staging: csr: remove CsrStrChr()
[linux/fpc-iii.git] / mm / memblock.c
blobd4382095f8bdcda1493feb7fc835a93432027f42
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
26 struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
38 int memblock_debug __initdata_memblock;
39 static int memblock_can_resize __initdata_memblock;
40 static int memblock_memory_in_slab __initdata_memblock = 0;
41 static int memblock_reserved_in_slab __initdata_memblock = 0;
43 /* inline so we don't get a warning when pr_debug is compiled out */
44 static inline const char *memblock_type_name(struct memblock_type *type)
46 if (type == &memblock.memory)
47 return "memory";
48 else if (type == &memblock.reserved)
49 return "reserved";
50 else
51 return "unknown";
54 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
55 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
57 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
61 * Address comparison utilities
63 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
64 phys_addr_t base2, phys_addr_t size2)
66 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
69 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
70 phys_addr_t base, phys_addr_t size)
72 unsigned long i;
74 for (i = 0; i < type->cnt; i++) {
75 phys_addr_t rgnbase = type->regions[i].base;
76 phys_addr_t rgnsize = type->regions[i].size;
77 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
78 break;
81 return (i < type->cnt) ? i : -1;
84 /**
85 * memblock_find_in_range_node - find free area in given range and node
86 * @start: start of candidate range
87 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
88 * @size: size of free area to find
89 * @align: alignment of free area to find
90 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
92 * Find @size free area aligned to @align in the specified range and node.
94 * RETURNS:
95 * Found address on success, %0 on failure.
97 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
98 phys_addr_t end, phys_addr_t size,
99 phys_addr_t align, int nid)
101 phys_addr_t this_start, this_end, cand;
102 u64 i;
104 /* pump up @end */
105 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
106 end = memblock.current_limit;
108 /* avoid allocating the first page */
109 start = max_t(phys_addr_t, start, PAGE_SIZE);
110 end = max(start, end);
112 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
113 this_start = clamp(this_start, start, end);
114 this_end = clamp(this_end, start, end);
116 if (this_end < size)
117 continue;
119 cand = round_down(this_end - size, align);
120 if (cand >= this_start)
121 return cand;
123 return 0;
127 * memblock_find_in_range - find free area in given range
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
133 * Find @size free area aligned to @align in the specified range.
135 * RETURNS:
136 * Found address on success, %0 on failure.
138 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
139 phys_addr_t end, phys_addr_t size,
140 phys_addr_t align)
142 return memblock_find_in_range_node(start, end, size, align,
143 MAX_NUMNODES);
147 * Free memblock.reserved.regions
149 int __init_memblock memblock_free_reserved_regions(void)
151 if (memblock.reserved.regions == memblock_reserved_init_regions)
152 return 0;
154 return memblock_free(__pa(memblock.reserved.regions),
155 sizeof(struct memblock_region) * memblock.reserved.max);
159 * Reserve memblock.reserved.regions
161 int __init_memblock memblock_reserve_reserved_regions(void)
163 if (memblock.reserved.regions == memblock_reserved_init_regions)
164 return 0;
166 return memblock_reserve(__pa(memblock.reserved.regions),
167 sizeof(struct memblock_region) * memblock.reserved.max);
170 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
172 type->total_size -= type->regions[r].size;
173 memmove(&type->regions[r], &type->regions[r + 1],
174 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
175 type->cnt--;
177 /* Special case for empty arrays */
178 if (type->cnt == 0) {
179 WARN_ON(type->total_size != 0);
180 type->cnt = 1;
181 type->regions[0].base = 0;
182 type->regions[0].size = 0;
183 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
188 * memblock_double_array - double the size of the memblock regions array
189 * @type: memblock type of the regions array being doubled
190 * @new_area_start: starting address of memory range to avoid overlap with
191 * @new_area_size: size of memory range to avoid overlap with
193 * Double the size of the @type regions array. If memblock is being used to
194 * allocate memory for a new reserved regions array and there is a previously
195 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
196 * waiting to be reserved, ensure the memory used by the new array does
197 * not overlap.
199 * RETURNS:
200 * 0 on success, -1 on failure.
202 static int __init_memblock memblock_double_array(struct memblock_type *type,
203 phys_addr_t new_area_start,
204 phys_addr_t new_area_size)
206 struct memblock_region *new_array, *old_array;
207 phys_addr_t old_size, new_size, addr;
208 int use_slab = slab_is_available();
209 int *in_slab;
211 /* We don't allow resizing until we know about the reserved regions
212 * of memory that aren't suitable for allocation
214 if (!memblock_can_resize)
215 return -1;
217 /* Calculate new doubled size */
218 old_size = type->max * sizeof(struct memblock_region);
219 new_size = old_size << 1;
221 /* Retrieve the slab flag */
222 if (type == &memblock.memory)
223 in_slab = &memblock_memory_in_slab;
224 else
225 in_slab = &memblock_reserved_in_slab;
227 /* Try to find some space for it.
229 * WARNING: We assume that either slab_is_available() and we use it or
230 * we use MEMBLOCK for allocations. That means that this is unsafe to use
231 * when bootmem is currently active (unless bootmem itself is implemented
232 * on top of MEMBLOCK which isn't the case yet)
234 * This should however not be an issue for now, as we currently only
235 * call into MEMBLOCK while it's still active, or much later when slab is
236 * active for memory hotplug operations
238 if (use_slab) {
239 new_array = kmalloc(new_size, GFP_KERNEL);
240 addr = new_array ? __pa(new_array) : 0;
241 } else {
242 /* only exclude range when trying to double reserved.regions */
243 if (type != &memblock.reserved)
244 new_area_start = new_area_size = 0;
246 addr = memblock_find_in_range(new_area_start + new_area_size,
247 memblock.current_limit,
248 new_size, sizeof(phys_addr_t));
249 if (!addr && new_area_size)
250 addr = memblock_find_in_range(0,
251 min(new_area_start, memblock.current_limit),
252 new_size, sizeof(phys_addr_t));
254 new_array = addr ? __va(addr) : 0;
256 if (!addr) {
257 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
258 memblock_type_name(type), type->max, type->max * 2);
259 return -1;
262 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
263 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
265 /* Found space, we now need to move the array over before
266 * we add the reserved region since it may be our reserved
267 * array itself that is full.
269 memcpy(new_array, type->regions, old_size);
270 memset(new_array + type->max, 0, old_size);
271 old_array = type->regions;
272 type->regions = new_array;
273 type->max <<= 1;
275 /* Free old array. We needn't free it if the array is the
276 * static one
278 if (*in_slab)
279 kfree(old_array);
280 else if (old_array != memblock_memory_init_regions &&
281 old_array != memblock_reserved_init_regions)
282 memblock_free(__pa(old_array), old_size);
284 /* Reserve the new array if that comes from the memblock.
285 * Otherwise, we needn't do it
287 if (!use_slab)
288 BUG_ON(memblock_reserve(addr, new_size));
290 /* Update slab flag */
291 *in_slab = use_slab;
293 return 0;
297 * memblock_merge_regions - merge neighboring compatible regions
298 * @type: memblock type to scan
300 * Scan @type and merge neighboring compatible regions.
302 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
304 int i = 0;
306 /* cnt never goes below 1 */
307 while (i < type->cnt - 1) {
308 struct memblock_region *this = &type->regions[i];
309 struct memblock_region *next = &type->regions[i + 1];
311 if (this->base + this->size != next->base ||
312 memblock_get_region_node(this) !=
313 memblock_get_region_node(next)) {
314 BUG_ON(this->base + this->size > next->base);
315 i++;
316 continue;
319 this->size += next->size;
320 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
321 type->cnt--;
326 * memblock_insert_region - insert new memblock region
327 * @type: memblock type to insert into
328 * @idx: index for the insertion point
329 * @base: base address of the new region
330 * @size: size of the new region
332 * Insert new memblock region [@base,@base+@size) into @type at @idx.
333 * @type must already have extra room to accomodate the new region.
335 static void __init_memblock memblock_insert_region(struct memblock_type *type,
336 int idx, phys_addr_t base,
337 phys_addr_t size, int nid)
339 struct memblock_region *rgn = &type->regions[idx];
341 BUG_ON(type->cnt >= type->max);
342 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
343 rgn->base = base;
344 rgn->size = size;
345 memblock_set_region_node(rgn, nid);
346 type->cnt++;
347 type->total_size += size;
351 * memblock_add_region - add new memblock region
352 * @type: memblock type to add new region into
353 * @base: base address of the new region
354 * @size: size of the new region
355 * @nid: nid of the new region
357 * Add new memblock region [@base,@base+@size) into @type. The new region
358 * is allowed to overlap with existing ones - overlaps don't affect already
359 * existing regions. @type is guaranteed to be minimal (all neighbouring
360 * compatible regions are merged) after the addition.
362 * RETURNS:
363 * 0 on success, -errno on failure.
365 static int __init_memblock memblock_add_region(struct memblock_type *type,
366 phys_addr_t base, phys_addr_t size, int nid)
368 bool insert = false;
369 phys_addr_t obase = base;
370 phys_addr_t end = base + memblock_cap_size(base, &size);
371 int i, nr_new;
373 if (!size)
374 return 0;
376 /* special case for empty array */
377 if (type->regions[0].size == 0) {
378 WARN_ON(type->cnt != 1 || type->total_size);
379 type->regions[0].base = base;
380 type->regions[0].size = size;
381 memblock_set_region_node(&type->regions[0], nid);
382 type->total_size = size;
383 return 0;
385 repeat:
387 * The following is executed twice. Once with %false @insert and
388 * then with %true. The first counts the number of regions needed
389 * to accomodate the new area. The second actually inserts them.
391 base = obase;
392 nr_new = 0;
394 for (i = 0; i < type->cnt; i++) {
395 struct memblock_region *rgn = &type->regions[i];
396 phys_addr_t rbase = rgn->base;
397 phys_addr_t rend = rbase + rgn->size;
399 if (rbase >= end)
400 break;
401 if (rend <= base)
402 continue;
404 * @rgn overlaps. If it separates the lower part of new
405 * area, insert that portion.
407 if (rbase > base) {
408 nr_new++;
409 if (insert)
410 memblock_insert_region(type, i++, base,
411 rbase - base, nid);
413 /* area below @rend is dealt with, forget about it */
414 base = min(rend, end);
417 /* insert the remaining portion */
418 if (base < end) {
419 nr_new++;
420 if (insert)
421 memblock_insert_region(type, i, base, end - base, nid);
425 * If this was the first round, resize array and repeat for actual
426 * insertions; otherwise, merge and return.
428 if (!insert) {
429 while (type->cnt + nr_new > type->max)
430 if (memblock_double_array(type, obase, size) < 0)
431 return -ENOMEM;
432 insert = true;
433 goto repeat;
434 } else {
435 memblock_merge_regions(type);
436 return 0;
440 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
441 int nid)
443 return memblock_add_region(&memblock.memory, base, size, nid);
446 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
448 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
452 * memblock_isolate_range - isolate given range into disjoint memblocks
453 * @type: memblock type to isolate range for
454 * @base: base of range to isolate
455 * @size: size of range to isolate
456 * @start_rgn: out parameter for the start of isolated region
457 * @end_rgn: out parameter for the end of isolated region
459 * Walk @type and ensure that regions don't cross the boundaries defined by
460 * [@base,@base+@size). Crossing regions are split at the boundaries,
461 * which may create at most two more regions. The index of the first
462 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
464 * RETURNS:
465 * 0 on success, -errno on failure.
467 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
468 phys_addr_t base, phys_addr_t size,
469 int *start_rgn, int *end_rgn)
471 phys_addr_t end = base + memblock_cap_size(base, &size);
472 int i;
474 *start_rgn = *end_rgn = 0;
476 if (!size)
477 return 0;
479 /* we'll create at most two more regions */
480 while (type->cnt + 2 > type->max)
481 if (memblock_double_array(type, base, size) < 0)
482 return -ENOMEM;
484 for (i = 0; i < type->cnt; i++) {
485 struct memblock_region *rgn = &type->regions[i];
486 phys_addr_t rbase = rgn->base;
487 phys_addr_t rend = rbase + rgn->size;
489 if (rbase >= end)
490 break;
491 if (rend <= base)
492 continue;
494 if (rbase < base) {
496 * @rgn intersects from below. Split and continue
497 * to process the next region - the new top half.
499 rgn->base = base;
500 rgn->size -= base - rbase;
501 type->total_size -= base - rbase;
502 memblock_insert_region(type, i, rbase, base - rbase,
503 memblock_get_region_node(rgn));
504 } else if (rend > end) {
506 * @rgn intersects from above. Split and redo the
507 * current region - the new bottom half.
509 rgn->base = end;
510 rgn->size -= end - rbase;
511 type->total_size -= end - rbase;
512 memblock_insert_region(type, i--, rbase, end - rbase,
513 memblock_get_region_node(rgn));
514 } else {
515 /* @rgn is fully contained, record it */
516 if (!*end_rgn)
517 *start_rgn = i;
518 *end_rgn = i + 1;
522 return 0;
525 static int __init_memblock __memblock_remove(struct memblock_type *type,
526 phys_addr_t base, phys_addr_t size)
528 int start_rgn, end_rgn;
529 int i, ret;
531 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
532 if (ret)
533 return ret;
535 for (i = end_rgn - 1; i >= start_rgn; i--)
536 memblock_remove_region(type, i);
537 return 0;
540 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
542 return __memblock_remove(&memblock.memory, base, size);
545 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
547 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
548 (unsigned long long)base,
549 (unsigned long long)base + size,
550 (void *)_RET_IP_);
552 return __memblock_remove(&memblock.reserved, base, size);
555 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
557 struct memblock_type *_rgn = &memblock.reserved;
559 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
560 (unsigned long long)base,
561 (unsigned long long)base + size,
562 (void *)_RET_IP_);
564 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
568 * __next_free_mem_range - next function for for_each_free_mem_range()
569 * @idx: pointer to u64 loop variable
570 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
571 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
572 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
573 * @out_nid: ptr to int for nid of the range, can be %NULL
575 * Find the first free area from *@idx which matches @nid, fill the out
576 * parameters, and update *@idx for the next iteration. The lower 32bit of
577 * *@idx contains index into memory region and the upper 32bit indexes the
578 * areas before each reserved region. For example, if reserved regions
579 * look like the following,
581 * 0:[0-16), 1:[32-48), 2:[128-130)
583 * The upper 32bit indexes the following regions.
585 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
587 * As both region arrays are sorted, the function advances the two indices
588 * in lockstep and returns each intersection.
590 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
591 phys_addr_t *out_start,
592 phys_addr_t *out_end, int *out_nid)
594 struct memblock_type *mem = &memblock.memory;
595 struct memblock_type *rsv = &memblock.reserved;
596 int mi = *idx & 0xffffffff;
597 int ri = *idx >> 32;
599 for ( ; mi < mem->cnt; mi++) {
600 struct memblock_region *m = &mem->regions[mi];
601 phys_addr_t m_start = m->base;
602 phys_addr_t m_end = m->base + m->size;
604 /* only memory regions are associated with nodes, check it */
605 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
606 continue;
608 /* scan areas before each reservation for intersection */
609 for ( ; ri < rsv->cnt + 1; ri++) {
610 struct memblock_region *r = &rsv->regions[ri];
611 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
612 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
614 /* if ri advanced past mi, break out to advance mi */
615 if (r_start >= m_end)
616 break;
617 /* if the two regions intersect, we're done */
618 if (m_start < r_end) {
619 if (out_start)
620 *out_start = max(m_start, r_start);
621 if (out_end)
622 *out_end = min(m_end, r_end);
623 if (out_nid)
624 *out_nid = memblock_get_region_node(m);
626 * The region which ends first is advanced
627 * for the next iteration.
629 if (m_end <= r_end)
630 mi++;
631 else
632 ri++;
633 *idx = (u32)mi | (u64)ri << 32;
634 return;
639 /* signal end of iteration */
640 *idx = ULLONG_MAX;
644 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
645 * @idx: pointer to u64 loop variable
646 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
647 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
648 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
649 * @out_nid: ptr to int for nid of the range, can be %NULL
651 * Reverse of __next_free_mem_range().
653 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
654 phys_addr_t *out_start,
655 phys_addr_t *out_end, int *out_nid)
657 struct memblock_type *mem = &memblock.memory;
658 struct memblock_type *rsv = &memblock.reserved;
659 int mi = *idx & 0xffffffff;
660 int ri = *idx >> 32;
662 if (*idx == (u64)ULLONG_MAX) {
663 mi = mem->cnt - 1;
664 ri = rsv->cnt;
667 for ( ; mi >= 0; mi--) {
668 struct memblock_region *m = &mem->regions[mi];
669 phys_addr_t m_start = m->base;
670 phys_addr_t m_end = m->base + m->size;
672 /* only memory regions are associated with nodes, check it */
673 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
674 continue;
676 /* scan areas before each reservation for intersection */
677 for ( ; ri >= 0; ri--) {
678 struct memblock_region *r = &rsv->regions[ri];
679 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
680 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
682 /* if ri advanced past mi, break out to advance mi */
683 if (r_end <= m_start)
684 break;
685 /* if the two regions intersect, we're done */
686 if (m_end > r_start) {
687 if (out_start)
688 *out_start = max(m_start, r_start);
689 if (out_end)
690 *out_end = min(m_end, r_end);
691 if (out_nid)
692 *out_nid = memblock_get_region_node(m);
694 if (m_start >= r_start)
695 mi--;
696 else
697 ri--;
698 *idx = (u32)mi | (u64)ri << 32;
699 return;
704 *idx = ULLONG_MAX;
707 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
709 * Common iterator interface used to define for_each_mem_range().
711 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
712 unsigned long *out_start_pfn,
713 unsigned long *out_end_pfn, int *out_nid)
715 struct memblock_type *type = &memblock.memory;
716 struct memblock_region *r;
718 while (++*idx < type->cnt) {
719 r = &type->regions[*idx];
721 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
722 continue;
723 if (nid == MAX_NUMNODES || nid == r->nid)
724 break;
726 if (*idx >= type->cnt) {
727 *idx = -1;
728 return;
731 if (out_start_pfn)
732 *out_start_pfn = PFN_UP(r->base);
733 if (out_end_pfn)
734 *out_end_pfn = PFN_DOWN(r->base + r->size);
735 if (out_nid)
736 *out_nid = r->nid;
740 * memblock_set_node - set node ID on memblock regions
741 * @base: base of area to set node ID for
742 * @size: size of area to set node ID for
743 * @nid: node ID to set
745 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
746 * Regions which cross the area boundaries are split as necessary.
748 * RETURNS:
749 * 0 on success, -errno on failure.
751 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
752 int nid)
754 struct memblock_type *type = &memblock.memory;
755 int start_rgn, end_rgn;
756 int i, ret;
758 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
759 if (ret)
760 return ret;
762 for (i = start_rgn; i < end_rgn; i++)
763 type->regions[i].nid = nid;
765 memblock_merge_regions(type);
766 return 0;
768 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
770 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
771 phys_addr_t align, phys_addr_t max_addr,
772 int nid)
774 phys_addr_t found;
776 /* align @size to avoid excessive fragmentation on reserved array */
777 size = round_up(size, align);
779 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
780 if (found && !memblock_reserve(found, size))
781 return found;
783 return 0;
786 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
788 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
791 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
793 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
796 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
798 phys_addr_t alloc;
800 alloc = __memblock_alloc_base(size, align, max_addr);
802 if (alloc == 0)
803 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
804 (unsigned long long) size, (unsigned long long) max_addr);
806 return alloc;
809 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
811 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
814 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
816 phys_addr_t res = memblock_alloc_nid(size, align, nid);
818 if (res)
819 return res;
820 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
825 * Remaining API functions
828 phys_addr_t __init memblock_phys_mem_size(void)
830 return memblock.memory.total_size;
833 /* lowest address */
834 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
836 return memblock.memory.regions[0].base;
839 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
841 int idx = memblock.memory.cnt - 1;
843 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
846 void __init memblock_enforce_memory_limit(phys_addr_t limit)
848 unsigned long i;
849 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
851 if (!limit)
852 return;
854 /* find out max address */
855 for (i = 0; i < memblock.memory.cnt; i++) {
856 struct memblock_region *r = &memblock.memory.regions[i];
858 if (limit <= r->size) {
859 max_addr = r->base + limit;
860 break;
862 limit -= r->size;
865 /* truncate both memory and reserved regions */
866 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
867 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
870 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
872 unsigned int left = 0, right = type->cnt;
874 do {
875 unsigned int mid = (right + left) / 2;
877 if (addr < type->regions[mid].base)
878 right = mid;
879 else if (addr >= (type->regions[mid].base +
880 type->regions[mid].size))
881 left = mid + 1;
882 else
883 return mid;
884 } while (left < right);
885 return -1;
888 int __init memblock_is_reserved(phys_addr_t addr)
890 return memblock_search(&memblock.reserved, addr) != -1;
893 int __init_memblock memblock_is_memory(phys_addr_t addr)
895 return memblock_search(&memblock.memory, addr) != -1;
899 * memblock_is_region_memory - check if a region is a subset of memory
900 * @base: base of region to check
901 * @size: size of region to check
903 * Check if the region [@base, @base+@size) is a subset of a memory block.
905 * RETURNS:
906 * 0 if false, non-zero if true
908 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
910 int idx = memblock_search(&memblock.memory, base);
911 phys_addr_t end = base + memblock_cap_size(base, &size);
913 if (idx == -1)
914 return 0;
915 return memblock.memory.regions[idx].base <= base &&
916 (memblock.memory.regions[idx].base +
917 memblock.memory.regions[idx].size) >= end;
921 * memblock_is_region_reserved - check if a region intersects reserved memory
922 * @base: base of region to check
923 * @size: size of region to check
925 * Check if the region [@base, @base+@size) intersects a reserved memory block.
927 * RETURNS:
928 * 0 if false, non-zero if true
930 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
932 memblock_cap_size(base, &size);
933 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
937 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
939 memblock.current_limit = limit;
942 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
944 unsigned long long base, size;
945 int i;
947 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
949 for (i = 0; i < type->cnt; i++) {
950 struct memblock_region *rgn = &type->regions[i];
951 char nid_buf[32] = "";
953 base = rgn->base;
954 size = rgn->size;
955 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
956 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
957 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
958 memblock_get_region_node(rgn));
959 #endif
960 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
961 name, i, base, base + size - 1, size, nid_buf);
965 void __init_memblock __memblock_dump_all(void)
967 pr_info("MEMBLOCK configuration:\n");
968 pr_info(" memory size = %#llx reserved size = %#llx\n",
969 (unsigned long long)memblock.memory.total_size,
970 (unsigned long long)memblock.reserved.total_size);
972 memblock_dump(&memblock.memory, "memory");
973 memblock_dump(&memblock.reserved, "reserved");
976 void __init memblock_allow_resize(void)
978 memblock_can_resize = 1;
981 static int __init early_memblock(char *p)
983 if (p && strstr(p, "debug"))
984 memblock_debug = 1;
985 return 0;
987 early_param("memblock", early_memblock);
989 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
991 static int memblock_debug_show(struct seq_file *m, void *private)
993 struct memblock_type *type = m->private;
994 struct memblock_region *reg;
995 int i;
997 for (i = 0; i < type->cnt; i++) {
998 reg = &type->regions[i];
999 seq_printf(m, "%4d: ", i);
1000 if (sizeof(phys_addr_t) == 4)
1001 seq_printf(m, "0x%08lx..0x%08lx\n",
1002 (unsigned long)reg->base,
1003 (unsigned long)(reg->base + reg->size - 1));
1004 else
1005 seq_printf(m, "0x%016llx..0x%016llx\n",
1006 (unsigned long long)reg->base,
1007 (unsigned long long)(reg->base + reg->size - 1));
1010 return 0;
1013 static int memblock_debug_open(struct inode *inode, struct file *file)
1015 return single_open(file, memblock_debug_show, inode->i_private);
1018 static const struct file_operations memblock_debug_fops = {
1019 .open = memblock_debug_open,
1020 .read = seq_read,
1021 .llseek = seq_lseek,
1022 .release = single_release,
1025 static int __init memblock_init_debugfs(void)
1027 struct dentry *root = debugfs_create_dir("memblock", NULL);
1028 if (!root)
1029 return -ENXIO;
1030 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1031 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1033 return 0;
1035 __initcall(memblock_init_debugfs);
1037 #endif /* CONFIG_DEBUG_FS */