2 * Copyright (C) 2014 Emilio López
3 * Emilio López <emilio@elopez.com.ar>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <linux/clk.h>
14 #include <linux/dmaengine.h>
15 #include <linux/dmapool.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/of_dma.h>
19 #include <linux/platform_device.h>
20 #include <linux/slab.h>
21 #include <linux/spinlock.h>
25 /** Common macros to normal and dedicated DMA registers **/
27 #define SUN4I_DMA_CFG_LOADING BIT(31)
28 #define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25)
29 #define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23)
30 #define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21)
31 #define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16)
32 #define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9)
33 #define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7)
34 #define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5)
35 #define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type)
37 /** Normal DMA register values **/
39 /* Normal DMA source/destination data request type values */
40 #define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16
41 #define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1)
43 /** Normal DMA register layout **/
45 /* Dedicated DMA source/destination address mode values */
46 #define SUN4I_NDMA_ADDR_MODE_LINEAR 0
47 #define SUN4I_NDMA_ADDR_MODE_IO 1
49 /* Normal DMA configuration register layout */
50 #define SUN4I_NDMA_CFG_CONT_MODE BIT(30)
51 #define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27)
52 #define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22)
53 #define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
54 #define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6)
56 /** Dedicated DMA register values **/
58 /* Dedicated DMA source/destination address mode values */
59 #define SUN4I_DDMA_ADDR_MODE_LINEAR 0
60 #define SUN4I_DDMA_ADDR_MODE_IO 1
61 #define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2
62 #define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3
64 /* Dedicated DMA source/destination data request type values */
65 #define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1
66 #define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1)
68 /** Dedicated DMA register layout **/
70 /* Dedicated DMA configuration register layout */
71 #define SUN4I_DDMA_CFG_BUSY BIT(30)
72 #define SUN4I_DDMA_CFG_CONT_MODE BIT(29)
73 #define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28)
74 #define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15)
75 #define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12)
77 /* Dedicated DMA parameter register layout */
78 #define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24)
79 #define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16)
80 #define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8)
81 #define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0)
83 /** DMA register offsets **/
85 /* General register offsets */
86 #define SUN4I_DMA_IRQ_ENABLE_REG 0x0
87 #define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4
89 /* Normal DMA register offsets */
90 #define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20)
91 #define SUN4I_NDMA_CFG_REG 0x0
92 #define SUN4I_NDMA_SRC_ADDR_REG 0x4
93 #define SUN4I_NDMA_DST_ADDR_REG 0x8
94 #define SUN4I_NDMA_BYTE_COUNT_REG 0xC
96 /* Dedicated DMA register offsets */
97 #define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20)
98 #define SUN4I_DDMA_CFG_REG 0x0
99 #define SUN4I_DDMA_SRC_ADDR_REG 0x4
100 #define SUN4I_DDMA_DST_ADDR_REG 0x8
101 #define SUN4I_DDMA_BYTE_COUNT_REG 0xC
102 #define SUN4I_DDMA_PARA_REG 0x18
107 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
108 * that's 16 channels. As for endpoints, there's 29 and 21
109 * respectively. Given that the Normal DMA endpoints (other than
110 * SDRAM) can be used as tx/rx, we need 78 vchans in total
112 #define SUN4I_NDMA_NR_MAX_CHANNELS 8
113 #define SUN4I_DDMA_NR_MAX_CHANNELS 8
114 #define SUN4I_DMA_NR_MAX_CHANNELS \
115 (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
116 #define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1)
117 #define SUN4I_DDMA_NR_MAX_VCHANS 21
118 #define SUN4I_DMA_NR_MAX_VCHANS \
119 (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
121 /* This set of SUN4I_DDMA timing parameters were found experimentally while
122 * working with the SPI driver and seem to make it behave correctly */
123 #define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
124 (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \
125 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \
126 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \
127 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
129 struct sun4i_dma_pchan
{
130 /* Register base of channel */
132 /* vchan currently being serviced */
133 struct sun4i_dma_vchan
*vchan
;
134 /* Is this a dedicated pchan? */
138 struct sun4i_dma_vchan
{
139 struct virt_dma_chan vc
;
140 struct dma_slave_config cfg
;
141 struct sun4i_dma_pchan
*pchan
;
142 struct sun4i_dma_promise
*processing
;
143 struct sun4i_dma_contract
*contract
;
148 struct sun4i_dma_promise
{
154 struct list_head list
;
157 /* A contract is a set of promises */
158 struct sun4i_dma_contract
{
159 struct virt_dma_desc vd
;
160 struct list_head demands
;
161 struct list_head completed_demands
;
165 struct sun4i_dma_dev
{
166 DECLARE_BITMAP(pchans_used
, SUN4I_DMA_NR_MAX_CHANNELS
);
167 struct dma_device slave
;
168 struct sun4i_dma_pchan
*pchans
;
169 struct sun4i_dma_vchan
*vchans
;
176 static struct sun4i_dma_dev
*to_sun4i_dma_dev(struct dma_device
*dev
)
178 return container_of(dev
, struct sun4i_dma_dev
, slave
);
181 static struct sun4i_dma_vchan
*to_sun4i_dma_vchan(struct dma_chan
*chan
)
183 return container_of(chan
, struct sun4i_dma_vchan
, vc
.chan
);
186 static struct sun4i_dma_contract
*to_sun4i_dma_contract(struct virt_dma_desc
*vd
)
188 return container_of(vd
, struct sun4i_dma_contract
, vd
);
191 static struct device
*chan2dev(struct dma_chan
*chan
)
193 return &chan
->dev
->device
;
196 static int convert_burst(u32 maxburst
)
201 /* 1 -> 0, 4 -> 1, 8 -> 2 */
202 return (maxburst
>> 2);
205 static int convert_buswidth(enum dma_slave_buswidth addr_width
)
207 if (addr_width
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
210 /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
211 return (addr_width
>> 1);
214 static void sun4i_dma_free_chan_resources(struct dma_chan
*chan
)
216 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
218 vchan_free_chan_resources(&vchan
->vc
);
221 static struct sun4i_dma_pchan
*find_and_use_pchan(struct sun4i_dma_dev
*priv
,
222 struct sun4i_dma_vchan
*vchan
)
224 struct sun4i_dma_pchan
*pchan
= NULL
, *pchans
= priv
->pchans
;
229 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
230 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
232 if (vchan
->is_dedicated
) {
233 i
= SUN4I_NDMA_NR_MAX_CHANNELS
;
234 max
= SUN4I_DMA_NR_MAX_CHANNELS
;
237 max
= SUN4I_NDMA_NR_MAX_CHANNELS
;
240 spin_lock_irqsave(&priv
->lock
, flags
);
241 for_each_clear_bit_from(i
, &priv
->pchans_used
, max
) {
243 pchan
->vchan
= vchan
;
244 set_bit(i
, priv
->pchans_used
);
247 spin_unlock_irqrestore(&priv
->lock
, flags
);
252 static void release_pchan(struct sun4i_dma_dev
*priv
,
253 struct sun4i_dma_pchan
*pchan
)
256 int nr
= pchan
- priv
->pchans
;
258 spin_lock_irqsave(&priv
->lock
, flags
);
261 clear_bit(nr
, priv
->pchans_used
);
263 spin_unlock_irqrestore(&priv
->lock
, flags
);
266 static void configure_pchan(struct sun4i_dma_pchan
*pchan
,
267 struct sun4i_dma_promise
*d
)
270 * Configure addresses and misc parameters depending on type
271 * SUN4I_DDMA has an extra field with timing parameters
273 if (pchan
->is_dedicated
) {
274 writel_relaxed(d
->src
, pchan
->base
+ SUN4I_DDMA_SRC_ADDR_REG
);
275 writel_relaxed(d
->dst
, pchan
->base
+ SUN4I_DDMA_DST_ADDR_REG
);
276 writel_relaxed(d
->len
, pchan
->base
+ SUN4I_DDMA_BYTE_COUNT_REG
);
277 writel_relaxed(d
->para
, pchan
->base
+ SUN4I_DDMA_PARA_REG
);
278 writel_relaxed(d
->cfg
, pchan
->base
+ SUN4I_DDMA_CFG_REG
);
280 writel_relaxed(d
->src
, pchan
->base
+ SUN4I_NDMA_SRC_ADDR_REG
);
281 writel_relaxed(d
->dst
, pchan
->base
+ SUN4I_NDMA_DST_ADDR_REG
);
282 writel_relaxed(d
->len
, pchan
->base
+ SUN4I_NDMA_BYTE_COUNT_REG
);
283 writel_relaxed(d
->cfg
, pchan
->base
+ SUN4I_NDMA_CFG_REG
);
287 static void set_pchan_interrupt(struct sun4i_dma_dev
*priv
,
288 struct sun4i_dma_pchan
*pchan
,
292 int pchan_number
= pchan
- priv
->pchans
;
295 spin_lock_irqsave(&priv
->lock
, flags
);
297 reg
= readl_relaxed(priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
300 reg
|= BIT(pchan_number
* 2);
302 reg
&= ~BIT(pchan_number
* 2);
305 reg
|= BIT(pchan_number
* 2 + 1);
307 reg
&= ~BIT(pchan_number
* 2 + 1);
309 writel_relaxed(reg
, priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
311 spin_unlock_irqrestore(&priv
->lock
, flags
);
315 * Execute pending operations on a vchan
317 * When given a vchan, this function will try to acquire a suitable
318 * pchan and, if successful, will configure it to fulfill a promise
319 * from the next pending contract.
321 * This function must be called with &vchan->vc.lock held.
323 static int __execute_vchan_pending(struct sun4i_dma_dev
*priv
,
324 struct sun4i_dma_vchan
*vchan
)
326 struct sun4i_dma_promise
*promise
= NULL
;
327 struct sun4i_dma_contract
*contract
= NULL
;
328 struct sun4i_dma_pchan
*pchan
;
329 struct virt_dma_desc
*vd
;
332 lockdep_assert_held(&vchan
->vc
.lock
);
334 /* We need a pchan to do anything, so secure one if available */
335 pchan
= find_and_use_pchan(priv
, vchan
);
340 * Channel endpoints must not be repeated, so if this vchan
341 * has already submitted some work, we can't do anything else
343 if (vchan
->processing
) {
344 dev_dbg(chan2dev(&vchan
->vc
.chan
),
345 "processing something to this endpoint already\n");
351 /* Figure out which contract we're working with today */
352 vd
= vchan_next_desc(&vchan
->vc
);
354 dev_dbg(chan2dev(&vchan
->vc
.chan
),
355 "No pending contract found");
360 contract
= to_sun4i_dma_contract(vd
);
361 if (list_empty(&contract
->demands
)) {
362 /* The contract has been completed so mark it as such */
363 list_del(&contract
->vd
.node
);
364 vchan_cookie_complete(&contract
->vd
);
365 dev_dbg(chan2dev(&vchan
->vc
.chan
),
366 "Empty contract found and marked complete");
368 } while (list_empty(&contract
->demands
));
370 /* Now find out what we need to do */
371 promise
= list_first_entry(&contract
->demands
,
372 struct sun4i_dma_promise
, list
);
373 vchan
->processing
= promise
;
375 /* ... and make it reality */
377 vchan
->contract
= contract
;
378 vchan
->pchan
= pchan
;
379 set_pchan_interrupt(priv
, pchan
, contract
->is_cyclic
, 1);
380 configure_pchan(pchan
, promise
);
386 release_pchan(priv
, pchan
);
390 static int sanitize_config(struct dma_slave_config
*sconfig
,
391 enum dma_transfer_direction direction
)
395 if ((sconfig
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) ||
396 !sconfig
->dst_maxburst
)
399 if (sconfig
->src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
400 sconfig
->src_addr_width
= sconfig
->dst_addr_width
;
402 if (!sconfig
->src_maxburst
)
403 sconfig
->src_maxburst
= sconfig
->dst_maxburst
;
408 if ((sconfig
->src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
) ||
409 !sconfig
->src_maxburst
)
412 if (sconfig
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
413 sconfig
->dst_addr_width
= sconfig
->src_addr_width
;
415 if (!sconfig
->dst_maxburst
)
416 sconfig
->dst_maxburst
= sconfig
->src_maxburst
;
427 * Generate a promise, to be used in a normal DMA contract.
429 * A NDMA promise contains all the information required to program the
430 * normal part of the DMA Engine and get data copied. A non-executed
431 * promise will live in the demands list on a contract. Once it has been
432 * completed, it will be moved to the completed demands list for later freeing.
433 * All linked promises will be freed when the corresponding contract is freed
435 static struct sun4i_dma_promise
*
436 generate_ndma_promise(struct dma_chan
*chan
, dma_addr_t src
, dma_addr_t dest
,
437 size_t len
, struct dma_slave_config
*sconfig
,
438 enum dma_transfer_direction direction
)
440 struct sun4i_dma_promise
*promise
;
443 ret
= sanitize_config(sconfig
, direction
);
447 promise
= kzalloc(sizeof(*promise
), GFP_NOWAIT
);
454 promise
->cfg
= SUN4I_DMA_CFG_LOADING
|
455 SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN
;
457 dev_dbg(chan2dev(chan
),
458 "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
459 sconfig
->src_maxburst
, sconfig
->dst_maxburst
,
460 sconfig
->src_addr_width
, sconfig
->dst_addr_width
);
463 ret
= convert_burst(sconfig
->src_maxburst
);
466 promise
->cfg
|= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret
);
468 /* Destination burst */
469 ret
= convert_burst(sconfig
->dst_maxburst
);
472 promise
->cfg
|= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret
);
474 /* Source bus width */
475 ret
= convert_buswidth(sconfig
->src_addr_width
);
478 promise
->cfg
|= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret
);
480 /* Destination bus width */
481 ret
= convert_buswidth(sconfig
->dst_addr_width
);
484 promise
->cfg
|= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret
);
494 * Generate a promise, to be used in a dedicated DMA contract.
496 * A DDMA promise contains all the information required to program the
497 * Dedicated part of the DMA Engine and get data copied. A non-executed
498 * promise will live in the demands list on a contract. Once it has been
499 * completed, it will be moved to the completed demands list for later freeing.
500 * All linked promises will be freed when the corresponding contract is freed
502 static struct sun4i_dma_promise
*
503 generate_ddma_promise(struct dma_chan
*chan
, dma_addr_t src
, dma_addr_t dest
,
504 size_t len
, struct dma_slave_config
*sconfig
)
506 struct sun4i_dma_promise
*promise
;
509 promise
= kzalloc(sizeof(*promise
), GFP_NOWAIT
);
516 promise
->cfg
= SUN4I_DMA_CFG_LOADING
|
517 SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN
;
520 ret
= convert_burst(sconfig
->src_maxburst
);
523 promise
->cfg
|= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret
);
525 /* Destination burst */
526 ret
= convert_burst(sconfig
->dst_maxburst
);
529 promise
->cfg
|= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret
);
531 /* Source bus width */
532 ret
= convert_buswidth(sconfig
->src_addr_width
);
535 promise
->cfg
|= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret
);
537 /* Destination bus width */
538 ret
= convert_buswidth(sconfig
->dst_addr_width
);
541 promise
->cfg
|= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret
);
551 * Generate a contract
553 * Contracts function as DMA descriptors. As our hardware does not support
554 * linked lists, we need to implement SG via software. We use a contract
555 * to hold all the pieces of the request and process them serially one
556 * after another. Each piece is represented as a promise.
558 static struct sun4i_dma_contract
*generate_dma_contract(void)
560 struct sun4i_dma_contract
*contract
;
562 contract
= kzalloc(sizeof(*contract
), GFP_NOWAIT
);
566 INIT_LIST_HEAD(&contract
->demands
);
567 INIT_LIST_HEAD(&contract
->completed_demands
);
573 * Get next promise on a cyclic transfer
575 * Cyclic contracts contain a series of promises which are executed on a
576 * loop. This function returns the next promise from a cyclic contract,
577 * so it can be programmed into the hardware.
579 static struct sun4i_dma_promise
*
580 get_next_cyclic_promise(struct sun4i_dma_contract
*contract
)
582 struct sun4i_dma_promise
*promise
;
584 promise
= list_first_entry_or_null(&contract
->demands
,
585 struct sun4i_dma_promise
, list
);
587 list_splice_init(&contract
->completed_demands
,
589 promise
= list_first_entry(&contract
->demands
,
590 struct sun4i_dma_promise
, list
);
597 * Free a contract and all its associated promises
599 static void sun4i_dma_free_contract(struct virt_dma_desc
*vd
)
601 struct sun4i_dma_contract
*contract
= to_sun4i_dma_contract(vd
);
602 struct sun4i_dma_promise
*promise
, *tmp
;
604 /* Free all the demands and completed demands */
605 list_for_each_entry_safe(promise
, tmp
, &contract
->demands
, list
)
608 list_for_each_entry_safe(promise
, tmp
, &contract
->completed_demands
, list
)
614 static struct dma_async_tx_descriptor
*
615 sun4i_dma_prep_dma_memcpy(struct dma_chan
*chan
, dma_addr_t dest
,
616 dma_addr_t src
, size_t len
, unsigned long flags
)
618 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
619 struct dma_slave_config
*sconfig
= &vchan
->cfg
;
620 struct sun4i_dma_promise
*promise
;
621 struct sun4i_dma_contract
*contract
;
623 contract
= generate_dma_contract();
628 * We can only do the copy to bus aligned addresses, so
629 * choose the best one so we get decent performance. We also
630 * maximize the burst size for this same reason.
632 sconfig
->src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
633 sconfig
->dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
634 sconfig
->src_maxburst
= 8;
635 sconfig
->dst_maxburst
= 8;
637 if (vchan
->is_dedicated
)
638 promise
= generate_ddma_promise(chan
, src
, dest
, len
, sconfig
);
640 promise
= generate_ndma_promise(chan
, src
, dest
, len
, sconfig
,
648 /* Configure memcpy mode */
649 if (vchan
->is_dedicated
) {
650 promise
->cfg
|= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM
) |
651 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM
);
653 promise
->cfg
|= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM
) |
654 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM
);
657 /* Fill the contract with our only promise */
658 list_add_tail(&promise
->list
, &contract
->demands
);
660 /* And add it to the vchan */
661 return vchan_tx_prep(&vchan
->vc
, &contract
->vd
, flags
);
664 static struct dma_async_tx_descriptor
*
665 sun4i_dma_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t buf
, size_t len
,
666 size_t period_len
, enum dma_transfer_direction dir
,
669 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
670 struct dma_slave_config
*sconfig
= &vchan
->cfg
;
671 struct sun4i_dma_promise
*promise
;
672 struct sun4i_dma_contract
*contract
;
673 dma_addr_t src
, dest
;
675 int nr_periods
, offset
, plength
, i
;
677 if (!is_slave_direction(dir
)) {
678 dev_err(chan2dev(chan
), "Invalid DMA direction\n");
682 if (vchan
->is_dedicated
) {
684 * As we are using this just for audio data, we need to use
685 * normal DMA. There is nothing stopping us from supporting
686 * dedicated DMA here as well, so if a client comes up and
687 * requires it, it will be simple to implement it.
689 dev_err(chan2dev(chan
),
690 "Cyclic transfers are only supported on Normal DMA\n");
694 contract
= generate_dma_contract();
698 contract
->is_cyclic
= 1;
700 /* Figure out the endpoints and the address we need */
701 if (dir
== DMA_MEM_TO_DEV
) {
703 dest
= sconfig
->dst_addr
;
704 endpoints
= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM
) |
705 SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan
->endpoint
) |
706 SUN4I_DMA_CFG_DST_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO
);
708 src
= sconfig
->src_addr
;
710 endpoints
= SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan
->endpoint
) |
711 SUN4I_DMA_CFG_SRC_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO
) |
712 SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM
);
716 * We will be using half done interrupts to make two periods
717 * out of a promise, so we need to program the DMA engine less
722 * The engine can interrupt on half-transfer, so we can use
723 * this feature to program the engine half as often as if we
724 * didn't use it (keep in mind the hardware doesn't support
727 * Say you have a set of periods (| marks the start/end, I for
728 * interrupt, P for programming the engine to do a new
729 * transfer), the easy but slow way would be to do
731 * |---|---|---|---| (periods / promises)
734 * Using half transfer interrupts you can do
736 * |-------|-------| (promises as configured on hw)
737 * |---|---|---|---| (periods)
740 * Which requires half the engine programming for the same
743 nr_periods
= DIV_ROUND_UP(len
/ period_len
, 2);
744 for (i
= 0; i
< nr_periods
; i
++) {
745 /* Calculate the offset in the buffer and the length needed */
746 offset
= i
* period_len
* 2;
747 plength
= min((len
- offset
), (period_len
* 2));
748 if (dir
== DMA_MEM_TO_DEV
)
753 /* Make the promise */
754 promise
= generate_ndma_promise(chan
, src
, dest
,
755 plength
, sconfig
, dir
);
757 /* TODO: should we free everything? */
760 promise
->cfg
|= endpoints
;
762 /* Then add it to the contract */
763 list_add_tail(&promise
->list
, &contract
->demands
);
766 /* And add it to the vchan */
767 return vchan_tx_prep(&vchan
->vc
, &contract
->vd
, flags
);
770 static struct dma_async_tx_descriptor
*
771 sun4i_dma_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
772 unsigned int sg_len
, enum dma_transfer_direction dir
,
773 unsigned long flags
, void *context
)
775 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
776 struct dma_slave_config
*sconfig
= &vchan
->cfg
;
777 struct sun4i_dma_promise
*promise
;
778 struct sun4i_dma_contract
*contract
;
779 u8 ram_type
, io_mode
, linear_mode
;
780 struct scatterlist
*sg
;
781 dma_addr_t srcaddr
, dstaddr
;
788 if (!is_slave_direction(dir
)) {
789 dev_err(chan2dev(chan
), "Invalid DMA direction\n");
793 contract
= generate_dma_contract();
797 if (vchan
->is_dedicated
) {
798 io_mode
= SUN4I_DDMA_ADDR_MODE_IO
;
799 linear_mode
= SUN4I_DDMA_ADDR_MODE_LINEAR
;
800 ram_type
= SUN4I_DDMA_DRQ_TYPE_SDRAM
;
802 io_mode
= SUN4I_NDMA_ADDR_MODE_IO
;
803 linear_mode
= SUN4I_NDMA_ADDR_MODE_LINEAR
;
804 ram_type
= SUN4I_NDMA_DRQ_TYPE_SDRAM
;
807 if (dir
== DMA_MEM_TO_DEV
)
808 endpoints
= SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan
->endpoint
) |
809 SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode
) |
810 SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type
) |
811 SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode
);
813 endpoints
= SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type
) |
814 SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode
) |
815 SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan
->endpoint
) |
816 SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode
);
818 for_each_sg(sgl
, sg
, sg_len
, i
) {
819 /* Figure out addresses */
820 if (dir
== DMA_MEM_TO_DEV
) {
821 srcaddr
= sg_dma_address(sg
);
822 dstaddr
= sconfig
->dst_addr
;
824 srcaddr
= sconfig
->src_addr
;
825 dstaddr
= sg_dma_address(sg
);
829 * These are the magic DMA engine timings that keep SPI going.
830 * I haven't seen any interface on DMAEngine to configure
831 * timings, and so far they seem to work for everything we
832 * support, so I've kept them here. I don't know if other
833 * devices need different timings because, as usual, we only
834 * have the "para" bitfield meanings, but no comment on what
835 * the values should be when doing a certain operation :|
837 para
= SUN4I_DDMA_MAGIC_SPI_PARAMETERS
;
839 /* And make a suitable promise */
840 if (vchan
->is_dedicated
)
841 promise
= generate_ddma_promise(chan
, srcaddr
, dstaddr
,
845 promise
= generate_ndma_promise(chan
, srcaddr
, dstaddr
,
850 return NULL
; /* TODO: should we free everything? */
852 promise
->cfg
|= endpoints
;
853 promise
->para
= para
;
855 /* Then add it to the contract */
856 list_add_tail(&promise
->list
, &contract
->demands
);
860 * Once we've got all the promises ready, add the contract
861 * to the pending list on the vchan
863 return vchan_tx_prep(&vchan
->vc
, &contract
->vd
, flags
);
866 static int sun4i_dma_terminate_all(struct dma_chan
*chan
)
868 struct sun4i_dma_dev
*priv
= to_sun4i_dma_dev(chan
->device
);
869 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
870 struct sun4i_dma_pchan
*pchan
= vchan
->pchan
;
874 spin_lock_irqsave(&vchan
->vc
.lock
, flags
);
875 vchan_get_all_descriptors(&vchan
->vc
, &head
);
876 spin_unlock_irqrestore(&vchan
->vc
.lock
, flags
);
879 * Clearing the configuration register will halt the pchan. Interrupts
880 * may still trigger, so don't forget to disable them.
883 if (pchan
->is_dedicated
)
884 writel(0, pchan
->base
+ SUN4I_DDMA_CFG_REG
);
886 writel(0, pchan
->base
+ SUN4I_NDMA_CFG_REG
);
887 set_pchan_interrupt(priv
, pchan
, 0, 0);
888 release_pchan(priv
, pchan
);
891 spin_lock_irqsave(&vchan
->vc
.lock
, flags
);
892 vchan_dma_desc_free_list(&vchan
->vc
, &head
);
893 /* Clear these so the vchan is usable again */
894 vchan
->processing
= NULL
;
896 spin_unlock_irqrestore(&vchan
->vc
.lock
, flags
);
901 static int sun4i_dma_config(struct dma_chan
*chan
,
902 struct dma_slave_config
*config
)
904 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
906 memcpy(&vchan
->cfg
, config
, sizeof(*config
));
911 static struct dma_chan
*sun4i_dma_of_xlate(struct of_phandle_args
*dma_spec
,
912 struct of_dma
*ofdma
)
914 struct sun4i_dma_dev
*priv
= ofdma
->of_dma_data
;
915 struct sun4i_dma_vchan
*vchan
;
916 struct dma_chan
*chan
;
917 u8 is_dedicated
= dma_spec
->args
[0];
918 u8 endpoint
= dma_spec
->args
[1];
920 /* Check if type is Normal or Dedicated */
921 if (is_dedicated
!= 0 && is_dedicated
!= 1)
924 /* Make sure the endpoint looks sane */
925 if ((is_dedicated
&& endpoint
>= SUN4I_DDMA_DRQ_TYPE_LIMIT
) ||
926 (!is_dedicated
&& endpoint
>= SUN4I_NDMA_DRQ_TYPE_LIMIT
))
929 chan
= dma_get_any_slave_channel(&priv
->slave
);
933 /* Assign the endpoint to the vchan */
934 vchan
= to_sun4i_dma_vchan(chan
);
935 vchan
->is_dedicated
= is_dedicated
;
936 vchan
->endpoint
= endpoint
;
941 static enum dma_status
sun4i_dma_tx_status(struct dma_chan
*chan
,
943 struct dma_tx_state
*state
)
945 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
946 struct sun4i_dma_pchan
*pchan
= vchan
->pchan
;
947 struct sun4i_dma_contract
*contract
;
948 struct sun4i_dma_promise
*promise
;
949 struct virt_dma_desc
*vd
;
954 ret
= dma_cookie_status(chan
, cookie
, state
);
955 if (!state
|| (ret
== DMA_COMPLETE
))
958 spin_lock_irqsave(&vchan
->vc
.lock
, flags
);
959 vd
= vchan_find_desc(&vchan
->vc
, cookie
);
962 contract
= to_sun4i_dma_contract(vd
);
964 list_for_each_entry(promise
, &contract
->demands
, list
)
965 bytes
+= promise
->len
;
968 * The hardware is configured to return the remaining byte
969 * quantity. If possible, replace the first listed element's
970 * full size with the actual remaining amount
972 promise
= list_first_entry_or_null(&contract
->demands
,
973 struct sun4i_dma_promise
, list
);
974 if (promise
&& pchan
) {
975 bytes
-= promise
->len
;
976 if (pchan
->is_dedicated
)
977 bytes
+= readl(pchan
->base
+ SUN4I_DDMA_BYTE_COUNT_REG
);
979 bytes
+= readl(pchan
->base
+ SUN4I_NDMA_BYTE_COUNT_REG
);
984 dma_set_residue(state
, bytes
);
985 spin_unlock_irqrestore(&vchan
->vc
.lock
, flags
);
990 static void sun4i_dma_issue_pending(struct dma_chan
*chan
)
992 struct sun4i_dma_dev
*priv
= to_sun4i_dma_dev(chan
->device
);
993 struct sun4i_dma_vchan
*vchan
= to_sun4i_dma_vchan(chan
);
996 spin_lock_irqsave(&vchan
->vc
.lock
, flags
);
999 * If there are pending transactions for this vchan, push one of
1000 * them into the engine to get the ball rolling.
1002 if (vchan_issue_pending(&vchan
->vc
))
1003 __execute_vchan_pending(priv
, vchan
);
1005 spin_unlock_irqrestore(&vchan
->vc
.lock
, flags
);
1008 static irqreturn_t
sun4i_dma_interrupt(int irq
, void *dev_id
)
1010 struct sun4i_dma_dev
*priv
= dev_id
;
1011 struct sun4i_dma_pchan
*pchans
= priv
->pchans
, *pchan
;
1012 struct sun4i_dma_vchan
*vchan
;
1013 struct sun4i_dma_contract
*contract
;
1014 struct sun4i_dma_promise
*promise
;
1015 unsigned long pendirq
, irqs
, disableirqs
;
1016 int bit
, i
, free_room
, allow_mitigation
= 1;
1018 pendirq
= readl_relaxed(priv
->base
+ SUN4I_DMA_IRQ_PENDING_STATUS_REG
);
1025 for_each_set_bit(bit
, &pendirq
, 32) {
1026 pchan
= &pchans
[bit
>> 1];
1027 vchan
= pchan
->vchan
;
1028 if (!vchan
) /* a terminated channel may still interrupt */
1030 contract
= vchan
->contract
;
1033 * Disable the IRQ and free the pchan if it's an end
1034 * interrupt (odd bit)
1037 spin_lock(&vchan
->vc
.lock
);
1040 * Move the promise into the completed list now that
1041 * we're done with it
1043 list_del(&vchan
->processing
->list
);
1044 list_add_tail(&vchan
->processing
->list
,
1045 &contract
->completed_demands
);
1048 * Cyclic DMA transfers are special:
1049 * - There's always something we can dispatch
1050 * - We need to run the callback
1051 * - Latency is very important, as this is used by audio
1052 * We therefore just cycle through the list and dispatch
1053 * whatever we have here, reusing the pchan. There's
1054 * no need to run the thread after this.
1056 * For non-cyclic transfers we need to look around,
1057 * so we can program some more work, or notify the
1058 * client that their transfers have been completed.
1060 if (contract
->is_cyclic
) {
1061 promise
= get_next_cyclic_promise(contract
);
1062 vchan
->processing
= promise
;
1063 configure_pchan(pchan
, promise
);
1064 vchan_cyclic_callback(&contract
->vd
);
1066 vchan
->processing
= NULL
;
1067 vchan
->pchan
= NULL
;
1070 disableirqs
|= BIT(bit
);
1071 release_pchan(priv
, pchan
);
1074 spin_unlock(&vchan
->vc
.lock
);
1076 /* Half done interrupt */
1077 if (contract
->is_cyclic
)
1078 vchan_cyclic_callback(&contract
->vd
);
1080 disableirqs
|= BIT(bit
);
1084 /* Disable the IRQs for events we handled */
1085 spin_lock(&priv
->lock
);
1086 irqs
= readl_relaxed(priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
1087 writel_relaxed(irqs
& ~disableirqs
,
1088 priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
1089 spin_unlock(&priv
->lock
);
1091 /* Writing 1 to the pending field will clear the pending interrupt */
1092 writel_relaxed(pendirq
, priv
->base
+ SUN4I_DMA_IRQ_PENDING_STATUS_REG
);
1095 * If a pchan was freed, we may be able to schedule something else,
1096 * so have a look around
1099 for (i
= 0; i
< SUN4I_DMA_NR_MAX_VCHANS
; i
++) {
1100 vchan
= &priv
->vchans
[i
];
1101 spin_lock(&vchan
->vc
.lock
);
1102 __execute_vchan_pending(priv
, vchan
);
1103 spin_unlock(&vchan
->vc
.lock
);
1108 * Handle newer interrupts if some showed up, but only do it once
1109 * to avoid a too long a loop
1111 if (allow_mitigation
) {
1112 pendirq
= readl_relaxed(priv
->base
+
1113 SUN4I_DMA_IRQ_PENDING_STATUS_REG
);
1115 allow_mitigation
= 0;
1116 goto handle_pending
;
1123 static int sun4i_dma_probe(struct platform_device
*pdev
)
1125 struct sun4i_dma_dev
*priv
;
1126 struct resource
*res
;
1129 priv
= devm_kzalloc(&pdev
->dev
, sizeof(*priv
), GFP_KERNEL
);
1133 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1134 priv
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1135 if (IS_ERR(priv
->base
))
1136 return PTR_ERR(priv
->base
);
1138 priv
->irq
= platform_get_irq(pdev
, 0);
1139 if (priv
->irq
< 0) {
1140 dev_err(&pdev
->dev
, "Cannot claim IRQ\n");
1144 priv
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1145 if (IS_ERR(priv
->clk
)) {
1146 dev_err(&pdev
->dev
, "No clock specified\n");
1147 return PTR_ERR(priv
->clk
);
1150 platform_set_drvdata(pdev
, priv
);
1151 spin_lock_init(&priv
->lock
);
1153 dma_cap_zero(priv
->slave
.cap_mask
);
1154 dma_cap_set(DMA_PRIVATE
, priv
->slave
.cap_mask
);
1155 dma_cap_set(DMA_MEMCPY
, priv
->slave
.cap_mask
);
1156 dma_cap_set(DMA_CYCLIC
, priv
->slave
.cap_mask
);
1157 dma_cap_set(DMA_SLAVE
, priv
->slave
.cap_mask
);
1159 INIT_LIST_HEAD(&priv
->slave
.channels
);
1160 priv
->slave
.device_free_chan_resources
= sun4i_dma_free_chan_resources
;
1161 priv
->slave
.device_tx_status
= sun4i_dma_tx_status
;
1162 priv
->slave
.device_issue_pending
= sun4i_dma_issue_pending
;
1163 priv
->slave
.device_prep_slave_sg
= sun4i_dma_prep_slave_sg
;
1164 priv
->slave
.device_prep_dma_memcpy
= sun4i_dma_prep_dma_memcpy
;
1165 priv
->slave
.device_prep_dma_cyclic
= sun4i_dma_prep_dma_cyclic
;
1166 priv
->slave
.device_config
= sun4i_dma_config
;
1167 priv
->slave
.device_terminate_all
= sun4i_dma_terminate_all
;
1168 priv
->slave
.copy_align
= 2;
1169 priv
->slave
.src_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE
) |
1170 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES
) |
1171 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1172 priv
->slave
.dst_addr_widths
= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE
) |
1173 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES
) |
1174 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES
);
1175 priv
->slave
.directions
= BIT(DMA_DEV_TO_MEM
) |
1176 BIT(DMA_MEM_TO_DEV
);
1177 priv
->slave
.residue_granularity
= DMA_RESIDUE_GRANULARITY_BURST
;
1179 priv
->slave
.dev
= &pdev
->dev
;
1181 priv
->pchans
= devm_kcalloc(&pdev
->dev
, SUN4I_DMA_NR_MAX_CHANNELS
,
1182 sizeof(struct sun4i_dma_pchan
), GFP_KERNEL
);
1183 priv
->vchans
= devm_kcalloc(&pdev
->dev
, SUN4I_DMA_NR_MAX_VCHANS
,
1184 sizeof(struct sun4i_dma_vchan
), GFP_KERNEL
);
1185 if (!priv
->vchans
|| !priv
->pchans
)
1189 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1190 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1193 for (i
= 0; i
< SUN4I_NDMA_NR_MAX_CHANNELS
; i
++)
1194 priv
->pchans
[i
].base
= priv
->base
+
1195 SUN4I_NDMA_CHANNEL_REG_BASE(i
);
1197 for (j
= 0; i
< SUN4I_DMA_NR_MAX_CHANNELS
; i
++, j
++) {
1198 priv
->pchans
[i
].base
= priv
->base
+
1199 SUN4I_DDMA_CHANNEL_REG_BASE(j
);
1200 priv
->pchans
[i
].is_dedicated
= 1;
1203 for (i
= 0; i
< SUN4I_DMA_NR_MAX_VCHANS
; i
++) {
1204 struct sun4i_dma_vchan
*vchan
= &priv
->vchans
[i
];
1206 spin_lock_init(&vchan
->vc
.lock
);
1207 vchan
->vc
.desc_free
= sun4i_dma_free_contract
;
1208 vchan_init(&vchan
->vc
, &priv
->slave
);
1211 ret
= clk_prepare_enable(priv
->clk
);
1213 dev_err(&pdev
->dev
, "Couldn't enable the clock\n");
1218 * Make sure the IRQs are all disabled and accounted for. The bootloader
1219 * likes to leave these dirty
1221 writel(0, priv
->base
+ SUN4I_DMA_IRQ_ENABLE_REG
);
1222 writel(0xFFFFFFFF, priv
->base
+ SUN4I_DMA_IRQ_PENDING_STATUS_REG
);
1224 ret
= devm_request_irq(&pdev
->dev
, priv
->irq
, sun4i_dma_interrupt
,
1225 0, dev_name(&pdev
->dev
), priv
);
1227 dev_err(&pdev
->dev
, "Cannot request IRQ\n");
1228 goto err_clk_disable
;
1231 ret
= dma_async_device_register(&priv
->slave
);
1233 dev_warn(&pdev
->dev
, "Failed to register DMA engine device\n");
1234 goto err_clk_disable
;
1237 ret
= of_dma_controller_register(pdev
->dev
.of_node
, sun4i_dma_of_xlate
,
1240 dev_err(&pdev
->dev
, "of_dma_controller_register failed\n");
1241 goto err_dma_unregister
;
1244 dev_dbg(&pdev
->dev
, "Successfully probed SUN4I_DMA\n");
1249 dma_async_device_unregister(&priv
->slave
);
1251 clk_disable_unprepare(priv
->clk
);
1255 static int sun4i_dma_remove(struct platform_device
*pdev
)
1257 struct sun4i_dma_dev
*priv
= platform_get_drvdata(pdev
);
1259 /* Disable IRQ so no more work is scheduled */
1260 disable_irq(priv
->irq
);
1262 of_dma_controller_free(pdev
->dev
.of_node
);
1263 dma_async_device_unregister(&priv
->slave
);
1265 clk_disable_unprepare(priv
->clk
);
1270 static const struct of_device_id sun4i_dma_match
[] = {
1271 { .compatible
= "allwinner,sun4i-a10-dma" },
1274 MODULE_DEVICE_TABLE(of
, sun4i_dma_match
);
1276 static struct platform_driver sun4i_dma_driver
= {
1277 .probe
= sun4i_dma_probe
,
1278 .remove
= sun4i_dma_remove
,
1280 .name
= "sun4i-dma",
1281 .of_match_table
= sun4i_dma_match
,
1285 module_platform_driver(sun4i_dma_driver
);
1287 MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1288 MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1289 MODULE_LICENSE("GPL");