staging: most: remove struct device core driver
[linux/fpc-iii.git] / mm / hugetlb.c
blobdd8737a94bec42c8458e8d7c6201cf24d163239c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/mmdebug.h>
23 #include <linux/sched/signal.h>
24 #include <linux/rmap.h>
25 #include <linux/string_helpers.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/jhash.h>
29 #include <linux/numa.h>
30 #include <linux/llist.h>
32 #include <asm/page.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlb.h>
36 #include <linux/io.h>
37 #include <linux/hugetlb.h>
38 #include <linux/hugetlb_cgroup.h>
39 #include <linux/node.h>
40 #include <linux/userfaultfd_k.h>
41 #include <linux/page_owner.h>
42 #include "internal.h"
44 int hugetlb_max_hstate __read_mostly;
45 unsigned int default_hstate_idx;
46 struct hstate hstates[HUGE_MAX_HSTATE];
48 * Minimum page order among possible hugepage sizes, set to a proper value
49 * at boot time.
51 static unsigned int minimum_order __read_mostly = UINT_MAX;
53 __initdata LIST_HEAD(huge_boot_pages);
55 /* for command line parsing */
56 static struct hstate * __initdata parsed_hstate;
57 static unsigned long __initdata default_hstate_max_huge_pages;
58 static unsigned long __initdata default_hstate_size;
59 static bool __initdata parsed_valid_hugepagesz = true;
62 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
63 * free_huge_pages, and surplus_huge_pages.
65 DEFINE_SPINLOCK(hugetlb_lock);
68 * Serializes faults on the same logical page. This is used to
69 * prevent spurious OOMs when the hugepage pool is fully utilized.
71 static int num_fault_mutexes;
72 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
74 /* Forward declaration */
75 static int hugetlb_acct_memory(struct hstate *h, long delta);
77 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
79 bool free = (spool->count == 0) && (spool->used_hpages == 0);
81 spin_unlock(&spool->lock);
83 /* If no pages are used, and no other handles to the subpool
84 * remain, give up any reservations mased on minimum size and
85 * free the subpool */
86 if (free) {
87 if (spool->min_hpages != -1)
88 hugetlb_acct_memory(spool->hstate,
89 -spool->min_hpages);
90 kfree(spool);
94 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
95 long min_hpages)
97 struct hugepage_subpool *spool;
99 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
100 if (!spool)
101 return NULL;
103 spin_lock_init(&spool->lock);
104 spool->count = 1;
105 spool->max_hpages = max_hpages;
106 spool->hstate = h;
107 spool->min_hpages = min_hpages;
109 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
110 kfree(spool);
111 return NULL;
113 spool->rsv_hpages = min_hpages;
115 return spool;
118 void hugepage_put_subpool(struct hugepage_subpool *spool)
120 spin_lock(&spool->lock);
121 BUG_ON(!spool->count);
122 spool->count--;
123 unlock_or_release_subpool(spool);
127 * Subpool accounting for allocating and reserving pages.
128 * Return -ENOMEM if there are not enough resources to satisfy the
129 * the request. Otherwise, return the number of pages by which the
130 * global pools must be adjusted (upward). The returned value may
131 * only be different than the passed value (delta) in the case where
132 * a subpool minimum size must be manitained.
134 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
135 long delta)
137 long ret = delta;
139 if (!spool)
140 return ret;
142 spin_lock(&spool->lock);
144 if (spool->max_hpages != -1) { /* maximum size accounting */
145 if ((spool->used_hpages + delta) <= spool->max_hpages)
146 spool->used_hpages += delta;
147 else {
148 ret = -ENOMEM;
149 goto unlock_ret;
153 /* minimum size accounting */
154 if (spool->min_hpages != -1 && spool->rsv_hpages) {
155 if (delta > spool->rsv_hpages) {
157 * Asking for more reserves than those already taken on
158 * behalf of subpool. Return difference.
160 ret = delta - spool->rsv_hpages;
161 spool->rsv_hpages = 0;
162 } else {
163 ret = 0; /* reserves already accounted for */
164 spool->rsv_hpages -= delta;
168 unlock_ret:
169 spin_unlock(&spool->lock);
170 return ret;
174 * Subpool accounting for freeing and unreserving pages.
175 * Return the number of global page reservations that must be dropped.
176 * The return value may only be different than the passed value (delta)
177 * in the case where a subpool minimum size must be maintained.
179 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
180 long delta)
182 long ret = delta;
184 if (!spool)
185 return delta;
187 spin_lock(&spool->lock);
189 if (spool->max_hpages != -1) /* maximum size accounting */
190 spool->used_hpages -= delta;
192 /* minimum size accounting */
193 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
194 if (spool->rsv_hpages + delta <= spool->min_hpages)
195 ret = 0;
196 else
197 ret = spool->rsv_hpages + delta - spool->min_hpages;
199 spool->rsv_hpages += delta;
200 if (spool->rsv_hpages > spool->min_hpages)
201 spool->rsv_hpages = spool->min_hpages;
205 * If hugetlbfs_put_super couldn't free spool due to an outstanding
206 * quota reference, free it now.
208 unlock_or_release_subpool(spool);
210 return ret;
213 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
215 return HUGETLBFS_SB(inode->i_sb)->spool;
218 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
220 return subpool_inode(file_inode(vma->vm_file));
224 * Region tracking -- allows tracking of reservations and instantiated pages
225 * across the pages in a mapping.
227 * The region data structures are embedded into a resv_map and protected
228 * by a resv_map's lock. The set of regions within the resv_map represent
229 * reservations for huge pages, or huge pages that have already been
230 * instantiated within the map. The from and to elements are huge page
231 * indicies into the associated mapping. from indicates the starting index
232 * of the region. to represents the first index past the end of the region.
234 * For example, a file region structure with from == 0 and to == 4 represents
235 * four huge pages in a mapping. It is important to note that the to element
236 * represents the first element past the end of the region. This is used in
237 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
239 * Interval notation of the form [from, to) will be used to indicate that
240 * the endpoint from is inclusive and to is exclusive.
242 struct file_region {
243 struct list_head link;
244 long from;
245 long to;
248 /* Must be called with resv->lock held. Calling this with count_only == true
249 * will count the number of pages to be added but will not modify the linked
250 * list.
252 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
253 bool count_only)
255 long chg = 0;
256 struct list_head *head = &resv->regions;
257 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
259 /* Locate the region we are before or in. */
260 list_for_each_entry(rg, head, link)
261 if (f <= rg->to)
262 break;
264 /* Round our left edge to the current segment if it encloses us. */
265 if (f > rg->from)
266 f = rg->from;
268 chg = t - f;
270 /* Check for and consume any regions we now overlap with. */
271 nrg = rg;
272 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
273 if (&rg->link == head)
274 break;
275 if (rg->from > t)
276 break;
278 /* We overlap with this area, if it extends further than
279 * us then we must extend ourselves. Account for its
280 * existing reservation.
282 if (rg->to > t) {
283 chg += rg->to - t;
284 t = rg->to;
286 chg -= rg->to - rg->from;
288 if (!count_only && rg != nrg) {
289 list_del(&rg->link);
290 kfree(rg);
294 if (!count_only) {
295 nrg->from = f;
296 nrg->to = t;
299 return chg;
303 * Add the huge page range represented by [f, t) to the reserve
304 * map. Existing regions will be expanded to accommodate the specified
305 * range, or a region will be taken from the cache. Sufficient regions
306 * must exist in the cache due to the previous call to region_chg with
307 * the same range.
309 * Return the number of new huge pages added to the map. This
310 * number is greater than or equal to zero.
312 static long region_add(struct resv_map *resv, long f, long t)
314 struct list_head *head = &resv->regions;
315 struct file_region *rg, *nrg;
316 long add = 0;
318 spin_lock(&resv->lock);
319 /* Locate the region we are either in or before. */
320 list_for_each_entry(rg, head, link)
321 if (f <= rg->to)
322 break;
325 * If no region exists which can be expanded to include the
326 * specified range, pull a region descriptor from the cache
327 * and use it for this range.
329 if (&rg->link == head || t < rg->from) {
330 VM_BUG_ON(resv->region_cache_count <= 0);
332 resv->region_cache_count--;
333 nrg = list_first_entry(&resv->region_cache, struct file_region,
334 link);
335 list_del(&nrg->link);
337 nrg->from = f;
338 nrg->to = t;
339 list_add(&nrg->link, rg->link.prev);
341 add += t - f;
342 goto out_locked;
345 add = add_reservation_in_range(resv, f, t, false);
347 out_locked:
348 resv->adds_in_progress--;
349 spin_unlock(&resv->lock);
350 VM_BUG_ON(add < 0);
351 return add;
355 * Examine the existing reserve map and determine how many
356 * huge pages in the specified range [f, t) are NOT currently
357 * represented. This routine is called before a subsequent
358 * call to region_add that will actually modify the reserve
359 * map to add the specified range [f, t). region_chg does
360 * not change the number of huge pages represented by the
361 * map. A new file_region structure is added to the cache
362 * as a placeholder, so that the subsequent region_add
363 * call will have all the regions it needs and will not fail.
365 * Returns the number of huge pages that need to be added to the existing
366 * reservation map for the range [f, t). This number is greater or equal to
367 * zero. -ENOMEM is returned if a new file_region structure or cache entry
368 * is needed and can not be allocated.
370 static long region_chg(struct resv_map *resv, long f, long t)
372 long chg = 0;
374 spin_lock(&resv->lock);
375 retry_locked:
376 resv->adds_in_progress++;
379 * Check for sufficient descriptors in the cache to accommodate
380 * the number of in progress add operations.
382 if (resv->adds_in_progress > resv->region_cache_count) {
383 struct file_region *trg;
385 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
386 /* Must drop lock to allocate a new descriptor. */
387 resv->adds_in_progress--;
388 spin_unlock(&resv->lock);
390 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
391 if (!trg)
392 return -ENOMEM;
394 spin_lock(&resv->lock);
395 list_add(&trg->link, &resv->region_cache);
396 resv->region_cache_count++;
397 goto retry_locked;
400 chg = add_reservation_in_range(resv, f, t, true);
402 spin_unlock(&resv->lock);
403 return chg;
407 * Abort the in progress add operation. The adds_in_progress field
408 * of the resv_map keeps track of the operations in progress between
409 * calls to region_chg and region_add. Operations are sometimes
410 * aborted after the call to region_chg. In such cases, region_abort
411 * is called to decrement the adds_in_progress counter.
413 * NOTE: The range arguments [f, t) are not needed or used in this
414 * routine. They are kept to make reading the calling code easier as
415 * arguments will match the associated region_chg call.
417 static void region_abort(struct resv_map *resv, long f, long t)
419 spin_lock(&resv->lock);
420 VM_BUG_ON(!resv->region_cache_count);
421 resv->adds_in_progress--;
422 spin_unlock(&resv->lock);
426 * Delete the specified range [f, t) from the reserve map. If the
427 * t parameter is LONG_MAX, this indicates that ALL regions after f
428 * should be deleted. Locate the regions which intersect [f, t)
429 * and either trim, delete or split the existing regions.
431 * Returns the number of huge pages deleted from the reserve map.
432 * In the normal case, the return value is zero or more. In the
433 * case where a region must be split, a new region descriptor must
434 * be allocated. If the allocation fails, -ENOMEM will be returned.
435 * NOTE: If the parameter t == LONG_MAX, then we will never split
436 * a region and possibly return -ENOMEM. Callers specifying
437 * t == LONG_MAX do not need to check for -ENOMEM error.
439 static long region_del(struct resv_map *resv, long f, long t)
441 struct list_head *head = &resv->regions;
442 struct file_region *rg, *trg;
443 struct file_region *nrg = NULL;
444 long del = 0;
446 retry:
447 spin_lock(&resv->lock);
448 list_for_each_entry_safe(rg, trg, head, link) {
450 * Skip regions before the range to be deleted. file_region
451 * ranges are normally of the form [from, to). However, there
452 * may be a "placeholder" entry in the map which is of the form
453 * (from, to) with from == to. Check for placeholder entries
454 * at the beginning of the range to be deleted.
456 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
457 continue;
459 if (rg->from >= t)
460 break;
462 if (f > rg->from && t < rg->to) { /* Must split region */
464 * Check for an entry in the cache before dropping
465 * lock and attempting allocation.
467 if (!nrg &&
468 resv->region_cache_count > resv->adds_in_progress) {
469 nrg = list_first_entry(&resv->region_cache,
470 struct file_region,
471 link);
472 list_del(&nrg->link);
473 resv->region_cache_count--;
476 if (!nrg) {
477 spin_unlock(&resv->lock);
478 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
479 if (!nrg)
480 return -ENOMEM;
481 goto retry;
484 del += t - f;
486 /* New entry for end of split region */
487 nrg->from = t;
488 nrg->to = rg->to;
489 INIT_LIST_HEAD(&nrg->link);
491 /* Original entry is trimmed */
492 rg->to = f;
494 list_add(&nrg->link, &rg->link);
495 nrg = NULL;
496 break;
499 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
500 del += rg->to - rg->from;
501 list_del(&rg->link);
502 kfree(rg);
503 continue;
506 if (f <= rg->from) { /* Trim beginning of region */
507 del += t - rg->from;
508 rg->from = t;
509 } else { /* Trim end of region */
510 del += rg->to - f;
511 rg->to = f;
515 spin_unlock(&resv->lock);
516 kfree(nrg);
517 return del;
521 * A rare out of memory error was encountered which prevented removal of
522 * the reserve map region for a page. The huge page itself was free'ed
523 * and removed from the page cache. This routine will adjust the subpool
524 * usage count, and the global reserve count if needed. By incrementing
525 * these counts, the reserve map entry which could not be deleted will
526 * appear as a "reserved" entry instead of simply dangling with incorrect
527 * counts.
529 void hugetlb_fix_reserve_counts(struct inode *inode)
531 struct hugepage_subpool *spool = subpool_inode(inode);
532 long rsv_adjust;
534 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
535 if (rsv_adjust) {
536 struct hstate *h = hstate_inode(inode);
538 hugetlb_acct_memory(h, 1);
543 * Count and return the number of huge pages in the reserve map
544 * that intersect with the range [f, t).
546 static long region_count(struct resv_map *resv, long f, long t)
548 struct list_head *head = &resv->regions;
549 struct file_region *rg;
550 long chg = 0;
552 spin_lock(&resv->lock);
553 /* Locate each segment we overlap with, and count that overlap. */
554 list_for_each_entry(rg, head, link) {
555 long seg_from;
556 long seg_to;
558 if (rg->to <= f)
559 continue;
560 if (rg->from >= t)
561 break;
563 seg_from = max(rg->from, f);
564 seg_to = min(rg->to, t);
566 chg += seg_to - seg_from;
568 spin_unlock(&resv->lock);
570 return chg;
574 * Convert the address within this vma to the page offset within
575 * the mapping, in pagecache page units; huge pages here.
577 static pgoff_t vma_hugecache_offset(struct hstate *h,
578 struct vm_area_struct *vma, unsigned long address)
580 return ((address - vma->vm_start) >> huge_page_shift(h)) +
581 (vma->vm_pgoff >> huge_page_order(h));
584 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
585 unsigned long address)
587 return vma_hugecache_offset(hstate_vma(vma), vma, address);
589 EXPORT_SYMBOL_GPL(linear_hugepage_index);
592 * Return the size of the pages allocated when backing a VMA. In the majority
593 * cases this will be same size as used by the page table entries.
595 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
597 if (vma->vm_ops && vma->vm_ops->pagesize)
598 return vma->vm_ops->pagesize(vma);
599 return PAGE_SIZE;
601 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
604 * Return the page size being used by the MMU to back a VMA. In the majority
605 * of cases, the page size used by the kernel matches the MMU size. On
606 * architectures where it differs, an architecture-specific 'strong'
607 * version of this symbol is required.
609 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
611 return vma_kernel_pagesize(vma);
615 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
616 * bits of the reservation map pointer, which are always clear due to
617 * alignment.
619 #define HPAGE_RESV_OWNER (1UL << 0)
620 #define HPAGE_RESV_UNMAPPED (1UL << 1)
621 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
624 * These helpers are used to track how many pages are reserved for
625 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
626 * is guaranteed to have their future faults succeed.
628 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
629 * the reserve counters are updated with the hugetlb_lock held. It is safe
630 * to reset the VMA at fork() time as it is not in use yet and there is no
631 * chance of the global counters getting corrupted as a result of the values.
633 * The private mapping reservation is represented in a subtly different
634 * manner to a shared mapping. A shared mapping has a region map associated
635 * with the underlying file, this region map represents the backing file
636 * pages which have ever had a reservation assigned which this persists even
637 * after the page is instantiated. A private mapping has a region map
638 * associated with the original mmap which is attached to all VMAs which
639 * reference it, this region map represents those offsets which have consumed
640 * reservation ie. where pages have been instantiated.
642 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
644 return (unsigned long)vma->vm_private_data;
647 static void set_vma_private_data(struct vm_area_struct *vma,
648 unsigned long value)
650 vma->vm_private_data = (void *)value;
653 struct resv_map *resv_map_alloc(void)
655 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
656 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
658 if (!resv_map || !rg) {
659 kfree(resv_map);
660 kfree(rg);
661 return NULL;
664 kref_init(&resv_map->refs);
665 spin_lock_init(&resv_map->lock);
666 INIT_LIST_HEAD(&resv_map->regions);
668 resv_map->adds_in_progress = 0;
670 INIT_LIST_HEAD(&resv_map->region_cache);
671 list_add(&rg->link, &resv_map->region_cache);
672 resv_map->region_cache_count = 1;
674 return resv_map;
677 void resv_map_release(struct kref *ref)
679 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
680 struct list_head *head = &resv_map->region_cache;
681 struct file_region *rg, *trg;
683 /* Clear out any active regions before we release the map. */
684 region_del(resv_map, 0, LONG_MAX);
686 /* ... and any entries left in the cache */
687 list_for_each_entry_safe(rg, trg, head, link) {
688 list_del(&rg->link);
689 kfree(rg);
692 VM_BUG_ON(resv_map->adds_in_progress);
694 kfree(resv_map);
697 static inline struct resv_map *inode_resv_map(struct inode *inode)
700 * At inode evict time, i_mapping may not point to the original
701 * address space within the inode. This original address space
702 * contains the pointer to the resv_map. So, always use the
703 * address space embedded within the inode.
704 * The VERY common case is inode->mapping == &inode->i_data but,
705 * this may not be true for device special inodes.
707 return (struct resv_map *)(&inode->i_data)->private_data;
710 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
712 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
713 if (vma->vm_flags & VM_MAYSHARE) {
714 struct address_space *mapping = vma->vm_file->f_mapping;
715 struct inode *inode = mapping->host;
717 return inode_resv_map(inode);
719 } else {
720 return (struct resv_map *)(get_vma_private_data(vma) &
721 ~HPAGE_RESV_MASK);
725 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
727 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
728 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
730 set_vma_private_data(vma, (get_vma_private_data(vma) &
731 HPAGE_RESV_MASK) | (unsigned long)map);
734 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
736 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
737 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
739 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
742 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
744 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
746 return (get_vma_private_data(vma) & flag) != 0;
749 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
750 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
752 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
753 if (!(vma->vm_flags & VM_MAYSHARE))
754 vma->vm_private_data = (void *)0;
757 /* Returns true if the VMA has associated reserve pages */
758 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
760 if (vma->vm_flags & VM_NORESERVE) {
762 * This address is already reserved by other process(chg == 0),
763 * so, we should decrement reserved count. Without decrementing,
764 * reserve count remains after releasing inode, because this
765 * allocated page will go into page cache and is regarded as
766 * coming from reserved pool in releasing step. Currently, we
767 * don't have any other solution to deal with this situation
768 * properly, so add work-around here.
770 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
771 return true;
772 else
773 return false;
776 /* Shared mappings always use reserves */
777 if (vma->vm_flags & VM_MAYSHARE) {
779 * We know VM_NORESERVE is not set. Therefore, there SHOULD
780 * be a region map for all pages. The only situation where
781 * there is no region map is if a hole was punched via
782 * fallocate. In this case, there really are no reverves to
783 * use. This situation is indicated if chg != 0.
785 if (chg)
786 return false;
787 else
788 return true;
792 * Only the process that called mmap() has reserves for
793 * private mappings.
795 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
797 * Like the shared case above, a hole punch or truncate
798 * could have been performed on the private mapping.
799 * Examine the value of chg to determine if reserves
800 * actually exist or were previously consumed.
801 * Very Subtle - The value of chg comes from a previous
802 * call to vma_needs_reserves(). The reserve map for
803 * private mappings has different (opposite) semantics
804 * than that of shared mappings. vma_needs_reserves()
805 * has already taken this difference in semantics into
806 * account. Therefore, the meaning of chg is the same
807 * as in the shared case above. Code could easily be
808 * combined, but keeping it separate draws attention to
809 * subtle differences.
811 if (chg)
812 return false;
813 else
814 return true;
817 return false;
820 static void enqueue_huge_page(struct hstate *h, struct page *page)
822 int nid = page_to_nid(page);
823 list_move(&page->lru, &h->hugepage_freelists[nid]);
824 h->free_huge_pages++;
825 h->free_huge_pages_node[nid]++;
828 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
830 struct page *page;
832 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
833 if (!PageHWPoison(page))
834 break;
836 * if 'non-isolated free hugepage' not found on the list,
837 * the allocation fails.
839 if (&h->hugepage_freelists[nid] == &page->lru)
840 return NULL;
841 list_move(&page->lru, &h->hugepage_activelist);
842 set_page_refcounted(page);
843 h->free_huge_pages--;
844 h->free_huge_pages_node[nid]--;
845 return page;
848 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
849 nodemask_t *nmask)
851 unsigned int cpuset_mems_cookie;
852 struct zonelist *zonelist;
853 struct zone *zone;
854 struct zoneref *z;
855 int node = NUMA_NO_NODE;
857 zonelist = node_zonelist(nid, gfp_mask);
859 retry_cpuset:
860 cpuset_mems_cookie = read_mems_allowed_begin();
861 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
862 struct page *page;
864 if (!cpuset_zone_allowed(zone, gfp_mask))
865 continue;
867 * no need to ask again on the same node. Pool is node rather than
868 * zone aware
870 if (zone_to_nid(zone) == node)
871 continue;
872 node = zone_to_nid(zone);
874 page = dequeue_huge_page_node_exact(h, node);
875 if (page)
876 return page;
878 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
879 goto retry_cpuset;
881 return NULL;
884 /* Movability of hugepages depends on migration support. */
885 static inline gfp_t htlb_alloc_mask(struct hstate *h)
887 if (hugepage_movable_supported(h))
888 return GFP_HIGHUSER_MOVABLE;
889 else
890 return GFP_HIGHUSER;
893 static struct page *dequeue_huge_page_vma(struct hstate *h,
894 struct vm_area_struct *vma,
895 unsigned long address, int avoid_reserve,
896 long chg)
898 struct page *page;
899 struct mempolicy *mpol;
900 gfp_t gfp_mask;
901 nodemask_t *nodemask;
902 int nid;
905 * A child process with MAP_PRIVATE mappings created by their parent
906 * have no page reserves. This check ensures that reservations are
907 * not "stolen". The child may still get SIGKILLed
909 if (!vma_has_reserves(vma, chg) &&
910 h->free_huge_pages - h->resv_huge_pages == 0)
911 goto err;
913 /* If reserves cannot be used, ensure enough pages are in the pool */
914 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
915 goto err;
917 gfp_mask = htlb_alloc_mask(h);
918 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
919 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
920 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
921 SetPagePrivate(page);
922 h->resv_huge_pages--;
925 mpol_cond_put(mpol);
926 return page;
928 err:
929 return NULL;
933 * common helper functions for hstate_next_node_to_{alloc|free}.
934 * We may have allocated or freed a huge page based on a different
935 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
936 * be outside of *nodes_allowed. Ensure that we use an allowed
937 * node for alloc or free.
939 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
941 nid = next_node_in(nid, *nodes_allowed);
942 VM_BUG_ON(nid >= MAX_NUMNODES);
944 return nid;
947 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
949 if (!node_isset(nid, *nodes_allowed))
950 nid = next_node_allowed(nid, nodes_allowed);
951 return nid;
955 * returns the previously saved node ["this node"] from which to
956 * allocate a persistent huge page for the pool and advance the
957 * next node from which to allocate, handling wrap at end of node
958 * mask.
960 static int hstate_next_node_to_alloc(struct hstate *h,
961 nodemask_t *nodes_allowed)
963 int nid;
965 VM_BUG_ON(!nodes_allowed);
967 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
968 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
970 return nid;
974 * helper for free_pool_huge_page() - return the previously saved
975 * node ["this node"] from which to free a huge page. Advance the
976 * next node id whether or not we find a free huge page to free so
977 * that the next attempt to free addresses the next node.
979 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
981 int nid;
983 VM_BUG_ON(!nodes_allowed);
985 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
986 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
988 return nid;
991 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
992 for (nr_nodes = nodes_weight(*mask); \
993 nr_nodes > 0 && \
994 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
995 nr_nodes--)
997 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
998 for (nr_nodes = nodes_weight(*mask); \
999 nr_nodes > 0 && \
1000 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1001 nr_nodes--)
1003 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1004 static void destroy_compound_gigantic_page(struct page *page,
1005 unsigned int order)
1007 int i;
1008 int nr_pages = 1 << order;
1009 struct page *p = page + 1;
1011 atomic_set(compound_mapcount_ptr(page), 0);
1012 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1013 clear_compound_head(p);
1014 set_page_refcounted(p);
1017 set_compound_order(page, 0);
1018 __ClearPageHead(page);
1021 static void free_gigantic_page(struct page *page, unsigned int order)
1023 free_contig_range(page_to_pfn(page), 1 << order);
1026 #ifdef CONFIG_CONTIG_ALLOC
1027 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1028 int nid, nodemask_t *nodemask)
1030 unsigned long nr_pages = 1UL << huge_page_order(h);
1032 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1035 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1036 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1037 #else /* !CONFIG_CONTIG_ALLOC */
1038 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1039 int nid, nodemask_t *nodemask)
1041 return NULL;
1043 #endif /* CONFIG_CONTIG_ALLOC */
1045 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1046 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1047 int nid, nodemask_t *nodemask)
1049 return NULL;
1051 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1052 static inline void destroy_compound_gigantic_page(struct page *page,
1053 unsigned int order) { }
1054 #endif
1056 static void update_and_free_page(struct hstate *h, struct page *page)
1058 int i;
1060 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1061 return;
1063 h->nr_huge_pages--;
1064 h->nr_huge_pages_node[page_to_nid(page)]--;
1065 for (i = 0; i < pages_per_huge_page(h); i++) {
1066 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1067 1 << PG_referenced | 1 << PG_dirty |
1068 1 << PG_active | 1 << PG_private |
1069 1 << PG_writeback);
1071 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1072 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1073 set_page_refcounted(page);
1074 if (hstate_is_gigantic(h)) {
1075 destroy_compound_gigantic_page(page, huge_page_order(h));
1076 free_gigantic_page(page, huge_page_order(h));
1077 } else {
1078 __free_pages(page, huge_page_order(h));
1082 struct hstate *size_to_hstate(unsigned long size)
1084 struct hstate *h;
1086 for_each_hstate(h) {
1087 if (huge_page_size(h) == size)
1088 return h;
1090 return NULL;
1094 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1095 * to hstate->hugepage_activelist.)
1097 * This function can be called for tail pages, but never returns true for them.
1099 bool page_huge_active(struct page *page)
1101 VM_BUG_ON_PAGE(!PageHuge(page), page);
1102 return PageHead(page) && PagePrivate(&page[1]);
1105 /* never called for tail page */
1106 static void set_page_huge_active(struct page *page)
1108 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1109 SetPagePrivate(&page[1]);
1112 static void clear_page_huge_active(struct page *page)
1114 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1115 ClearPagePrivate(&page[1]);
1119 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1120 * code
1122 static inline bool PageHugeTemporary(struct page *page)
1124 if (!PageHuge(page))
1125 return false;
1127 return (unsigned long)page[2].mapping == -1U;
1130 static inline void SetPageHugeTemporary(struct page *page)
1132 page[2].mapping = (void *)-1U;
1135 static inline void ClearPageHugeTemporary(struct page *page)
1137 page[2].mapping = NULL;
1140 static void __free_huge_page(struct page *page)
1143 * Can't pass hstate in here because it is called from the
1144 * compound page destructor.
1146 struct hstate *h = page_hstate(page);
1147 int nid = page_to_nid(page);
1148 struct hugepage_subpool *spool =
1149 (struct hugepage_subpool *)page_private(page);
1150 bool restore_reserve;
1152 VM_BUG_ON_PAGE(page_count(page), page);
1153 VM_BUG_ON_PAGE(page_mapcount(page), page);
1155 set_page_private(page, 0);
1156 page->mapping = NULL;
1157 restore_reserve = PagePrivate(page);
1158 ClearPagePrivate(page);
1161 * If PagePrivate() was set on page, page allocation consumed a
1162 * reservation. If the page was associated with a subpool, there
1163 * would have been a page reserved in the subpool before allocation
1164 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1165 * reservtion, do not call hugepage_subpool_put_pages() as this will
1166 * remove the reserved page from the subpool.
1168 if (!restore_reserve) {
1170 * A return code of zero implies that the subpool will be
1171 * under its minimum size if the reservation is not restored
1172 * after page is free. Therefore, force restore_reserve
1173 * operation.
1175 if (hugepage_subpool_put_pages(spool, 1) == 0)
1176 restore_reserve = true;
1179 spin_lock(&hugetlb_lock);
1180 clear_page_huge_active(page);
1181 hugetlb_cgroup_uncharge_page(hstate_index(h),
1182 pages_per_huge_page(h), page);
1183 if (restore_reserve)
1184 h->resv_huge_pages++;
1186 if (PageHugeTemporary(page)) {
1187 list_del(&page->lru);
1188 ClearPageHugeTemporary(page);
1189 update_and_free_page(h, page);
1190 } else if (h->surplus_huge_pages_node[nid]) {
1191 /* remove the page from active list */
1192 list_del(&page->lru);
1193 update_and_free_page(h, page);
1194 h->surplus_huge_pages--;
1195 h->surplus_huge_pages_node[nid]--;
1196 } else {
1197 arch_clear_hugepage_flags(page);
1198 enqueue_huge_page(h, page);
1200 spin_unlock(&hugetlb_lock);
1204 * As free_huge_page() can be called from a non-task context, we have
1205 * to defer the actual freeing in a workqueue to prevent potential
1206 * hugetlb_lock deadlock.
1208 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1209 * be freed and frees them one-by-one. As the page->mapping pointer is
1210 * going to be cleared in __free_huge_page() anyway, it is reused as the
1211 * llist_node structure of a lockless linked list of huge pages to be freed.
1213 static LLIST_HEAD(hpage_freelist);
1215 static void free_hpage_workfn(struct work_struct *work)
1217 struct llist_node *node;
1218 struct page *page;
1220 node = llist_del_all(&hpage_freelist);
1222 while (node) {
1223 page = container_of((struct address_space **)node,
1224 struct page, mapping);
1225 node = node->next;
1226 __free_huge_page(page);
1229 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1231 void free_huge_page(struct page *page)
1234 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1236 if (!in_task()) {
1238 * Only call schedule_work() if hpage_freelist is previously
1239 * empty. Otherwise, schedule_work() had been called but the
1240 * workfn hasn't retrieved the list yet.
1242 if (llist_add((struct llist_node *)&page->mapping,
1243 &hpage_freelist))
1244 schedule_work(&free_hpage_work);
1245 return;
1248 __free_huge_page(page);
1251 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1253 INIT_LIST_HEAD(&page->lru);
1254 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1255 spin_lock(&hugetlb_lock);
1256 set_hugetlb_cgroup(page, NULL);
1257 h->nr_huge_pages++;
1258 h->nr_huge_pages_node[nid]++;
1259 spin_unlock(&hugetlb_lock);
1262 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1264 int i;
1265 int nr_pages = 1 << order;
1266 struct page *p = page + 1;
1268 /* we rely on prep_new_huge_page to set the destructor */
1269 set_compound_order(page, order);
1270 __ClearPageReserved(page);
1271 __SetPageHead(page);
1272 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1274 * For gigantic hugepages allocated through bootmem at
1275 * boot, it's safer to be consistent with the not-gigantic
1276 * hugepages and clear the PG_reserved bit from all tail pages
1277 * too. Otherwse drivers using get_user_pages() to access tail
1278 * pages may get the reference counting wrong if they see
1279 * PG_reserved set on a tail page (despite the head page not
1280 * having PG_reserved set). Enforcing this consistency between
1281 * head and tail pages allows drivers to optimize away a check
1282 * on the head page when they need know if put_page() is needed
1283 * after get_user_pages().
1285 __ClearPageReserved(p);
1286 set_page_count(p, 0);
1287 set_compound_head(p, page);
1289 atomic_set(compound_mapcount_ptr(page), -1);
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages. See the PageTransHuge() documentation for more
1295 * details.
1297 int PageHuge(struct page *page)
1299 if (!PageCompound(page))
1300 return 0;
1302 page = compound_head(page);
1303 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1305 EXPORT_SYMBOL_GPL(PageHuge);
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1311 int PageHeadHuge(struct page *page_head)
1313 if (!PageHead(page_head))
1314 return 0;
1316 return get_compound_page_dtor(page_head) == free_huge_page;
1319 pgoff_t __basepage_index(struct page *page)
1321 struct page *page_head = compound_head(page);
1322 pgoff_t index = page_index(page_head);
1323 unsigned long compound_idx;
1325 if (!PageHuge(page_head))
1326 return page_index(page);
1328 if (compound_order(page_head) >= MAX_ORDER)
1329 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330 else
1331 compound_idx = page - page_head;
1333 return (index << compound_order(page_head)) + compound_idx;
1336 static struct page *alloc_buddy_huge_page(struct hstate *h,
1337 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1338 nodemask_t *node_alloc_noretry)
1340 int order = huge_page_order(h);
1341 struct page *page;
1342 bool alloc_try_hard = true;
1345 * By default we always try hard to allocate the page with
1346 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1347 * a loop (to adjust global huge page counts) and previous allocation
1348 * failed, do not continue to try hard on the same node. Use the
1349 * node_alloc_noretry bitmap to manage this state information.
1351 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1352 alloc_try_hard = false;
1353 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1354 if (alloc_try_hard)
1355 gfp_mask |= __GFP_RETRY_MAYFAIL;
1356 if (nid == NUMA_NO_NODE)
1357 nid = numa_mem_id();
1358 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1359 if (page)
1360 __count_vm_event(HTLB_BUDDY_PGALLOC);
1361 else
1362 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1365 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1366 * indicates an overall state change. Clear bit so that we resume
1367 * normal 'try hard' allocations.
1369 if (node_alloc_noretry && page && !alloc_try_hard)
1370 node_clear(nid, *node_alloc_noretry);
1373 * If we tried hard to get a page but failed, set bit so that
1374 * subsequent attempts will not try as hard until there is an
1375 * overall state change.
1377 if (node_alloc_noretry && !page && alloc_try_hard)
1378 node_set(nid, *node_alloc_noretry);
1380 return page;
1384 * Common helper to allocate a fresh hugetlb page. All specific allocators
1385 * should use this function to get new hugetlb pages
1387 static struct page *alloc_fresh_huge_page(struct hstate *h,
1388 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1389 nodemask_t *node_alloc_noretry)
1391 struct page *page;
1393 if (hstate_is_gigantic(h))
1394 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1395 else
1396 page = alloc_buddy_huge_page(h, gfp_mask,
1397 nid, nmask, node_alloc_noretry);
1398 if (!page)
1399 return NULL;
1401 if (hstate_is_gigantic(h))
1402 prep_compound_gigantic_page(page, huge_page_order(h));
1403 prep_new_huge_page(h, page, page_to_nid(page));
1405 return page;
1409 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1410 * manner.
1412 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1413 nodemask_t *node_alloc_noretry)
1415 struct page *page;
1416 int nr_nodes, node;
1417 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1419 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1420 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1421 node_alloc_noretry);
1422 if (page)
1423 break;
1426 if (!page)
1427 return 0;
1429 put_page(page); /* free it into the hugepage allocator */
1431 return 1;
1435 * Free huge page from pool from next node to free.
1436 * Attempt to keep persistent huge pages more or less
1437 * balanced over allowed nodes.
1438 * Called with hugetlb_lock locked.
1440 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1441 bool acct_surplus)
1443 int nr_nodes, node;
1444 int ret = 0;
1446 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1448 * If we're returning unused surplus pages, only examine
1449 * nodes with surplus pages.
1451 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1452 !list_empty(&h->hugepage_freelists[node])) {
1453 struct page *page =
1454 list_entry(h->hugepage_freelists[node].next,
1455 struct page, lru);
1456 list_del(&page->lru);
1457 h->free_huge_pages--;
1458 h->free_huge_pages_node[node]--;
1459 if (acct_surplus) {
1460 h->surplus_huge_pages--;
1461 h->surplus_huge_pages_node[node]--;
1463 update_and_free_page(h, page);
1464 ret = 1;
1465 break;
1469 return ret;
1473 * Dissolve a given free hugepage into free buddy pages. This function does
1474 * nothing for in-use hugepages and non-hugepages.
1475 * This function returns values like below:
1477 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1478 * (allocated or reserved.)
1479 * 0: successfully dissolved free hugepages or the page is not a
1480 * hugepage (considered as already dissolved)
1482 int dissolve_free_huge_page(struct page *page)
1484 int rc = -EBUSY;
1486 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1487 if (!PageHuge(page))
1488 return 0;
1490 spin_lock(&hugetlb_lock);
1491 if (!PageHuge(page)) {
1492 rc = 0;
1493 goto out;
1496 if (!page_count(page)) {
1497 struct page *head = compound_head(page);
1498 struct hstate *h = page_hstate(head);
1499 int nid = page_to_nid(head);
1500 if (h->free_huge_pages - h->resv_huge_pages == 0)
1501 goto out;
1503 * Move PageHWPoison flag from head page to the raw error page,
1504 * which makes any subpages rather than the error page reusable.
1506 if (PageHWPoison(head) && page != head) {
1507 SetPageHWPoison(page);
1508 ClearPageHWPoison(head);
1510 list_del(&head->lru);
1511 h->free_huge_pages--;
1512 h->free_huge_pages_node[nid]--;
1513 h->max_huge_pages--;
1514 update_and_free_page(h, head);
1515 rc = 0;
1517 out:
1518 spin_unlock(&hugetlb_lock);
1519 return rc;
1523 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1524 * make specified memory blocks removable from the system.
1525 * Note that this will dissolve a free gigantic hugepage completely, if any
1526 * part of it lies within the given range.
1527 * Also note that if dissolve_free_huge_page() returns with an error, all
1528 * free hugepages that were dissolved before that error are lost.
1530 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1532 unsigned long pfn;
1533 struct page *page;
1534 int rc = 0;
1536 if (!hugepages_supported())
1537 return rc;
1539 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1540 page = pfn_to_page(pfn);
1541 rc = dissolve_free_huge_page(page);
1542 if (rc)
1543 break;
1546 return rc;
1550 * Allocates a fresh surplus page from the page allocator.
1552 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1553 int nid, nodemask_t *nmask)
1555 struct page *page = NULL;
1557 if (hstate_is_gigantic(h))
1558 return NULL;
1560 spin_lock(&hugetlb_lock);
1561 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1562 goto out_unlock;
1563 spin_unlock(&hugetlb_lock);
1565 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1566 if (!page)
1567 return NULL;
1569 spin_lock(&hugetlb_lock);
1571 * We could have raced with the pool size change.
1572 * Double check that and simply deallocate the new page
1573 * if we would end up overcommiting the surpluses. Abuse
1574 * temporary page to workaround the nasty free_huge_page
1575 * codeflow
1577 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1578 SetPageHugeTemporary(page);
1579 spin_unlock(&hugetlb_lock);
1580 put_page(page);
1581 return NULL;
1582 } else {
1583 h->surplus_huge_pages++;
1584 h->surplus_huge_pages_node[page_to_nid(page)]++;
1587 out_unlock:
1588 spin_unlock(&hugetlb_lock);
1590 return page;
1593 struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1594 int nid, nodemask_t *nmask)
1596 struct page *page;
1598 if (hstate_is_gigantic(h))
1599 return NULL;
1601 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1602 if (!page)
1603 return NULL;
1606 * We do not account these pages as surplus because they are only
1607 * temporary and will be released properly on the last reference
1609 SetPageHugeTemporary(page);
1611 return page;
1615 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1617 static
1618 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1619 struct vm_area_struct *vma, unsigned long addr)
1621 struct page *page;
1622 struct mempolicy *mpol;
1623 gfp_t gfp_mask = htlb_alloc_mask(h);
1624 int nid;
1625 nodemask_t *nodemask;
1627 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1628 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1629 mpol_cond_put(mpol);
1631 return page;
1634 /* page migration callback function */
1635 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1637 gfp_t gfp_mask = htlb_alloc_mask(h);
1638 struct page *page = NULL;
1640 if (nid != NUMA_NO_NODE)
1641 gfp_mask |= __GFP_THISNODE;
1643 spin_lock(&hugetlb_lock);
1644 if (h->free_huge_pages - h->resv_huge_pages > 0)
1645 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
1646 spin_unlock(&hugetlb_lock);
1648 if (!page)
1649 page = alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1651 return page;
1654 /* page migration callback function */
1655 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1656 nodemask_t *nmask)
1658 gfp_t gfp_mask = htlb_alloc_mask(h);
1660 spin_lock(&hugetlb_lock);
1661 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1662 struct page *page;
1664 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1665 if (page) {
1666 spin_unlock(&hugetlb_lock);
1667 return page;
1670 spin_unlock(&hugetlb_lock);
1672 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1675 /* mempolicy aware migration callback */
1676 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1677 unsigned long address)
1679 struct mempolicy *mpol;
1680 nodemask_t *nodemask;
1681 struct page *page;
1682 gfp_t gfp_mask;
1683 int node;
1685 gfp_mask = htlb_alloc_mask(h);
1686 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1687 page = alloc_huge_page_nodemask(h, node, nodemask);
1688 mpol_cond_put(mpol);
1690 return page;
1694 * Increase the hugetlb pool such that it can accommodate a reservation
1695 * of size 'delta'.
1697 static int gather_surplus_pages(struct hstate *h, int delta)
1699 struct list_head surplus_list;
1700 struct page *page, *tmp;
1701 int ret, i;
1702 int needed, allocated;
1703 bool alloc_ok = true;
1705 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1706 if (needed <= 0) {
1707 h->resv_huge_pages += delta;
1708 return 0;
1711 allocated = 0;
1712 INIT_LIST_HEAD(&surplus_list);
1714 ret = -ENOMEM;
1715 retry:
1716 spin_unlock(&hugetlb_lock);
1717 for (i = 0; i < needed; i++) {
1718 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1719 NUMA_NO_NODE, NULL);
1720 if (!page) {
1721 alloc_ok = false;
1722 break;
1724 list_add(&page->lru, &surplus_list);
1725 cond_resched();
1727 allocated += i;
1730 * After retaking hugetlb_lock, we need to recalculate 'needed'
1731 * because either resv_huge_pages or free_huge_pages may have changed.
1733 spin_lock(&hugetlb_lock);
1734 needed = (h->resv_huge_pages + delta) -
1735 (h->free_huge_pages + allocated);
1736 if (needed > 0) {
1737 if (alloc_ok)
1738 goto retry;
1740 * We were not able to allocate enough pages to
1741 * satisfy the entire reservation so we free what
1742 * we've allocated so far.
1744 goto free;
1747 * The surplus_list now contains _at_least_ the number of extra pages
1748 * needed to accommodate the reservation. Add the appropriate number
1749 * of pages to the hugetlb pool and free the extras back to the buddy
1750 * allocator. Commit the entire reservation here to prevent another
1751 * process from stealing the pages as they are added to the pool but
1752 * before they are reserved.
1754 needed += allocated;
1755 h->resv_huge_pages += delta;
1756 ret = 0;
1758 /* Free the needed pages to the hugetlb pool */
1759 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1760 if ((--needed) < 0)
1761 break;
1763 * This page is now managed by the hugetlb allocator and has
1764 * no users -- drop the buddy allocator's reference.
1766 put_page_testzero(page);
1767 VM_BUG_ON_PAGE(page_count(page), page);
1768 enqueue_huge_page(h, page);
1770 free:
1771 spin_unlock(&hugetlb_lock);
1773 /* Free unnecessary surplus pages to the buddy allocator */
1774 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1775 put_page(page);
1776 spin_lock(&hugetlb_lock);
1778 return ret;
1782 * This routine has two main purposes:
1783 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1784 * in unused_resv_pages. This corresponds to the prior adjustments made
1785 * to the associated reservation map.
1786 * 2) Free any unused surplus pages that may have been allocated to satisfy
1787 * the reservation. As many as unused_resv_pages may be freed.
1789 * Called with hugetlb_lock held. However, the lock could be dropped (and
1790 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1791 * we must make sure nobody else can claim pages we are in the process of
1792 * freeing. Do this by ensuring resv_huge_page always is greater than the
1793 * number of huge pages we plan to free when dropping the lock.
1795 static void return_unused_surplus_pages(struct hstate *h,
1796 unsigned long unused_resv_pages)
1798 unsigned long nr_pages;
1800 /* Cannot return gigantic pages currently */
1801 if (hstate_is_gigantic(h))
1802 goto out;
1805 * Part (or even all) of the reservation could have been backed
1806 * by pre-allocated pages. Only free surplus pages.
1808 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1811 * We want to release as many surplus pages as possible, spread
1812 * evenly across all nodes with memory. Iterate across these nodes
1813 * until we can no longer free unreserved surplus pages. This occurs
1814 * when the nodes with surplus pages have no free pages.
1815 * free_pool_huge_page() will balance the the freed pages across the
1816 * on-line nodes with memory and will handle the hstate accounting.
1818 * Note that we decrement resv_huge_pages as we free the pages. If
1819 * we drop the lock, resv_huge_pages will still be sufficiently large
1820 * to cover subsequent pages we may free.
1822 while (nr_pages--) {
1823 h->resv_huge_pages--;
1824 unused_resv_pages--;
1825 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1826 goto out;
1827 cond_resched_lock(&hugetlb_lock);
1830 out:
1831 /* Fully uncommit the reservation */
1832 h->resv_huge_pages -= unused_resv_pages;
1837 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1838 * are used by the huge page allocation routines to manage reservations.
1840 * vma_needs_reservation is called to determine if the huge page at addr
1841 * within the vma has an associated reservation. If a reservation is
1842 * needed, the value 1 is returned. The caller is then responsible for
1843 * managing the global reservation and subpool usage counts. After
1844 * the huge page has been allocated, vma_commit_reservation is called
1845 * to add the page to the reservation map. If the page allocation fails,
1846 * the reservation must be ended instead of committed. vma_end_reservation
1847 * is called in such cases.
1849 * In the normal case, vma_commit_reservation returns the same value
1850 * as the preceding vma_needs_reservation call. The only time this
1851 * is not the case is if a reserve map was changed between calls. It
1852 * is the responsibility of the caller to notice the difference and
1853 * take appropriate action.
1855 * vma_add_reservation is used in error paths where a reservation must
1856 * be restored when a newly allocated huge page must be freed. It is
1857 * to be called after calling vma_needs_reservation to determine if a
1858 * reservation exists.
1860 enum vma_resv_mode {
1861 VMA_NEEDS_RESV,
1862 VMA_COMMIT_RESV,
1863 VMA_END_RESV,
1864 VMA_ADD_RESV,
1866 static long __vma_reservation_common(struct hstate *h,
1867 struct vm_area_struct *vma, unsigned long addr,
1868 enum vma_resv_mode mode)
1870 struct resv_map *resv;
1871 pgoff_t idx;
1872 long ret;
1874 resv = vma_resv_map(vma);
1875 if (!resv)
1876 return 1;
1878 idx = vma_hugecache_offset(h, vma, addr);
1879 switch (mode) {
1880 case VMA_NEEDS_RESV:
1881 ret = region_chg(resv, idx, idx + 1);
1882 break;
1883 case VMA_COMMIT_RESV:
1884 ret = region_add(resv, idx, idx + 1);
1885 break;
1886 case VMA_END_RESV:
1887 region_abort(resv, idx, idx + 1);
1888 ret = 0;
1889 break;
1890 case VMA_ADD_RESV:
1891 if (vma->vm_flags & VM_MAYSHARE)
1892 ret = region_add(resv, idx, idx + 1);
1893 else {
1894 region_abort(resv, idx, idx + 1);
1895 ret = region_del(resv, idx, idx + 1);
1897 break;
1898 default:
1899 BUG();
1902 if (vma->vm_flags & VM_MAYSHARE)
1903 return ret;
1904 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1906 * In most cases, reserves always exist for private mappings.
1907 * However, a file associated with mapping could have been
1908 * hole punched or truncated after reserves were consumed.
1909 * As subsequent fault on such a range will not use reserves.
1910 * Subtle - The reserve map for private mappings has the
1911 * opposite meaning than that of shared mappings. If NO
1912 * entry is in the reserve map, it means a reservation exists.
1913 * If an entry exists in the reserve map, it means the
1914 * reservation has already been consumed. As a result, the
1915 * return value of this routine is the opposite of the
1916 * value returned from reserve map manipulation routines above.
1918 if (ret)
1919 return 0;
1920 else
1921 return 1;
1923 else
1924 return ret < 0 ? ret : 0;
1927 static long vma_needs_reservation(struct hstate *h,
1928 struct vm_area_struct *vma, unsigned long addr)
1930 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1933 static long vma_commit_reservation(struct hstate *h,
1934 struct vm_area_struct *vma, unsigned long addr)
1936 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1939 static void vma_end_reservation(struct hstate *h,
1940 struct vm_area_struct *vma, unsigned long addr)
1942 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1945 static long vma_add_reservation(struct hstate *h,
1946 struct vm_area_struct *vma, unsigned long addr)
1948 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1952 * This routine is called to restore a reservation on error paths. In the
1953 * specific error paths, a huge page was allocated (via alloc_huge_page)
1954 * and is about to be freed. If a reservation for the page existed,
1955 * alloc_huge_page would have consumed the reservation and set PagePrivate
1956 * in the newly allocated page. When the page is freed via free_huge_page,
1957 * the global reservation count will be incremented if PagePrivate is set.
1958 * However, free_huge_page can not adjust the reserve map. Adjust the
1959 * reserve map here to be consistent with global reserve count adjustments
1960 * to be made by free_huge_page.
1962 static void restore_reserve_on_error(struct hstate *h,
1963 struct vm_area_struct *vma, unsigned long address,
1964 struct page *page)
1966 if (unlikely(PagePrivate(page))) {
1967 long rc = vma_needs_reservation(h, vma, address);
1969 if (unlikely(rc < 0)) {
1971 * Rare out of memory condition in reserve map
1972 * manipulation. Clear PagePrivate so that
1973 * global reserve count will not be incremented
1974 * by free_huge_page. This will make it appear
1975 * as though the reservation for this page was
1976 * consumed. This may prevent the task from
1977 * faulting in the page at a later time. This
1978 * is better than inconsistent global huge page
1979 * accounting of reserve counts.
1981 ClearPagePrivate(page);
1982 } else if (rc) {
1983 rc = vma_add_reservation(h, vma, address);
1984 if (unlikely(rc < 0))
1986 * See above comment about rare out of
1987 * memory condition.
1989 ClearPagePrivate(page);
1990 } else
1991 vma_end_reservation(h, vma, address);
1995 struct page *alloc_huge_page(struct vm_area_struct *vma,
1996 unsigned long addr, int avoid_reserve)
1998 struct hugepage_subpool *spool = subpool_vma(vma);
1999 struct hstate *h = hstate_vma(vma);
2000 struct page *page;
2001 long map_chg, map_commit;
2002 long gbl_chg;
2003 int ret, idx;
2004 struct hugetlb_cgroup *h_cg;
2006 idx = hstate_index(h);
2008 * Examine the region/reserve map to determine if the process
2009 * has a reservation for the page to be allocated. A return
2010 * code of zero indicates a reservation exists (no change).
2012 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2013 if (map_chg < 0)
2014 return ERR_PTR(-ENOMEM);
2017 * Processes that did not create the mapping will have no
2018 * reserves as indicated by the region/reserve map. Check
2019 * that the allocation will not exceed the subpool limit.
2020 * Allocations for MAP_NORESERVE mappings also need to be
2021 * checked against any subpool limit.
2023 if (map_chg || avoid_reserve) {
2024 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2025 if (gbl_chg < 0) {
2026 vma_end_reservation(h, vma, addr);
2027 return ERR_PTR(-ENOSPC);
2031 * Even though there was no reservation in the region/reserve
2032 * map, there could be reservations associated with the
2033 * subpool that can be used. This would be indicated if the
2034 * return value of hugepage_subpool_get_pages() is zero.
2035 * However, if avoid_reserve is specified we still avoid even
2036 * the subpool reservations.
2038 if (avoid_reserve)
2039 gbl_chg = 1;
2042 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2043 if (ret)
2044 goto out_subpool_put;
2046 spin_lock(&hugetlb_lock);
2048 * glb_chg is passed to indicate whether or not a page must be taken
2049 * from the global free pool (global change). gbl_chg == 0 indicates
2050 * a reservation exists for the allocation.
2052 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2053 if (!page) {
2054 spin_unlock(&hugetlb_lock);
2055 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2056 if (!page)
2057 goto out_uncharge_cgroup;
2058 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2059 SetPagePrivate(page);
2060 h->resv_huge_pages--;
2062 spin_lock(&hugetlb_lock);
2063 list_move(&page->lru, &h->hugepage_activelist);
2064 /* Fall through */
2066 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2067 spin_unlock(&hugetlb_lock);
2069 set_page_private(page, (unsigned long)spool);
2071 map_commit = vma_commit_reservation(h, vma, addr);
2072 if (unlikely(map_chg > map_commit)) {
2074 * The page was added to the reservation map between
2075 * vma_needs_reservation and vma_commit_reservation.
2076 * This indicates a race with hugetlb_reserve_pages.
2077 * Adjust for the subpool count incremented above AND
2078 * in hugetlb_reserve_pages for the same page. Also,
2079 * the reservation count added in hugetlb_reserve_pages
2080 * no longer applies.
2082 long rsv_adjust;
2084 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2085 hugetlb_acct_memory(h, -rsv_adjust);
2087 return page;
2089 out_uncharge_cgroup:
2090 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2091 out_subpool_put:
2092 if (map_chg || avoid_reserve)
2093 hugepage_subpool_put_pages(spool, 1);
2094 vma_end_reservation(h, vma, addr);
2095 return ERR_PTR(-ENOSPC);
2098 int alloc_bootmem_huge_page(struct hstate *h)
2099 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2100 int __alloc_bootmem_huge_page(struct hstate *h)
2102 struct huge_bootmem_page *m;
2103 int nr_nodes, node;
2105 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2106 void *addr;
2108 addr = memblock_alloc_try_nid_raw(
2109 huge_page_size(h), huge_page_size(h),
2110 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2111 if (addr) {
2113 * Use the beginning of the huge page to store the
2114 * huge_bootmem_page struct (until gather_bootmem
2115 * puts them into the mem_map).
2117 m = addr;
2118 goto found;
2121 return 0;
2123 found:
2124 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2125 /* Put them into a private list first because mem_map is not up yet */
2126 INIT_LIST_HEAD(&m->list);
2127 list_add(&m->list, &huge_boot_pages);
2128 m->hstate = h;
2129 return 1;
2132 static void __init prep_compound_huge_page(struct page *page,
2133 unsigned int order)
2135 if (unlikely(order > (MAX_ORDER - 1)))
2136 prep_compound_gigantic_page(page, order);
2137 else
2138 prep_compound_page(page, order);
2141 /* Put bootmem huge pages into the standard lists after mem_map is up */
2142 static void __init gather_bootmem_prealloc(void)
2144 struct huge_bootmem_page *m;
2146 list_for_each_entry(m, &huge_boot_pages, list) {
2147 struct page *page = virt_to_page(m);
2148 struct hstate *h = m->hstate;
2150 WARN_ON(page_count(page) != 1);
2151 prep_compound_huge_page(page, h->order);
2152 WARN_ON(PageReserved(page));
2153 prep_new_huge_page(h, page, page_to_nid(page));
2154 put_page(page); /* free it into the hugepage allocator */
2157 * If we had gigantic hugepages allocated at boot time, we need
2158 * to restore the 'stolen' pages to totalram_pages in order to
2159 * fix confusing memory reports from free(1) and another
2160 * side-effects, like CommitLimit going negative.
2162 if (hstate_is_gigantic(h))
2163 adjust_managed_page_count(page, 1 << h->order);
2164 cond_resched();
2168 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2170 unsigned long i;
2171 nodemask_t *node_alloc_noretry;
2173 if (!hstate_is_gigantic(h)) {
2175 * Bit mask controlling how hard we retry per-node allocations.
2176 * Ignore errors as lower level routines can deal with
2177 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2178 * time, we are likely in bigger trouble.
2180 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2181 GFP_KERNEL);
2182 } else {
2183 /* allocations done at boot time */
2184 node_alloc_noretry = NULL;
2187 /* bit mask controlling how hard we retry per-node allocations */
2188 if (node_alloc_noretry)
2189 nodes_clear(*node_alloc_noretry);
2191 for (i = 0; i < h->max_huge_pages; ++i) {
2192 if (hstate_is_gigantic(h)) {
2193 if (!alloc_bootmem_huge_page(h))
2194 break;
2195 } else if (!alloc_pool_huge_page(h,
2196 &node_states[N_MEMORY],
2197 node_alloc_noretry))
2198 break;
2199 cond_resched();
2201 if (i < h->max_huge_pages) {
2202 char buf[32];
2204 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2205 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2206 h->max_huge_pages, buf, i);
2207 h->max_huge_pages = i;
2210 kfree(node_alloc_noretry);
2213 static void __init hugetlb_init_hstates(void)
2215 struct hstate *h;
2217 for_each_hstate(h) {
2218 if (minimum_order > huge_page_order(h))
2219 minimum_order = huge_page_order(h);
2221 /* oversize hugepages were init'ed in early boot */
2222 if (!hstate_is_gigantic(h))
2223 hugetlb_hstate_alloc_pages(h);
2225 VM_BUG_ON(minimum_order == UINT_MAX);
2228 static void __init report_hugepages(void)
2230 struct hstate *h;
2232 for_each_hstate(h) {
2233 char buf[32];
2235 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2236 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2237 buf, h->free_huge_pages);
2241 #ifdef CONFIG_HIGHMEM
2242 static void try_to_free_low(struct hstate *h, unsigned long count,
2243 nodemask_t *nodes_allowed)
2245 int i;
2247 if (hstate_is_gigantic(h))
2248 return;
2250 for_each_node_mask(i, *nodes_allowed) {
2251 struct page *page, *next;
2252 struct list_head *freel = &h->hugepage_freelists[i];
2253 list_for_each_entry_safe(page, next, freel, lru) {
2254 if (count >= h->nr_huge_pages)
2255 return;
2256 if (PageHighMem(page))
2257 continue;
2258 list_del(&page->lru);
2259 update_and_free_page(h, page);
2260 h->free_huge_pages--;
2261 h->free_huge_pages_node[page_to_nid(page)]--;
2265 #else
2266 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2267 nodemask_t *nodes_allowed)
2270 #endif
2273 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2274 * balanced by operating on them in a round-robin fashion.
2275 * Returns 1 if an adjustment was made.
2277 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2278 int delta)
2280 int nr_nodes, node;
2282 VM_BUG_ON(delta != -1 && delta != 1);
2284 if (delta < 0) {
2285 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2286 if (h->surplus_huge_pages_node[node])
2287 goto found;
2289 } else {
2290 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2291 if (h->surplus_huge_pages_node[node] <
2292 h->nr_huge_pages_node[node])
2293 goto found;
2296 return 0;
2298 found:
2299 h->surplus_huge_pages += delta;
2300 h->surplus_huge_pages_node[node] += delta;
2301 return 1;
2304 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2305 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2306 nodemask_t *nodes_allowed)
2308 unsigned long min_count, ret;
2309 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2312 * Bit mask controlling how hard we retry per-node allocations.
2313 * If we can not allocate the bit mask, do not attempt to allocate
2314 * the requested huge pages.
2316 if (node_alloc_noretry)
2317 nodes_clear(*node_alloc_noretry);
2318 else
2319 return -ENOMEM;
2321 spin_lock(&hugetlb_lock);
2324 * Check for a node specific request.
2325 * Changing node specific huge page count may require a corresponding
2326 * change to the global count. In any case, the passed node mask
2327 * (nodes_allowed) will restrict alloc/free to the specified node.
2329 if (nid != NUMA_NO_NODE) {
2330 unsigned long old_count = count;
2332 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2334 * User may have specified a large count value which caused the
2335 * above calculation to overflow. In this case, they wanted
2336 * to allocate as many huge pages as possible. Set count to
2337 * largest possible value to align with their intention.
2339 if (count < old_count)
2340 count = ULONG_MAX;
2344 * Gigantic pages runtime allocation depend on the capability for large
2345 * page range allocation.
2346 * If the system does not provide this feature, return an error when
2347 * the user tries to allocate gigantic pages but let the user free the
2348 * boottime allocated gigantic pages.
2350 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2351 if (count > persistent_huge_pages(h)) {
2352 spin_unlock(&hugetlb_lock);
2353 NODEMASK_FREE(node_alloc_noretry);
2354 return -EINVAL;
2356 /* Fall through to decrease pool */
2360 * Increase the pool size
2361 * First take pages out of surplus state. Then make up the
2362 * remaining difference by allocating fresh huge pages.
2364 * We might race with alloc_surplus_huge_page() here and be unable
2365 * to convert a surplus huge page to a normal huge page. That is
2366 * not critical, though, it just means the overall size of the
2367 * pool might be one hugepage larger than it needs to be, but
2368 * within all the constraints specified by the sysctls.
2370 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2371 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2372 break;
2375 while (count > persistent_huge_pages(h)) {
2377 * If this allocation races such that we no longer need the
2378 * page, free_huge_page will handle it by freeing the page
2379 * and reducing the surplus.
2381 spin_unlock(&hugetlb_lock);
2383 /* yield cpu to avoid soft lockup */
2384 cond_resched();
2386 ret = alloc_pool_huge_page(h, nodes_allowed,
2387 node_alloc_noretry);
2388 spin_lock(&hugetlb_lock);
2389 if (!ret)
2390 goto out;
2392 /* Bail for signals. Probably ctrl-c from user */
2393 if (signal_pending(current))
2394 goto out;
2398 * Decrease the pool size
2399 * First return free pages to the buddy allocator (being careful
2400 * to keep enough around to satisfy reservations). Then place
2401 * pages into surplus state as needed so the pool will shrink
2402 * to the desired size as pages become free.
2404 * By placing pages into the surplus state independent of the
2405 * overcommit value, we are allowing the surplus pool size to
2406 * exceed overcommit. There are few sane options here. Since
2407 * alloc_surplus_huge_page() is checking the global counter,
2408 * though, we'll note that we're not allowed to exceed surplus
2409 * and won't grow the pool anywhere else. Not until one of the
2410 * sysctls are changed, or the surplus pages go out of use.
2412 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2413 min_count = max(count, min_count);
2414 try_to_free_low(h, min_count, nodes_allowed);
2415 while (min_count < persistent_huge_pages(h)) {
2416 if (!free_pool_huge_page(h, nodes_allowed, 0))
2417 break;
2418 cond_resched_lock(&hugetlb_lock);
2420 while (count < persistent_huge_pages(h)) {
2421 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2422 break;
2424 out:
2425 h->max_huge_pages = persistent_huge_pages(h);
2426 spin_unlock(&hugetlb_lock);
2428 NODEMASK_FREE(node_alloc_noretry);
2430 return 0;
2433 #define HSTATE_ATTR_RO(_name) \
2434 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2436 #define HSTATE_ATTR(_name) \
2437 static struct kobj_attribute _name##_attr = \
2438 __ATTR(_name, 0644, _name##_show, _name##_store)
2440 static struct kobject *hugepages_kobj;
2441 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2443 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2445 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2447 int i;
2449 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2450 if (hstate_kobjs[i] == kobj) {
2451 if (nidp)
2452 *nidp = NUMA_NO_NODE;
2453 return &hstates[i];
2456 return kobj_to_node_hstate(kobj, nidp);
2459 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2460 struct kobj_attribute *attr, char *buf)
2462 struct hstate *h;
2463 unsigned long nr_huge_pages;
2464 int nid;
2466 h = kobj_to_hstate(kobj, &nid);
2467 if (nid == NUMA_NO_NODE)
2468 nr_huge_pages = h->nr_huge_pages;
2469 else
2470 nr_huge_pages = h->nr_huge_pages_node[nid];
2472 return sprintf(buf, "%lu\n", nr_huge_pages);
2475 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2476 struct hstate *h, int nid,
2477 unsigned long count, size_t len)
2479 int err;
2480 nodemask_t nodes_allowed, *n_mask;
2482 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2483 return -EINVAL;
2485 if (nid == NUMA_NO_NODE) {
2487 * global hstate attribute
2489 if (!(obey_mempolicy &&
2490 init_nodemask_of_mempolicy(&nodes_allowed)))
2491 n_mask = &node_states[N_MEMORY];
2492 else
2493 n_mask = &nodes_allowed;
2494 } else {
2496 * Node specific request. count adjustment happens in
2497 * set_max_huge_pages() after acquiring hugetlb_lock.
2499 init_nodemask_of_node(&nodes_allowed, nid);
2500 n_mask = &nodes_allowed;
2503 err = set_max_huge_pages(h, count, nid, n_mask);
2505 return err ? err : len;
2508 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2509 struct kobject *kobj, const char *buf,
2510 size_t len)
2512 struct hstate *h;
2513 unsigned long count;
2514 int nid;
2515 int err;
2517 err = kstrtoul(buf, 10, &count);
2518 if (err)
2519 return err;
2521 h = kobj_to_hstate(kobj, &nid);
2522 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2525 static ssize_t nr_hugepages_show(struct kobject *kobj,
2526 struct kobj_attribute *attr, char *buf)
2528 return nr_hugepages_show_common(kobj, attr, buf);
2531 static ssize_t nr_hugepages_store(struct kobject *kobj,
2532 struct kobj_attribute *attr, const char *buf, size_t len)
2534 return nr_hugepages_store_common(false, kobj, buf, len);
2536 HSTATE_ATTR(nr_hugepages);
2538 #ifdef CONFIG_NUMA
2541 * hstate attribute for optionally mempolicy-based constraint on persistent
2542 * huge page alloc/free.
2544 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2545 struct kobj_attribute *attr, char *buf)
2547 return nr_hugepages_show_common(kobj, attr, buf);
2550 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2551 struct kobj_attribute *attr, const char *buf, size_t len)
2553 return nr_hugepages_store_common(true, kobj, buf, len);
2555 HSTATE_ATTR(nr_hugepages_mempolicy);
2556 #endif
2559 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2560 struct kobj_attribute *attr, char *buf)
2562 struct hstate *h = kobj_to_hstate(kobj, NULL);
2563 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2566 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2567 struct kobj_attribute *attr, const char *buf, size_t count)
2569 int err;
2570 unsigned long input;
2571 struct hstate *h = kobj_to_hstate(kobj, NULL);
2573 if (hstate_is_gigantic(h))
2574 return -EINVAL;
2576 err = kstrtoul(buf, 10, &input);
2577 if (err)
2578 return err;
2580 spin_lock(&hugetlb_lock);
2581 h->nr_overcommit_huge_pages = input;
2582 spin_unlock(&hugetlb_lock);
2584 return count;
2586 HSTATE_ATTR(nr_overcommit_hugepages);
2588 static ssize_t free_hugepages_show(struct kobject *kobj,
2589 struct kobj_attribute *attr, char *buf)
2591 struct hstate *h;
2592 unsigned long free_huge_pages;
2593 int nid;
2595 h = kobj_to_hstate(kobj, &nid);
2596 if (nid == NUMA_NO_NODE)
2597 free_huge_pages = h->free_huge_pages;
2598 else
2599 free_huge_pages = h->free_huge_pages_node[nid];
2601 return sprintf(buf, "%lu\n", free_huge_pages);
2603 HSTATE_ATTR_RO(free_hugepages);
2605 static ssize_t resv_hugepages_show(struct kobject *kobj,
2606 struct kobj_attribute *attr, char *buf)
2608 struct hstate *h = kobj_to_hstate(kobj, NULL);
2609 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2611 HSTATE_ATTR_RO(resv_hugepages);
2613 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2614 struct kobj_attribute *attr, char *buf)
2616 struct hstate *h;
2617 unsigned long surplus_huge_pages;
2618 int nid;
2620 h = kobj_to_hstate(kobj, &nid);
2621 if (nid == NUMA_NO_NODE)
2622 surplus_huge_pages = h->surplus_huge_pages;
2623 else
2624 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2626 return sprintf(buf, "%lu\n", surplus_huge_pages);
2628 HSTATE_ATTR_RO(surplus_hugepages);
2630 static struct attribute *hstate_attrs[] = {
2631 &nr_hugepages_attr.attr,
2632 &nr_overcommit_hugepages_attr.attr,
2633 &free_hugepages_attr.attr,
2634 &resv_hugepages_attr.attr,
2635 &surplus_hugepages_attr.attr,
2636 #ifdef CONFIG_NUMA
2637 &nr_hugepages_mempolicy_attr.attr,
2638 #endif
2639 NULL,
2642 static const struct attribute_group hstate_attr_group = {
2643 .attrs = hstate_attrs,
2646 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2647 struct kobject **hstate_kobjs,
2648 const struct attribute_group *hstate_attr_group)
2650 int retval;
2651 int hi = hstate_index(h);
2653 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2654 if (!hstate_kobjs[hi])
2655 return -ENOMEM;
2657 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2658 if (retval)
2659 kobject_put(hstate_kobjs[hi]);
2661 return retval;
2664 static void __init hugetlb_sysfs_init(void)
2666 struct hstate *h;
2667 int err;
2669 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2670 if (!hugepages_kobj)
2671 return;
2673 for_each_hstate(h) {
2674 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2675 hstate_kobjs, &hstate_attr_group);
2676 if (err)
2677 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2681 #ifdef CONFIG_NUMA
2684 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2685 * with node devices in node_devices[] using a parallel array. The array
2686 * index of a node device or _hstate == node id.
2687 * This is here to avoid any static dependency of the node device driver, in
2688 * the base kernel, on the hugetlb module.
2690 struct node_hstate {
2691 struct kobject *hugepages_kobj;
2692 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2694 static struct node_hstate node_hstates[MAX_NUMNODES];
2697 * A subset of global hstate attributes for node devices
2699 static struct attribute *per_node_hstate_attrs[] = {
2700 &nr_hugepages_attr.attr,
2701 &free_hugepages_attr.attr,
2702 &surplus_hugepages_attr.attr,
2703 NULL,
2706 static const struct attribute_group per_node_hstate_attr_group = {
2707 .attrs = per_node_hstate_attrs,
2711 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2712 * Returns node id via non-NULL nidp.
2714 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2716 int nid;
2718 for (nid = 0; nid < nr_node_ids; nid++) {
2719 struct node_hstate *nhs = &node_hstates[nid];
2720 int i;
2721 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2722 if (nhs->hstate_kobjs[i] == kobj) {
2723 if (nidp)
2724 *nidp = nid;
2725 return &hstates[i];
2729 BUG();
2730 return NULL;
2734 * Unregister hstate attributes from a single node device.
2735 * No-op if no hstate attributes attached.
2737 static void hugetlb_unregister_node(struct node *node)
2739 struct hstate *h;
2740 struct node_hstate *nhs = &node_hstates[node->dev.id];
2742 if (!nhs->hugepages_kobj)
2743 return; /* no hstate attributes */
2745 for_each_hstate(h) {
2746 int idx = hstate_index(h);
2747 if (nhs->hstate_kobjs[idx]) {
2748 kobject_put(nhs->hstate_kobjs[idx]);
2749 nhs->hstate_kobjs[idx] = NULL;
2753 kobject_put(nhs->hugepages_kobj);
2754 nhs->hugepages_kobj = NULL;
2759 * Register hstate attributes for a single node device.
2760 * No-op if attributes already registered.
2762 static void hugetlb_register_node(struct node *node)
2764 struct hstate *h;
2765 struct node_hstate *nhs = &node_hstates[node->dev.id];
2766 int err;
2768 if (nhs->hugepages_kobj)
2769 return; /* already allocated */
2771 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2772 &node->dev.kobj);
2773 if (!nhs->hugepages_kobj)
2774 return;
2776 for_each_hstate(h) {
2777 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2778 nhs->hstate_kobjs,
2779 &per_node_hstate_attr_group);
2780 if (err) {
2781 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2782 h->name, node->dev.id);
2783 hugetlb_unregister_node(node);
2784 break;
2790 * hugetlb init time: register hstate attributes for all registered node
2791 * devices of nodes that have memory. All on-line nodes should have
2792 * registered their associated device by this time.
2794 static void __init hugetlb_register_all_nodes(void)
2796 int nid;
2798 for_each_node_state(nid, N_MEMORY) {
2799 struct node *node = node_devices[nid];
2800 if (node->dev.id == nid)
2801 hugetlb_register_node(node);
2805 * Let the node device driver know we're here so it can
2806 * [un]register hstate attributes on node hotplug.
2808 register_hugetlbfs_with_node(hugetlb_register_node,
2809 hugetlb_unregister_node);
2811 #else /* !CONFIG_NUMA */
2813 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2815 BUG();
2816 if (nidp)
2817 *nidp = -1;
2818 return NULL;
2821 static void hugetlb_register_all_nodes(void) { }
2823 #endif
2825 static int __init hugetlb_init(void)
2827 int i;
2829 if (!hugepages_supported())
2830 return 0;
2832 if (!size_to_hstate(default_hstate_size)) {
2833 if (default_hstate_size != 0) {
2834 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2835 default_hstate_size, HPAGE_SIZE);
2838 default_hstate_size = HPAGE_SIZE;
2839 if (!size_to_hstate(default_hstate_size))
2840 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2842 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2843 if (default_hstate_max_huge_pages) {
2844 if (!default_hstate.max_huge_pages)
2845 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2848 hugetlb_init_hstates();
2849 gather_bootmem_prealloc();
2850 report_hugepages();
2852 hugetlb_sysfs_init();
2853 hugetlb_register_all_nodes();
2854 hugetlb_cgroup_file_init();
2856 #ifdef CONFIG_SMP
2857 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2858 #else
2859 num_fault_mutexes = 1;
2860 #endif
2861 hugetlb_fault_mutex_table =
2862 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
2863 GFP_KERNEL);
2864 BUG_ON(!hugetlb_fault_mutex_table);
2866 for (i = 0; i < num_fault_mutexes; i++)
2867 mutex_init(&hugetlb_fault_mutex_table[i]);
2868 return 0;
2870 subsys_initcall(hugetlb_init);
2872 /* Should be called on processing a hugepagesz=... option */
2873 void __init hugetlb_bad_size(void)
2875 parsed_valid_hugepagesz = false;
2878 void __init hugetlb_add_hstate(unsigned int order)
2880 struct hstate *h;
2881 unsigned long i;
2883 if (size_to_hstate(PAGE_SIZE << order)) {
2884 pr_warn("hugepagesz= specified twice, ignoring\n");
2885 return;
2887 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2888 BUG_ON(order == 0);
2889 h = &hstates[hugetlb_max_hstate++];
2890 h->order = order;
2891 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2892 h->nr_huge_pages = 0;
2893 h->free_huge_pages = 0;
2894 for (i = 0; i < MAX_NUMNODES; ++i)
2895 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2896 INIT_LIST_HEAD(&h->hugepage_activelist);
2897 h->next_nid_to_alloc = first_memory_node;
2898 h->next_nid_to_free = first_memory_node;
2899 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2900 huge_page_size(h)/1024);
2902 parsed_hstate = h;
2905 static int __init hugetlb_nrpages_setup(char *s)
2907 unsigned long *mhp;
2908 static unsigned long *last_mhp;
2910 if (!parsed_valid_hugepagesz) {
2911 pr_warn("hugepages = %s preceded by "
2912 "an unsupported hugepagesz, ignoring\n", s);
2913 parsed_valid_hugepagesz = true;
2914 return 1;
2917 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2918 * so this hugepages= parameter goes to the "default hstate".
2920 else if (!hugetlb_max_hstate)
2921 mhp = &default_hstate_max_huge_pages;
2922 else
2923 mhp = &parsed_hstate->max_huge_pages;
2925 if (mhp == last_mhp) {
2926 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2927 return 1;
2930 if (sscanf(s, "%lu", mhp) <= 0)
2931 *mhp = 0;
2934 * Global state is always initialized later in hugetlb_init.
2935 * But we need to allocate >= MAX_ORDER hstates here early to still
2936 * use the bootmem allocator.
2938 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2939 hugetlb_hstate_alloc_pages(parsed_hstate);
2941 last_mhp = mhp;
2943 return 1;
2945 __setup("hugepages=", hugetlb_nrpages_setup);
2947 static int __init hugetlb_default_setup(char *s)
2949 default_hstate_size = memparse(s, &s);
2950 return 1;
2952 __setup("default_hugepagesz=", hugetlb_default_setup);
2954 static unsigned int cpuset_mems_nr(unsigned int *array)
2956 int node;
2957 unsigned int nr = 0;
2959 for_each_node_mask(node, cpuset_current_mems_allowed)
2960 nr += array[node];
2962 return nr;
2965 #ifdef CONFIG_SYSCTL
2966 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2967 struct ctl_table *table, int write,
2968 void __user *buffer, size_t *length, loff_t *ppos)
2970 struct hstate *h = &default_hstate;
2971 unsigned long tmp = h->max_huge_pages;
2972 int ret;
2974 if (!hugepages_supported())
2975 return -EOPNOTSUPP;
2977 table->data = &tmp;
2978 table->maxlen = sizeof(unsigned long);
2979 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2980 if (ret)
2981 goto out;
2983 if (write)
2984 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2985 NUMA_NO_NODE, tmp, *length);
2986 out:
2987 return ret;
2990 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2991 void __user *buffer, size_t *length, loff_t *ppos)
2994 return hugetlb_sysctl_handler_common(false, table, write,
2995 buffer, length, ppos);
2998 #ifdef CONFIG_NUMA
2999 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3000 void __user *buffer, size_t *length, loff_t *ppos)
3002 return hugetlb_sysctl_handler_common(true, table, write,
3003 buffer, length, ppos);
3005 #endif /* CONFIG_NUMA */
3007 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3008 void __user *buffer,
3009 size_t *length, loff_t *ppos)
3011 struct hstate *h = &default_hstate;
3012 unsigned long tmp;
3013 int ret;
3015 if (!hugepages_supported())
3016 return -EOPNOTSUPP;
3018 tmp = h->nr_overcommit_huge_pages;
3020 if (write && hstate_is_gigantic(h))
3021 return -EINVAL;
3023 table->data = &tmp;
3024 table->maxlen = sizeof(unsigned long);
3025 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
3026 if (ret)
3027 goto out;
3029 if (write) {
3030 spin_lock(&hugetlb_lock);
3031 h->nr_overcommit_huge_pages = tmp;
3032 spin_unlock(&hugetlb_lock);
3034 out:
3035 return ret;
3038 #endif /* CONFIG_SYSCTL */
3040 void hugetlb_report_meminfo(struct seq_file *m)
3042 struct hstate *h;
3043 unsigned long total = 0;
3045 if (!hugepages_supported())
3046 return;
3048 for_each_hstate(h) {
3049 unsigned long count = h->nr_huge_pages;
3051 total += (PAGE_SIZE << huge_page_order(h)) * count;
3053 if (h == &default_hstate)
3054 seq_printf(m,
3055 "HugePages_Total: %5lu\n"
3056 "HugePages_Free: %5lu\n"
3057 "HugePages_Rsvd: %5lu\n"
3058 "HugePages_Surp: %5lu\n"
3059 "Hugepagesize: %8lu kB\n",
3060 count,
3061 h->free_huge_pages,
3062 h->resv_huge_pages,
3063 h->surplus_huge_pages,
3064 (PAGE_SIZE << huge_page_order(h)) / 1024);
3067 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3070 int hugetlb_report_node_meminfo(int nid, char *buf)
3072 struct hstate *h = &default_hstate;
3073 if (!hugepages_supported())
3074 return 0;
3075 return sprintf(buf,
3076 "Node %d HugePages_Total: %5u\n"
3077 "Node %d HugePages_Free: %5u\n"
3078 "Node %d HugePages_Surp: %5u\n",
3079 nid, h->nr_huge_pages_node[nid],
3080 nid, h->free_huge_pages_node[nid],
3081 nid, h->surplus_huge_pages_node[nid]);
3084 void hugetlb_show_meminfo(void)
3086 struct hstate *h;
3087 int nid;
3089 if (!hugepages_supported())
3090 return;
3092 for_each_node_state(nid, N_MEMORY)
3093 for_each_hstate(h)
3094 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3095 nid,
3096 h->nr_huge_pages_node[nid],
3097 h->free_huge_pages_node[nid],
3098 h->surplus_huge_pages_node[nid],
3099 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3102 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3104 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3105 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3108 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3109 unsigned long hugetlb_total_pages(void)
3111 struct hstate *h;
3112 unsigned long nr_total_pages = 0;
3114 for_each_hstate(h)
3115 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3116 return nr_total_pages;
3119 static int hugetlb_acct_memory(struct hstate *h, long delta)
3121 int ret = -ENOMEM;
3123 spin_lock(&hugetlb_lock);
3125 * When cpuset is configured, it breaks the strict hugetlb page
3126 * reservation as the accounting is done on a global variable. Such
3127 * reservation is completely rubbish in the presence of cpuset because
3128 * the reservation is not checked against page availability for the
3129 * current cpuset. Application can still potentially OOM'ed by kernel
3130 * with lack of free htlb page in cpuset that the task is in.
3131 * Attempt to enforce strict accounting with cpuset is almost
3132 * impossible (or too ugly) because cpuset is too fluid that
3133 * task or memory node can be dynamically moved between cpusets.
3135 * The change of semantics for shared hugetlb mapping with cpuset is
3136 * undesirable. However, in order to preserve some of the semantics,
3137 * we fall back to check against current free page availability as
3138 * a best attempt and hopefully to minimize the impact of changing
3139 * semantics that cpuset has.
3141 if (delta > 0) {
3142 if (gather_surplus_pages(h, delta) < 0)
3143 goto out;
3145 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3146 return_unused_surplus_pages(h, delta);
3147 goto out;
3151 ret = 0;
3152 if (delta < 0)
3153 return_unused_surplus_pages(h, (unsigned long) -delta);
3155 out:
3156 spin_unlock(&hugetlb_lock);
3157 return ret;
3160 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3162 struct resv_map *resv = vma_resv_map(vma);
3165 * This new VMA should share its siblings reservation map if present.
3166 * The VMA will only ever have a valid reservation map pointer where
3167 * it is being copied for another still existing VMA. As that VMA
3168 * has a reference to the reservation map it cannot disappear until
3169 * after this open call completes. It is therefore safe to take a
3170 * new reference here without additional locking.
3172 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3173 kref_get(&resv->refs);
3176 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3178 struct hstate *h = hstate_vma(vma);
3179 struct resv_map *resv = vma_resv_map(vma);
3180 struct hugepage_subpool *spool = subpool_vma(vma);
3181 unsigned long reserve, start, end;
3182 long gbl_reserve;
3184 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3185 return;
3187 start = vma_hugecache_offset(h, vma, vma->vm_start);
3188 end = vma_hugecache_offset(h, vma, vma->vm_end);
3190 reserve = (end - start) - region_count(resv, start, end);
3192 kref_put(&resv->refs, resv_map_release);
3194 if (reserve) {
3196 * Decrement reserve counts. The global reserve count may be
3197 * adjusted if the subpool has a minimum size.
3199 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3200 hugetlb_acct_memory(h, -gbl_reserve);
3204 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3206 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3207 return -EINVAL;
3208 return 0;
3211 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3213 struct hstate *hstate = hstate_vma(vma);
3215 return 1UL << huge_page_shift(hstate);
3219 * We cannot handle pagefaults against hugetlb pages at all. They cause
3220 * handle_mm_fault() to try to instantiate regular-sized pages in the
3221 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3222 * this far.
3224 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3226 BUG();
3227 return 0;
3231 * When a new function is introduced to vm_operations_struct and added
3232 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3233 * This is because under System V memory model, mappings created via
3234 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3235 * their original vm_ops are overwritten with shm_vm_ops.
3237 const struct vm_operations_struct hugetlb_vm_ops = {
3238 .fault = hugetlb_vm_op_fault,
3239 .open = hugetlb_vm_op_open,
3240 .close = hugetlb_vm_op_close,
3241 .split = hugetlb_vm_op_split,
3242 .pagesize = hugetlb_vm_op_pagesize,
3245 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3246 int writable)
3248 pte_t entry;
3250 if (writable) {
3251 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3252 vma->vm_page_prot)));
3253 } else {
3254 entry = huge_pte_wrprotect(mk_huge_pte(page,
3255 vma->vm_page_prot));
3257 entry = pte_mkyoung(entry);
3258 entry = pte_mkhuge(entry);
3259 entry = arch_make_huge_pte(entry, vma, page, writable);
3261 return entry;
3264 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3265 unsigned long address, pte_t *ptep)
3267 pte_t entry;
3269 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3270 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3271 update_mmu_cache(vma, address, ptep);
3274 bool is_hugetlb_entry_migration(pte_t pte)
3276 swp_entry_t swp;
3278 if (huge_pte_none(pte) || pte_present(pte))
3279 return false;
3280 swp = pte_to_swp_entry(pte);
3281 if (non_swap_entry(swp) && is_migration_entry(swp))
3282 return true;
3283 else
3284 return false;
3287 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3289 swp_entry_t swp;
3291 if (huge_pte_none(pte) || pte_present(pte))
3292 return 0;
3293 swp = pte_to_swp_entry(pte);
3294 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3295 return 1;
3296 else
3297 return 0;
3300 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3301 struct vm_area_struct *vma)
3303 pte_t *src_pte, *dst_pte, entry, dst_entry;
3304 struct page *ptepage;
3305 unsigned long addr;
3306 int cow;
3307 struct hstate *h = hstate_vma(vma);
3308 unsigned long sz = huge_page_size(h);
3309 struct mmu_notifier_range range;
3310 int ret = 0;
3312 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3314 if (cow) {
3315 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3316 vma->vm_start,
3317 vma->vm_end);
3318 mmu_notifier_invalidate_range_start(&range);
3321 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3322 spinlock_t *src_ptl, *dst_ptl;
3323 src_pte = huge_pte_offset(src, addr, sz);
3324 if (!src_pte)
3325 continue;
3326 dst_pte = huge_pte_alloc(dst, addr, sz);
3327 if (!dst_pte) {
3328 ret = -ENOMEM;
3329 break;
3333 * If the pagetables are shared don't copy or take references.
3334 * dst_pte == src_pte is the common case of src/dest sharing.
3336 * However, src could have 'unshared' and dst shares with
3337 * another vma. If dst_pte !none, this implies sharing.
3338 * Check here before taking page table lock, and once again
3339 * after taking the lock below.
3341 dst_entry = huge_ptep_get(dst_pte);
3342 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3343 continue;
3345 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3346 src_ptl = huge_pte_lockptr(h, src, src_pte);
3347 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3348 entry = huge_ptep_get(src_pte);
3349 dst_entry = huge_ptep_get(dst_pte);
3350 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3352 * Skip if src entry none. Also, skip in the
3353 * unlikely case dst entry !none as this implies
3354 * sharing with another vma.
3357 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3358 is_hugetlb_entry_hwpoisoned(entry))) {
3359 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3361 if (is_write_migration_entry(swp_entry) && cow) {
3363 * COW mappings require pages in both
3364 * parent and child to be set to read.
3366 make_migration_entry_read(&swp_entry);
3367 entry = swp_entry_to_pte(swp_entry);
3368 set_huge_swap_pte_at(src, addr, src_pte,
3369 entry, sz);
3371 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3372 } else {
3373 if (cow) {
3375 * No need to notify as we are downgrading page
3376 * table protection not changing it to point
3377 * to a new page.
3379 * See Documentation/vm/mmu_notifier.rst
3381 huge_ptep_set_wrprotect(src, addr, src_pte);
3383 entry = huge_ptep_get(src_pte);
3384 ptepage = pte_page(entry);
3385 get_page(ptepage);
3386 page_dup_rmap(ptepage, true);
3387 set_huge_pte_at(dst, addr, dst_pte, entry);
3388 hugetlb_count_add(pages_per_huge_page(h), dst);
3390 spin_unlock(src_ptl);
3391 spin_unlock(dst_ptl);
3394 if (cow)
3395 mmu_notifier_invalidate_range_end(&range);
3397 return ret;
3400 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3401 unsigned long start, unsigned long end,
3402 struct page *ref_page)
3404 struct mm_struct *mm = vma->vm_mm;
3405 unsigned long address;
3406 pte_t *ptep;
3407 pte_t pte;
3408 spinlock_t *ptl;
3409 struct page *page;
3410 struct hstate *h = hstate_vma(vma);
3411 unsigned long sz = huge_page_size(h);
3412 struct mmu_notifier_range range;
3414 WARN_ON(!is_vm_hugetlb_page(vma));
3415 BUG_ON(start & ~huge_page_mask(h));
3416 BUG_ON(end & ~huge_page_mask(h));
3419 * This is a hugetlb vma, all the pte entries should point
3420 * to huge page.
3422 tlb_change_page_size(tlb, sz);
3423 tlb_start_vma(tlb, vma);
3426 * If sharing possible, alert mmu notifiers of worst case.
3428 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3429 end);
3430 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3431 mmu_notifier_invalidate_range_start(&range);
3432 address = start;
3433 for (; address < end; address += sz) {
3434 ptep = huge_pte_offset(mm, address, sz);
3435 if (!ptep)
3436 continue;
3438 ptl = huge_pte_lock(h, mm, ptep);
3439 if (huge_pmd_unshare(mm, &address, ptep)) {
3440 spin_unlock(ptl);
3442 * We just unmapped a page of PMDs by clearing a PUD.
3443 * The caller's TLB flush range should cover this area.
3445 continue;
3448 pte = huge_ptep_get(ptep);
3449 if (huge_pte_none(pte)) {
3450 spin_unlock(ptl);
3451 continue;
3455 * Migrating hugepage or HWPoisoned hugepage is already
3456 * unmapped and its refcount is dropped, so just clear pte here.
3458 if (unlikely(!pte_present(pte))) {
3459 huge_pte_clear(mm, address, ptep, sz);
3460 spin_unlock(ptl);
3461 continue;
3464 page = pte_page(pte);
3466 * If a reference page is supplied, it is because a specific
3467 * page is being unmapped, not a range. Ensure the page we
3468 * are about to unmap is the actual page of interest.
3470 if (ref_page) {
3471 if (page != ref_page) {
3472 spin_unlock(ptl);
3473 continue;
3476 * Mark the VMA as having unmapped its page so that
3477 * future faults in this VMA will fail rather than
3478 * looking like data was lost
3480 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3483 pte = huge_ptep_get_and_clear(mm, address, ptep);
3484 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3485 if (huge_pte_dirty(pte))
3486 set_page_dirty(page);
3488 hugetlb_count_sub(pages_per_huge_page(h), mm);
3489 page_remove_rmap(page, true);
3491 spin_unlock(ptl);
3492 tlb_remove_page_size(tlb, page, huge_page_size(h));
3494 * Bail out after unmapping reference page if supplied
3496 if (ref_page)
3497 break;
3499 mmu_notifier_invalidate_range_end(&range);
3500 tlb_end_vma(tlb, vma);
3503 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3504 struct vm_area_struct *vma, unsigned long start,
3505 unsigned long end, struct page *ref_page)
3507 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3510 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3511 * test will fail on a vma being torn down, and not grab a page table
3512 * on its way out. We're lucky that the flag has such an appropriate
3513 * name, and can in fact be safely cleared here. We could clear it
3514 * before the __unmap_hugepage_range above, but all that's necessary
3515 * is to clear it before releasing the i_mmap_rwsem. This works
3516 * because in the context this is called, the VMA is about to be
3517 * destroyed and the i_mmap_rwsem is held.
3519 vma->vm_flags &= ~VM_MAYSHARE;
3522 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3523 unsigned long end, struct page *ref_page)
3525 struct mm_struct *mm;
3526 struct mmu_gather tlb;
3527 unsigned long tlb_start = start;
3528 unsigned long tlb_end = end;
3531 * If shared PMDs were possibly used within this vma range, adjust
3532 * start/end for worst case tlb flushing.
3533 * Note that we can not be sure if PMDs are shared until we try to
3534 * unmap pages. However, we want to make sure TLB flushing covers
3535 * the largest possible range.
3537 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3539 mm = vma->vm_mm;
3541 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3542 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3543 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3547 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3548 * mappping it owns the reserve page for. The intention is to unmap the page
3549 * from other VMAs and let the children be SIGKILLed if they are faulting the
3550 * same region.
3552 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3553 struct page *page, unsigned long address)
3555 struct hstate *h = hstate_vma(vma);
3556 struct vm_area_struct *iter_vma;
3557 struct address_space *mapping;
3558 pgoff_t pgoff;
3561 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3562 * from page cache lookup which is in HPAGE_SIZE units.
3564 address = address & huge_page_mask(h);
3565 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3566 vma->vm_pgoff;
3567 mapping = vma->vm_file->f_mapping;
3570 * Take the mapping lock for the duration of the table walk. As
3571 * this mapping should be shared between all the VMAs,
3572 * __unmap_hugepage_range() is called as the lock is already held
3574 i_mmap_lock_write(mapping);
3575 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3576 /* Do not unmap the current VMA */
3577 if (iter_vma == vma)
3578 continue;
3581 * Shared VMAs have their own reserves and do not affect
3582 * MAP_PRIVATE accounting but it is possible that a shared
3583 * VMA is using the same page so check and skip such VMAs.
3585 if (iter_vma->vm_flags & VM_MAYSHARE)
3586 continue;
3589 * Unmap the page from other VMAs without their own reserves.
3590 * They get marked to be SIGKILLed if they fault in these
3591 * areas. This is because a future no-page fault on this VMA
3592 * could insert a zeroed page instead of the data existing
3593 * from the time of fork. This would look like data corruption
3595 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3596 unmap_hugepage_range(iter_vma, address,
3597 address + huge_page_size(h), page);
3599 i_mmap_unlock_write(mapping);
3603 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3604 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3605 * cannot race with other handlers or page migration.
3606 * Keep the pte_same checks anyway to make transition from the mutex easier.
3608 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3609 unsigned long address, pte_t *ptep,
3610 struct page *pagecache_page, spinlock_t *ptl)
3612 pte_t pte;
3613 struct hstate *h = hstate_vma(vma);
3614 struct page *old_page, *new_page;
3615 int outside_reserve = 0;
3616 vm_fault_t ret = 0;
3617 unsigned long haddr = address & huge_page_mask(h);
3618 struct mmu_notifier_range range;
3620 pte = huge_ptep_get(ptep);
3621 old_page = pte_page(pte);
3623 retry_avoidcopy:
3624 /* If no-one else is actually using this page, avoid the copy
3625 * and just make the page writable */
3626 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3627 page_move_anon_rmap(old_page, vma);
3628 set_huge_ptep_writable(vma, haddr, ptep);
3629 return 0;
3633 * If the process that created a MAP_PRIVATE mapping is about to
3634 * perform a COW due to a shared page count, attempt to satisfy
3635 * the allocation without using the existing reserves. The pagecache
3636 * page is used to determine if the reserve at this address was
3637 * consumed or not. If reserves were used, a partial faulted mapping
3638 * at the time of fork() could consume its reserves on COW instead
3639 * of the full address range.
3641 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3642 old_page != pagecache_page)
3643 outside_reserve = 1;
3645 get_page(old_page);
3648 * Drop page table lock as buddy allocator may be called. It will
3649 * be acquired again before returning to the caller, as expected.
3651 spin_unlock(ptl);
3652 new_page = alloc_huge_page(vma, haddr, outside_reserve);
3654 if (IS_ERR(new_page)) {
3656 * If a process owning a MAP_PRIVATE mapping fails to COW,
3657 * it is due to references held by a child and an insufficient
3658 * huge page pool. To guarantee the original mappers
3659 * reliability, unmap the page from child processes. The child
3660 * may get SIGKILLed if it later faults.
3662 if (outside_reserve) {
3663 put_page(old_page);
3664 BUG_ON(huge_pte_none(pte));
3665 unmap_ref_private(mm, vma, old_page, haddr);
3666 BUG_ON(huge_pte_none(pte));
3667 spin_lock(ptl);
3668 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3669 if (likely(ptep &&
3670 pte_same(huge_ptep_get(ptep), pte)))
3671 goto retry_avoidcopy;
3673 * race occurs while re-acquiring page table
3674 * lock, and our job is done.
3676 return 0;
3679 ret = vmf_error(PTR_ERR(new_page));
3680 goto out_release_old;
3684 * When the original hugepage is shared one, it does not have
3685 * anon_vma prepared.
3687 if (unlikely(anon_vma_prepare(vma))) {
3688 ret = VM_FAULT_OOM;
3689 goto out_release_all;
3692 copy_user_huge_page(new_page, old_page, address, vma,
3693 pages_per_huge_page(h));
3694 __SetPageUptodate(new_page);
3696 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
3697 haddr + huge_page_size(h));
3698 mmu_notifier_invalidate_range_start(&range);
3701 * Retake the page table lock to check for racing updates
3702 * before the page tables are altered
3704 spin_lock(ptl);
3705 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
3706 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3707 ClearPagePrivate(new_page);
3709 /* Break COW */
3710 huge_ptep_clear_flush(vma, haddr, ptep);
3711 mmu_notifier_invalidate_range(mm, range.start, range.end);
3712 set_huge_pte_at(mm, haddr, ptep,
3713 make_huge_pte(vma, new_page, 1));
3714 page_remove_rmap(old_page, true);
3715 hugepage_add_new_anon_rmap(new_page, vma, haddr);
3716 set_page_huge_active(new_page);
3717 /* Make the old page be freed below */
3718 new_page = old_page;
3720 spin_unlock(ptl);
3721 mmu_notifier_invalidate_range_end(&range);
3722 out_release_all:
3723 restore_reserve_on_error(h, vma, haddr, new_page);
3724 put_page(new_page);
3725 out_release_old:
3726 put_page(old_page);
3728 spin_lock(ptl); /* Caller expects lock to be held */
3729 return ret;
3732 /* Return the pagecache page at a given address within a VMA */
3733 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3734 struct vm_area_struct *vma, unsigned long address)
3736 struct address_space *mapping;
3737 pgoff_t idx;
3739 mapping = vma->vm_file->f_mapping;
3740 idx = vma_hugecache_offset(h, vma, address);
3742 return find_lock_page(mapping, idx);
3746 * Return whether there is a pagecache page to back given address within VMA.
3747 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3749 static bool hugetlbfs_pagecache_present(struct hstate *h,
3750 struct vm_area_struct *vma, unsigned long address)
3752 struct address_space *mapping;
3753 pgoff_t idx;
3754 struct page *page;
3756 mapping = vma->vm_file->f_mapping;
3757 idx = vma_hugecache_offset(h, vma, address);
3759 page = find_get_page(mapping, idx);
3760 if (page)
3761 put_page(page);
3762 return page != NULL;
3765 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3766 pgoff_t idx)
3768 struct inode *inode = mapping->host;
3769 struct hstate *h = hstate_inode(inode);
3770 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3772 if (err)
3773 return err;
3774 ClearPagePrivate(page);
3777 * set page dirty so that it will not be removed from cache/file
3778 * by non-hugetlbfs specific code paths.
3780 set_page_dirty(page);
3782 spin_lock(&inode->i_lock);
3783 inode->i_blocks += blocks_per_huge_page(h);
3784 spin_unlock(&inode->i_lock);
3785 return 0;
3788 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
3789 struct vm_area_struct *vma,
3790 struct address_space *mapping, pgoff_t idx,
3791 unsigned long address, pte_t *ptep, unsigned int flags)
3793 struct hstate *h = hstate_vma(vma);
3794 vm_fault_t ret = VM_FAULT_SIGBUS;
3795 int anon_rmap = 0;
3796 unsigned long size;
3797 struct page *page;
3798 pte_t new_pte;
3799 spinlock_t *ptl;
3800 unsigned long haddr = address & huge_page_mask(h);
3801 bool new_page = false;
3804 * Currently, we are forced to kill the process in the event the
3805 * original mapper has unmapped pages from the child due to a failed
3806 * COW. Warn that such a situation has occurred as it may not be obvious
3808 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3809 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3810 current->pid);
3811 return ret;
3815 * Use page lock to guard against racing truncation
3816 * before we get page_table_lock.
3818 retry:
3819 page = find_lock_page(mapping, idx);
3820 if (!page) {
3821 size = i_size_read(mapping->host) >> huge_page_shift(h);
3822 if (idx >= size)
3823 goto out;
3826 * Check for page in userfault range
3828 if (userfaultfd_missing(vma)) {
3829 u32 hash;
3830 struct vm_fault vmf = {
3831 .vma = vma,
3832 .address = haddr,
3833 .flags = flags,
3835 * Hard to debug if it ends up being
3836 * used by a callee that assumes
3837 * something about the other
3838 * uninitialized fields... same as in
3839 * memory.c
3844 * hugetlb_fault_mutex must be dropped before
3845 * handling userfault. Reacquire after handling
3846 * fault to make calling code simpler.
3848 hash = hugetlb_fault_mutex_hash(mapping, idx);
3849 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3850 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3851 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3852 goto out;
3855 page = alloc_huge_page(vma, haddr, 0);
3856 if (IS_ERR(page)) {
3858 * Returning error will result in faulting task being
3859 * sent SIGBUS. The hugetlb fault mutex prevents two
3860 * tasks from racing to fault in the same page which
3861 * could result in false unable to allocate errors.
3862 * Page migration does not take the fault mutex, but
3863 * does a clear then write of pte's under page table
3864 * lock. Page fault code could race with migration,
3865 * notice the clear pte and try to allocate a page
3866 * here. Before returning error, get ptl and make
3867 * sure there really is no pte entry.
3869 ptl = huge_pte_lock(h, mm, ptep);
3870 if (!huge_pte_none(huge_ptep_get(ptep))) {
3871 ret = 0;
3872 spin_unlock(ptl);
3873 goto out;
3875 spin_unlock(ptl);
3876 ret = vmf_error(PTR_ERR(page));
3877 goto out;
3879 clear_huge_page(page, address, pages_per_huge_page(h));
3880 __SetPageUptodate(page);
3881 new_page = true;
3883 if (vma->vm_flags & VM_MAYSHARE) {
3884 int err = huge_add_to_page_cache(page, mapping, idx);
3885 if (err) {
3886 put_page(page);
3887 if (err == -EEXIST)
3888 goto retry;
3889 goto out;
3891 } else {
3892 lock_page(page);
3893 if (unlikely(anon_vma_prepare(vma))) {
3894 ret = VM_FAULT_OOM;
3895 goto backout_unlocked;
3897 anon_rmap = 1;
3899 } else {
3901 * If memory error occurs between mmap() and fault, some process
3902 * don't have hwpoisoned swap entry for errored virtual address.
3903 * So we need to block hugepage fault by PG_hwpoison bit check.
3905 if (unlikely(PageHWPoison(page))) {
3906 ret = VM_FAULT_HWPOISON |
3907 VM_FAULT_SET_HINDEX(hstate_index(h));
3908 goto backout_unlocked;
3913 * If we are going to COW a private mapping later, we examine the
3914 * pending reservations for this page now. This will ensure that
3915 * any allocations necessary to record that reservation occur outside
3916 * the spinlock.
3918 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3919 if (vma_needs_reservation(h, vma, haddr) < 0) {
3920 ret = VM_FAULT_OOM;
3921 goto backout_unlocked;
3923 /* Just decrements count, does not deallocate */
3924 vma_end_reservation(h, vma, haddr);
3927 ptl = huge_pte_lock(h, mm, ptep);
3928 size = i_size_read(mapping->host) >> huge_page_shift(h);
3929 if (idx >= size)
3930 goto backout;
3932 ret = 0;
3933 if (!huge_pte_none(huge_ptep_get(ptep)))
3934 goto backout;
3936 if (anon_rmap) {
3937 ClearPagePrivate(page);
3938 hugepage_add_new_anon_rmap(page, vma, haddr);
3939 } else
3940 page_dup_rmap(page, true);
3941 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3942 && (vma->vm_flags & VM_SHARED)));
3943 set_huge_pte_at(mm, haddr, ptep, new_pte);
3945 hugetlb_count_add(pages_per_huge_page(h), mm);
3946 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3947 /* Optimization, do the COW without a second fault */
3948 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
3951 spin_unlock(ptl);
3954 * Only make newly allocated pages active. Existing pages found
3955 * in the pagecache could be !page_huge_active() if they have been
3956 * isolated for migration.
3958 if (new_page)
3959 set_page_huge_active(page);
3961 unlock_page(page);
3962 out:
3963 return ret;
3965 backout:
3966 spin_unlock(ptl);
3967 backout_unlocked:
3968 unlock_page(page);
3969 restore_reserve_on_error(h, vma, haddr, page);
3970 put_page(page);
3971 goto out;
3974 #ifdef CONFIG_SMP
3975 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3977 unsigned long key[2];
3978 u32 hash;
3980 key[0] = (unsigned long) mapping;
3981 key[1] = idx;
3983 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
3985 return hash & (num_fault_mutexes - 1);
3987 #else
3989 * For uniprocesor systems we always use a single mutex, so just
3990 * return 0 and avoid the hashing overhead.
3992 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
3994 return 0;
3996 #endif
3998 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3999 unsigned long address, unsigned int flags)
4001 pte_t *ptep, entry;
4002 spinlock_t *ptl;
4003 vm_fault_t ret;
4004 u32 hash;
4005 pgoff_t idx;
4006 struct page *page = NULL;
4007 struct page *pagecache_page = NULL;
4008 struct hstate *h = hstate_vma(vma);
4009 struct address_space *mapping;
4010 int need_wait_lock = 0;
4011 unsigned long haddr = address & huge_page_mask(h);
4013 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4014 if (ptep) {
4015 entry = huge_ptep_get(ptep);
4016 if (unlikely(is_hugetlb_entry_migration(entry))) {
4017 migration_entry_wait_huge(vma, mm, ptep);
4018 return 0;
4019 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4020 return VM_FAULT_HWPOISON_LARGE |
4021 VM_FAULT_SET_HINDEX(hstate_index(h));
4022 } else {
4023 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4024 if (!ptep)
4025 return VM_FAULT_OOM;
4028 mapping = vma->vm_file->f_mapping;
4029 idx = vma_hugecache_offset(h, vma, haddr);
4032 * Serialize hugepage allocation and instantiation, so that we don't
4033 * get spurious allocation failures if two CPUs race to instantiate
4034 * the same page in the page cache.
4036 hash = hugetlb_fault_mutex_hash(mapping, idx);
4037 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4039 entry = huge_ptep_get(ptep);
4040 if (huge_pte_none(entry)) {
4041 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4042 goto out_mutex;
4045 ret = 0;
4048 * entry could be a migration/hwpoison entry at this point, so this
4049 * check prevents the kernel from going below assuming that we have
4050 * a active hugepage in pagecache. This goto expects the 2nd page fault,
4051 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
4052 * handle it.
4054 if (!pte_present(entry))
4055 goto out_mutex;
4058 * If we are going to COW the mapping later, we examine the pending
4059 * reservations for this page now. This will ensure that any
4060 * allocations necessary to record that reservation occur outside the
4061 * spinlock. For private mappings, we also lookup the pagecache
4062 * page now as it is used to determine if a reservation has been
4063 * consumed.
4065 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4066 if (vma_needs_reservation(h, vma, haddr) < 0) {
4067 ret = VM_FAULT_OOM;
4068 goto out_mutex;
4070 /* Just decrements count, does not deallocate */
4071 vma_end_reservation(h, vma, haddr);
4073 if (!(vma->vm_flags & VM_MAYSHARE))
4074 pagecache_page = hugetlbfs_pagecache_page(h,
4075 vma, haddr);
4078 ptl = huge_pte_lock(h, mm, ptep);
4080 /* Check for a racing update before calling hugetlb_cow */
4081 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4082 goto out_ptl;
4085 * hugetlb_cow() requires page locks of pte_page(entry) and
4086 * pagecache_page, so here we need take the former one
4087 * when page != pagecache_page or !pagecache_page.
4089 page = pte_page(entry);
4090 if (page != pagecache_page)
4091 if (!trylock_page(page)) {
4092 need_wait_lock = 1;
4093 goto out_ptl;
4096 get_page(page);
4098 if (flags & FAULT_FLAG_WRITE) {
4099 if (!huge_pte_write(entry)) {
4100 ret = hugetlb_cow(mm, vma, address, ptep,
4101 pagecache_page, ptl);
4102 goto out_put_page;
4104 entry = huge_pte_mkdirty(entry);
4106 entry = pte_mkyoung(entry);
4107 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4108 flags & FAULT_FLAG_WRITE))
4109 update_mmu_cache(vma, haddr, ptep);
4110 out_put_page:
4111 if (page != pagecache_page)
4112 unlock_page(page);
4113 put_page(page);
4114 out_ptl:
4115 spin_unlock(ptl);
4117 if (pagecache_page) {
4118 unlock_page(pagecache_page);
4119 put_page(pagecache_page);
4121 out_mutex:
4122 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4124 * Generally it's safe to hold refcount during waiting page lock. But
4125 * here we just wait to defer the next page fault to avoid busy loop and
4126 * the page is not used after unlocked before returning from the current
4127 * page fault. So we are safe from accessing freed page, even if we wait
4128 * here without taking refcount.
4130 if (need_wait_lock)
4131 wait_on_page_locked(page);
4132 return ret;
4136 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4137 * modifications for huge pages.
4139 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4140 pte_t *dst_pte,
4141 struct vm_area_struct *dst_vma,
4142 unsigned long dst_addr,
4143 unsigned long src_addr,
4144 struct page **pagep)
4146 struct address_space *mapping;
4147 pgoff_t idx;
4148 unsigned long size;
4149 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4150 struct hstate *h = hstate_vma(dst_vma);
4151 pte_t _dst_pte;
4152 spinlock_t *ptl;
4153 int ret;
4154 struct page *page;
4156 if (!*pagep) {
4157 ret = -ENOMEM;
4158 page = alloc_huge_page(dst_vma, dst_addr, 0);
4159 if (IS_ERR(page))
4160 goto out;
4162 ret = copy_huge_page_from_user(page,
4163 (const void __user *) src_addr,
4164 pages_per_huge_page(h), false);
4166 /* fallback to copy_from_user outside mmap_sem */
4167 if (unlikely(ret)) {
4168 ret = -ENOENT;
4169 *pagep = page;
4170 /* don't free the page */
4171 goto out;
4173 } else {
4174 page = *pagep;
4175 *pagep = NULL;
4179 * The memory barrier inside __SetPageUptodate makes sure that
4180 * preceding stores to the page contents become visible before
4181 * the set_pte_at() write.
4183 __SetPageUptodate(page);
4185 mapping = dst_vma->vm_file->f_mapping;
4186 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4189 * If shared, add to page cache
4191 if (vm_shared) {
4192 size = i_size_read(mapping->host) >> huge_page_shift(h);
4193 ret = -EFAULT;
4194 if (idx >= size)
4195 goto out_release_nounlock;
4198 * Serialization between remove_inode_hugepages() and
4199 * huge_add_to_page_cache() below happens through the
4200 * hugetlb_fault_mutex_table that here must be hold by
4201 * the caller.
4203 ret = huge_add_to_page_cache(page, mapping, idx);
4204 if (ret)
4205 goto out_release_nounlock;
4208 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4209 spin_lock(ptl);
4212 * Recheck the i_size after holding PT lock to make sure not
4213 * to leave any page mapped (as page_mapped()) beyond the end
4214 * of the i_size (remove_inode_hugepages() is strict about
4215 * enforcing that). If we bail out here, we'll also leave a
4216 * page in the radix tree in the vm_shared case beyond the end
4217 * of the i_size, but remove_inode_hugepages() will take care
4218 * of it as soon as we drop the hugetlb_fault_mutex_table.
4220 size = i_size_read(mapping->host) >> huge_page_shift(h);
4221 ret = -EFAULT;
4222 if (idx >= size)
4223 goto out_release_unlock;
4225 ret = -EEXIST;
4226 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4227 goto out_release_unlock;
4229 if (vm_shared) {
4230 page_dup_rmap(page, true);
4231 } else {
4232 ClearPagePrivate(page);
4233 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4236 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4237 if (dst_vma->vm_flags & VM_WRITE)
4238 _dst_pte = huge_pte_mkdirty(_dst_pte);
4239 _dst_pte = pte_mkyoung(_dst_pte);
4241 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4243 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4244 dst_vma->vm_flags & VM_WRITE);
4245 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4247 /* No need to invalidate - it was non-present before */
4248 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4250 spin_unlock(ptl);
4251 set_page_huge_active(page);
4252 if (vm_shared)
4253 unlock_page(page);
4254 ret = 0;
4255 out:
4256 return ret;
4257 out_release_unlock:
4258 spin_unlock(ptl);
4259 if (vm_shared)
4260 unlock_page(page);
4261 out_release_nounlock:
4262 put_page(page);
4263 goto out;
4266 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4267 struct page **pages, struct vm_area_struct **vmas,
4268 unsigned long *position, unsigned long *nr_pages,
4269 long i, unsigned int flags, int *nonblocking)
4271 unsigned long pfn_offset;
4272 unsigned long vaddr = *position;
4273 unsigned long remainder = *nr_pages;
4274 struct hstate *h = hstate_vma(vma);
4275 int err = -EFAULT;
4277 while (vaddr < vma->vm_end && remainder) {
4278 pte_t *pte;
4279 spinlock_t *ptl = NULL;
4280 int absent;
4281 struct page *page;
4284 * If we have a pending SIGKILL, don't keep faulting pages and
4285 * potentially allocating memory.
4287 if (fatal_signal_pending(current)) {
4288 remainder = 0;
4289 break;
4293 * Some archs (sparc64, sh*) have multiple pte_ts to
4294 * each hugepage. We have to make sure we get the
4295 * first, for the page indexing below to work.
4297 * Note that page table lock is not held when pte is null.
4299 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4300 huge_page_size(h));
4301 if (pte)
4302 ptl = huge_pte_lock(h, mm, pte);
4303 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4306 * When coredumping, it suits get_dump_page if we just return
4307 * an error where there's an empty slot with no huge pagecache
4308 * to back it. This way, we avoid allocating a hugepage, and
4309 * the sparse dumpfile avoids allocating disk blocks, but its
4310 * huge holes still show up with zeroes where they need to be.
4312 if (absent && (flags & FOLL_DUMP) &&
4313 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4314 if (pte)
4315 spin_unlock(ptl);
4316 remainder = 0;
4317 break;
4321 * We need call hugetlb_fault for both hugepages under migration
4322 * (in which case hugetlb_fault waits for the migration,) and
4323 * hwpoisoned hugepages (in which case we need to prevent the
4324 * caller from accessing to them.) In order to do this, we use
4325 * here is_swap_pte instead of is_hugetlb_entry_migration and
4326 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4327 * both cases, and because we can't follow correct pages
4328 * directly from any kind of swap entries.
4330 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4331 ((flags & FOLL_WRITE) &&
4332 !huge_pte_write(huge_ptep_get(pte)))) {
4333 vm_fault_t ret;
4334 unsigned int fault_flags = 0;
4336 if (pte)
4337 spin_unlock(ptl);
4338 if (flags & FOLL_WRITE)
4339 fault_flags |= FAULT_FLAG_WRITE;
4340 if (nonblocking)
4341 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4342 if (flags & FOLL_NOWAIT)
4343 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4344 FAULT_FLAG_RETRY_NOWAIT;
4345 if (flags & FOLL_TRIED) {
4346 VM_WARN_ON_ONCE(fault_flags &
4347 FAULT_FLAG_ALLOW_RETRY);
4348 fault_flags |= FAULT_FLAG_TRIED;
4350 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4351 if (ret & VM_FAULT_ERROR) {
4352 err = vm_fault_to_errno(ret, flags);
4353 remainder = 0;
4354 break;
4356 if (ret & VM_FAULT_RETRY) {
4357 if (nonblocking &&
4358 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4359 *nonblocking = 0;
4360 *nr_pages = 0;
4362 * VM_FAULT_RETRY must not return an
4363 * error, it will return zero
4364 * instead.
4366 * No need to update "position" as the
4367 * caller will not check it after
4368 * *nr_pages is set to 0.
4370 return i;
4372 continue;
4375 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4376 page = pte_page(huge_ptep_get(pte));
4379 * Instead of doing 'try_get_page()' below in the same_page
4380 * loop, just check the count once here.
4382 if (unlikely(page_count(page) <= 0)) {
4383 if (pages) {
4384 spin_unlock(ptl);
4385 remainder = 0;
4386 err = -ENOMEM;
4387 break;
4392 * If subpage information not requested, update counters
4393 * and skip the same_page loop below.
4395 if (!pages && !vmas && !pfn_offset &&
4396 (vaddr + huge_page_size(h) < vma->vm_end) &&
4397 (remainder >= pages_per_huge_page(h))) {
4398 vaddr += huge_page_size(h);
4399 remainder -= pages_per_huge_page(h);
4400 i += pages_per_huge_page(h);
4401 spin_unlock(ptl);
4402 continue;
4405 same_page:
4406 if (pages) {
4407 pages[i] = mem_map_offset(page, pfn_offset);
4408 get_page(pages[i]);
4411 if (vmas)
4412 vmas[i] = vma;
4414 vaddr += PAGE_SIZE;
4415 ++pfn_offset;
4416 --remainder;
4417 ++i;
4418 if (vaddr < vma->vm_end && remainder &&
4419 pfn_offset < pages_per_huge_page(h)) {
4421 * We use pfn_offset to avoid touching the pageframes
4422 * of this compound page.
4424 goto same_page;
4426 spin_unlock(ptl);
4428 *nr_pages = remainder;
4430 * setting position is actually required only if remainder is
4431 * not zero but it's faster not to add a "if (remainder)"
4432 * branch.
4434 *position = vaddr;
4436 return i ? i : err;
4439 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4441 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4442 * implement this.
4444 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4445 #endif
4447 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4448 unsigned long address, unsigned long end, pgprot_t newprot)
4450 struct mm_struct *mm = vma->vm_mm;
4451 unsigned long start = address;
4452 pte_t *ptep;
4453 pte_t pte;
4454 struct hstate *h = hstate_vma(vma);
4455 unsigned long pages = 0;
4456 bool shared_pmd = false;
4457 struct mmu_notifier_range range;
4460 * In the case of shared PMDs, the area to flush could be beyond
4461 * start/end. Set range.start/range.end to cover the maximum possible
4462 * range if PMD sharing is possible.
4464 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4465 0, vma, mm, start, end);
4466 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4468 BUG_ON(address >= end);
4469 flush_cache_range(vma, range.start, range.end);
4471 mmu_notifier_invalidate_range_start(&range);
4472 i_mmap_lock_write(vma->vm_file->f_mapping);
4473 for (; address < end; address += huge_page_size(h)) {
4474 spinlock_t *ptl;
4475 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4476 if (!ptep)
4477 continue;
4478 ptl = huge_pte_lock(h, mm, ptep);
4479 if (huge_pmd_unshare(mm, &address, ptep)) {
4480 pages++;
4481 spin_unlock(ptl);
4482 shared_pmd = true;
4483 continue;
4485 pte = huge_ptep_get(ptep);
4486 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4487 spin_unlock(ptl);
4488 continue;
4490 if (unlikely(is_hugetlb_entry_migration(pte))) {
4491 swp_entry_t entry = pte_to_swp_entry(pte);
4493 if (is_write_migration_entry(entry)) {
4494 pte_t newpte;
4496 make_migration_entry_read(&entry);
4497 newpte = swp_entry_to_pte(entry);
4498 set_huge_swap_pte_at(mm, address, ptep,
4499 newpte, huge_page_size(h));
4500 pages++;
4502 spin_unlock(ptl);
4503 continue;
4505 if (!huge_pte_none(pte)) {
4506 pte_t old_pte;
4508 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4509 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4510 pte = arch_make_huge_pte(pte, vma, NULL, 0);
4511 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4512 pages++;
4514 spin_unlock(ptl);
4517 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4518 * may have cleared our pud entry and done put_page on the page table:
4519 * once we release i_mmap_rwsem, another task can do the final put_page
4520 * and that page table be reused and filled with junk. If we actually
4521 * did unshare a page of pmds, flush the range corresponding to the pud.
4523 if (shared_pmd)
4524 flush_hugetlb_tlb_range(vma, range.start, range.end);
4525 else
4526 flush_hugetlb_tlb_range(vma, start, end);
4528 * No need to call mmu_notifier_invalidate_range() we are downgrading
4529 * page table protection not changing it to point to a new page.
4531 * See Documentation/vm/mmu_notifier.rst
4533 i_mmap_unlock_write(vma->vm_file->f_mapping);
4534 mmu_notifier_invalidate_range_end(&range);
4536 return pages << h->order;
4539 int hugetlb_reserve_pages(struct inode *inode,
4540 long from, long to,
4541 struct vm_area_struct *vma,
4542 vm_flags_t vm_flags)
4544 long ret, chg;
4545 struct hstate *h = hstate_inode(inode);
4546 struct hugepage_subpool *spool = subpool_inode(inode);
4547 struct resv_map *resv_map;
4548 long gbl_reserve;
4550 /* This should never happen */
4551 if (from > to) {
4552 VM_WARN(1, "%s called with a negative range\n", __func__);
4553 return -EINVAL;
4557 * Only apply hugepage reservation if asked. At fault time, an
4558 * attempt will be made for VM_NORESERVE to allocate a page
4559 * without using reserves
4561 if (vm_flags & VM_NORESERVE)
4562 return 0;
4565 * Shared mappings base their reservation on the number of pages that
4566 * are already allocated on behalf of the file. Private mappings need
4567 * to reserve the full area even if read-only as mprotect() may be
4568 * called to make the mapping read-write. Assume !vma is a shm mapping
4570 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4572 * resv_map can not be NULL as hugetlb_reserve_pages is only
4573 * called for inodes for which resv_maps were created (see
4574 * hugetlbfs_get_inode).
4576 resv_map = inode_resv_map(inode);
4578 chg = region_chg(resv_map, from, to);
4580 } else {
4581 resv_map = resv_map_alloc();
4582 if (!resv_map)
4583 return -ENOMEM;
4585 chg = to - from;
4587 set_vma_resv_map(vma, resv_map);
4588 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4591 if (chg < 0) {
4592 ret = chg;
4593 goto out_err;
4597 * There must be enough pages in the subpool for the mapping. If
4598 * the subpool has a minimum size, there may be some global
4599 * reservations already in place (gbl_reserve).
4601 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4602 if (gbl_reserve < 0) {
4603 ret = -ENOSPC;
4604 goto out_err;
4608 * Check enough hugepages are available for the reservation.
4609 * Hand the pages back to the subpool if there are not
4611 ret = hugetlb_acct_memory(h, gbl_reserve);
4612 if (ret < 0) {
4613 /* put back original number of pages, chg */
4614 (void)hugepage_subpool_put_pages(spool, chg);
4615 goto out_err;
4619 * Account for the reservations made. Shared mappings record regions
4620 * that have reservations as they are shared by multiple VMAs.
4621 * When the last VMA disappears, the region map says how much
4622 * the reservation was and the page cache tells how much of
4623 * the reservation was consumed. Private mappings are per-VMA and
4624 * only the consumed reservations are tracked. When the VMA
4625 * disappears, the original reservation is the VMA size and the
4626 * consumed reservations are stored in the map. Hence, nothing
4627 * else has to be done for private mappings here
4629 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4630 long add = region_add(resv_map, from, to);
4632 if (unlikely(chg > add)) {
4634 * pages in this range were added to the reserve
4635 * map between region_chg and region_add. This
4636 * indicates a race with alloc_huge_page. Adjust
4637 * the subpool and reserve counts modified above
4638 * based on the difference.
4640 long rsv_adjust;
4642 rsv_adjust = hugepage_subpool_put_pages(spool,
4643 chg - add);
4644 hugetlb_acct_memory(h, -rsv_adjust);
4647 return 0;
4648 out_err:
4649 if (!vma || vma->vm_flags & VM_MAYSHARE)
4650 /* Don't call region_abort if region_chg failed */
4651 if (chg >= 0)
4652 region_abort(resv_map, from, to);
4653 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4654 kref_put(&resv_map->refs, resv_map_release);
4655 return ret;
4658 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4659 long freed)
4661 struct hstate *h = hstate_inode(inode);
4662 struct resv_map *resv_map = inode_resv_map(inode);
4663 long chg = 0;
4664 struct hugepage_subpool *spool = subpool_inode(inode);
4665 long gbl_reserve;
4668 * Since this routine can be called in the evict inode path for all
4669 * hugetlbfs inodes, resv_map could be NULL.
4671 if (resv_map) {
4672 chg = region_del(resv_map, start, end);
4674 * region_del() can fail in the rare case where a region
4675 * must be split and another region descriptor can not be
4676 * allocated. If end == LONG_MAX, it will not fail.
4678 if (chg < 0)
4679 return chg;
4682 spin_lock(&inode->i_lock);
4683 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4684 spin_unlock(&inode->i_lock);
4687 * If the subpool has a minimum size, the number of global
4688 * reservations to be released may be adjusted.
4690 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4691 hugetlb_acct_memory(h, -gbl_reserve);
4693 return 0;
4696 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4697 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4698 struct vm_area_struct *vma,
4699 unsigned long addr, pgoff_t idx)
4701 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4702 svma->vm_start;
4703 unsigned long sbase = saddr & PUD_MASK;
4704 unsigned long s_end = sbase + PUD_SIZE;
4706 /* Allow segments to share if only one is marked locked */
4707 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4708 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
4711 * match the virtual addresses, permission and the alignment of the
4712 * page table page.
4714 if (pmd_index(addr) != pmd_index(saddr) ||
4715 vm_flags != svm_flags ||
4716 sbase < svma->vm_start || svma->vm_end < s_end)
4717 return 0;
4719 return saddr;
4722 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4724 unsigned long base = addr & PUD_MASK;
4725 unsigned long end = base + PUD_SIZE;
4728 * check on proper vm_flags and page table alignment
4730 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
4731 return true;
4732 return false;
4736 * Determine if start,end range within vma could be mapped by shared pmd.
4737 * If yes, adjust start and end to cover range associated with possible
4738 * shared pmd mappings.
4740 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4741 unsigned long *start, unsigned long *end)
4743 unsigned long check_addr = *start;
4745 if (!(vma->vm_flags & VM_MAYSHARE))
4746 return;
4748 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4749 unsigned long a_start = check_addr & PUD_MASK;
4750 unsigned long a_end = a_start + PUD_SIZE;
4753 * If sharing is possible, adjust start/end if necessary.
4755 if (range_in_vma(vma, a_start, a_end)) {
4756 if (a_start < *start)
4757 *start = a_start;
4758 if (a_end > *end)
4759 *end = a_end;
4765 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4766 * and returns the corresponding pte. While this is not necessary for the
4767 * !shared pmd case because we can allocate the pmd later as well, it makes the
4768 * code much cleaner. pmd allocation is essential for the shared case because
4769 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4770 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4771 * bad pmd for sharing.
4773 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4775 struct vm_area_struct *vma = find_vma(mm, addr);
4776 struct address_space *mapping = vma->vm_file->f_mapping;
4777 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4778 vma->vm_pgoff;
4779 struct vm_area_struct *svma;
4780 unsigned long saddr;
4781 pte_t *spte = NULL;
4782 pte_t *pte;
4783 spinlock_t *ptl;
4785 if (!vma_shareable(vma, addr))
4786 return (pte_t *)pmd_alloc(mm, pud, addr);
4788 i_mmap_lock_read(mapping);
4789 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4790 if (svma == vma)
4791 continue;
4793 saddr = page_table_shareable(svma, vma, addr, idx);
4794 if (saddr) {
4795 spte = huge_pte_offset(svma->vm_mm, saddr,
4796 vma_mmu_pagesize(svma));
4797 if (spte) {
4798 get_page(virt_to_page(spte));
4799 break;
4804 if (!spte)
4805 goto out;
4807 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
4808 if (pud_none(*pud)) {
4809 pud_populate(mm, pud,
4810 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4811 mm_inc_nr_pmds(mm);
4812 } else {
4813 put_page(virt_to_page(spte));
4815 spin_unlock(ptl);
4816 out:
4817 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4818 i_mmap_unlock_read(mapping);
4819 return pte;
4823 * unmap huge page backed by shared pte.
4825 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4826 * indicated by page_count > 1, unmap is achieved by clearing pud and
4827 * decrementing the ref count. If count == 1, the pte page is not shared.
4829 * called with page table lock held.
4831 * returns: 1 successfully unmapped a shared pte page
4832 * 0 the underlying pte page is not shared, or it is the last user
4834 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4836 pgd_t *pgd = pgd_offset(mm, *addr);
4837 p4d_t *p4d = p4d_offset(pgd, *addr);
4838 pud_t *pud = pud_offset(p4d, *addr);
4840 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4841 if (page_count(virt_to_page(ptep)) == 1)
4842 return 0;
4844 pud_clear(pud);
4845 put_page(virt_to_page(ptep));
4846 mm_dec_nr_pmds(mm);
4847 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4848 return 1;
4850 #define want_pmd_share() (1)
4851 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4852 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4854 return NULL;
4857 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4859 return 0;
4862 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4863 unsigned long *start, unsigned long *end)
4866 #define want_pmd_share() (0)
4867 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4869 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4870 pte_t *huge_pte_alloc(struct mm_struct *mm,
4871 unsigned long addr, unsigned long sz)
4873 pgd_t *pgd;
4874 p4d_t *p4d;
4875 pud_t *pud;
4876 pte_t *pte = NULL;
4878 pgd = pgd_offset(mm, addr);
4879 p4d = p4d_alloc(mm, pgd, addr);
4880 if (!p4d)
4881 return NULL;
4882 pud = pud_alloc(mm, p4d, addr);
4883 if (pud) {
4884 if (sz == PUD_SIZE) {
4885 pte = (pte_t *)pud;
4886 } else {
4887 BUG_ON(sz != PMD_SIZE);
4888 if (want_pmd_share() && pud_none(*pud))
4889 pte = huge_pmd_share(mm, addr, pud);
4890 else
4891 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4894 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
4896 return pte;
4900 * huge_pte_offset() - Walk the page table to resolve the hugepage
4901 * entry at address @addr
4903 * Return: Pointer to page table or swap entry (PUD or PMD) for
4904 * address @addr, or NULL if a p*d_none() entry is encountered and the
4905 * size @sz doesn't match the hugepage size at this level of the page
4906 * table.
4908 pte_t *huge_pte_offset(struct mm_struct *mm,
4909 unsigned long addr, unsigned long sz)
4911 pgd_t *pgd;
4912 p4d_t *p4d;
4913 pud_t *pud;
4914 pmd_t *pmd;
4916 pgd = pgd_offset(mm, addr);
4917 if (!pgd_present(*pgd))
4918 return NULL;
4919 p4d = p4d_offset(pgd, addr);
4920 if (!p4d_present(*p4d))
4921 return NULL;
4923 pud = pud_offset(p4d, addr);
4924 if (sz != PUD_SIZE && pud_none(*pud))
4925 return NULL;
4926 /* hugepage or swap? */
4927 if (pud_huge(*pud) || !pud_present(*pud))
4928 return (pte_t *)pud;
4930 pmd = pmd_offset(pud, addr);
4931 if (sz != PMD_SIZE && pmd_none(*pmd))
4932 return NULL;
4933 /* hugepage or swap? */
4934 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4935 return (pte_t *)pmd;
4937 return NULL;
4940 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4943 * These functions are overwritable if your architecture needs its own
4944 * behavior.
4946 struct page * __weak
4947 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4948 int write)
4950 return ERR_PTR(-EINVAL);
4953 struct page * __weak
4954 follow_huge_pd(struct vm_area_struct *vma,
4955 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4957 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4958 return NULL;
4961 struct page * __weak
4962 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4963 pmd_t *pmd, int flags)
4965 struct page *page = NULL;
4966 spinlock_t *ptl;
4967 pte_t pte;
4968 retry:
4969 ptl = pmd_lockptr(mm, pmd);
4970 spin_lock(ptl);
4972 * make sure that the address range covered by this pmd is not
4973 * unmapped from other threads.
4975 if (!pmd_huge(*pmd))
4976 goto out;
4977 pte = huge_ptep_get((pte_t *)pmd);
4978 if (pte_present(pte)) {
4979 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4980 if (flags & FOLL_GET)
4981 get_page(page);
4982 } else {
4983 if (is_hugetlb_entry_migration(pte)) {
4984 spin_unlock(ptl);
4985 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4986 goto retry;
4989 * hwpoisoned entry is treated as no_page_table in
4990 * follow_page_mask().
4993 out:
4994 spin_unlock(ptl);
4995 return page;
4998 struct page * __weak
4999 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5000 pud_t *pud, int flags)
5002 if (flags & FOLL_GET)
5003 return NULL;
5005 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5008 struct page * __weak
5009 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5011 if (flags & FOLL_GET)
5012 return NULL;
5014 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5017 bool isolate_huge_page(struct page *page, struct list_head *list)
5019 bool ret = true;
5021 VM_BUG_ON_PAGE(!PageHead(page), page);
5022 spin_lock(&hugetlb_lock);
5023 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5024 ret = false;
5025 goto unlock;
5027 clear_page_huge_active(page);
5028 list_move_tail(&page->lru, list);
5029 unlock:
5030 spin_unlock(&hugetlb_lock);
5031 return ret;
5034 void putback_active_hugepage(struct page *page)
5036 VM_BUG_ON_PAGE(!PageHead(page), page);
5037 spin_lock(&hugetlb_lock);
5038 set_page_huge_active(page);
5039 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5040 spin_unlock(&hugetlb_lock);
5041 put_page(page);
5044 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5046 struct hstate *h = page_hstate(oldpage);
5048 hugetlb_cgroup_migrate(oldpage, newpage);
5049 set_page_owner_migrate_reason(newpage, reason);
5052 * transfer temporary state of the new huge page. This is
5053 * reverse to other transitions because the newpage is going to
5054 * be final while the old one will be freed so it takes over
5055 * the temporary status.
5057 * Also note that we have to transfer the per-node surplus state
5058 * here as well otherwise the global surplus count will not match
5059 * the per-node's.
5061 if (PageHugeTemporary(newpage)) {
5062 int old_nid = page_to_nid(oldpage);
5063 int new_nid = page_to_nid(newpage);
5065 SetPageHugeTemporary(oldpage);
5066 ClearPageHugeTemporary(newpage);
5068 spin_lock(&hugetlb_lock);
5069 if (h->surplus_huge_pages_node[old_nid]) {
5070 h->surplus_huge_pages_node[old_nid]--;
5071 h->surplus_huge_pages_node[new_nid]++;
5073 spin_unlock(&hugetlb_lock);