_task_event(struct perf_task_event
*task_event
)
4212 struct perf_cpu_context
*cpuctx
;
4213 struct perf_event_context
*ctx
;
4218 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4219 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4220 if (cpuctx
->active_pmu
!= pmu
)
4222 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
4224 ctx
= task_event
->task_ctx
;
4226 ctxn
= pmu
->task_ctx_nr
;
4229 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4232 perf_event_task_ctx(ctx
, task_event
);
4234 put_cpu_ptr(pmu
->pmu_cpu_context
);
4239 static void perf_event_task(struct task_struct
*task
,
4240 struct perf_event_context
*task_ctx
,
4243 struct perf_task_event task_event
;
4245 if (!atomic_read(&nr_comm_events
) &&
4246 !atomic_read(&nr_mmap_events
) &&
4247 !atomic_read(&nr_task_events
))
4250 task_event
= (struct perf_task_event
){
4252 .task_ctx
= task_ctx
,
4255 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
4257 .size
= sizeof(task_event
.event_id
),
4263 .time
= perf_clock(),
4267 perf_event_task_event(&task_event
);
4270 void perf_event_fork(struct task_struct
*task
)
4272 perf_event_task(task
, NULL
, 1);
4279 struct perf_comm_event
{
4280 struct task_struct
*task
;
4285 struct perf_event_header header
;
4292 static void perf_event_comm_output(struct perf_event
*event
,
4293 struct perf_comm_event
*comm_event
)
4295 struct perf_output_handle handle
;
4296 struct perf_sample_data sample
;
4297 int size
= comm_event
->event_id
.header
.size
;
4300 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4301 ret
= perf_output_begin(&handle
, event
,
4302 comm_event
->event_id
.header
.size
);
4307 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
4308 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
4310 perf_output_put(&handle
, comm_event
->event_id
);
4311 __output_copy(&handle
, comm_event
->comm
,
4312 comm_event
->comm_size
);
4314 perf_event__output_id_sample(event
, &handle
, &sample
);
4316 perf_output_end(&handle
);
4318 comm_event
->event_id
.header
.size
= size
;
4321 static int perf_event_comm_match(struct perf_event
*event
)
4323 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4326 if (!event_filter_match(event
))
4329 if (event
->attr
.comm
)
4335 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
4336 struct perf_comm_event
*comm_event
)
4338 struct perf_event
*event
;
4340 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4341 if (perf_event_comm_match(event
))
4342 perf_event_comm_output(event
, comm_event
);
4346 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
4348 struct perf_cpu_context
*cpuctx
;
4349 struct perf_event_context
*ctx
;
4350 char comm
[TASK_COMM_LEN
];
4355 memset(comm
, 0, sizeof(comm
));
4356 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
4357 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
4359 comm_event
->comm
= comm
;
4360 comm_event
->comm_size
= size
;
4362 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
4364 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4365 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4366 if (cpuctx
->active_pmu
!= pmu
)
4368 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
4370 ctxn
= pmu
->task_ctx_nr
;
4374 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4376 perf_event_comm_ctx(ctx
, comm_event
);
4378 put_cpu_ptr(pmu
->pmu_cpu_context
);
4383 void perf_event_comm(struct task_struct
*task
)
4385 struct perf_comm_event comm_event
;
4386 struct perf_event_context
*ctx
;
4389 for_each_task_context_nr(ctxn
) {
4390 ctx
= task
->perf_event_ctxp
[ctxn
];
4394 perf_event_enable_on_exec(ctx
);
4397 if (!atomic_read(&nr_comm_events
))
4400 comm_event
= (struct perf_comm_event
){
4406 .type
= PERF_RECORD_COMM
,
4415 perf_event_comm_event(&comm_event
);
4422 struct perf_mmap_event
{
4423 struct vm_area_struct
*vma
;
4425 const char *file_name
;
4429 struct perf_event_header header
;
4439 static void perf_event_mmap_output(struct perf_event
*event
,
4440 struct perf_mmap_event
*mmap_event
)
4442 struct perf_output_handle handle
;
4443 struct perf_sample_data sample
;
4444 int size
= mmap_event
->event_id
.header
.size
;
4447 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
4448 ret
= perf_output_begin(&handle
, event
,
4449 mmap_event
->event_id
.header
.size
);
4453 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4454 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4456 perf_output_put(&handle
, mmap_event
->event_id
);
4457 __output_copy(&handle
, mmap_event
->file_name
,
4458 mmap_event
->file_size
);
4460 perf_event__output_id_sample(event
, &handle
, &sample
);
4462 perf_output_end(&handle
);
4464 mmap_event
->event_id
.header
.size
= size
;
4467 static int perf_event_mmap_match(struct perf_event
*event
,
4468 struct perf_mmap_event
*mmap_event
,
4471 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4474 if (!event_filter_match(event
))
4477 if ((!executable
&& event
->attr
.mmap_data
) ||
4478 (executable
&& event
->attr
.mmap
))
4484 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4485 struct perf_mmap_event
*mmap_event
,
4488 struct perf_event
*event
;
4490 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4491 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4492 perf_event_mmap_output(event
, mmap_event
);
4496 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4498 struct perf_cpu_context
*cpuctx
;
4499 struct perf_event_context
*ctx
;
4500 struct vm_area_struct
*vma
= mmap_event
->vma
;
4501 struct file
*file
= vma
->vm_file
;
4509 memset(tmp
, 0, sizeof(tmp
));
4513 * d_path works from the end of the rb backwards, so we
4514 * need to add enough zero bytes after the string to handle
4515 * the 64bit alignment we do later.
4517 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4519 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4522 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4524 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4528 if (arch_vma_name(mmap_event
->vma
)) {
4529 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4535 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4537 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4538 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4539 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4541 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4542 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4543 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4547 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4552 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4554 mmap_event
->file_name
= name
;
4555 mmap_event
->file_size
= size
;
4557 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4560 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4561 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4562 if (cpuctx
->active_pmu
!= pmu
)
4564 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4565 vma
->vm_flags
& VM_EXEC
);
4567 ctxn
= pmu
->task_ctx_nr
;
4571 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4573 perf_event_mmap_ctx(ctx
, mmap_event
,
4574 vma
->vm_flags
& VM_EXEC
);
4577 put_cpu_ptr(pmu
->pmu_cpu_context
);
4584 void perf_event_mmap(struct vm_area_struct
*vma
)
4586 struct perf_mmap_event mmap_event
;
4588 if (!atomic_read(&nr_mmap_events
))
4591 mmap_event
= (struct perf_mmap_event
){
4597 .type
= PERF_RECORD_MMAP
,
4598 .misc
= PERF_RECORD_MISC_USER
,
4603 .start
= vma
->vm_start
,
4604 .len
= vma
->vm_end
- vma
->vm_start
,
4605 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4609 perf_event_mmap_event(&mmap_event
);
4613 * IRQ throttle logging
4616 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4618 struct perf_output_handle handle
;
4619 struct perf_sample_data sample
;
4623 struct perf_event_header header
;
4627 } throttle_event
= {
4629 .type
= PERF_RECORD_THROTTLE
,
4631 .size
= sizeof(throttle_event
),
4633 .time
= perf_clock(),
4634 .id
= primary_event_id(event
),
4635 .stream_id
= event
->id
,
4639 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4641 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
4643 ret
= perf_output_begin(&handle
, event
,
4644 throttle_event
.header
.size
);
4648 perf_output_put(&handle
, throttle_event
);
4649 perf_event__output_id_sample(event
, &handle
, &sample
);
4650 perf_output_end(&handle
);
4654 * Generic event overflow handling, sampling.
4657 static int __perf_event_overflow(struct perf_event
*event
,
4658 int throttle
, struct perf_sample_data
*data
,
4659 struct pt_regs
*regs
)
4661 int events
= atomic_read(&event
->event_limit
);
4662 struct hw_perf_event
*hwc
= &event
->hw
;
4667 * Non-sampling counters might still use the PMI to fold short
4668 * hardware counters, ignore those.
4670 if (unlikely(!is_sampling_event(event
)))
4673 seq
= __this_cpu_read(perf_throttled_seq
);
4674 if (seq
!= hwc
->interrupts_seq
) {
4675 hwc
->interrupts_seq
= seq
;
4676 hwc
->interrupts
= 1;
4679 if (unlikely(throttle
4680 && hwc
->interrupts
>= max_samples_per_tick
)) {
4681 __this_cpu_inc(perf_throttled_count
);
4682 hwc
->interrupts
= MAX_INTERRUPTS
;
4683 perf_log_throttle(event
, 0);
4688 if (event
->attr
.freq
) {
4689 u64 now
= perf_clock();
4690 s64 delta
= now
- hwc
->freq_time_stamp
;
4692 hwc
->freq_time_stamp
= now
;
4694 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4695 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
4699 * XXX event_limit might not quite work as expected on inherited
4703 event
->pending_kill
= POLL_IN
;
4704 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4706 event
->pending_kill
= POLL_HUP
;
4707 event
->pending_disable
= 1;
4708 irq_work_queue(&event
->pending
);
4711 if (event
->overflow_handler
)
4712 event
->overflow_handler(event
, data
, regs
);
4714 perf_event_output(event
, data
, regs
);
4716 if (event
->fasync
&& event
->pending_kill
) {
4717 event
->pending_wakeup
= 1;
4718 irq_work_queue(&event
->pending
);
4724 int perf_event_overflow(struct perf_event
*event
,
4725 struct perf_sample_data
*data
,
4726 struct pt_regs
*regs
)
4728 return __perf_event_overflow(event
, 1, data
, regs
);
4732 * Generic software event infrastructure
4735 struct swevent_htable
{
4736 struct swevent_hlist
*swevent_hlist
;
4737 struct mutex hlist_mutex
;
4740 /* Recursion avoidance in each contexts */
4741 int recursion
[PERF_NR_CONTEXTS
];
4744 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4747 * We directly increment event->count and keep a second value in
4748 * event->hw.period_left to count intervals. This period event
4749 * is kept in the range [-sample_period, 0] so that we can use the
4753 static u64
perf_swevent_set_period(struct perf_event
*event
)
4755 struct hw_perf_event
*hwc
= &event
->hw
;
4756 u64 period
= hwc
->last_period
;
4760 hwc
->last_period
= hwc
->sample_period
;
4763 old
= val
= local64_read(&hwc
->period_left
);
4767 nr
= div64_u64(period
+ val
, period
);
4768 offset
= nr
* period
;
4770 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4776 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4777 struct perf_sample_data
*data
,
4778 struct pt_regs
*regs
)
4780 struct hw_perf_event
*hwc
= &event
->hw
;
4784 overflow
= perf_swevent_set_period(event
);
4786 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4789 for (; overflow
; overflow
--) {
4790 if (__perf_event_overflow(event
, throttle
,
4793 * We inhibit the overflow from happening when
4794 * hwc->interrupts == MAX_INTERRUPTS.
4802 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4803 struct perf_sample_data
*data
,
4804 struct pt_regs
*regs
)
4806 struct hw_perf_event
*hwc
= &event
->hw
;
4808 local64_add(nr
, &event
->count
);
4813 if (!is_sampling_event(event
))
4816 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
4818 return perf_swevent_overflow(event
, 1, data
, regs
);
4820 data
->period
= event
->hw
.last_period
;
4822 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4823 return perf_swevent_overflow(event
, 1, data
, regs
);
4825 if (local64_add_negative(nr
, &hwc
->period_left
))
4828 perf_swevent_overflow(event
, 0, data
, regs
);
4831 static int perf_exclude_event(struct perf_event
*event
,
4832 struct pt_regs
*regs
)
4834 if (event
->hw
.state
& PERF_HES_STOPPED
)
4838 if (event
->attr
.exclude_user
&& user_mode(regs
))
4841 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4848 static int perf_swevent_match(struct perf_event
*event
,
4849 enum perf_type_id type
,
4851 struct perf_sample_data
*data
,
4852 struct pt_regs
*regs
)
4854 if (event
->attr
.type
!= type
)
4857 if (event
->attr
.config
!= event_id
)
4860 if (perf_exclude_event(event
, regs
))
4866 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4868 u64 val
= event_id
| (type
<< 32);
4870 return hash_64(val
, SWEVENT_HLIST_BITS
);
4873 static inline struct hlist_head
*
4874 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4876 u64 hash
= swevent_hash(type
, event_id
);
4878 return &hlist
->heads
[hash
];
4881 /* For the read side: events when they trigger */
4882 static inline struct hlist_head
*
4883 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4885 struct swevent_hlist
*hlist
;
4887 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4891 return __find_swevent_head(hlist
, type
, event_id
);
4894 /* For the event head insertion and removal in the hlist */
4895 static inline struct hlist_head
*
4896 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4898 struct swevent_hlist
*hlist
;
4899 u32 event_id
= event
->attr
.config
;
4900 u64 type
= event
->attr
.type
;
4903 * Event scheduling is always serialized against hlist allocation
4904 * and release. Which makes the protected version suitable here.
4905 * The context lock guarantees that.
4907 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4908 lockdep_is_held(&event
->ctx
->lock
));
4912 return __find_swevent_head(hlist
, type
, event_id
);
4915 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4917 struct perf_sample_data
*data
,
4918 struct pt_regs
*regs
)
4920 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4921 struct perf_event
*event
;
4922 struct hlist_node
*node
;
4923 struct hlist_head
*head
;
4926 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4930 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4931 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4932 perf_swevent_event(event
, nr
, data
, regs
);
4938 int perf_swevent_get_recursion_context(void)
4940 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4942 return get_recursion_context(swhash
->recursion
);
4944 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4946 inline void perf_swevent_put_recursion_context(int rctx
)
4948 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4950 put_recursion_context(swhash
->recursion
, rctx
);
4953 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
4955 struct perf_sample_data data
;
4958 preempt_disable_notrace();
4959 rctx
= perf_swevent_get_recursion_context();
4963 perf_sample_data_init(&data
, addr
, 0);
4965 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
4967 perf_swevent_put_recursion_context(rctx
);
4968 preempt_enable_notrace();
4971 static void perf_swevent_read(struct perf_event
*event
)
4975 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4977 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4978 struct hw_perf_event
*hwc
= &event
->hw
;
4979 struct hlist_head
*head
;
4981 if (is_sampling_event(event
)) {
4982 hwc
->last_period
= hwc
->sample_period
;
4983 perf_swevent_set_period(event
);
4986 hwc
->state
= !(flags
& PERF_EF_START
);
4988 head
= find_swevent_head(swhash
, event
);
4989 if (WARN_ON_ONCE(!head
))
4992 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4997 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4999 hlist_del_rcu(&event
->hlist_entry
);
5002 static void perf_swevent_start(struct perf_event
*event
, int flags
)
5004 event
->hw
.state
= 0;
5007 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
5009 event
->hw
.state
= PERF_HES_STOPPED
;
5012 /* Deref the hlist from the update side */
5013 static inline struct swevent_hlist
*
5014 swevent_hlist_deref(struct swevent_htable
*swhash
)
5016 return rcu_dereference_protected(swhash
->swevent_hlist
,
5017 lockdep_is_held(&swhash
->hlist_mutex
));
5020 static void swevent_hlist_release(struct swevent_htable
*swhash
)
5022 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
5027 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
5028 kfree_rcu(hlist
, rcu_head
);
5031 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
5033 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5035 mutex_lock(&swhash
->hlist_mutex
);
5037 if (!--swhash
->hlist_refcount
)
5038 swevent_hlist_release(swhash
);
5040 mutex_unlock(&swhash
->hlist_mutex
);
5043 static void swevent_hlist_put(struct perf_event
*event
)
5047 if (event
->cpu
!= -1) {
5048 swevent_hlist_put_cpu(event
, event
->cpu
);
5052 for_each_possible_cpu(cpu
)
5053 swevent_hlist_put_cpu(event
, cpu
);
5056 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
5058 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
5061 mutex_lock(&swhash
->hlist_mutex
);
5063 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
5064 struct swevent_hlist
*hlist
;
5066 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
5071 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
5073 swhash
->hlist_refcount
++;
5075 mutex_unlock(&swhash
->hlist_mutex
);
5080 static int swevent_hlist_get(struct perf_event
*event
)
5083 int cpu
, failed_cpu
;
5085 if (event
->cpu
!= -1)
5086 return swevent_hlist_get_cpu(event
, event
->cpu
);
5089 for_each_possible_cpu(cpu
) {
5090 err
= swevent_hlist_get_cpu(event
, cpu
);
5100 for_each_possible_cpu(cpu
) {
5101 if (cpu
== failed_cpu
)
5103 swevent_hlist_put_cpu(event
, cpu
);
5110 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
5112 static void sw_perf_event_destroy(struct perf_event
*event
)
5114 u64 event_id
= event
->attr
.config
;
5116 WARN_ON(event
->parent
);
5118 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
5119 swevent_hlist_put(event
);
5122 static int perf_swevent_init(struct perf_event
*event
)
5124 int event_id
= event
->attr
.config
;
5126 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5130 * no branch sampling for software events
5132 if (has_branch_stack(event
))
5136 case PERF_COUNT_SW_CPU_CLOCK
:
5137 case PERF_COUNT_SW_TASK_CLOCK
:
5144 if (event_id
>= PERF_COUNT_SW_MAX
)
5147 if (!event
->parent
) {
5150 err
= swevent_hlist_get(event
);
5154 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
5155 event
->destroy
= sw_perf_event_destroy
;
5161 static int perf_swevent_event_idx(struct perf_event
*event
)
5166 static struct pmu perf_swevent
= {
5167 .task_ctx_nr
= perf_sw_context
,
5169 .event_init
= perf_swevent_init
,
5170 .add
= perf_swevent_add
,
5171 .del
= perf_swevent_del
,
5172 .start
= perf_swevent_start
,
5173 .stop
= perf_swevent_stop
,
5174 .read
= perf_swevent_read
,
5176 .event_idx
= perf_swevent_event_idx
,
5179 #ifdef CONFIG_EVENT_TRACING
5181 static int perf_tp_filter_match(struct perf_event
*event
,
5182 struct perf_sample_data
*data
)
5184 void *record
= data
->raw
->data
;
5186 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
5191 static int perf_tp_event_match(struct perf_event
*event
,
5192 struct perf_sample_data
*data
,
5193 struct pt_regs
*regs
)
5195 if (event
->hw
.state
& PERF_HES_STOPPED
)
5198 * All tracepoints are from kernel-space.
5200 if (event
->attr
.exclude_kernel
)
5203 if (!perf_tp_filter_match(event
, data
))
5209 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
5210 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
5212 struct perf_sample_data data
;
5213 struct perf_event
*event
;
5214 struct hlist_node
*node
;
5216 struct perf_raw_record raw
= {
5221 perf_sample_data_init(&data
, addr
, 0);
5224 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
5225 if (perf_tp_event_match(event
, &data
, regs
))
5226 perf_swevent_event(event
, count
, &data
, regs
);
5229 perf_swevent_put_recursion_context(rctx
);
5231 EXPORT_SYMBOL_GPL(perf_tp_event
);
5233 static void tp_perf_event_destroy(struct perf_event
*event
)
5235 perf_trace_destroy(event
);
5238 static int perf_tp_event_init(struct perf_event
*event
)
5242 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5246 * no branch sampling for tracepoint events
5248 if (has_branch_stack(event
))
5251 err
= perf_trace_init(event
);
5255 event
->destroy
= tp_perf_event_destroy
;
5260 static struct pmu perf_tracepoint
= {
5261 .task_ctx_nr
= perf_sw_context
,
5263 .event_init
= perf_tp_event_init
,
5264 .add
= perf_trace_add
,
5265 .del
= perf_trace_del
,
5266 .start
= perf_swevent_start
,
5267 .stop
= perf_swevent_stop
,
5268 .read
= perf_swevent_read
,
5270 .event_idx
= perf_swevent_event_idx
,
5273 static inline void perf_tp_register(void)
5275 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
5278 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5283 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5286 filter_str
= strndup_user(arg
, PAGE_SIZE
);
5287 if (IS_ERR(filter_str
))
5288 return PTR_ERR(filter_str
);
5290 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5296 static void perf_event_free_filter(struct perf_event
*event
)
5298 ftrace_profile_free_filter(event
);
5303 static inline void perf_tp_register(void)
5307 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5312 static void perf_event_free_filter(struct perf_event
*event
)
5316 #endif /* CONFIG_EVENT_TRACING */
5318 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5319 void perf_bp_event(struct perf_event
*bp
, void *data
)
5321 struct perf_sample_data sample
;
5322 struct pt_regs
*regs
= data
;
5324 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
5326 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
5327 perf_swevent_event(bp
, 1, &sample
, regs
);
5332 * hrtimer based swevent callback
5335 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
5337 enum hrtimer_restart ret
= HRTIMER_RESTART
;
5338 struct perf_sample_data data
;
5339 struct pt_regs
*regs
;
5340 struct perf_event
*event
;
5343 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
5345 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5346 return HRTIMER_NORESTART
;
5348 event
->pmu
->read(event
);
5350 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
5351 regs
= get_irq_regs();
5353 if (regs
&& !perf_exclude_event(event
, regs
)) {
5354 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
5355 if (__perf_event_overflow(event
, 1, &data
, regs
))
5356 ret
= HRTIMER_NORESTART
;
5359 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
5360 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
5365 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
5367 struct hw_perf_event
*hwc
= &event
->hw
;
5370 if (!is_sampling_event(event
))
5373 period
= local64_read(&hwc
->period_left
);
5378 local64_set(&hwc
->period_left
, 0);
5380 period
= max_t(u64
, 10000, hwc
->sample_period
);
5382 __hrtimer_start_range_ns(&hwc
->hrtimer
,
5383 ns_to_ktime(period
), 0,
5384 HRTIMER_MODE_REL_PINNED
, 0);
5387 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
5389 struct hw_perf_event
*hwc
= &event
->hw
;
5391 if (is_sampling_event(event
)) {
5392 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
5393 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
5395 hrtimer_cancel(&hwc
->hrtimer
);
5399 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
5401 struct hw_perf_event
*hwc
= &event
->hw
;
5403 if (!is_sampling_event(event
))
5406 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5407 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
5410 * Since hrtimers have a fixed rate, we can do a static freq->period
5411 * mapping and avoid the whole period adjust feedback stuff.
5413 if (event
->attr
.freq
) {
5414 long freq
= event
->attr
.sample_freq
;
5416 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
5417 hwc
->sample_period
= event
->attr
.sample_period
;
5418 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5419 event
->attr
.freq
= 0;
5424 * Software event: cpu wall time clock
5427 static void cpu_clock_event_update(struct perf_event
*event
)
5432 now
= local_clock();
5433 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5434 local64_add(now
- prev
, &event
->count
);
5437 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
5439 local64_set(&event
->hw
.prev_count
, local_clock());
5440 perf_swevent_start_hrtimer(event
);
5443 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
5445 perf_swevent_cancel_hrtimer(event
);
5446 cpu_clock_event_update(event
);
5449 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
5451 if (flags
& PERF_EF_START
)
5452 cpu_clock_event_start(event
, flags
);
5457 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
5459 cpu_clock_event_stop(event
, flags
);
5462 static void cpu_clock_event_read(struct perf_event
*event
)
5464 cpu_clock_event_update(event
);
5467 static int cpu_clock_event_init(struct perf_event
*event
)
5469 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5472 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5476 * no branch sampling for software events
5478 if (has_branch_stack(event
))
5481 perf_swevent_init_hrtimer(event
);
5486 static struct pmu perf_cpu_clock
= {
5487 .task_ctx_nr
= perf_sw_context
,
5489 .event_init
= cpu_clock_event_init
,
5490 .add
= cpu_clock_event_add
,
5491 .del
= cpu_clock_event_del
,
5492 .start
= cpu_clock_event_start
,
5493 .stop
= cpu_clock_event_stop
,
5494 .read
= cpu_clock_event_read
,
5496 .event_idx
= perf_swevent_event_idx
,
5500 * Software event: task time clock
5503 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5508 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5510 local64_add(delta
, &event
->count
);
5513 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5515 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5516 perf_swevent_start_hrtimer(event
);
5519 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5521 perf_swevent_cancel_hrtimer(event
);
5522 task_clock_event_update(event
, event
->ctx
->time
);
5525 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5527 if (flags
& PERF_EF_START
)
5528 task_clock_event_start(event
, flags
);
5533 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5535 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5538 static void task_clock_event_read(struct perf_event
*event
)
5540 u64 now
= perf_clock();
5541 u64 delta
= now
- event
->ctx
->timestamp
;
5542 u64 time
= event
->ctx
->time
+ delta
;
5544 task_clock_event_update(event
, time
);
5547 static int task_clock_event_init(struct perf_event
*event
)
5549 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5552 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5556 * no branch sampling for software events
5558 if (has_branch_stack(event
))
5561 perf_swevent_init_hrtimer(event
);
5566 static struct pmu perf_task_clock
= {
5567 .task_ctx_nr
= perf_sw_context
,
5569 .event_init
= task_clock_event_init
,
5570 .add
= task_clock_event_add
,
5571 .del
= task_clock_event_del
,
5572 .start
= task_clock_event_start
,
5573 .stop
= task_clock_event_stop
,
5574 .read
= task_clock_event_read
,
5576 .event_idx
= perf_swevent_event_idx
,
5579 static void perf_pmu_nop_void(struct pmu
*pmu
)
5583 static int perf_pmu_nop_int(struct pmu
*pmu
)
5588 static void perf_pmu_start_txn(struct pmu
*pmu
)
5590 perf_pmu_disable(pmu
);
5593 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5595 perf_pmu_enable(pmu
);
5599 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5601 perf_pmu_enable(pmu
);
5604 static int perf_event_idx_default(struct perf_event
*event
)
5606 return event
->hw
.idx
+ 1;
5610 * Ensures all contexts with the same task_ctx_nr have the same
5611 * pmu_cpu_context too.
5613 static void *find_pmu_context(int ctxn
)
5620 list_for_each_entry(pmu
, &pmus
, entry
) {
5621 if (pmu
->task_ctx_nr
== ctxn
)
5622 return pmu
->pmu_cpu_context
;
5628 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
5632 for_each_possible_cpu(cpu
) {
5633 struct perf_cpu_context
*cpuctx
;
5635 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5637 if (cpuctx
->active_pmu
== old_pmu
)
5638 cpuctx
->active_pmu
= pmu
;
5642 static void free_pmu_context(struct pmu
*pmu
)
5646 mutex_lock(&pmus_lock
);
5648 * Like a real lame refcount.
5650 list_for_each_entry(i
, &pmus
, entry
) {
5651 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
5652 update_pmu_context(i
, pmu
);
5657 free_percpu(pmu
->pmu_cpu_context
);
5659 mutex_unlock(&pmus_lock
);
5661 static struct idr pmu_idr
;
5664 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
5666 struct pmu
*pmu
= dev_get_drvdata(dev
);
5668 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
5671 static struct device_attribute pmu_dev_attrs
[] = {
5676 static int pmu_bus_running
;
5677 static struct bus_type pmu_bus
= {
5678 .name
= "event_source",
5679 .dev_attrs
= pmu_dev_attrs
,
5682 static void pmu_dev_release(struct device
*dev
)
5687 static int pmu_dev_alloc(struct pmu
*pmu
)
5691 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
5695 pmu
->dev
->groups
= pmu
->attr_groups
;
5696 device_initialize(pmu
->dev
);
5697 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
5701 dev_set_drvdata(pmu
->dev
, pmu
);
5702 pmu
->dev
->bus
= &pmu_bus
;
5703 pmu
->dev
->release
= pmu_dev_release
;
5704 ret
= device_add(pmu
->dev
);
5712 put_device(pmu
->dev
);
5716 static struct lock_class_key cpuctx_mutex
;
5717 static struct lock_class_key cpuctx_lock
;
5719 int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
)
5723 mutex_lock(&pmus_lock
);
5725 pmu
->pmu_disable_count
= alloc_percpu(int);
5726 if (!pmu
->pmu_disable_count
)
5735 int err
= idr_pre_get(&pmu_idr
, GFP_KERNEL
);
5739 err
= idr_get_new_above(&pmu_idr
, pmu
, PERF_TYPE_MAX
, &type
);
5747 if (pmu_bus_running
) {
5748 ret
= pmu_dev_alloc(pmu
);
5754 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5755 if (pmu
->pmu_cpu_context
)
5756 goto got_cpu_context
;
5758 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5759 if (!pmu
->pmu_cpu_context
)
5762 for_each_possible_cpu(cpu
) {
5763 struct perf_cpu_context
*cpuctx
;
5765 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5766 __perf_event_init_context(&cpuctx
->ctx
);
5767 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
5768 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
5769 cpuctx
->ctx
.type
= cpu_context
;
5770 cpuctx
->ctx
.pmu
= pmu
;
5771 cpuctx
->jiffies_interval
= 1;
5772 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5773 cpuctx
->active_pmu
= pmu
;
5777 if (!pmu
->start_txn
) {
5778 if (pmu
->pmu_enable
) {
5780 * If we have pmu_enable/pmu_disable calls, install
5781 * transaction stubs that use that to try and batch
5782 * hardware accesses.
5784 pmu
->start_txn
= perf_pmu_start_txn
;
5785 pmu
->commit_txn
= perf_pmu_commit_txn
;
5786 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5788 pmu
->start_txn
= perf_pmu_nop_void
;
5789 pmu
->commit_txn
= perf_pmu_nop_int
;
5790 pmu
->cancel_txn
= perf_pmu_nop_void
;
5794 if (!pmu
->pmu_enable
) {
5795 pmu
->pmu_enable
= perf_pmu_nop_void
;
5796 pmu
->pmu_disable
= perf_pmu_nop_void
;
5799 if (!pmu
->event_idx
)
5800 pmu
->event_idx
= perf_event_idx_default
;
5802 list_add_rcu(&pmu
->entry
, &pmus
);
5805 mutex_unlock(&pmus_lock
);
5810 device_del(pmu
->dev
);
5811 put_device(pmu
->dev
);
5814 if (pmu
->type
>= PERF_TYPE_MAX
)
5815 idr_remove(&pmu_idr
, pmu
->type
);
5818 free_percpu(pmu
->pmu_disable_count
);
5822 void perf_pmu_unregister(struct pmu
*pmu
)
5824 mutex_lock(&pmus_lock
);
5825 list_del_rcu(&pmu
->entry
);
5826 mutex_unlock(&pmus_lock
);
5829 * We dereference the pmu list under both SRCU and regular RCU, so
5830 * synchronize against both of those.
5832 synchronize_srcu(&pmus_srcu
);
5835 free_percpu(pmu
->pmu_disable_count
);
5836 if (pmu
->type
>= PERF_TYPE_MAX
)
5837 idr_remove(&pmu_idr
, pmu
->type
);
5838 device_del(pmu
->dev
);
5839 put_device(pmu
->dev
);
5840 free_pmu_context(pmu
);
5843 struct pmu
*perf_init_event(struct perf_event
*event
)
5845 struct pmu
*pmu
= NULL
;
5849 idx
= srcu_read_lock(&pmus_srcu
);
5852 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
5856 ret
= pmu
->event_init(event
);
5862 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5864 ret
= pmu
->event_init(event
);
5868 if (ret
!= -ENOENT
) {
5873 pmu
= ERR_PTR(-ENOENT
);
5875 srcu_read_unlock(&pmus_srcu
, idx
);
5881 * Allocate and initialize a event structure
5883 static struct perf_event
*
5884 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5885 struct task_struct
*task
,
5886 struct perf_event
*group_leader
,
5887 struct perf_event
*parent_event
,
5888 perf_overflow_handler_t overflow_handler
,
5892 struct perf_event
*event
;
5893 struct hw_perf_event
*hwc
;
5896 if ((unsigned)cpu
>= nr_cpu_ids
) {
5897 if (!task
|| cpu
!= -1)
5898 return ERR_PTR(-EINVAL
);
5901 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5903 return ERR_PTR(-ENOMEM
);
5906 * Single events are their own group leaders, with an
5907 * empty sibling list:
5910 group_leader
= event
;
5912 mutex_init(&event
->child_mutex
);
5913 INIT_LIST_HEAD(&event
->child_list
);
5915 INIT_LIST_HEAD(&event
->group_entry
);
5916 INIT_LIST_HEAD(&event
->event_entry
);
5917 INIT_LIST_HEAD(&event
->sibling_list
);
5918 INIT_LIST_HEAD(&event
->rb_entry
);
5920 init_waitqueue_head(&event
->waitq
);
5921 init_irq_work(&event
->pending
, perf_pending_event
);
5923 mutex_init(&event
->mmap_mutex
);
5926 event
->attr
= *attr
;
5927 event
->group_leader
= group_leader
;
5931 event
->parent
= parent_event
;
5933 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5934 event
->id
= atomic64_inc_return(&perf_event_id
);
5936 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5939 event
->attach_state
= PERF_ATTACH_TASK
;
5940 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5942 * hw_breakpoint is a bit difficult here..
5944 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5945 event
->hw
.bp_target
= task
;
5949 if (!overflow_handler
&& parent_event
) {
5950 overflow_handler
= parent_event
->overflow_handler
;
5951 context
= parent_event
->overflow_handler_context
;
5954 event
->overflow_handler
= overflow_handler
;
5955 event
->overflow_handler_context
= context
;
5958 event
->state
= PERF_EVENT_STATE_OFF
;
5963 hwc
->sample_period
= attr
->sample_period
;
5964 if (attr
->freq
&& attr
->sample_freq
)
5965 hwc
->sample_period
= 1;
5966 hwc
->last_period
= hwc
->sample_period
;
5968 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5971 * we currently do not support PERF_FORMAT_GROUP on inherited events
5973 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5976 pmu
= perf_init_event(event
);
5982 else if (IS_ERR(pmu
))
5987 put_pid_ns(event
->ns
);
5989 return ERR_PTR(err
);
5992 if (!event
->parent
) {
5993 if (event
->attach_state
& PERF_ATTACH_TASK
)
5994 static_key_slow_inc(&perf_sched_events
.key
);
5995 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5996 atomic_inc(&nr_mmap_events
);
5997 if (event
->attr
.comm
)
5998 atomic_inc(&nr_comm_events
);
5999 if (event
->attr
.task
)
6000 atomic_inc(&nr_task_events
);
6001 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6002 err
= get_callchain_buffers();
6005 return ERR_PTR(err
);
6008 if (has_branch_stack(event
)) {
6009 static_key_slow_inc(&perf_sched_events
.key
);
6010 if (!(event
->attach_state
& PERF_ATTACH_TASK
))
6011 atomic_inc(&per_cpu(perf_branch_stack_events
,
6019 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
6020 struct perf_event_attr
*attr
)
6025 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
6029 * zero the full structure, so that a short copy will be nice.
6031 memset(attr
, 0, sizeof(*attr
));
6033 ret
= get_user(size
, &uattr
->size
);
6037 if (size
> PAGE_SIZE
) /* silly large */
6040 if (!size
) /* abi compat */
6041 size
= PERF_ATTR_SIZE_VER0
;
6043 if (size
< PERF_ATTR_SIZE_VER0
)
6047 * If we're handed a bigger struct than we know of,
6048 * ensure all the unknown bits are 0 - i.e. new
6049 * user-space does not rely on any kernel feature
6050 * extensions we dont know about yet.
6052 if (size
> sizeof(*attr
)) {
6053 unsigned char __user
*addr
;
6054 unsigned char __user
*end
;
6057 addr
= (void __user
*)uattr
+ sizeof(*attr
);
6058 end
= (void __user
*)uattr
+ size
;
6060 for (; addr
< end
; addr
++) {
6061 ret
= get_user(val
, addr
);
6067 size
= sizeof(*attr
);
6070 ret
= copy_from_user(attr
, uattr
, size
);
6074 if (attr
->__reserved_1
)
6077 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
6080 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
6083 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6084 u64 mask
= attr
->branch_sample_type
;
6086 /* only using defined bits */
6087 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
6090 /* at least one branch bit must be set */
6091 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
6094 /* kernel level capture: check permissions */
6095 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
6096 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
6099 /* propagate priv level, when not set for branch */
6100 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
6102 /* exclude_kernel checked on syscall entry */
6103 if (!attr
->exclude_kernel
)
6104 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
6106 if (!attr
->exclude_user
)
6107 mask
|= PERF_SAMPLE_BRANCH_USER
;
6109 if (!attr
->exclude_hv
)
6110 mask
|= PERF_SAMPLE_BRANCH_HV
;
6112 * adjust user setting (for HW filter setup)
6114 attr
->branch_sample_type
= mask
;
6121 put_user(sizeof(*attr
), &uattr
->size
);
6127 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
6129 struct ring_buffer
*rb
= NULL
, *old_rb
= NULL
;
6135 /* don't allow circular references */
6136 if (event
== output_event
)
6140 * Don't allow cross-cpu buffers
6142 if (output_event
->cpu
!= event
->cpu
)
6146 * If its not a per-cpu rb, it must be the same task.
6148 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
6152 mutex_lock(&event
->mmap_mutex
);
6153 /* Can't redirect output if we've got an active mmap() */
6154 if (atomic_read(&event
->mmap_count
))
6158 /* get the rb we want to redirect to */
6159 rb
= ring_buffer_get(output_event
);
6165 rcu_assign_pointer(event
->rb
, rb
);
6167 ring_buffer_detach(event
, old_rb
);
6170 mutex_unlock(&event
->mmap_mutex
);
6173 ring_buffer_put(old_rb
);
6179 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6181 * @attr_uptr: event_id type attributes for monitoring/sampling
6184 * @group_fd: group leader event fd
6186 SYSCALL_DEFINE5(perf_event_open
,
6187 struct perf_event_attr __user
*, attr_uptr
,
6188 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
6190 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
6191 struct perf_event
*event
, *sibling
;
6192 struct perf_event_attr attr
;
6193 struct perf_event_context
*ctx
;
6194 struct file
*event_file
= NULL
;
6195 struct file
*group_file
= NULL
;
6196 struct task_struct
*task
= NULL
;
6200 int fput_needed
= 0;
6203 /* for future expandability... */
6204 if (flags
& ~PERF_FLAG_ALL
)
6207 err
= perf_copy_attr(attr_uptr
, &attr
);
6211 if (!attr
.exclude_kernel
) {
6212 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
6217 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
6222 * In cgroup mode, the pid argument is used to pass the fd
6223 * opened to the cgroup directory in cgroupfs. The cpu argument
6224 * designates the cpu on which to monitor threads from that
6227 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
6230 event_fd
= get_unused_fd_flags(O_RDWR
);
6234 if (group_fd
!= -1) {
6235 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
6236 if (IS_ERR(group_leader
)) {
6237 err
= PTR_ERR(group_leader
);
6240 group_file
= group_leader
->filp
;
6241 if (flags
& PERF_FLAG_FD_OUTPUT
)
6242 output_event
= group_leader
;
6243 if (flags
& PERF_FLAG_FD_NO_GROUP
)
6244 group_leader
= NULL
;
6247 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
6248 task
= find_lively_task_by_vpid(pid
);
6250 err
= PTR_ERR(task
);
6255 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
6257 if (IS_ERR(event
)) {
6258 err
= PTR_ERR(event
);
6262 if (flags
& PERF_FLAG_PID_CGROUP
) {
6263 err
= perf_cgroup_connect(pid
, event
, &attr
, group_leader
);
6268 * - that has cgroup constraint on event->cpu
6269 * - that may need work on context switch
6271 atomic_inc(&per_cpu(perf_cgroup_events
, event
->cpu
));
6272 static_key_slow_inc(&perf_sched_events
.key
);
6276 * Special case software events and allow them to be part of
6277 * any hardware group.
6282 (is_software_event(event
) != is_software_event(group_leader
))) {
6283 if (is_software_event(event
)) {
6285 * If event and group_leader are not both a software
6286 * event, and event is, then group leader is not.
6288 * Allow the addition of software events to !software
6289 * groups, this is safe because software events never
6292 pmu
= group_leader
->pmu
;
6293 } else if (is_software_event(group_leader
) &&
6294 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
6296 * In case the group is a pure software group, and we
6297 * try to add a hardware event, move the whole group to
6298 * the hardware context.
6305 * Get the target context (task or percpu):
6307 ctx
= find_get_context(pmu
, task
, cpu
);
6314 put_task_struct(task
);
6319 * Look up the group leader (we will attach this event to it):
6325 * Do not allow a recursive hierarchy (this new sibling
6326 * becoming part of another group-sibling):
6328 if (group_leader
->group_leader
!= group_leader
)
6331 * Do not allow to attach to a group in a different
6332 * task or CPU context:
6335 if (group_leader
->ctx
->type
!= ctx
->type
)
6338 if (group_leader
->ctx
!= ctx
)
6343 * Only a group leader can be exclusive or pinned
6345 if (attr
.exclusive
|| attr
.pinned
)
6350 err
= perf_event_set_output(event
, output_event
);
6355 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
6356 if (IS_ERR(event_file
)) {
6357 err
= PTR_ERR(event_file
);
6362 struct perf_event_context
*gctx
= group_leader
->ctx
;
6364 mutex_lock(&gctx
->mutex
);
6365 perf_remove_from_context(group_leader
);
6366 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6368 perf_remove_from_context(sibling
);
6371 mutex_unlock(&gctx
->mutex
);
6375 event
->filp
= event_file
;
6376 WARN_ON_ONCE(ctx
->parent_ctx
);
6377 mutex_lock(&ctx
->mutex
);
6380 perf_install_in_context(ctx
, group_leader
, cpu
);
6382 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
6384 perf_install_in_context(ctx
, sibling
, cpu
);
6389 perf_install_in_context(ctx
, event
, cpu
);
6391 perf_unpin_context(ctx
);
6392 mutex_unlock(&ctx
->mutex
);
6394 event
->owner
= current
;
6396 mutex_lock(¤t
->perf_event_mutex
);
6397 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
6398 mutex_unlock(¤t
->perf_event_mutex
);
6401 * Precalculate sample_data sizes
6403 perf_event__header_size(event
);
6404 perf_event__id_header_size(event
);
6407 * Drop the reference on the group_event after placing the
6408 * new event on the sibling_list. This ensures destruction
6409 * of the group leader will find the pointer to itself in
6410 * perf_group_detach().
6412 fput_light(group_file
, fput_needed
);
6413 fd_install(event_fd
, event_file
);
6417 perf_unpin_context(ctx
);
6423 put_task_struct(task
);
6425 fput_light(group_file
, fput_needed
);
6427 put_unused_fd(event_fd
);
6432 * perf_event_create_kernel_counter
6434 * @attr: attributes of the counter to create
6435 * @cpu: cpu in which the counter is bound
6436 * @task: task to profile (NULL for percpu)
6439 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
6440 struct task_struct
*task
,
6441 perf_overflow_handler_t overflow_handler
,
6444 struct perf_event_context
*ctx
;
6445 struct perf_event
*event
;
6449 * Get the target context (task or percpu):
6452 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
6453 overflow_handler
, context
);
6454 if (IS_ERR(event
)) {
6455 err
= PTR_ERR(event
);
6459 ctx
= find_get_context(event
->pmu
, task
, cpu
);
6466 WARN_ON_ONCE(ctx
->parent_ctx
);
6467 mutex_lock(&ctx
->mutex
);
6468 perf_install_in_context(ctx
, event
, cpu
);
6470 perf_unpin_context(ctx
);
6471 mutex_unlock(&ctx
->mutex
);
6478 return ERR_PTR(err
);
6480 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
6482 static void sync_child_event(struct perf_event
*child_event
,
6483 struct task_struct
*child
)
6485 struct perf_event
*parent_event
= child_event
->parent
;
6488 if (child_event
->attr
.inherit_stat
)
6489 perf_event_read_event(child_event
, child
);
6491 child_val
= perf_event_count(child_event
);
6494 * Add back the child's count to the parent's count:
6496 atomic64_add(child_val
, &parent_event
->child_count
);
6497 atomic64_add(child_event
->total_time_enabled
,
6498 &parent_event
->child_total_time_enabled
);
6499 atomic64_add(child_event
->total_time_running
,
6500 &parent_event
->child_total_time_running
);
6503 * Remove this event from the parent's list
6505 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6506 mutex_lock(&parent_event
->child_mutex
);
6507 list_del_init(&child_event
->child_list
);
6508 mutex_unlock(&parent_event
->child_mutex
);
6511 * Release the parent event, if this was the last
6514 fput(parent_event
->filp
);
6518 __perf_event_exit_task(struct perf_event
*child_event
,
6519 struct perf_event_context
*child_ctx
,
6520 struct task_struct
*child
)
6522 if (child_event
->parent
) {
6523 raw_spin_lock_irq(&child_ctx
->lock
);
6524 perf_group_detach(child_event
);
6525 raw_spin_unlock_irq(&child_ctx
->lock
);
6528 perf_remove_from_context(child_event
);
6531 * It can happen that the parent exits first, and has events
6532 * that are still around due to the child reference. These
6533 * events need to be zapped.
6535 if (child_event
->parent
) {
6536 sync_child_event(child_event
, child
);
6537 free_event(child_event
);
6541 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
6543 struct perf_event
*child_event
, *tmp
;
6544 struct perf_event_context
*child_ctx
;
6545 unsigned long flags
;
6547 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
6548 perf_event_task(child
, NULL
, 0);
6552 local_irq_save(flags
);
6554 * We can't reschedule here because interrupts are disabled,
6555 * and either child is current or it is a task that can't be
6556 * scheduled, so we are now safe from rescheduling changing
6559 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
6562 * Take the context lock here so that if find_get_context is
6563 * reading child->perf_event_ctxp, we wait until it has
6564 * incremented the context's refcount before we do put_ctx below.
6566 raw_spin_lock(&child_ctx
->lock
);
6567 task_ctx_sched_out(child_ctx
);
6568 child
->perf_event_ctxp
[ctxn
] = NULL
;
6570 * If this context is a clone; unclone it so it can't get
6571 * swapped to another process while we're removing all
6572 * the events from it.
6574 unclone_ctx(child_ctx
);
6575 update_context_time(child_ctx
);
6576 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6579 * Report the task dead after unscheduling the events so that we
6580 * won't get any samples after PERF_RECORD_EXIT. We can however still
6581 * get a few PERF_RECORD_READ events.
6583 perf_event_task(child
, child_ctx
, 0);
6586 * We can recurse on the same lock type through:
6588 * __perf_event_exit_task()
6589 * sync_child_event()
6590 * fput(parent_event->filp)
6592 * mutex_lock(&ctx->mutex)
6594 * But since its the parent context it won't be the same instance.
6596 mutex_lock(&child_ctx
->mutex
);
6599 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
6601 __perf_event_exit_task(child_event
, child_ctx
, child
);
6603 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
6605 __perf_event_exit_task(child_event
, child_ctx
, child
);
6608 * If the last event was a group event, it will have appended all
6609 * its siblings to the list, but we obtained 'tmp' before that which
6610 * will still point to the list head terminating the iteration.
6612 if (!list_empty(&child_ctx
->pinned_groups
) ||
6613 !list_empty(&child_ctx
->flexible_groups
))
6616 mutex_unlock(&child_ctx
->mutex
);
6622 * When a child task exits, feed back event values to parent events.
6624 void perf_event_exit_task(struct task_struct
*child
)
6626 struct perf_event
*event
, *tmp
;
6629 mutex_lock(&child
->perf_event_mutex
);
6630 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
6632 list_del_init(&event
->owner_entry
);
6635 * Ensure the list deletion is visible before we clear
6636 * the owner, closes a race against perf_release() where
6637 * we need to serialize on the owner->perf_event_mutex.
6640 event
->owner
= NULL
;
6642 mutex_unlock(&child
->perf_event_mutex
);
6644 for_each_task_context_nr(ctxn
)
6645 perf_event_exit_task_context(child
, ctxn
);
6648 static void perf_free_event(struct perf_event
*event
,
6649 struct perf_event_context
*ctx
)
6651 struct perf_event
*parent
= event
->parent
;
6653 if (WARN_ON_ONCE(!parent
))
6656 mutex_lock(&parent
->child_mutex
);
6657 list_del_init(&event
->child_list
);
6658 mutex_unlock(&parent
->child_mutex
);
6662 perf_group_detach(event
);
6663 list_del_event(event
, ctx
);
6668 * free an unexposed, unused context as created by inheritance by
6669 * perf_event_init_task below, used by fork() in case of fail.
6671 void perf_event_free_task(struct task_struct
*task
)
6673 struct perf_event_context
*ctx
;
6674 struct perf_event
*event
, *tmp
;
6677 for_each_task_context_nr(ctxn
) {
6678 ctx
= task
->perf_event_ctxp
[ctxn
];
6682 mutex_lock(&ctx
->mutex
);
6684 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
6686 perf_free_event(event
, ctx
);
6688 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
6690 perf_free_event(event
, ctx
);
6692 if (!list_empty(&ctx
->pinned_groups
) ||
6693 !list_empty(&ctx
->flexible_groups
))
6696 mutex_unlock(&ctx
->mutex
);
6702 void perf_event_delayed_put(struct task_struct
*task
)
6706 for_each_task_context_nr(ctxn
)
6707 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6711 * inherit a event from parent task to child task:
6713 static struct perf_event
*
6714 inherit_event(struct perf_event
*parent_event
,
6715 struct task_struct
*parent
,
6716 struct perf_event_context
*parent_ctx
,
6717 struct task_struct
*child
,
6718 struct perf_event
*group_leader
,
6719 struct perf_event_context
*child_ctx
)
6721 struct perf_event
*child_event
;
6722 unsigned long flags
;
6725 * Instead of creating recursive hierarchies of events,
6726 * we link inherited events back to the original parent,
6727 * which has a filp for sure, which we use as the reference
6730 if (parent_event
->parent
)
6731 parent_event
= parent_event
->parent
;
6733 child_event
= perf_event_alloc(&parent_event
->attr
,
6736 group_leader
, parent_event
,
6738 if (IS_ERR(child_event
))
6743 * Make the child state follow the state of the parent event,
6744 * not its attr.disabled bit. We hold the parent's mutex,
6745 * so we won't race with perf_event_{en, dis}able_family.
6747 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6748 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6750 child_event
->state
= PERF_EVENT_STATE_OFF
;
6752 if (parent_event
->attr
.freq
) {
6753 u64 sample_period
= parent_event
->hw
.sample_period
;
6754 struct hw_perf_event
*hwc
= &child_event
->hw
;
6756 hwc
->sample_period
= sample_period
;
6757 hwc
->last_period
= sample_period
;
6759 local64_set(&hwc
->period_left
, sample_period
);
6762 child_event
->ctx
= child_ctx
;
6763 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6764 child_event
->overflow_handler_context
6765 = parent_event
->overflow_handler_context
;
6768 * Precalculate sample_data sizes
6770 perf_event__header_size(child_event
);
6771 perf_event__id_header_size(child_event
);
6774 * Link it up in the child's context:
6776 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6777 add_event_to_ctx(child_event
, child_ctx
);
6778 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6781 * Get a reference to the parent filp - we will fput it
6782 * when the child event exits. This is safe to do because
6783 * we are in the parent and we know that the filp still
6784 * exists and has a nonzero count:
6786 atomic_long_inc(&parent_event
->filp
->f_count
);
6789 * Link this into the parent event's child list
6791 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6792 mutex_lock(&parent_event
->child_mutex
);
6793 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6794 mutex_unlock(&parent_event
->child_mutex
);
6799 static int inherit_group(struct perf_event
*parent_event
,
6800 struct task_struct
*parent
,
6801 struct perf_event_context
*parent_ctx
,
6802 struct task_struct
*child
,
6803 struct perf_event_context
*child_ctx
)
6805 struct perf_event
*leader
;
6806 struct perf_event
*sub
;
6807 struct perf_event
*child_ctr
;
6809 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6810 child
, NULL
, child_ctx
);
6812 return PTR_ERR(leader
);
6813 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6814 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6815 child
, leader
, child_ctx
);
6816 if (IS_ERR(child_ctr
))
6817 return PTR_ERR(child_ctr
);
6823 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6824 struct perf_event_context
*parent_ctx
,
6825 struct task_struct
*child
, int ctxn
,
6829 struct perf_event_context
*child_ctx
;
6831 if (!event
->attr
.inherit
) {
6836 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6839 * This is executed from the parent task context, so
6840 * inherit events that have been marked for cloning.
6841 * First allocate and initialize a context for the
6845 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6849 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6852 ret
= inherit_group(event
, parent
, parent_ctx
,
6862 * Initialize the perf_event context in task_struct
6864 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6866 struct perf_event_context
*child_ctx
, *parent_ctx
;
6867 struct perf_event_context
*cloned_ctx
;
6868 struct perf_event
*event
;
6869 struct task_struct
*parent
= current
;
6870 int inherited_all
= 1;
6871 unsigned long flags
;
6874 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6878 * If the parent's context is a clone, pin it so it won't get
6881 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6884 * No need to check if parent_ctx != NULL here; since we saw
6885 * it non-NULL earlier, the only reason for it to become NULL
6886 * is if we exit, and since we're currently in the middle of
6887 * a fork we can't be exiting at the same time.
6891 * Lock the parent list. No need to lock the child - not PID
6892 * hashed yet and not running, so nobody can access it.
6894 mutex_lock(&parent_ctx
->mutex
);
6897 * We dont have to disable NMIs - we are only looking at
6898 * the list, not manipulating it:
6900 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6901 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6902 child
, ctxn
, &inherited_all
);
6908 * We can't hold ctx->lock when iterating the ->flexible_group list due
6909 * to allocations, but we need to prevent rotation because
6910 * rotate_ctx() will change the list from interrupt context.
6912 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6913 parent_ctx
->rotate_disable
= 1;
6914 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6916 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6917 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6918 child
, ctxn
, &inherited_all
);
6923 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6924 parent_ctx
->rotate_disable
= 0;
6926 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6928 if (child_ctx
&& inherited_all
) {
6930 * Mark the child context as a clone of the parent
6931 * context, or of whatever the parent is a clone of.
6933 * Note that if the parent is a clone, the holding of
6934 * parent_ctx->lock avoids it from being uncloned.
6936 cloned_ctx
= parent_ctx
->parent_ctx
;
6938 child_ctx
->parent_ctx
= cloned_ctx
;
6939 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6941 child_ctx
->parent_ctx
= parent_ctx
;
6942 child_ctx
->parent_gen
= parent_ctx
->generation
;
6944 get_ctx(child_ctx
->parent_ctx
);
6947 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6948 mutex_unlock(&parent_ctx
->mutex
);
6950 perf_unpin_context(parent_ctx
);
6951 put_ctx(parent_ctx
);
6957 * Initialize the perf_event context in task_struct
6959 int perf_event_init_task(struct task_struct
*child
)
6963 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
6964 mutex_init(&child
->perf_event_mutex
);
6965 INIT_LIST_HEAD(&child
->perf_event_list
);
6967 for_each_task_context_nr(ctxn
) {
6968 ret
= perf_event_init_context(child
, ctxn
);
6976 static void __init
perf_event_init_all_cpus(void)
6978 struct swevent_htable
*swhash
;
6981 for_each_possible_cpu(cpu
) {
6982 swhash
= &per_cpu(swevent_htable
, cpu
);
6983 mutex_init(&swhash
->hlist_mutex
);
6984 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6988 static void __cpuinit
perf_event_init_cpu(int cpu
)
6990 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6992 mutex_lock(&swhash
->hlist_mutex
);
6993 if (swhash
->hlist_refcount
> 0) {
6994 struct swevent_hlist
*hlist
;
6996 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6998 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
7000 mutex_unlock(&swhash
->hlist_mutex
);
7003 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7004 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
7006 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
7008 WARN_ON(!irqs_disabled());
7010 list_del_init(&cpuctx
->rotation_list
);
7013 static void __perf_event_exit_context(void *__info
)
7015 struct perf_event_context
*ctx
= __info
;
7016 struct perf_event
*event
, *tmp
;
7018 perf_pmu_rotate_stop(ctx
->pmu
);
7020 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
7021 __perf_remove_from_context(event
);
7022 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
7023 __perf_remove_from_context(event
);
7026 static void perf_event_exit_cpu_context(int cpu
)
7028 struct perf_event_context
*ctx
;
7032 idx
= srcu_read_lock(&pmus_srcu
);
7033 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
7034 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
7036 mutex_lock(&ctx
->mutex
);
7037 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
7038 mutex_unlock(&ctx
->mutex
);
7040 srcu_read_unlock(&pmus_srcu
, idx
);
7043 static void perf_event_exit_cpu(int cpu
)
7045 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
7047 mutex_lock(&swhash
->hlist_mutex
);
7048 swevent_hlist_release(swhash
);
7049 mutex_unlock(&swhash
->hlist_mutex
);
7051 perf_event_exit_cpu_context(cpu
);
7054 static inline void perf_event_exit_cpu(int cpu
) { }
7058 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
7062 for_each_online_cpu(cpu
)
7063 perf_event_exit_cpu(cpu
);
7069 * Run the perf reboot notifier at the very last possible moment so that
7070 * the generic watchdog code runs as long as possible.
7072 static struct notifier_block perf_reboot_notifier
= {
7073 .notifier_call
= perf_reboot
,
7074 .priority
= INT_MIN
,
7077 static int __cpuinit
7078 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
7080 unsigned int cpu
= (long)hcpu
;
7082 switch (action
& ~CPU_TASKS_FROZEN
) {
7084 case CPU_UP_PREPARE
:
7085 case CPU_DOWN_FAILED
:
7086 perf_event_init_cpu(cpu
);
7089 case CPU_UP_CANCELED
:
7090 case CPU_DOWN_PREPARE
:
7091 perf_event_exit_cpu(cpu
);
7101 void __init
perf_event_init(void)
7107 perf_event_init_all_cpus();
7108 init_srcu_struct(&pmus_srcu
);
7109 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
7110 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
7111 perf_pmu_register(&perf_task_clock
, NULL
, -1);
7113 perf_cpu_notifier(perf_cpu_notify
);
7114 register_reboot_notifier(&perf_reboot_notifier
);
7116 ret
= init_hw_breakpoint();
7117 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
7119 /* do not patch jump label more than once per second */
7120 jump_label_rate_limit(&perf_sched_events
, HZ
);
7123 * Build time assertion that we keep the data_head at the intended
7124 * location. IOW, validation we got the __reserved[] size right.
7126 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
7130 static int __init
perf_event_sysfs_init(void)
7135 mutex_lock(&pmus_lock
);
7137 ret
= bus_register(&pmu_bus
);
7141 list_for_each_entry(pmu
, &pmus
, entry
) {
7142 if (!pmu
->name
|| pmu
->type
< 0)
7145 ret
= pmu_dev_alloc(pmu
);
7146 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
7148 pmu_bus_running
= 1;
7152 mutex_unlock(&pmus_lock
);
7156 device_initcall(perf_event_sysfs_init
);
7158 #ifdef CONFIG_CGROUP_PERF
7159 static struct cgroup_subsys_state
*perf_cgroup_create(struct cgroup
*cont
)
7161 struct perf_cgroup
*jc
;
7163 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
7165 return ERR_PTR(-ENOMEM
);
7167 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
7170 return ERR_PTR(-ENOMEM
);
7176 static void perf_cgroup_destroy(struct cgroup
*cont
)
7178 struct perf_cgroup
*jc
;
7179 jc
= container_of(cgroup_subsys_state(cont
, perf_subsys_id
),
7180 struct perf_cgroup
, css
);
7181 free_percpu(jc
->info
);
7185 static int __perf_cgroup_move(void *info
)
7187 struct task_struct
*task
= info
;
7188 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
7192 static void perf_cgroup_attach(struct cgroup
*cgrp
, struct cgroup_taskset
*tset
)
7194 struct task_struct
*task
;
7196 cgroup_taskset_for_each(task
, cgrp
, tset
)
7197 task_function_call(task
, __perf_cgroup_move
, task
);
7200 static void perf_cgroup_exit(struct cgroup
*cgrp
, struct cgroup
*old_cgrp
,
7201 struct task_struct
*task
)
7204 * cgroup_exit() is called in the copy_process() failure path.
7205 * Ignore this case since the task hasn't ran yet, this avoids
7206 * trying to poke a half freed task state from generic code.
7208 if (!(task
->flags
& PF_EXITING
))
7211 task_function_call(task
, __perf_cgroup_move
, task
);
7214 struct cgroup_subsys perf_subsys
= {
7215 .name
= "perf_event",
7216 .subsys_id
= perf_subsys_id
,
7217 .create
= perf_cgroup_create
,
7218 .destroy
= perf_cgroup_destroy
,
7219 .exit
= perf_cgroup_exit
,
7220 .attach
= perf_cgroup_attach
,
7222 #endif /* CONFIG_CGROUP_PERF */