2 * intel_pstate.c: Native P state management for Intel processors
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
34 #include <asm/div64.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
42 #define ATOM_RATIOS 0x66a
43 #define ATOM_VIDS 0x66b
44 #define ATOM_TURBO_RATIOS 0x66c
45 #define ATOM_TURBO_VIDS 0x66d
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
57 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
58 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
59 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
61 static inline int32_t mul_fp(int32_t x
, int32_t y
)
63 return ((int64_t)x
* (int64_t)y
) >> FRAC_BITS
;
66 static inline int32_t div_fp(s64 x
, s64 y
)
68 return div64_s64((int64_t)x
<< FRAC_BITS
, y
);
71 static inline int ceiling_fp(int32_t x
)
76 mask
= (1 << FRAC_BITS
) - 1;
82 static inline u64
mul_ext_fp(u64 x
, u64 y
)
84 return (x
* y
) >> EXT_FRAC_BITS
;
87 static inline u64
div_ext_fp(u64 x
, u64 y
)
89 return div64_u64(x
<< EXT_FRAC_BITS
, y
);
93 * struct sample - Store performance sample
94 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
95 * performance during last sample period
96 * @busy_scaled: Scaled busy value which is used to calculate next
97 * P state. This can be different than core_avg_perf
98 * to account for cpu idle period
99 * @aperf: Difference of actual performance frequency clock count
100 * read from APERF MSR between last and current sample
101 * @mperf: Difference of maximum performance frequency clock count
102 * read from MPERF MSR between last and current sample
103 * @tsc: Difference of time stamp counter between last and
105 * @time: Current time from scheduler
107 * This structure is used in the cpudata structure to store performance sample
108 * data for choosing next P State.
111 int32_t core_avg_perf
;
120 * struct pstate_data - Store P state data
121 * @current_pstate: Current requested P state
122 * @min_pstate: Min P state possible for this platform
123 * @max_pstate: Max P state possible for this platform
124 * @max_pstate_physical:This is physical Max P state for a processor
125 * This can be higher than the max_pstate which can
126 * be limited by platform thermal design power limits
127 * @scaling: Scaling factor to convert frequency to cpufreq
129 * @turbo_pstate: Max Turbo P state possible for this platform
130 * @max_freq: @max_pstate frequency in cpufreq units
131 * @turbo_freq: @turbo_pstate frequency in cpufreq units
133 * Stores the per cpu model P state limits and current P state.
139 int max_pstate_physical
;
142 unsigned int max_freq
;
143 unsigned int turbo_freq
;
147 * struct vid_data - Stores voltage information data
148 * @min: VID data for this platform corresponding to
150 * @max: VID data corresponding to the highest P State.
151 * @turbo: VID data for turbo P state
152 * @ratio: Ratio of (vid max - vid min) /
153 * (max P state - Min P State)
155 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
156 * This data is used in Atom platforms, where in addition to target P state,
157 * the voltage data needs to be specified to select next P State.
167 * struct _pid - Stores PID data
168 * @setpoint: Target set point for busyness or performance
169 * @integral: Storage for accumulated error values
170 * @p_gain: PID proportional gain
171 * @i_gain: PID integral gain
172 * @d_gain: PID derivative gain
173 * @deadband: PID deadband
174 * @last_err: Last error storage for integral part of PID calculation
176 * Stores PID coefficients and last error for PID controller.
189 * struct perf_limits - Store user and policy limits
190 * @no_turbo: User requested turbo state from intel_pstate sysfs
191 * @turbo_disabled: Platform turbo status either from msr
192 * MSR_IA32_MISC_ENABLE or when maximum available pstate
193 * matches the maximum turbo pstate
194 * @max_perf_pct: Effective maximum performance limit in percentage, this
195 * is minimum of either limits enforced by cpufreq policy
196 * or limits from user set limits via intel_pstate sysfs
197 * @min_perf_pct: Effective minimum performance limit in percentage, this
198 * is maximum of either limits enforced by cpufreq policy
199 * or limits from user set limits via intel_pstate sysfs
200 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
201 * This value is used to limit max pstate
202 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
203 * This value is used to limit min pstate
204 * @max_policy_pct: The maximum performance in percentage enforced by
205 * cpufreq setpolicy interface
206 * @max_sysfs_pct: The maximum performance in percentage enforced by
207 * intel pstate sysfs interface, unused when per cpu
208 * controls are enforced
209 * @min_policy_pct: The minimum performance in percentage enforced by
210 * cpufreq setpolicy interface
211 * @min_sysfs_pct: The minimum performance in percentage enforced by
212 * intel pstate sysfs interface, unused when per cpu
213 * controls are enforced
215 * Storage for user and policy defined limits.
231 * struct cpudata - Per CPU instance data storage
232 * @cpu: CPU number for this instance data
233 * @policy: CPUFreq policy value
234 * @update_util: CPUFreq utility callback information
235 * @update_util_set: CPUFreq utility callback is set
236 * @iowait_boost: iowait-related boost fraction
237 * @last_update: Time of the last update.
238 * @pstate: Stores P state limits for this CPU
239 * @vid: Stores VID limits for this CPU
240 * @pid: Stores PID parameters for this CPU
241 * @last_sample_time: Last Sample time
242 * @prev_aperf: Last APERF value read from APERF MSR
243 * @prev_mperf: Last MPERF value read from MPERF MSR
244 * @prev_tsc: Last timestamp counter (TSC) value
245 * @prev_cummulative_iowait: IO Wait time difference from last and
247 * @sample: Storage for storing last Sample data
248 * @perf_limits: Pointer to perf_limit unique to this CPU
249 * Not all field in the structure are applicable
250 * when per cpu controls are enforced
251 * @acpi_perf_data: Stores ACPI perf information read from _PSS
252 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
253 * @epp_powersave: Last saved HWP energy performance preference
254 * (EPP) or energy performance bias (EPB),
255 * when policy switched to performance
256 * @epp_policy: Last saved policy used to set EPP/EPB
257 * @epp_default: Power on default HWP energy performance
259 * @epp_saved: Saved EPP/EPB during system suspend or CPU offline
262 * This structure stores per CPU instance data for all CPUs.
268 struct update_util_data update_util
;
269 bool update_util_set
;
271 struct pstate_data pstate
;
276 u64 last_sample_time
;
280 u64 prev_cummulative_iowait
;
281 struct sample sample
;
282 struct perf_limits
*perf_limits
;
284 struct acpi_processor_performance acpi_perf_data
;
285 bool valid_pss_table
;
287 unsigned int iowait_boost
;
294 static struct cpudata
**all_cpu_data
;
297 * struct pstate_adjust_policy - Stores static PID configuration data
298 * @sample_rate_ms: PID calculation sample rate in ms
299 * @sample_rate_ns: Sample rate calculation in ns
300 * @deadband: PID deadband
301 * @setpoint: PID Setpoint
302 * @p_gain_pct: PID proportional gain
303 * @i_gain_pct: PID integral gain
304 * @d_gain_pct: PID derivative gain
306 * Stores per CPU model static PID configuration data.
308 struct pstate_adjust_policy
{
319 * struct pstate_funcs - Per CPU model specific callbacks
320 * @get_max: Callback to get maximum non turbo effective P state
321 * @get_max_physical: Callback to get maximum non turbo physical P state
322 * @get_min: Callback to get minimum P state
323 * @get_turbo: Callback to get turbo P state
324 * @get_scaling: Callback to get frequency scaling factor
325 * @get_val: Callback to convert P state to actual MSR write value
326 * @get_vid: Callback to get VID data for Atom platforms
327 * @get_target_pstate: Callback to a function to calculate next P state to use
329 * Core and Atom CPU models have different way to get P State limits. This
330 * structure is used to store those callbacks.
332 struct pstate_funcs
{
333 int (*get_max
)(void);
334 int (*get_max_physical
)(void);
335 int (*get_min
)(void);
336 int (*get_turbo
)(void);
337 int (*get_scaling
)(void);
338 u64 (*get_val
)(struct cpudata
*, int pstate
);
339 void (*get_vid
)(struct cpudata
*);
340 int32_t (*get_target_pstate
)(struct cpudata
*);
344 * struct cpu_defaults- Per CPU model default config data
345 * @pid_policy: PID config data
346 * @funcs: Callback function data
348 struct cpu_defaults
{
349 struct pstate_adjust_policy pid_policy
;
350 struct pstate_funcs funcs
;
353 static inline int32_t get_target_pstate_use_performance(struct cpudata
*cpu
);
354 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata
*cpu
);
356 static struct pstate_adjust_policy pid_params __read_mostly
;
357 static struct pstate_funcs pstate_funcs __read_mostly
;
358 static int hwp_active __read_mostly
;
359 static bool per_cpu_limits __read_mostly
;
362 static bool acpi_ppc
;
365 static struct perf_limits performance_limits
= {
369 .max_perf
= int_ext_tofp(1),
371 .min_perf
= int_ext_tofp(1),
372 .max_policy_pct
= 100,
373 .max_sysfs_pct
= 100,
378 static struct perf_limits powersave_limits
= {
382 .max_perf
= int_ext_tofp(1),
385 .max_policy_pct
= 100,
386 .max_sysfs_pct
= 100,
391 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
392 static struct perf_limits
*limits
= &performance_limits
;
394 static struct perf_limits
*limits
= &powersave_limits
;
397 static DEFINE_MUTEX(intel_pstate_limits_lock
);
401 static bool intel_pstate_get_ppc_enable_status(void)
403 if (acpi_gbl_FADT
.preferred_profile
== PM_ENTERPRISE_SERVER
||
404 acpi_gbl_FADT
.preferred_profile
== PM_PERFORMANCE_SERVER
)
410 #ifdef CONFIG_ACPI_CPPC_LIB
412 /* The work item is needed to avoid CPU hotplug locking issues */
413 static void intel_pstste_sched_itmt_work_fn(struct work_struct
*work
)
415 sched_set_itmt_support();
418 static DECLARE_WORK(sched_itmt_work
, intel_pstste_sched_itmt_work_fn
);
420 static void intel_pstate_set_itmt_prio(int cpu
)
422 struct cppc_perf_caps cppc_perf
;
423 static u32 max_highest_perf
= 0, min_highest_perf
= U32_MAX
;
426 ret
= cppc_get_perf_caps(cpu
, &cppc_perf
);
431 * The priorities can be set regardless of whether or not
432 * sched_set_itmt_support(true) has been called and it is valid to
433 * update them at any time after it has been called.
435 sched_set_itmt_core_prio(cppc_perf
.highest_perf
, cpu
);
437 if (max_highest_perf
<= min_highest_perf
) {
438 if (cppc_perf
.highest_perf
> max_highest_perf
)
439 max_highest_perf
= cppc_perf
.highest_perf
;
441 if (cppc_perf
.highest_perf
< min_highest_perf
)
442 min_highest_perf
= cppc_perf
.highest_perf
;
444 if (max_highest_perf
> min_highest_perf
) {
446 * This code can be run during CPU online under the
447 * CPU hotplug locks, so sched_set_itmt_support()
448 * cannot be called from here. Queue up a work item
451 schedule_work(&sched_itmt_work
);
456 static void intel_pstate_set_itmt_prio(int cpu
)
461 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
468 intel_pstate_set_itmt_prio(policy
->cpu
);
472 if (!intel_pstate_get_ppc_enable_status())
475 cpu
= all_cpu_data
[policy
->cpu
];
477 ret
= acpi_processor_register_performance(&cpu
->acpi_perf_data
,
483 * Check if the control value in _PSS is for PERF_CTL MSR, which should
484 * guarantee that the states returned by it map to the states in our
487 if (cpu
->acpi_perf_data
.control_register
.space_id
!=
488 ACPI_ADR_SPACE_FIXED_HARDWARE
)
492 * If there is only one entry _PSS, simply ignore _PSS and continue as
493 * usual without taking _PSS into account
495 if (cpu
->acpi_perf_data
.state_count
< 2)
498 pr_debug("CPU%u - ACPI _PSS perf data\n", policy
->cpu
);
499 for (i
= 0; i
< cpu
->acpi_perf_data
.state_count
; i
++) {
500 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
501 (i
== cpu
->acpi_perf_data
.state
? '*' : ' '), i
,
502 (u32
) cpu
->acpi_perf_data
.states
[i
].core_frequency
,
503 (u32
) cpu
->acpi_perf_data
.states
[i
].power
,
504 (u32
) cpu
->acpi_perf_data
.states
[i
].control
);
508 * The _PSS table doesn't contain whole turbo frequency range.
509 * This just contains +1 MHZ above the max non turbo frequency,
510 * with control value corresponding to max turbo ratio. But
511 * when cpufreq set policy is called, it will call with this
512 * max frequency, which will cause a reduced performance as
513 * this driver uses real max turbo frequency as the max
514 * frequency. So correct this frequency in _PSS table to
515 * correct max turbo frequency based on the turbo state.
516 * Also need to convert to MHz as _PSS freq is in MHz.
518 if (!limits
->turbo_disabled
)
519 cpu
->acpi_perf_data
.states
[0].core_frequency
=
520 policy
->cpuinfo
.max_freq
/ 1000;
521 cpu
->valid_pss_table
= true;
522 pr_debug("_PPC limits will be enforced\n");
527 cpu
->valid_pss_table
= false;
528 acpi_processor_unregister_performance(policy
->cpu
);
531 static void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
535 cpu
= all_cpu_data
[policy
->cpu
];
536 if (!cpu
->valid_pss_table
)
539 acpi_processor_unregister_performance(policy
->cpu
);
543 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy
*policy
)
547 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy
*policy
)
552 static inline void pid_reset(struct _pid
*pid
, int setpoint
, int busy
,
553 int deadband
, int integral
) {
554 pid
->setpoint
= int_tofp(setpoint
);
555 pid
->deadband
= int_tofp(deadband
);
556 pid
->integral
= int_tofp(integral
);
557 pid
->last_err
= int_tofp(setpoint
) - int_tofp(busy
);
560 static inline void pid_p_gain_set(struct _pid
*pid
, int percent
)
562 pid
->p_gain
= div_fp(percent
, 100);
565 static inline void pid_i_gain_set(struct _pid
*pid
, int percent
)
567 pid
->i_gain
= div_fp(percent
, 100);
570 static inline void pid_d_gain_set(struct _pid
*pid
, int percent
)
572 pid
->d_gain
= div_fp(percent
, 100);
575 static signed int pid_calc(struct _pid
*pid
, int32_t busy
)
578 int32_t pterm
, dterm
, fp_error
;
579 int32_t integral_limit
;
581 fp_error
= pid
->setpoint
- busy
;
583 if (abs(fp_error
) <= pid
->deadband
)
586 pterm
= mul_fp(pid
->p_gain
, fp_error
);
588 pid
->integral
+= fp_error
;
591 * We limit the integral here so that it will never
592 * get higher than 30. This prevents it from becoming
593 * too large an input over long periods of time and allows
594 * it to get factored out sooner.
596 * The value of 30 was chosen through experimentation.
598 integral_limit
= int_tofp(30);
599 if (pid
->integral
> integral_limit
)
600 pid
->integral
= integral_limit
;
601 if (pid
->integral
< -integral_limit
)
602 pid
->integral
= -integral_limit
;
604 dterm
= mul_fp(pid
->d_gain
, fp_error
- pid
->last_err
);
605 pid
->last_err
= fp_error
;
607 result
= pterm
+ mul_fp(pid
->integral
, pid
->i_gain
) + dterm
;
608 result
= result
+ (1 << (FRAC_BITS
-1));
609 return (signed int)fp_toint(result
);
612 static inline void intel_pstate_busy_pid_reset(struct cpudata
*cpu
)
614 pid_p_gain_set(&cpu
->pid
, pid_params
.p_gain_pct
);
615 pid_d_gain_set(&cpu
->pid
, pid_params
.d_gain_pct
);
616 pid_i_gain_set(&cpu
->pid
, pid_params
.i_gain_pct
);
618 pid_reset(&cpu
->pid
, pid_params
.setpoint
, 100, pid_params
.deadband
, 0);
621 static inline void intel_pstate_reset_all_pid(void)
625 for_each_online_cpu(cpu
) {
626 if (all_cpu_data
[cpu
])
627 intel_pstate_busy_pid_reset(all_cpu_data
[cpu
]);
631 static inline void update_turbo_state(void)
636 cpu
= all_cpu_data
[0];
637 rdmsrl(MSR_IA32_MISC_ENABLE
, misc_en
);
638 limits
->turbo_disabled
=
639 (misc_en
& MSR_IA32_MISC_ENABLE_TURBO_DISABLE
||
640 cpu
->pstate
.max_pstate
== cpu
->pstate
.turbo_pstate
);
643 static s16
intel_pstate_get_epb(struct cpudata
*cpu_data
)
648 if (!static_cpu_has(X86_FEATURE_EPB
))
651 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
655 return (s16
)(epb
& 0x0f);
658 static s16
intel_pstate_get_epp(struct cpudata
*cpu_data
, u64 hwp_req_data
)
662 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
664 * When hwp_req_data is 0, means that caller didn't read
665 * MSR_HWP_REQUEST, so need to read and get EPP.
668 epp
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
,
673 epp
= (hwp_req_data
>> 24) & 0xff;
675 /* When there is no EPP present, HWP uses EPB settings */
676 epp
= intel_pstate_get_epb(cpu_data
);
682 static int intel_pstate_set_epb(int cpu
, s16 pref
)
687 if (!static_cpu_has(X86_FEATURE_EPB
))
690 ret
= rdmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, &epb
);
694 epb
= (epb
& ~0x0f) | pref
;
695 wrmsrl_on_cpu(cpu
, MSR_IA32_ENERGY_PERF_BIAS
, epb
);
701 * EPP/EPB display strings corresponding to EPP index in the
702 * energy_perf_strings[]
704 *-------------------------------------
707 * 2 balance_performance
711 static const char * const energy_perf_strings
[] = {
714 "balance_performance",
720 static int intel_pstate_get_energy_pref_index(struct cpudata
*cpu_data
)
725 epp
= intel_pstate_get_epp(cpu_data
, 0);
729 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
732 * 0x00-0x3F : Performance
733 * 0x40-0x7F : Balance performance
734 * 0x80-0xBF : Balance power
736 * The EPP is a 8 bit value, but our ranges restrict the
737 * value which can be set. Here only using top two bits
740 index
= (epp
>> 6) + 1;
741 } else if (static_cpu_has(X86_FEATURE_EPB
)) {
744 * 0x00-0x03 : Performance
745 * 0x04-0x07 : Balance performance
746 * 0x08-0x0B : Balance power
748 * The EPB is a 4 bit value, but our ranges restrict the
749 * value which can be set. Here only using top two bits
752 index
= (epp
>> 2) + 1;
758 static int intel_pstate_set_energy_pref_index(struct cpudata
*cpu_data
,
765 epp
= cpu_data
->epp_default
;
767 mutex_lock(&intel_pstate_limits_lock
);
769 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
772 ret
= rdmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, &value
);
776 value
&= ~GENMASK_ULL(31, 24);
779 * If epp is not default, convert from index into
780 * energy_perf_strings to epp value, by shifting 6
781 * bits left to use only top two bits in epp.
782 * The resultant epp need to shifted by 24 bits to
783 * epp position in MSR_HWP_REQUEST.
786 epp
= (pref_index
- 1) << 6;
788 value
|= (u64
)epp
<< 24;
789 ret
= wrmsrl_on_cpu(cpu_data
->cpu
, MSR_HWP_REQUEST
, value
);
792 epp
= (pref_index
- 1) << 2;
793 ret
= intel_pstate_set_epb(cpu_data
->cpu
, epp
);
796 mutex_unlock(&intel_pstate_limits_lock
);
801 static ssize_t
show_energy_performance_available_preferences(
802 struct cpufreq_policy
*policy
, char *buf
)
807 while (energy_perf_strings
[i
] != NULL
)
808 ret
+= sprintf(&buf
[ret
], "%s ", energy_perf_strings
[i
++]);
810 ret
+= sprintf(&buf
[ret
], "\n");
815 cpufreq_freq_attr_ro(energy_performance_available_preferences
);
817 static ssize_t
store_energy_performance_preference(
818 struct cpufreq_policy
*policy
, const char *buf
, size_t count
)
820 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
821 char str_preference
[21];
824 ret
= sscanf(buf
, "%20s", str_preference
);
828 while (energy_perf_strings
[i
] != NULL
) {
829 if (!strcmp(str_preference
, energy_perf_strings
[i
])) {
830 intel_pstate_set_energy_pref_index(cpu_data
, i
);
839 static ssize_t
show_energy_performance_preference(
840 struct cpufreq_policy
*policy
, char *buf
)
842 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
845 preference
= intel_pstate_get_energy_pref_index(cpu_data
);
849 return sprintf(buf
, "%s\n", energy_perf_strings
[preference
]);
852 cpufreq_freq_attr_rw(energy_performance_preference
);
854 static struct freq_attr
*hwp_cpufreq_attrs
[] = {
855 &energy_performance_preference
,
856 &energy_performance_available_preferences
,
860 static void intel_pstate_hwp_set(const struct cpumask
*cpumask
)
862 int min
, hw_min
, max
, hw_max
, cpu
, range
, adj_range
;
863 struct perf_limits
*perf_limits
= limits
;
866 for_each_cpu(cpu
, cpumask
) {
867 int max_perf_pct
, min_perf_pct
;
868 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
872 perf_limits
= all_cpu_data
[cpu
]->perf_limits
;
874 rdmsrl_on_cpu(cpu
, MSR_HWP_CAPABILITIES
, &cap
);
875 hw_min
= HWP_LOWEST_PERF(cap
);
876 hw_max
= HWP_HIGHEST_PERF(cap
);
877 range
= hw_max
- hw_min
;
879 max_perf_pct
= perf_limits
->max_perf_pct
;
880 min_perf_pct
= perf_limits
->min_perf_pct
;
882 rdmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, &value
);
883 adj_range
= min_perf_pct
* range
/ 100;
884 min
= hw_min
+ adj_range
;
885 value
&= ~HWP_MIN_PERF(~0L);
886 value
|= HWP_MIN_PERF(min
);
888 adj_range
= max_perf_pct
* range
/ 100;
889 max
= hw_min
+ adj_range
;
890 if (limits
->no_turbo
) {
891 hw_max
= HWP_GUARANTEED_PERF(cap
);
896 value
&= ~HWP_MAX_PERF(~0L);
897 value
|= HWP_MAX_PERF(max
);
899 if (cpu_data
->epp_policy
== cpu_data
->policy
)
902 cpu_data
->epp_policy
= cpu_data
->policy
;
904 if (cpu_data
->epp_saved
>= 0) {
905 epp
= cpu_data
->epp_saved
;
906 cpu_data
->epp_saved
= -EINVAL
;
910 if (cpu_data
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
911 epp
= intel_pstate_get_epp(cpu_data
, value
);
912 cpu_data
->epp_powersave
= epp
;
913 /* If EPP read was failed, then don't try to write */
920 /* skip setting EPP, when saved value is invalid */
921 if (cpu_data
->epp_powersave
< 0)
925 * No need to restore EPP when it is not zero. This
927 * - Policy is not changed
928 * - user has manually changed
929 * - Error reading EPB
931 epp
= intel_pstate_get_epp(cpu_data
, value
);
935 epp
= cpu_data
->epp_powersave
;
938 if (static_cpu_has(X86_FEATURE_HWP_EPP
)) {
939 value
&= ~GENMASK_ULL(31, 24);
940 value
|= (u64
)epp
<< 24;
942 intel_pstate_set_epb(cpu
, epp
);
945 wrmsrl_on_cpu(cpu
, MSR_HWP_REQUEST
, value
);
949 static int intel_pstate_hwp_set_policy(struct cpufreq_policy
*policy
)
952 intel_pstate_hwp_set(policy
->cpus
);
957 static int intel_pstate_hwp_save_state(struct cpufreq_policy
*policy
)
959 struct cpudata
*cpu_data
= all_cpu_data
[policy
->cpu
];
964 cpu_data
->epp_saved
= intel_pstate_get_epp(cpu_data
, 0);
969 static int intel_pstate_resume(struct cpufreq_policy
*policy
)
974 all_cpu_data
[policy
->cpu
]->epp_policy
= 0;
976 return intel_pstate_hwp_set_policy(policy
);
979 static void intel_pstate_hwp_set_online_cpus(void)
982 intel_pstate_hwp_set(cpu_online_mask
);
986 /************************** debugfs begin ************************/
987 static int pid_param_set(void *data
, u64 val
)
990 intel_pstate_reset_all_pid();
994 static int pid_param_get(void *data
, u64
*val
)
999 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param
, pid_param_get
, pid_param_set
, "%llu\n");
1006 static struct pid_param pid_files
[] = {
1007 {"sample_rate_ms", &pid_params
.sample_rate_ms
},
1008 {"d_gain_pct", &pid_params
.d_gain_pct
},
1009 {"i_gain_pct", &pid_params
.i_gain_pct
},
1010 {"deadband", &pid_params
.deadband
},
1011 {"setpoint", &pid_params
.setpoint
},
1012 {"p_gain_pct", &pid_params
.p_gain_pct
},
1016 static void __init
intel_pstate_debug_expose_params(void)
1018 struct dentry
*debugfs_parent
;
1022 pstate_funcs
.get_target_pstate
== get_target_pstate_use_cpu_load
)
1025 debugfs_parent
= debugfs_create_dir("pstate_snb", NULL
);
1026 if (IS_ERR_OR_NULL(debugfs_parent
))
1028 while (pid_files
[i
].name
) {
1029 debugfs_create_file(pid_files
[i
].name
, 0660,
1030 debugfs_parent
, pid_files
[i
].value
,
1036 /************************** debugfs end ************************/
1038 /************************** sysfs begin ************************/
1039 #define show_one(file_name, object) \
1040 static ssize_t show_##file_name \
1041 (struct kobject *kobj, struct attribute *attr, char *buf) \
1043 return sprintf(buf, "%u\n", limits->object); \
1046 static ssize_t
show_turbo_pct(struct kobject
*kobj
,
1047 struct attribute
*attr
, char *buf
)
1049 struct cpudata
*cpu
;
1050 int total
, no_turbo
, turbo_pct
;
1053 cpu
= all_cpu_data
[0];
1055 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
1056 no_turbo
= cpu
->pstate
.max_pstate
- cpu
->pstate
.min_pstate
+ 1;
1057 turbo_fp
= div_fp(no_turbo
, total
);
1058 turbo_pct
= 100 - fp_toint(mul_fp(turbo_fp
, int_tofp(100)));
1059 return sprintf(buf
, "%u\n", turbo_pct
);
1062 static ssize_t
show_num_pstates(struct kobject
*kobj
,
1063 struct attribute
*attr
, char *buf
)
1065 struct cpudata
*cpu
;
1068 cpu
= all_cpu_data
[0];
1069 total
= cpu
->pstate
.turbo_pstate
- cpu
->pstate
.min_pstate
+ 1;
1070 return sprintf(buf
, "%u\n", total
);
1073 static ssize_t
show_no_turbo(struct kobject
*kobj
,
1074 struct attribute
*attr
, char *buf
)
1078 update_turbo_state();
1079 if (limits
->turbo_disabled
)
1080 ret
= sprintf(buf
, "%u\n", limits
->turbo_disabled
);
1082 ret
= sprintf(buf
, "%u\n", limits
->no_turbo
);
1087 static ssize_t
store_no_turbo(struct kobject
*a
, struct attribute
*b
,
1088 const char *buf
, size_t count
)
1093 ret
= sscanf(buf
, "%u", &input
);
1097 mutex_lock(&intel_pstate_limits_lock
);
1099 update_turbo_state();
1100 if (limits
->turbo_disabled
) {
1101 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1102 mutex_unlock(&intel_pstate_limits_lock
);
1106 limits
->no_turbo
= clamp_t(int, input
, 0, 1);
1109 intel_pstate_hwp_set_online_cpus();
1111 mutex_unlock(&intel_pstate_limits_lock
);
1116 static ssize_t
store_max_perf_pct(struct kobject
*a
, struct attribute
*b
,
1117 const char *buf
, size_t count
)
1122 ret
= sscanf(buf
, "%u", &input
);
1126 mutex_lock(&intel_pstate_limits_lock
);
1128 limits
->max_sysfs_pct
= clamp_t(int, input
, 0 , 100);
1129 limits
->max_perf_pct
= min(limits
->max_policy_pct
,
1130 limits
->max_sysfs_pct
);
1131 limits
->max_perf_pct
= max(limits
->min_policy_pct
,
1132 limits
->max_perf_pct
);
1133 limits
->max_perf_pct
= max(limits
->min_perf_pct
,
1134 limits
->max_perf_pct
);
1135 limits
->max_perf
= div_ext_fp(limits
->max_perf_pct
, 100);
1138 intel_pstate_hwp_set_online_cpus();
1140 mutex_unlock(&intel_pstate_limits_lock
);
1145 static ssize_t
store_min_perf_pct(struct kobject
*a
, struct attribute
*b
,
1146 const char *buf
, size_t count
)
1151 ret
= sscanf(buf
, "%u", &input
);
1155 mutex_lock(&intel_pstate_limits_lock
);
1157 limits
->min_sysfs_pct
= clamp_t(int, input
, 0 , 100);
1158 limits
->min_perf_pct
= max(limits
->min_policy_pct
,
1159 limits
->min_sysfs_pct
);
1160 limits
->min_perf_pct
= min(limits
->max_policy_pct
,
1161 limits
->min_perf_pct
);
1162 limits
->min_perf_pct
= min(limits
->max_perf_pct
,
1163 limits
->min_perf_pct
);
1164 limits
->min_perf
= div_ext_fp(limits
->min_perf_pct
, 100);
1167 intel_pstate_hwp_set_online_cpus();
1169 mutex_unlock(&intel_pstate_limits_lock
);
1174 show_one(max_perf_pct
, max_perf_pct
);
1175 show_one(min_perf_pct
, min_perf_pct
);
1177 define_one_global_rw(no_turbo
);
1178 define_one_global_rw(max_perf_pct
);
1179 define_one_global_rw(min_perf_pct
);
1180 define_one_global_ro(turbo_pct
);
1181 define_one_global_ro(num_pstates
);
1183 static struct attribute
*intel_pstate_attributes
[] = {
1190 static struct attribute_group intel_pstate_attr_group
= {
1191 .attrs
= intel_pstate_attributes
,
1194 static void __init
intel_pstate_sysfs_expose_params(void)
1196 struct kobject
*intel_pstate_kobject
;
1199 intel_pstate_kobject
= kobject_create_and_add("intel_pstate",
1200 &cpu_subsys
.dev_root
->kobj
);
1201 if (WARN_ON(!intel_pstate_kobject
))
1204 rc
= sysfs_create_group(intel_pstate_kobject
, &intel_pstate_attr_group
);
1209 * If per cpu limits are enforced there are no global limits, so
1210 * return without creating max/min_perf_pct attributes
1215 rc
= sysfs_create_file(intel_pstate_kobject
, &max_perf_pct
.attr
);
1218 rc
= sysfs_create_file(intel_pstate_kobject
, &min_perf_pct
.attr
);
1222 /************************** sysfs end ************************/
1224 static void intel_pstate_hwp_enable(struct cpudata
*cpudata
)
1226 /* First disable HWP notification interrupt as we don't process them */
1227 if (static_cpu_has(X86_FEATURE_HWP_NOTIFY
))
1228 wrmsrl_on_cpu(cpudata
->cpu
, MSR_HWP_INTERRUPT
, 0x00);
1230 wrmsrl_on_cpu(cpudata
->cpu
, MSR_PM_ENABLE
, 0x1);
1231 cpudata
->epp_policy
= 0;
1232 if (cpudata
->epp_default
== -EINVAL
)
1233 cpudata
->epp_default
= intel_pstate_get_epp(cpudata
, 0);
1236 static int atom_get_min_pstate(void)
1240 rdmsrl(ATOM_RATIOS
, value
);
1241 return (value
>> 8) & 0x7F;
1244 static int atom_get_max_pstate(void)
1248 rdmsrl(ATOM_RATIOS
, value
);
1249 return (value
>> 16) & 0x7F;
1252 static int atom_get_turbo_pstate(void)
1256 rdmsrl(ATOM_TURBO_RATIOS
, value
);
1257 return value
& 0x7F;
1260 static u64
atom_get_val(struct cpudata
*cpudata
, int pstate
)
1266 val
= (u64
)pstate
<< 8;
1267 if (limits
->no_turbo
&& !limits
->turbo_disabled
)
1268 val
|= (u64
)1 << 32;
1270 vid_fp
= cpudata
->vid
.min
+ mul_fp(
1271 int_tofp(pstate
- cpudata
->pstate
.min_pstate
),
1272 cpudata
->vid
.ratio
);
1274 vid_fp
= clamp_t(int32_t, vid_fp
, cpudata
->vid
.min
, cpudata
->vid
.max
);
1275 vid
= ceiling_fp(vid_fp
);
1277 if (pstate
> cpudata
->pstate
.max_pstate
)
1278 vid
= cpudata
->vid
.turbo
;
1283 static int silvermont_get_scaling(void)
1287 /* Defined in Table 35-6 from SDM (Sept 2015) */
1288 static int silvermont_freq_table
[] = {
1289 83300, 100000, 133300, 116700, 80000};
1291 rdmsrl(MSR_FSB_FREQ
, value
);
1295 return silvermont_freq_table
[i
];
1298 static int airmont_get_scaling(void)
1302 /* Defined in Table 35-10 from SDM (Sept 2015) */
1303 static int airmont_freq_table
[] = {
1304 83300, 100000, 133300, 116700, 80000,
1305 93300, 90000, 88900, 87500};
1307 rdmsrl(MSR_FSB_FREQ
, value
);
1311 return airmont_freq_table
[i
];
1314 static void atom_get_vid(struct cpudata
*cpudata
)
1318 rdmsrl(ATOM_VIDS
, value
);
1319 cpudata
->vid
.min
= int_tofp((value
>> 8) & 0x7f);
1320 cpudata
->vid
.max
= int_tofp((value
>> 16) & 0x7f);
1321 cpudata
->vid
.ratio
= div_fp(
1322 cpudata
->vid
.max
- cpudata
->vid
.min
,
1323 int_tofp(cpudata
->pstate
.max_pstate
-
1324 cpudata
->pstate
.min_pstate
));
1326 rdmsrl(ATOM_TURBO_VIDS
, value
);
1327 cpudata
->vid
.turbo
= value
& 0x7f;
1330 static int core_get_min_pstate(void)
1334 rdmsrl(MSR_PLATFORM_INFO
, value
);
1335 return (value
>> 40) & 0xFF;
1338 static int core_get_max_pstate_physical(void)
1342 rdmsrl(MSR_PLATFORM_INFO
, value
);
1343 return (value
>> 8) & 0xFF;
1346 static int core_get_max_pstate(void)
1353 rdmsrl(MSR_PLATFORM_INFO
, plat_info
);
1354 max_pstate
= (plat_info
>> 8) & 0xFF;
1356 err
= rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO
, &tar
);
1358 /* Do some sanity checking for safety */
1359 if (plat_info
& 0x600000000) {
1364 err
= rdmsrl_safe(MSR_CONFIG_TDP_CONTROL
, &tdp_ctrl
);
1368 tdp_msr
= MSR_CONFIG_TDP_NOMINAL
+ (tdp_ctrl
& 0x3);
1369 err
= rdmsrl_safe(tdp_msr
, &tdp_ratio
);
1373 /* For level 1 and 2, bits[23:16] contain the ratio */
1377 tdp_ratio
&= 0xff; /* ratios are only 8 bits long */
1378 if (tdp_ratio
- 1 == tar
) {
1380 pr_debug("max_pstate=TAC %x\n", max_pstate
);
1391 static int core_get_turbo_pstate(void)
1396 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1397 nont
= core_get_max_pstate();
1398 ret
= (value
) & 255;
1404 static inline int core_get_scaling(void)
1409 static u64
core_get_val(struct cpudata
*cpudata
, int pstate
)
1413 val
= (u64
)pstate
<< 8;
1414 if (limits
->no_turbo
&& !limits
->turbo_disabled
)
1415 val
|= (u64
)1 << 32;
1420 static int knl_get_turbo_pstate(void)
1425 rdmsrl(MSR_TURBO_RATIO_LIMIT
, value
);
1426 nont
= core_get_max_pstate();
1427 ret
= (((value
) >> 8) & 0xFF);
1433 static struct cpu_defaults core_params
= {
1435 .sample_rate_ms
= 10,
1443 .get_max
= core_get_max_pstate
,
1444 .get_max_physical
= core_get_max_pstate_physical
,
1445 .get_min
= core_get_min_pstate
,
1446 .get_turbo
= core_get_turbo_pstate
,
1447 .get_scaling
= core_get_scaling
,
1448 .get_val
= core_get_val
,
1449 .get_target_pstate
= get_target_pstate_use_performance
,
1453 static const struct cpu_defaults silvermont_params
= {
1455 .sample_rate_ms
= 10,
1463 .get_max
= atom_get_max_pstate
,
1464 .get_max_physical
= atom_get_max_pstate
,
1465 .get_min
= atom_get_min_pstate
,
1466 .get_turbo
= atom_get_turbo_pstate
,
1467 .get_val
= atom_get_val
,
1468 .get_scaling
= silvermont_get_scaling
,
1469 .get_vid
= atom_get_vid
,
1470 .get_target_pstate
= get_target_pstate_use_cpu_load
,
1474 static const struct cpu_defaults airmont_params
= {
1476 .sample_rate_ms
= 10,
1484 .get_max
= atom_get_max_pstate
,
1485 .get_max_physical
= atom_get_max_pstate
,
1486 .get_min
= atom_get_min_pstate
,
1487 .get_turbo
= atom_get_turbo_pstate
,
1488 .get_val
= atom_get_val
,
1489 .get_scaling
= airmont_get_scaling
,
1490 .get_vid
= atom_get_vid
,
1491 .get_target_pstate
= get_target_pstate_use_cpu_load
,
1495 static const struct cpu_defaults knl_params
= {
1497 .sample_rate_ms
= 10,
1505 .get_max
= core_get_max_pstate
,
1506 .get_max_physical
= core_get_max_pstate_physical
,
1507 .get_min
= core_get_min_pstate
,
1508 .get_turbo
= knl_get_turbo_pstate
,
1509 .get_scaling
= core_get_scaling
,
1510 .get_val
= core_get_val
,
1511 .get_target_pstate
= get_target_pstate_use_performance
,
1515 static const struct cpu_defaults bxt_params
= {
1517 .sample_rate_ms
= 10,
1525 .get_max
= core_get_max_pstate
,
1526 .get_max_physical
= core_get_max_pstate_physical
,
1527 .get_min
= core_get_min_pstate
,
1528 .get_turbo
= core_get_turbo_pstate
,
1529 .get_scaling
= core_get_scaling
,
1530 .get_val
= core_get_val
,
1531 .get_target_pstate
= get_target_pstate_use_cpu_load
,
1535 static void intel_pstate_get_min_max(struct cpudata
*cpu
, int *min
, int *max
)
1537 int max_perf
= cpu
->pstate
.turbo_pstate
;
1540 struct perf_limits
*perf_limits
= limits
;
1542 if (limits
->no_turbo
|| limits
->turbo_disabled
)
1543 max_perf
= cpu
->pstate
.max_pstate
;
1546 perf_limits
= cpu
->perf_limits
;
1549 * performance can be limited by user through sysfs, by cpufreq
1550 * policy, or by cpu specific default values determined through
1553 max_perf_adj
= fp_ext_toint(max_perf
* perf_limits
->max_perf
);
1554 *max
= clamp_t(int, max_perf_adj
,
1555 cpu
->pstate
.min_pstate
, cpu
->pstate
.turbo_pstate
);
1557 min_perf
= fp_ext_toint(max_perf
* perf_limits
->min_perf
);
1558 *min
= clamp_t(int, min_perf
, cpu
->pstate
.min_pstate
, max_perf
);
1561 static void intel_pstate_set_pstate(struct cpudata
*cpu
, int pstate
)
1563 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1564 cpu
->pstate
.current_pstate
= pstate
;
1566 * Generally, there is no guarantee that this code will always run on
1567 * the CPU being updated, so force the register update to run on the
1570 wrmsrl_on_cpu(cpu
->cpu
, MSR_IA32_PERF_CTL
,
1571 pstate_funcs
.get_val(cpu
, pstate
));
1574 static void intel_pstate_set_min_pstate(struct cpudata
*cpu
)
1576 intel_pstate_set_pstate(cpu
, cpu
->pstate
.min_pstate
);
1579 static void intel_pstate_max_within_limits(struct cpudata
*cpu
)
1581 int min_pstate
, max_pstate
;
1583 update_turbo_state();
1584 intel_pstate_get_min_max(cpu
, &min_pstate
, &max_pstate
);
1585 intel_pstate_set_pstate(cpu
, max_pstate
);
1588 static void intel_pstate_get_cpu_pstates(struct cpudata
*cpu
)
1590 cpu
->pstate
.min_pstate
= pstate_funcs
.get_min();
1591 cpu
->pstate
.max_pstate
= pstate_funcs
.get_max();
1592 cpu
->pstate
.max_pstate_physical
= pstate_funcs
.get_max_physical();
1593 cpu
->pstate
.turbo_pstate
= pstate_funcs
.get_turbo();
1594 cpu
->pstate
.scaling
= pstate_funcs
.get_scaling();
1595 cpu
->pstate
.max_freq
= cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
;
1596 cpu
->pstate
.turbo_freq
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
1598 if (pstate_funcs
.get_vid
)
1599 pstate_funcs
.get_vid(cpu
);
1601 intel_pstate_set_min_pstate(cpu
);
1604 static inline void intel_pstate_calc_avg_perf(struct cpudata
*cpu
)
1606 struct sample
*sample
= &cpu
->sample
;
1608 sample
->core_avg_perf
= div_ext_fp(sample
->aperf
, sample
->mperf
);
1611 static inline bool intel_pstate_sample(struct cpudata
*cpu
, u64 time
)
1614 unsigned long flags
;
1617 local_irq_save(flags
);
1618 rdmsrl(MSR_IA32_APERF
, aperf
);
1619 rdmsrl(MSR_IA32_MPERF
, mperf
);
1621 if (cpu
->prev_mperf
== mperf
|| cpu
->prev_tsc
== tsc
) {
1622 local_irq_restore(flags
);
1625 local_irq_restore(flags
);
1627 cpu
->last_sample_time
= cpu
->sample
.time
;
1628 cpu
->sample
.time
= time
;
1629 cpu
->sample
.aperf
= aperf
;
1630 cpu
->sample
.mperf
= mperf
;
1631 cpu
->sample
.tsc
= tsc
;
1632 cpu
->sample
.aperf
-= cpu
->prev_aperf
;
1633 cpu
->sample
.mperf
-= cpu
->prev_mperf
;
1634 cpu
->sample
.tsc
-= cpu
->prev_tsc
;
1636 cpu
->prev_aperf
= aperf
;
1637 cpu
->prev_mperf
= mperf
;
1638 cpu
->prev_tsc
= tsc
;
1640 * First time this function is invoked in a given cycle, all of the
1641 * previous sample data fields are equal to zero or stale and they must
1642 * be populated with meaningful numbers for things to work, so assume
1643 * that sample.time will always be reset before setting the utilization
1644 * update hook and make the caller skip the sample then.
1646 return !!cpu
->last_sample_time
;
1649 static inline int32_t get_avg_frequency(struct cpudata
*cpu
)
1651 return mul_ext_fp(cpu
->sample
.core_avg_perf
,
1652 cpu
->pstate
.max_pstate_physical
* cpu
->pstate
.scaling
);
1655 static inline int32_t get_avg_pstate(struct cpudata
*cpu
)
1657 return mul_ext_fp(cpu
->pstate
.max_pstate_physical
,
1658 cpu
->sample
.core_avg_perf
);
1661 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata
*cpu
)
1663 struct sample
*sample
= &cpu
->sample
;
1664 int32_t busy_frac
, boost
;
1665 int target
, avg_pstate
;
1667 busy_frac
= div_fp(sample
->mperf
, sample
->tsc
);
1669 boost
= cpu
->iowait_boost
;
1670 cpu
->iowait_boost
>>= 1;
1672 if (busy_frac
< boost
)
1675 sample
->busy_scaled
= busy_frac
* 100;
1677 target
= limits
->no_turbo
|| limits
->turbo_disabled
?
1678 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
1679 target
+= target
>> 2;
1680 target
= mul_fp(target
, busy_frac
);
1681 if (target
< cpu
->pstate
.min_pstate
)
1682 target
= cpu
->pstate
.min_pstate
;
1685 * If the average P-state during the previous cycle was higher than the
1686 * current target, add 50% of the difference to the target to reduce
1687 * possible performance oscillations and offset possible performance
1688 * loss related to moving the workload from one CPU to another within
1691 avg_pstate
= get_avg_pstate(cpu
);
1692 if (avg_pstate
> target
)
1693 target
+= (avg_pstate
- target
) >> 1;
1698 static inline int32_t get_target_pstate_use_performance(struct cpudata
*cpu
)
1700 int32_t perf_scaled
, max_pstate
, current_pstate
, sample_ratio
;
1704 * perf_scaled is the ratio of the average P-state during the last
1705 * sampling period to the P-state requested last time (in percent).
1707 * That measures the system's response to the previous P-state
1710 max_pstate
= cpu
->pstate
.max_pstate_physical
;
1711 current_pstate
= cpu
->pstate
.current_pstate
;
1712 perf_scaled
= mul_ext_fp(cpu
->sample
.core_avg_perf
,
1713 div_fp(100 * max_pstate
, current_pstate
));
1716 * Since our utilization update callback will not run unless we are
1717 * in C0, check if the actual elapsed time is significantly greater (3x)
1718 * than our sample interval. If it is, then we were idle for a long
1719 * enough period of time to adjust our performance metric.
1721 duration_ns
= cpu
->sample
.time
- cpu
->last_sample_time
;
1722 if ((s64
)duration_ns
> pid_params
.sample_rate_ns
* 3) {
1723 sample_ratio
= div_fp(pid_params
.sample_rate_ns
, duration_ns
);
1724 perf_scaled
= mul_fp(perf_scaled
, sample_ratio
);
1726 sample_ratio
= div_fp(100 * cpu
->sample
.mperf
, cpu
->sample
.tsc
);
1727 if (sample_ratio
< int_tofp(1))
1731 cpu
->sample
.busy_scaled
= perf_scaled
;
1732 return cpu
->pstate
.current_pstate
- pid_calc(&cpu
->pid
, perf_scaled
);
1735 static int intel_pstate_prepare_request(struct cpudata
*cpu
, int pstate
)
1737 int max_perf
, min_perf
;
1739 intel_pstate_get_min_max(cpu
, &min_perf
, &max_perf
);
1740 pstate
= clamp_t(int, pstate
, min_perf
, max_perf
);
1741 trace_cpu_frequency(pstate
* cpu
->pstate
.scaling
, cpu
->cpu
);
1745 static void intel_pstate_update_pstate(struct cpudata
*cpu
, int pstate
)
1747 pstate
= intel_pstate_prepare_request(cpu
, pstate
);
1748 if (pstate
== cpu
->pstate
.current_pstate
)
1751 cpu
->pstate
.current_pstate
= pstate
;
1752 wrmsrl(MSR_IA32_PERF_CTL
, pstate_funcs
.get_val(cpu
, pstate
));
1755 static inline void intel_pstate_adjust_busy_pstate(struct cpudata
*cpu
)
1757 int from
, target_pstate
;
1758 struct sample
*sample
;
1760 from
= cpu
->pstate
.current_pstate
;
1762 target_pstate
= cpu
->policy
== CPUFREQ_POLICY_PERFORMANCE
?
1763 cpu
->pstate
.turbo_pstate
: pstate_funcs
.get_target_pstate(cpu
);
1765 update_turbo_state();
1767 intel_pstate_update_pstate(cpu
, target_pstate
);
1769 sample
= &cpu
->sample
;
1770 trace_pstate_sample(mul_ext_fp(100, sample
->core_avg_perf
),
1771 fp_toint(sample
->busy_scaled
),
1773 cpu
->pstate
.current_pstate
,
1777 get_avg_frequency(cpu
),
1778 fp_toint(cpu
->iowait_boost
* 100));
1781 static void intel_pstate_update_util(struct update_util_data
*data
, u64 time
,
1784 struct cpudata
*cpu
= container_of(data
, struct cpudata
, update_util
);
1787 if (pstate_funcs
.get_target_pstate
== get_target_pstate_use_cpu_load
) {
1788 if (flags
& SCHED_CPUFREQ_IOWAIT
) {
1789 cpu
->iowait_boost
= int_tofp(1);
1790 } else if (cpu
->iowait_boost
) {
1791 /* Clear iowait_boost if the CPU may have been idle. */
1792 delta_ns
= time
- cpu
->last_update
;
1793 if (delta_ns
> TICK_NSEC
)
1794 cpu
->iowait_boost
= 0;
1796 cpu
->last_update
= time
;
1799 delta_ns
= time
- cpu
->sample
.time
;
1800 if ((s64
)delta_ns
>= pid_params
.sample_rate_ns
) {
1801 bool sample_taken
= intel_pstate_sample(cpu
, time
);
1804 intel_pstate_calc_avg_perf(cpu
);
1806 intel_pstate_adjust_busy_pstate(cpu
);
1811 #define ICPU(model, policy) \
1812 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1813 (unsigned long)&policy }
1815 static const struct x86_cpu_id intel_pstate_cpu_ids
[] = {
1816 ICPU(INTEL_FAM6_SANDYBRIDGE
, core_params
),
1817 ICPU(INTEL_FAM6_SANDYBRIDGE_X
, core_params
),
1818 ICPU(INTEL_FAM6_ATOM_SILVERMONT1
, silvermont_params
),
1819 ICPU(INTEL_FAM6_IVYBRIDGE
, core_params
),
1820 ICPU(INTEL_FAM6_HASWELL_CORE
, core_params
),
1821 ICPU(INTEL_FAM6_BROADWELL_CORE
, core_params
),
1822 ICPU(INTEL_FAM6_IVYBRIDGE_X
, core_params
),
1823 ICPU(INTEL_FAM6_HASWELL_X
, core_params
),
1824 ICPU(INTEL_FAM6_HASWELL_ULT
, core_params
),
1825 ICPU(INTEL_FAM6_HASWELL_GT3E
, core_params
),
1826 ICPU(INTEL_FAM6_BROADWELL_GT3E
, core_params
),
1827 ICPU(INTEL_FAM6_ATOM_AIRMONT
, airmont_params
),
1828 ICPU(INTEL_FAM6_SKYLAKE_MOBILE
, core_params
),
1829 ICPU(INTEL_FAM6_BROADWELL_X
, core_params
),
1830 ICPU(INTEL_FAM6_SKYLAKE_DESKTOP
, core_params
),
1831 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_params
),
1832 ICPU(INTEL_FAM6_XEON_PHI_KNL
, knl_params
),
1833 ICPU(INTEL_FAM6_XEON_PHI_KNM
, knl_params
),
1834 ICPU(INTEL_FAM6_ATOM_GOLDMONT
, bxt_params
),
1837 MODULE_DEVICE_TABLE(x86cpu
, intel_pstate_cpu_ids
);
1839 static const struct x86_cpu_id intel_pstate_cpu_oob_ids
[] __initconst
= {
1840 ICPU(INTEL_FAM6_BROADWELL_XEON_D
, core_params
),
1841 ICPU(INTEL_FAM6_BROADWELL_X
, core_params
),
1842 ICPU(INTEL_FAM6_SKYLAKE_X
, core_params
),
1846 static int intel_pstate_init_cpu(unsigned int cpunum
)
1848 struct cpudata
*cpu
;
1850 cpu
= all_cpu_data
[cpunum
];
1853 unsigned int size
= sizeof(struct cpudata
);
1856 size
+= sizeof(struct perf_limits
);
1858 cpu
= kzalloc(size
, GFP_KERNEL
);
1862 all_cpu_data
[cpunum
] = cpu
;
1864 cpu
->perf_limits
= (struct perf_limits
*)(cpu
+ 1);
1866 cpu
->epp_default
= -EINVAL
;
1867 cpu
->epp_powersave
= -EINVAL
;
1868 cpu
->epp_saved
= -EINVAL
;
1871 cpu
= all_cpu_data
[cpunum
];
1876 intel_pstate_hwp_enable(cpu
);
1877 pid_params
.sample_rate_ms
= 50;
1878 pid_params
.sample_rate_ns
= 50 * NSEC_PER_MSEC
;
1881 intel_pstate_get_cpu_pstates(cpu
);
1883 intel_pstate_busy_pid_reset(cpu
);
1885 pr_debug("controlling: cpu %d\n", cpunum
);
1890 static unsigned int intel_pstate_get(unsigned int cpu_num
)
1892 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1894 return cpu
? get_avg_frequency(cpu
) : 0;
1897 static void intel_pstate_set_update_util_hook(unsigned int cpu_num
)
1899 struct cpudata
*cpu
= all_cpu_data
[cpu_num
];
1901 if (cpu
->update_util_set
)
1904 /* Prevent intel_pstate_update_util() from using stale data. */
1905 cpu
->sample
.time
= 0;
1906 cpufreq_add_update_util_hook(cpu_num
, &cpu
->update_util
,
1907 intel_pstate_update_util
);
1908 cpu
->update_util_set
= true;
1911 static void intel_pstate_clear_update_util_hook(unsigned int cpu
)
1913 struct cpudata
*cpu_data
= all_cpu_data
[cpu
];
1915 if (!cpu_data
->update_util_set
)
1918 cpufreq_remove_update_util_hook(cpu
);
1919 cpu_data
->update_util_set
= false;
1920 synchronize_sched();
1923 static void intel_pstate_set_performance_limits(struct perf_limits
*limits
)
1925 limits
->no_turbo
= 0;
1926 limits
->turbo_disabled
= 0;
1927 limits
->max_perf_pct
= 100;
1928 limits
->max_perf
= int_ext_tofp(1);
1929 limits
->min_perf_pct
= 100;
1930 limits
->min_perf
= int_ext_tofp(1);
1931 limits
->max_policy_pct
= 100;
1932 limits
->max_sysfs_pct
= 100;
1933 limits
->min_policy_pct
= 0;
1934 limits
->min_sysfs_pct
= 0;
1937 static void intel_pstate_update_perf_limits(struct cpufreq_policy
*policy
,
1938 struct perf_limits
*limits
)
1941 limits
->max_policy_pct
= DIV_ROUND_UP(policy
->max
* 100,
1942 policy
->cpuinfo
.max_freq
);
1943 limits
->max_policy_pct
= clamp_t(int, limits
->max_policy_pct
, 0, 100);
1944 if (policy
->max
== policy
->min
) {
1945 limits
->min_policy_pct
= limits
->max_policy_pct
;
1947 limits
->min_policy_pct
= DIV_ROUND_UP(policy
->min
* 100,
1948 policy
->cpuinfo
.max_freq
);
1949 limits
->min_policy_pct
= clamp_t(int, limits
->min_policy_pct
,
1953 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1954 limits
->min_perf_pct
= max(limits
->min_policy_pct
,
1955 limits
->min_sysfs_pct
);
1956 limits
->min_perf_pct
= min(limits
->max_policy_pct
,
1957 limits
->min_perf_pct
);
1958 limits
->max_perf_pct
= min(limits
->max_policy_pct
,
1959 limits
->max_sysfs_pct
);
1960 limits
->max_perf_pct
= max(limits
->min_policy_pct
,
1961 limits
->max_perf_pct
);
1963 /* Make sure min_perf_pct <= max_perf_pct */
1964 limits
->min_perf_pct
= min(limits
->max_perf_pct
, limits
->min_perf_pct
);
1966 limits
->min_perf
= div_ext_fp(limits
->min_perf_pct
, 100);
1967 limits
->max_perf
= div_ext_fp(limits
->max_perf_pct
, 100);
1968 limits
->max_perf
= round_up(limits
->max_perf
, EXT_FRAC_BITS
);
1969 limits
->min_perf
= round_up(limits
->min_perf
, EXT_FRAC_BITS
);
1971 pr_debug("cpu:%d max_perf_pct:%d min_perf_pct:%d\n", policy
->cpu
,
1972 limits
->max_perf_pct
, limits
->min_perf_pct
);
1975 static int intel_pstate_set_policy(struct cpufreq_policy
*policy
)
1977 struct cpudata
*cpu
;
1978 struct perf_limits
*perf_limits
= NULL
;
1980 if (!policy
->cpuinfo
.max_freq
)
1983 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
1984 policy
->cpuinfo
.max_freq
, policy
->max
);
1986 cpu
= all_cpu_data
[policy
->cpu
];
1987 cpu
->policy
= policy
->policy
;
1989 if (cpu
->pstate
.max_pstate_physical
> cpu
->pstate
.max_pstate
&&
1990 policy
->max
< policy
->cpuinfo
.max_freq
&&
1991 policy
->max
> cpu
->pstate
.max_pstate
* cpu
->pstate
.scaling
) {
1992 pr_debug("policy->max > max non turbo frequency\n");
1993 policy
->max
= policy
->cpuinfo
.max_freq
;
1997 perf_limits
= cpu
->perf_limits
;
1999 mutex_lock(&intel_pstate_limits_lock
);
2001 if (policy
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
2003 limits
= &performance_limits
;
2004 perf_limits
= limits
;
2006 if (policy
->max
>= policy
->cpuinfo
.max_freq
) {
2007 pr_debug("set performance\n");
2008 intel_pstate_set_performance_limits(perf_limits
);
2012 pr_debug("set powersave\n");
2014 limits
= &powersave_limits
;
2015 perf_limits
= limits
;
2020 intel_pstate_update_perf_limits(policy
, perf_limits
);
2022 if (cpu
->policy
== CPUFREQ_POLICY_PERFORMANCE
) {
2024 * NOHZ_FULL CPUs need this as the governor callback may not
2025 * be invoked on them.
2027 intel_pstate_clear_update_util_hook(policy
->cpu
);
2028 intel_pstate_max_within_limits(cpu
);
2031 intel_pstate_set_update_util_hook(policy
->cpu
);
2033 intel_pstate_hwp_set_policy(policy
);
2035 mutex_unlock(&intel_pstate_limits_lock
);
2040 static int intel_pstate_verify_policy(struct cpufreq_policy
*policy
)
2042 cpufreq_verify_within_cpu_limits(policy
);
2044 if (policy
->policy
!= CPUFREQ_POLICY_POWERSAVE
&&
2045 policy
->policy
!= CPUFREQ_POLICY_PERFORMANCE
)
2051 static void intel_cpufreq_stop_cpu(struct cpufreq_policy
*policy
)
2053 intel_pstate_set_min_pstate(all_cpu_data
[policy
->cpu
]);
2056 static void intel_pstate_stop_cpu(struct cpufreq_policy
*policy
)
2058 pr_debug("CPU %d exiting\n", policy
->cpu
);
2060 intel_pstate_clear_update_util_hook(policy
->cpu
);
2062 intel_pstate_hwp_save_state(policy
);
2064 intel_cpufreq_stop_cpu(policy
);
2067 static int intel_pstate_cpu_exit(struct cpufreq_policy
*policy
)
2069 intel_pstate_exit_perf_limits(policy
);
2071 policy
->fast_switch_possible
= false;
2076 static int __intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2078 struct cpudata
*cpu
;
2081 rc
= intel_pstate_init_cpu(policy
->cpu
);
2085 cpu
= all_cpu_data
[policy
->cpu
];
2088 * We need sane value in the cpu->perf_limits, so inherit from global
2089 * perf_limits limits, which are seeded with values based on the
2090 * CONFIG_CPU_FREQ_DEFAULT_GOV_*, during boot up.
2093 memcpy(cpu
->perf_limits
, limits
, sizeof(struct perf_limits
));
2095 policy
->min
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2096 policy
->max
= cpu
->pstate
.turbo_pstate
* cpu
->pstate
.scaling
;
2098 /* cpuinfo and default policy values */
2099 policy
->cpuinfo
.min_freq
= cpu
->pstate
.min_pstate
* cpu
->pstate
.scaling
;
2100 update_turbo_state();
2101 policy
->cpuinfo
.max_freq
= limits
->turbo_disabled
?
2102 cpu
->pstate
.max_pstate
: cpu
->pstate
.turbo_pstate
;
2103 policy
->cpuinfo
.max_freq
*= cpu
->pstate
.scaling
;
2105 intel_pstate_init_acpi_perf_limits(policy
);
2106 cpumask_set_cpu(policy
->cpu
, policy
->cpus
);
2108 policy
->fast_switch_possible
= true;
2113 static int intel_pstate_cpu_init(struct cpufreq_policy
*policy
)
2115 int ret
= __intel_pstate_cpu_init(policy
);
2120 policy
->cpuinfo
.transition_latency
= CPUFREQ_ETERNAL
;
2121 if (limits
->min_perf_pct
== 100 && limits
->max_perf_pct
== 100)
2122 policy
->policy
= CPUFREQ_POLICY_PERFORMANCE
;
2124 policy
->policy
= CPUFREQ_POLICY_POWERSAVE
;
2129 static struct cpufreq_driver intel_pstate
= {
2130 .flags
= CPUFREQ_CONST_LOOPS
,
2131 .verify
= intel_pstate_verify_policy
,
2132 .setpolicy
= intel_pstate_set_policy
,
2133 .suspend
= intel_pstate_hwp_save_state
,
2134 .resume
= intel_pstate_resume
,
2135 .get
= intel_pstate_get
,
2136 .init
= intel_pstate_cpu_init
,
2137 .exit
= intel_pstate_cpu_exit
,
2138 .stop_cpu
= intel_pstate_stop_cpu
,
2139 .name
= "intel_pstate",
2142 static int intel_cpufreq_verify_policy(struct cpufreq_policy
*policy
)
2144 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2145 struct perf_limits
*perf_limits
= limits
;
2147 update_turbo_state();
2148 policy
->cpuinfo
.max_freq
= limits
->turbo_disabled
?
2149 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
2151 cpufreq_verify_within_cpu_limits(policy
);
2154 perf_limits
= cpu
->perf_limits
;
2156 intel_pstate_update_perf_limits(policy
, perf_limits
);
2161 static unsigned int intel_cpufreq_turbo_update(struct cpudata
*cpu
,
2162 struct cpufreq_policy
*policy
,
2163 unsigned int target_freq
)
2165 unsigned int max_freq
;
2167 update_turbo_state();
2169 max_freq
= limits
->no_turbo
|| limits
->turbo_disabled
?
2170 cpu
->pstate
.max_freq
: cpu
->pstate
.turbo_freq
;
2171 policy
->cpuinfo
.max_freq
= max_freq
;
2172 if (policy
->max
> max_freq
)
2173 policy
->max
= max_freq
;
2175 if (target_freq
> max_freq
)
2176 target_freq
= max_freq
;
2181 static int intel_cpufreq_target(struct cpufreq_policy
*policy
,
2182 unsigned int target_freq
,
2183 unsigned int relation
)
2185 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2186 struct cpufreq_freqs freqs
;
2189 freqs
.old
= policy
->cur
;
2190 freqs
.new = intel_cpufreq_turbo_update(cpu
, policy
, target_freq
);
2192 cpufreq_freq_transition_begin(policy
, &freqs
);
2194 case CPUFREQ_RELATION_L
:
2195 target_pstate
= DIV_ROUND_UP(freqs
.new, cpu
->pstate
.scaling
);
2197 case CPUFREQ_RELATION_H
:
2198 target_pstate
= freqs
.new / cpu
->pstate
.scaling
;
2201 target_pstate
= DIV_ROUND_CLOSEST(freqs
.new, cpu
->pstate
.scaling
);
2204 target_pstate
= intel_pstate_prepare_request(cpu
, target_pstate
);
2205 if (target_pstate
!= cpu
->pstate
.current_pstate
) {
2206 cpu
->pstate
.current_pstate
= target_pstate
;
2207 wrmsrl_on_cpu(policy
->cpu
, MSR_IA32_PERF_CTL
,
2208 pstate_funcs
.get_val(cpu
, target_pstate
));
2210 cpufreq_freq_transition_end(policy
, &freqs
, false);
2215 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy
*policy
,
2216 unsigned int target_freq
)
2218 struct cpudata
*cpu
= all_cpu_data
[policy
->cpu
];
2221 target_freq
= intel_cpufreq_turbo_update(cpu
, policy
, target_freq
);
2222 target_pstate
= DIV_ROUND_UP(target_freq
, cpu
->pstate
.scaling
);
2223 intel_pstate_update_pstate(cpu
, target_pstate
);
2227 static int intel_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
2229 int ret
= __intel_pstate_cpu_init(policy
);
2234 policy
->cpuinfo
.transition_latency
= INTEL_CPUFREQ_TRANSITION_LATENCY
;
2235 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2236 policy
->cur
= policy
->cpuinfo
.min_freq
;
2241 static struct cpufreq_driver intel_cpufreq
= {
2242 .flags
= CPUFREQ_CONST_LOOPS
,
2243 .verify
= intel_cpufreq_verify_policy
,
2244 .target
= intel_cpufreq_target
,
2245 .fast_switch
= intel_cpufreq_fast_switch
,
2246 .init
= intel_cpufreq_cpu_init
,
2247 .exit
= intel_pstate_cpu_exit
,
2248 .stop_cpu
= intel_cpufreq_stop_cpu
,
2249 .name
= "intel_cpufreq",
2252 static struct cpufreq_driver
*intel_pstate_driver
= &intel_pstate
;
2254 static int no_load __initdata
;
2255 static int no_hwp __initdata
;
2256 static int hwp_only __initdata
;
2257 static unsigned int force_load __initdata
;
2259 static int __init
intel_pstate_msrs_not_valid(void)
2261 if (!pstate_funcs
.get_max() ||
2262 !pstate_funcs
.get_min() ||
2263 !pstate_funcs
.get_turbo())
2269 static void __init
copy_pid_params(struct pstate_adjust_policy
*policy
)
2271 pid_params
.sample_rate_ms
= policy
->sample_rate_ms
;
2272 pid_params
.sample_rate_ns
= pid_params
.sample_rate_ms
* NSEC_PER_MSEC
;
2273 pid_params
.p_gain_pct
= policy
->p_gain_pct
;
2274 pid_params
.i_gain_pct
= policy
->i_gain_pct
;
2275 pid_params
.d_gain_pct
= policy
->d_gain_pct
;
2276 pid_params
.deadband
= policy
->deadband
;
2277 pid_params
.setpoint
= policy
->setpoint
;
2281 static void intel_pstate_use_acpi_profile(void)
2283 if (acpi_gbl_FADT
.preferred_profile
== PM_MOBILE
)
2284 pstate_funcs
.get_target_pstate
=
2285 get_target_pstate_use_cpu_load
;
2288 static void intel_pstate_use_acpi_profile(void)
2293 static void __init
copy_cpu_funcs(struct pstate_funcs
*funcs
)
2295 pstate_funcs
.get_max
= funcs
->get_max
;
2296 pstate_funcs
.get_max_physical
= funcs
->get_max_physical
;
2297 pstate_funcs
.get_min
= funcs
->get_min
;
2298 pstate_funcs
.get_turbo
= funcs
->get_turbo
;
2299 pstate_funcs
.get_scaling
= funcs
->get_scaling
;
2300 pstate_funcs
.get_val
= funcs
->get_val
;
2301 pstate_funcs
.get_vid
= funcs
->get_vid
;
2302 pstate_funcs
.get_target_pstate
= funcs
->get_target_pstate
;
2304 intel_pstate_use_acpi_profile();
2309 static bool __init
intel_pstate_no_acpi_pss(void)
2313 for_each_possible_cpu(i
) {
2315 union acpi_object
*pss
;
2316 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
2317 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2322 status
= acpi_evaluate_object(pr
->handle
, "_PSS", NULL
, &buffer
);
2323 if (ACPI_FAILURE(status
))
2326 pss
= buffer
.pointer
;
2327 if (pss
&& pss
->type
== ACPI_TYPE_PACKAGE
) {
2338 static bool __init
intel_pstate_has_acpi_ppc(void)
2342 for_each_possible_cpu(i
) {
2343 struct acpi_processor
*pr
= per_cpu(processors
, i
);
2347 if (acpi_has_method(pr
->handle
, "_PPC"))
2358 struct hw_vendor_info
{
2360 char oem_id
[ACPI_OEM_ID_SIZE
];
2361 char oem_table_id
[ACPI_OEM_TABLE_ID_SIZE
];
2365 /* Hardware vendor-specific info that has its own power management modes */
2366 static struct hw_vendor_info vendor_info
[] __initdata
= {
2367 {1, "HP ", "ProLiant", PSS
},
2368 {1, "ORACLE", "X4-2 ", PPC
},
2369 {1, "ORACLE", "X4-2L ", PPC
},
2370 {1, "ORACLE", "X4-2B ", PPC
},
2371 {1, "ORACLE", "X3-2 ", PPC
},
2372 {1, "ORACLE", "X3-2L ", PPC
},
2373 {1, "ORACLE", "X3-2B ", PPC
},
2374 {1, "ORACLE", "X4470M2 ", PPC
},
2375 {1, "ORACLE", "X4270M3 ", PPC
},
2376 {1, "ORACLE", "X4270M2 ", PPC
},
2377 {1, "ORACLE", "X4170M2 ", PPC
},
2378 {1, "ORACLE", "X4170 M3", PPC
},
2379 {1, "ORACLE", "X4275 M3", PPC
},
2380 {1, "ORACLE", "X6-2 ", PPC
},
2381 {1, "ORACLE", "Sudbury ", PPC
},
2385 static bool __init
intel_pstate_platform_pwr_mgmt_exists(void)
2387 struct acpi_table_header hdr
;
2388 struct hw_vendor_info
*v_info
;
2389 const struct x86_cpu_id
*id
;
2392 id
= x86_match_cpu(intel_pstate_cpu_oob_ids
);
2394 rdmsrl(MSR_MISC_PWR_MGMT
, misc_pwr
);
2395 if ( misc_pwr
& (1 << 8))
2399 if (acpi_disabled
||
2400 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT
, 0, &hdr
)))
2403 for (v_info
= vendor_info
; v_info
->valid
; v_info
++) {
2404 if (!strncmp(hdr
.oem_id
, v_info
->oem_id
, ACPI_OEM_ID_SIZE
) &&
2405 !strncmp(hdr
.oem_table_id
, v_info
->oem_table_id
,
2406 ACPI_OEM_TABLE_ID_SIZE
))
2407 switch (v_info
->oem_pwr_table
) {
2409 return intel_pstate_no_acpi_pss();
2411 return intel_pstate_has_acpi_ppc() &&
2419 static void intel_pstate_request_control_from_smm(void)
2422 * It may be unsafe to request P-states control from SMM if _PPC support
2423 * has not been enabled.
2426 acpi_processor_pstate_control();
2428 #else /* CONFIG_ACPI not enabled */
2429 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2430 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2431 static inline void intel_pstate_request_control_from_smm(void) {}
2432 #endif /* CONFIG_ACPI */
2434 static const struct x86_cpu_id hwp_support_ids
[] __initconst
= {
2435 { X86_VENDOR_INTEL
, 6, X86_MODEL_ANY
, X86_FEATURE_HWP
},
2439 static int __init
intel_pstate_init(void)
2442 const struct x86_cpu_id
*id
;
2443 struct cpu_defaults
*cpu_def
;
2448 if (x86_match_cpu(hwp_support_ids
) && !no_hwp
) {
2449 copy_cpu_funcs(&core_params
.funcs
);
2451 intel_pstate
.attr
= hwp_cpufreq_attrs
;
2452 goto hwp_cpu_matched
;
2455 id
= x86_match_cpu(intel_pstate_cpu_ids
);
2459 cpu_def
= (struct cpu_defaults
*)id
->driver_data
;
2461 copy_pid_params(&cpu_def
->pid_policy
);
2462 copy_cpu_funcs(&cpu_def
->funcs
);
2464 if (intel_pstate_msrs_not_valid())
2469 * The Intel pstate driver will be ignored if the platform
2470 * firmware has its own power management modes.
2472 if (intel_pstate_platform_pwr_mgmt_exists())
2475 pr_info("Intel P-state driver initializing\n");
2477 all_cpu_data
= vzalloc(sizeof(void *) * num_possible_cpus());
2481 if (!hwp_active
&& hwp_only
)
2484 intel_pstate_request_control_from_smm();
2486 rc
= cpufreq_register_driver(intel_pstate_driver
);
2490 intel_pstate_debug_expose_params();
2491 intel_pstate_sysfs_expose_params();
2494 pr_info("HWP enabled\n");
2499 for_each_online_cpu(cpu
) {
2500 if (all_cpu_data
[cpu
]) {
2501 if (intel_pstate_driver
== &intel_pstate
)
2502 intel_pstate_clear_update_util_hook(cpu
);
2504 kfree(all_cpu_data
[cpu
]);
2509 vfree(all_cpu_data
);
2512 device_initcall(intel_pstate_init
);
2514 static int __init
intel_pstate_setup(char *str
)
2519 if (!strcmp(str
, "disable")) {
2521 } else if (!strcmp(str
, "passive")) {
2522 pr_info("Passive mode enabled\n");
2523 intel_pstate_driver
= &intel_cpufreq
;
2526 if (!strcmp(str
, "no_hwp")) {
2527 pr_info("HWP disabled\n");
2530 if (!strcmp(str
, "force"))
2532 if (!strcmp(str
, "hwp_only"))
2534 if (!strcmp(str
, "per_cpu_perf_limits"))
2535 per_cpu_limits
= true;
2538 if (!strcmp(str
, "support_acpi_ppc"))
2544 early_param("intel_pstate", intel_pstate_setup
);
2546 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2547 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2548 MODULE_LICENSE("GPL");