1 Virtual Routing and Forwarding (VRF)
2 ====================================
3 The VRF device combined with ip rules provides the ability to create virtual
4 routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
5 Linux network stack. One use case is the multi-tenancy problem where each
6 tenant has their own unique routing tables and in the very least need
7 different default gateways.
9 Processes can be "VRF aware" by binding a socket to the VRF device. Packets
10 through the socket then use the routing table associated with the VRF
11 device. An important feature of the VRF device implementation is that it
12 impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
13 (ie., they do not need to be run in each VRF). The design also allows
14 the use of higher priority ip rules (Policy Based Routing, PBR) to take
15 precedence over the VRF device rules directing specific traffic as desired.
17 In addition, VRF devices allow VRFs to be nested within namespaces. For
18 example network namespaces provide separation of network interfaces at the
19 device layer, VLANs on the interfaces within a namespace provide L2 separation
20 and then VRF devices provide L3 separation.
24 A VRF device is created with an associated route table. Network interfaces
25 are then enslaved to a VRF device:
27 +-----------------------------+
28 | vrf-blue | ===> route table 10
29 +-----------------------------+
31 +------+ +------+ +-------------+
32 | eth1 | | eth2 | ... | bond1 |
33 +------+ +------+ +-------------+
39 Packets received on an enslaved device and are switched to the VRF device
40 in the IPv4 and IPv6 processing stacks giving the impression that packets
41 flow through the VRF device. Similarly on egress routing rules are used to
42 send packets to the VRF device driver before getting sent out the actual
43 interface. This allows tcpdump on a VRF device to capture all packets into
44 and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
45 applied using the VRF device to specify rules that apply to the VRF domain
48 [1] Packets in the forwarded state do not flow through the device, so those
49 packets are not seen by tcpdump. Will revisit this limitation in a
52 [2] Iptables on ingress supports PREROUTING with skb->dev set to the real
53 ingress device and both INPUT and PREROUTING rules with skb->dev set to
54 the VRF device. For egress POSTROUTING and OUTPUT rules can be written
55 using either the VRF device or real egress device.
59 1. VRF device is created with an association to a FIB table.
60 e.g, ip link add vrf-blue type vrf table 10
61 ip link set dev vrf-blue up
63 2. An l3mdev FIB rule directs lookups to the table associated with the device.
64 A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
65 l3mdev rule for IPv4 and IPv6 when the first device is created with a
66 default preference of 1000. Users may delete the rule if desired and add
67 with a different priority or install per-VRF rules.
69 Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
70 ip ru add oif vrf-blue table 10
71 ip ru add iif vrf-blue table 10
73 3. Set the default route for the table (and hence default route for the VRF).
74 ip route add table 10 unreachable default metric 4278198272
76 This high metric value ensures that the default unreachable route can
77 be overridden by a routing protocol suite. FRRouting interprets
78 kernel metrics as a combined admin distance (upper byte) and priority
79 (lower 3 bytes). Thus the above metric translates to [255/8192].
81 4. Enslave L3 interfaces to a VRF device.
82 ip link set dev eth1 master vrf-blue
84 Local and connected routes for enslaved devices are automatically moved to
85 the table associated with VRF device. Any additional routes depending on
86 the enslaved device are dropped and will need to be reinserted to the VRF
87 FIB table following the enslavement.
89 The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
90 addresses as VRF enslavement changes.
91 sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
93 5. Additional VRF routes are added to associated table.
94 ip route add table 10 ...
99 Applications that are to work within a VRF need to bind their socket to the
102 setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
104 or to specify the output device using cmsg and IP_PKTINFO.
106 By default the scope of the port bindings for unbound sockets is
107 limited to the default VRF. That is, it will not be matched by packets
108 arriving on interfaces enslaved to an l3mdev and processes may bind to
109 the same port if they bind to an l3mdev.
111 TCP & UDP services running in the default VRF context (ie., not bound
112 to any VRF device) can work across all VRF domains by enabling the
113 tcp_l3mdev_accept and udp_l3mdev_accept sysctl options:
115 sysctl -w net.ipv4.tcp_l3mdev_accept=1
116 sysctl -w net.ipv4.udp_l3mdev_accept=1
118 These options are disabled by default so that a socket in a VRF is only
119 selected for packets in that VRF. There is a similar option for RAW
120 sockets, which is enabled by default for reasons of backwards compatibility.
121 This is so as to specify the output device with cmsg and IP_PKTINFO, but
122 using a socket not bound to the corresponding VRF. This allows e.g. older ping
123 implementations to be run with specifying the device but without executing it
124 in the VRF. This option can be disabled so that packets received in a VRF
125 context are only handled by a raw socket bound to the VRF, and packets in the
126 default VRF are only handled by a socket not bound to any VRF:
128 sysctl -w net.ipv4.raw_l3mdev_accept=0
130 netfilter rules on the VRF device can be used to limit access to services
131 running in the default VRF context as well.
133 ################################################################################
135 Using iproute2 for VRFs
136 =======================
137 iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
138 section lists both commands where appropriate -- with the vrf keyword and the
139 older form without it.
143 To instantiate a VRF device and associate it with a table:
144 $ ip link add dev NAME type vrf table ID
146 As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
147 covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
152 To list VRFs that have been created:
153 $ ip [-d] link show type vrf
154 NOTE: The -d option is needed to show the table id
157 $ ip -d link show type vrf
158 11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
159 link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
160 vrf table 1 addrgenmode eui64
161 12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
162 link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
163 vrf table 10 addrgenmode eui64
164 13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
165 link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
166 vrf table 66 addrgenmode eui64
167 14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
168 link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
169 vrf table 81 addrgenmode eui64
174 $ ip -br link show type vrf
175 mgmt UP 72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
176 red UP b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
177 blue UP 36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
178 green UP e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
181 3. Assign a Network Interface to a VRF
183 Network interfaces are assigned to a VRF by enslaving the netdevice to a
185 $ ip link set dev NAME master NAME
187 On enslavement connected and local routes are automatically moved to the
188 table associated with the VRF device.
191 $ ip link set dev eth0 master mgmt
194 4. Show Devices Assigned to a VRF
196 To show devices that have been assigned to a specific VRF add the master
197 option to the ip command:
198 $ ip link show vrf NAME
199 $ ip link show master NAME
202 $ ip link show vrf red
203 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
204 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
205 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
206 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
207 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
208 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
211 Or using the brief output:
212 $ ip -br link show vrf red
213 eth1 UP 02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
214 eth2 UP 02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
215 eth5 DOWN 02:00:00:00:02:06 <BROADCAST,MULTICAST>
218 5. Show Neighbor Entries for a VRF
220 To list neighbor entries associated with devices enslaved to a VRF device
221 add the master option to the ip command:
222 $ ip [-6] neigh show vrf NAME
223 $ ip [-6] neigh show master NAME
226 $ ip neigh show vrf red
227 10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
228 10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
230 $ ip -6 neigh show vrf red
231 2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
234 6. Show Addresses for a VRF
236 To show addresses for interfaces associated with a VRF add the master
237 option to the ip command:
238 $ ip addr show vrf NAME
239 $ ip addr show master NAME
242 $ ip addr show vrf red
243 3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
244 link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
245 inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
246 valid_lft forever preferred_lft forever
247 inet6 2002:1::2/120 scope global
248 valid_lft forever preferred_lft forever
249 inet6 fe80::ff:fe00:202/64 scope link
250 valid_lft forever preferred_lft forever
251 4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
252 link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
253 inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
254 valid_lft forever preferred_lft forever
255 inet6 2002:2::2/120 scope global
256 valid_lft forever preferred_lft forever
257 inet6 fe80::ff:fe00:203/64 scope link
258 valid_lft forever preferred_lft forever
259 7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
260 link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
263 $ ip -br addr show vrf red
264 eth1 UP 10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
265 eth2 UP 10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
269 7. Show Routes for a VRF
271 To show routes for a VRF use the ip command to display the table associated
273 $ ip [-6] route show vrf NAME
274 $ ip [-6] route show table ID
277 $ ip route show vrf red
278 unreachable default metric 4278198272
279 broadcast 10.2.1.0 dev eth1 proto kernel scope link src 10.2.1.2
280 10.2.1.0/24 dev eth1 proto kernel scope link src 10.2.1.2
281 local 10.2.1.2 dev eth1 proto kernel scope host src 10.2.1.2
282 broadcast 10.2.1.255 dev eth1 proto kernel scope link src 10.2.1.2
283 broadcast 10.2.2.0 dev eth2 proto kernel scope link src 10.2.2.2
284 10.2.2.0/24 dev eth2 proto kernel scope link src 10.2.2.2
285 local 10.2.2.2 dev eth2 proto kernel scope host src 10.2.2.2
286 broadcast 10.2.2.255 dev eth2 proto kernel scope link src 10.2.2.2
288 $ ip -6 route show vrf red
289 local 2002:1:: dev lo proto none metric 0 pref medium
290 local 2002:1::2 dev lo proto none metric 0 pref medium
291 2002:1::/120 dev eth1 proto kernel metric 256 pref medium
292 local 2002:2:: dev lo proto none metric 0 pref medium
293 local 2002:2::2 dev lo proto none metric 0 pref medium
294 2002:2::/120 dev eth2 proto kernel metric 256 pref medium
295 local fe80:: dev lo proto none metric 0 pref medium
296 local fe80:: dev lo proto none metric 0 pref medium
297 local fe80::ff:fe00:202 dev lo proto none metric 0 pref medium
298 local fe80::ff:fe00:203 dev lo proto none metric 0 pref medium
299 fe80::/64 dev eth1 proto kernel metric 256 pref medium
300 fe80::/64 dev eth2 proto kernel metric 256 pref medium
301 ff00::/8 dev red metric 256 pref medium
302 ff00::/8 dev eth1 metric 256 pref medium
303 ff00::/8 dev eth2 metric 256 pref medium
304 unreachable default dev lo metric 4278198272 error -101 pref medium
306 8. Route Lookup for a VRF
308 A test route lookup can be done for a VRF:
309 $ ip [-6] route get vrf NAME ADDRESS
310 $ ip [-6] route get oif NAME ADDRESS
313 $ ip route get 10.2.1.40 vrf red
314 10.2.1.40 dev eth1 table red src 10.2.1.2
317 $ ip -6 route get 2002:1::32 vrf red
318 2002:1::32 from :: dev eth1 table red proto kernel src 2002:1::2 metric 256 pref medium
321 9. Removing Network Interface from a VRF
323 Network interfaces are removed from a VRF by breaking the enslavement to
325 $ ip link set dev NAME nomaster
327 Connected routes are moved back to the default table and local entries are
328 moved to the local table.
331 $ ip link set dev eth0 nomaster
333 --------------------------------------------------------------------------------
335 Commands used in this example:
337 cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
350 ip link add ${VRF} type vrf table ${TBID}
352 if [ "${VRF}" != "mgmt" ]; then
353 ip route add table ${TBID} unreachable default metric 4278198272
355 ip link set dev ${VRF} up
359 ip link set dev eth0 master mgmt
362 ip link set dev eth1 master red
363 ip link set dev eth2 master red
364 ip link set dev eth5 master red
367 ip link set dev eth3 master blue
370 ip link set dev eth4 master green
373 Interface addresses from /etc/network/interfaces:
375 iface eth0 inet static
377 netmask 255.255.255.0
380 iface eth0 inet6 static
385 iface eth1 inet static
387 netmask 255.255.255.0
389 iface eth1 inet6 static
394 iface eth2 inet static
396 netmask 255.255.255.0
398 iface eth2 inet6 static
403 iface eth3 inet static
405 netmask 255.255.255.0
407 iface eth3 inet6 static
412 iface eth4 inet static
414 netmask 255.255.255.0
416 iface eth4 inet6 static