2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <jroedel@suse.de>
4 * Leo Duran <leo.duran@amd.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include <linux/ratelimit.h>
21 #include <linux/pci.h>
22 #include <linux/acpi.h>
23 #include <linux/amba/bus.h>
24 #include <linux/platform_device.h>
25 #include <linux/pci-ats.h>
26 #include <linux/bitmap.h>
27 #include <linux/slab.h>
28 #include <linux/debugfs.h>
29 #include <linux/scatterlist.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/iommu-helper.h>
32 #include <linux/iommu.h>
33 #include <linux/delay.h>
34 #include <linux/amd-iommu.h>
35 #include <linux/notifier.h>
36 #include <linux/export.h>
37 #include <linux/irq.h>
38 #include <linux/msi.h>
39 #include <linux/dma-contiguous.h>
40 #include <linux/irqdomain.h>
41 #include <linux/percpu.h>
42 #include <linux/iova.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/io_apic.h>
46 #include <asm/hw_irq.h>
47 #include <asm/msidef.h>
48 #include <asm/proto.h>
49 #include <asm/iommu.h>
53 #include "amd_iommu_proto.h"
54 #include "amd_iommu_types.h"
55 #include "irq_remapping.h"
57 #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
59 #define LOOP_TIMEOUT 100000
61 /* IO virtual address start page frame number */
62 #define IOVA_START_PFN (1)
63 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
64 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
66 /* Reserved IOVA ranges */
67 #define MSI_RANGE_START (0xfee00000)
68 #define MSI_RANGE_END (0xfeefffff)
69 #define HT_RANGE_START (0xfd00000000ULL)
70 #define HT_RANGE_END (0xffffffffffULL)
73 * This bitmap is used to advertise the page sizes our hardware support
74 * to the IOMMU core, which will then use this information to split
75 * physically contiguous memory regions it is mapping into page sizes
78 * 512GB Pages are not supported due to a hardware bug
80 #define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
82 static DEFINE_RWLOCK(amd_iommu_devtable_lock
);
84 /* List of all available dev_data structures */
85 static LIST_HEAD(dev_data_list
);
86 static DEFINE_SPINLOCK(dev_data_list_lock
);
88 LIST_HEAD(ioapic_map
);
90 LIST_HEAD(acpihid_map
);
92 #define FLUSH_QUEUE_SIZE 256
94 struct flush_queue_entry
{
95 unsigned long iova_pfn
;
97 struct dma_ops_domain
*dma_dom
;
103 struct flush_queue_entry
*entries
;
106 static DEFINE_PER_CPU(struct flush_queue
, flush_queue
);
108 static atomic_t queue_timer_on
;
109 static struct timer_list queue_timer
;
112 * Domain for untranslated devices - only allocated
113 * if iommu=pt passed on kernel cmd line.
115 static const struct iommu_ops amd_iommu_ops
;
117 static ATOMIC_NOTIFIER_HEAD(ppr_notifier
);
118 int amd_iommu_max_glx_val
= -1;
120 static struct dma_map_ops amd_iommu_dma_ops
;
123 * This struct contains device specific data for the IOMMU
125 struct iommu_dev_data
{
126 struct list_head list
; /* For domain->dev_list */
127 struct list_head dev_data_list
; /* For global dev_data_list */
128 struct protection_domain
*domain
; /* Domain the device is bound to */
129 u16 devid
; /* PCI Device ID */
130 u16 alias
; /* Alias Device ID */
131 bool iommu_v2
; /* Device can make use of IOMMUv2 */
132 bool passthrough
; /* Device is identity mapped */
136 } ats
; /* ATS state */
137 bool pri_tlp
; /* PASID TLB required for
139 u32 errata
; /* Bitmap for errata to apply */
140 bool use_vapic
; /* Enable device to use vapic mode */
144 * general struct to manage commands send to an IOMMU
150 struct kmem_cache
*amd_iommu_irq_cache
;
152 static void update_domain(struct protection_domain
*domain
);
153 static int protection_domain_init(struct protection_domain
*domain
);
154 static void detach_device(struct device
*dev
);
157 * Data container for a dma_ops specific protection domain
159 struct dma_ops_domain
{
160 /* generic protection domain information */
161 struct protection_domain domain
;
164 struct iova_domain iovad
;
167 static struct iova_domain reserved_iova_ranges
;
168 static struct lock_class_key reserved_rbtree_key
;
170 /****************************************************************************
174 ****************************************************************************/
176 static inline int match_hid_uid(struct device
*dev
,
177 struct acpihid_map_entry
*entry
)
179 const char *hid
, *uid
;
181 hid
= acpi_device_hid(ACPI_COMPANION(dev
));
182 uid
= acpi_device_uid(ACPI_COMPANION(dev
));
188 return strcmp(hid
, entry
->hid
);
191 return strcmp(hid
, entry
->hid
);
193 return (strcmp(hid
, entry
->hid
) || strcmp(uid
, entry
->uid
));
196 static inline u16
get_pci_device_id(struct device
*dev
)
198 struct pci_dev
*pdev
= to_pci_dev(dev
);
200 return PCI_DEVID(pdev
->bus
->number
, pdev
->devfn
);
203 static inline int get_acpihid_device_id(struct device
*dev
,
204 struct acpihid_map_entry
**entry
)
206 struct acpihid_map_entry
*p
;
208 list_for_each_entry(p
, &acpihid_map
, list
) {
209 if (!match_hid_uid(dev
, p
)) {
218 static inline int get_device_id(struct device
*dev
)
223 devid
= get_pci_device_id(dev
);
225 devid
= get_acpihid_device_id(dev
, NULL
);
230 static struct protection_domain
*to_pdomain(struct iommu_domain
*dom
)
232 return container_of(dom
, struct protection_domain
, domain
);
235 static struct dma_ops_domain
* to_dma_ops_domain(struct protection_domain
*domain
)
237 BUG_ON(domain
->flags
!= PD_DMA_OPS_MASK
);
238 return container_of(domain
, struct dma_ops_domain
, domain
);
241 static struct iommu_dev_data
*alloc_dev_data(u16 devid
)
243 struct iommu_dev_data
*dev_data
;
246 dev_data
= kzalloc(sizeof(*dev_data
), GFP_KERNEL
);
250 dev_data
->devid
= devid
;
252 spin_lock_irqsave(&dev_data_list_lock
, flags
);
253 list_add_tail(&dev_data
->dev_data_list
, &dev_data_list
);
254 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
259 static struct iommu_dev_data
*search_dev_data(u16 devid
)
261 struct iommu_dev_data
*dev_data
;
264 spin_lock_irqsave(&dev_data_list_lock
, flags
);
265 list_for_each_entry(dev_data
, &dev_data_list
, dev_data_list
) {
266 if (dev_data
->devid
== devid
)
273 spin_unlock_irqrestore(&dev_data_list_lock
, flags
);
278 static int __last_alias(struct pci_dev
*pdev
, u16 alias
, void *data
)
280 *(u16
*)data
= alias
;
284 static u16
get_alias(struct device
*dev
)
286 struct pci_dev
*pdev
= to_pci_dev(dev
);
287 u16 devid
, ivrs_alias
, pci_alias
;
289 /* The callers make sure that get_device_id() does not fail here */
290 devid
= get_device_id(dev
);
291 ivrs_alias
= amd_iommu_alias_table
[devid
];
292 pci_for_each_dma_alias(pdev
, __last_alias
, &pci_alias
);
294 if (ivrs_alias
== pci_alias
)
300 * The IVRS is fairly reliable in telling us about aliases, but it
301 * can't know about every screwy device. If we don't have an IVRS
302 * reported alias, use the PCI reported alias. In that case we may
303 * still need to initialize the rlookup and dev_table entries if the
304 * alias is to a non-existent device.
306 if (ivrs_alias
== devid
) {
307 if (!amd_iommu_rlookup_table
[pci_alias
]) {
308 amd_iommu_rlookup_table
[pci_alias
] =
309 amd_iommu_rlookup_table
[devid
];
310 memcpy(amd_iommu_dev_table
[pci_alias
].data
,
311 amd_iommu_dev_table
[devid
].data
,
312 sizeof(amd_iommu_dev_table
[pci_alias
].data
));
318 pr_info("AMD-Vi: Using IVRS reported alias %02x:%02x.%d "
319 "for device %s[%04x:%04x], kernel reported alias "
320 "%02x:%02x.%d\n", PCI_BUS_NUM(ivrs_alias
), PCI_SLOT(ivrs_alias
),
321 PCI_FUNC(ivrs_alias
), dev_name(dev
), pdev
->vendor
, pdev
->device
,
322 PCI_BUS_NUM(pci_alias
), PCI_SLOT(pci_alias
),
323 PCI_FUNC(pci_alias
));
326 * If we don't have a PCI DMA alias and the IVRS alias is on the same
327 * bus, then the IVRS table may know about a quirk that we don't.
329 if (pci_alias
== devid
&&
330 PCI_BUS_NUM(ivrs_alias
) == pdev
->bus
->number
) {
331 pci_add_dma_alias(pdev
, ivrs_alias
& 0xff);
332 pr_info("AMD-Vi: Added PCI DMA alias %02x.%d for %s\n",
333 PCI_SLOT(ivrs_alias
), PCI_FUNC(ivrs_alias
),
340 static struct iommu_dev_data
*find_dev_data(u16 devid
)
342 struct iommu_dev_data
*dev_data
;
344 dev_data
= search_dev_data(devid
);
346 if (dev_data
== NULL
)
347 dev_data
= alloc_dev_data(devid
);
352 static struct iommu_dev_data
*get_dev_data(struct device
*dev
)
354 return dev
->archdata
.iommu
;
358 * Find or create an IOMMU group for a acpihid device.
360 static struct iommu_group
*acpihid_device_group(struct device
*dev
)
362 struct acpihid_map_entry
*p
, *entry
= NULL
;
365 devid
= get_acpihid_device_id(dev
, &entry
);
367 return ERR_PTR(devid
);
369 list_for_each_entry(p
, &acpihid_map
, list
) {
370 if ((devid
== p
->devid
) && p
->group
)
371 entry
->group
= p
->group
;
375 entry
->group
= generic_device_group(dev
);
377 iommu_group_ref_get(entry
->group
);
382 static bool pci_iommuv2_capable(struct pci_dev
*pdev
)
384 static const int caps
[] = {
387 PCI_EXT_CAP_ID_PASID
,
391 for (i
= 0; i
< 3; ++i
) {
392 pos
= pci_find_ext_capability(pdev
, caps
[i
]);
400 static bool pdev_pri_erratum(struct pci_dev
*pdev
, u32 erratum
)
402 struct iommu_dev_data
*dev_data
;
404 dev_data
= get_dev_data(&pdev
->dev
);
406 return dev_data
->errata
& (1 << erratum
) ? true : false;
410 * This function checks if the driver got a valid device from the caller to
411 * avoid dereferencing invalid pointers.
413 static bool check_device(struct device
*dev
)
417 if (!dev
|| !dev
->dma_mask
)
420 devid
= get_device_id(dev
);
424 /* Out of our scope? */
425 if (devid
> amd_iommu_last_bdf
)
428 if (amd_iommu_rlookup_table
[devid
] == NULL
)
434 static void init_iommu_group(struct device
*dev
)
436 struct iommu_group
*group
;
438 group
= iommu_group_get_for_dev(dev
);
442 iommu_group_put(group
);
445 static int iommu_init_device(struct device
*dev
)
447 struct iommu_dev_data
*dev_data
;
450 if (dev
->archdata
.iommu
)
453 devid
= get_device_id(dev
);
457 dev_data
= find_dev_data(devid
);
461 dev_data
->alias
= get_alias(dev
);
463 if (dev_is_pci(dev
) && pci_iommuv2_capable(to_pci_dev(dev
))) {
464 struct amd_iommu
*iommu
;
466 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
467 dev_data
->iommu_v2
= iommu
->is_iommu_v2
;
470 dev
->archdata
.iommu
= dev_data
;
472 iommu_device_link(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
478 static void iommu_ignore_device(struct device
*dev
)
483 devid
= get_device_id(dev
);
487 alias
= get_alias(dev
);
489 memset(&amd_iommu_dev_table
[devid
], 0, sizeof(struct dev_table_entry
));
490 memset(&amd_iommu_dev_table
[alias
], 0, sizeof(struct dev_table_entry
));
492 amd_iommu_rlookup_table
[devid
] = NULL
;
493 amd_iommu_rlookup_table
[alias
] = NULL
;
496 static void iommu_uninit_device(struct device
*dev
)
499 struct iommu_dev_data
*dev_data
;
501 devid
= get_device_id(dev
);
505 dev_data
= search_dev_data(devid
);
509 if (dev_data
->domain
)
512 iommu_device_unlink(amd_iommu_rlookup_table
[dev_data
->devid
]->iommu_dev
,
515 iommu_group_remove_device(dev
);
518 dev
->archdata
.dma_ops
= NULL
;
521 * We keep dev_data around for unplugged devices and reuse it when the
522 * device is re-plugged - not doing so would introduce a ton of races.
526 /****************************************************************************
528 * Interrupt handling functions
530 ****************************************************************************/
532 static void dump_dte_entry(u16 devid
)
536 for (i
= 0; i
< 4; ++i
)
537 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i
,
538 amd_iommu_dev_table
[devid
].data
[i
]);
541 static void dump_command(unsigned long phys_addr
)
543 struct iommu_cmd
*cmd
= phys_to_virt(phys_addr
);
546 for (i
= 0; i
< 4; ++i
)
547 pr_err("AMD-Vi: CMD[%d]: %08x\n", i
, cmd
->data
[i
]);
550 static void iommu_print_event(struct amd_iommu
*iommu
, void *__evt
)
552 int type
, devid
, domid
, flags
;
553 volatile u32
*event
= __evt
;
558 type
= (event
[1] >> EVENT_TYPE_SHIFT
) & EVENT_TYPE_MASK
;
559 devid
= (event
[0] >> EVENT_DEVID_SHIFT
) & EVENT_DEVID_MASK
;
560 domid
= (event
[1] >> EVENT_DOMID_SHIFT
) & EVENT_DOMID_MASK
;
561 flags
= (event
[1] >> EVENT_FLAGS_SHIFT
) & EVENT_FLAGS_MASK
;
562 address
= (u64
)(((u64
)event
[3]) << 32) | event
[2];
565 /* Did we hit the erratum? */
566 if (++count
== LOOP_TIMEOUT
) {
567 pr_err("AMD-Vi: No event written to event log\n");
574 printk(KERN_ERR
"AMD-Vi: Event logged [");
577 case EVENT_TYPE_ILL_DEV
:
578 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
579 "address=0x%016llx flags=0x%04x]\n",
580 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
582 dump_dte_entry(devid
);
584 case EVENT_TYPE_IO_FAULT
:
585 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
586 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
587 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
588 domid
, address
, flags
);
590 case EVENT_TYPE_DEV_TAB_ERR
:
591 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
592 "address=0x%016llx flags=0x%04x]\n",
593 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
596 case EVENT_TYPE_PAGE_TAB_ERR
:
597 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
598 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
599 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
600 domid
, address
, flags
);
602 case EVENT_TYPE_ILL_CMD
:
603 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address
);
604 dump_command(address
);
606 case EVENT_TYPE_CMD_HARD_ERR
:
607 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
608 "flags=0x%04x]\n", address
, flags
);
610 case EVENT_TYPE_IOTLB_INV_TO
:
611 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
612 "address=0x%016llx]\n",
613 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
616 case EVENT_TYPE_INV_DEV_REQ
:
617 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
618 "address=0x%016llx flags=0x%04x]\n",
619 PCI_BUS_NUM(devid
), PCI_SLOT(devid
), PCI_FUNC(devid
),
623 printk(KERN_ERR
"UNKNOWN type=0x%02x]\n", type
);
626 memset(__evt
, 0, 4 * sizeof(u32
));
629 static void iommu_poll_events(struct amd_iommu
*iommu
)
633 head
= readl(iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
634 tail
= readl(iommu
->mmio_base
+ MMIO_EVT_TAIL_OFFSET
);
636 while (head
!= tail
) {
637 iommu_print_event(iommu
, iommu
->evt_buf
+ head
);
638 head
= (head
+ EVENT_ENTRY_SIZE
) % EVT_BUFFER_SIZE
;
641 writel(head
, iommu
->mmio_base
+ MMIO_EVT_HEAD_OFFSET
);
644 static void iommu_handle_ppr_entry(struct amd_iommu
*iommu
, u64
*raw
)
646 struct amd_iommu_fault fault
;
648 if (PPR_REQ_TYPE(raw
[0]) != PPR_REQ_FAULT
) {
649 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
653 fault
.address
= raw
[1];
654 fault
.pasid
= PPR_PASID(raw
[0]);
655 fault
.device_id
= PPR_DEVID(raw
[0]);
656 fault
.tag
= PPR_TAG(raw
[0]);
657 fault
.flags
= PPR_FLAGS(raw
[0]);
659 atomic_notifier_call_chain(&ppr_notifier
, 0, &fault
);
662 static void iommu_poll_ppr_log(struct amd_iommu
*iommu
)
666 if (iommu
->ppr_log
== NULL
)
669 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
670 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
672 while (head
!= tail
) {
677 raw
= (u64
*)(iommu
->ppr_log
+ head
);
680 * Hardware bug: Interrupt may arrive before the entry is
681 * written to memory. If this happens we need to wait for the
684 for (i
= 0; i
< LOOP_TIMEOUT
; ++i
) {
685 if (PPR_REQ_TYPE(raw
[0]) != 0)
690 /* Avoid memcpy function-call overhead */
695 * To detect the hardware bug we need to clear the entry
698 raw
[0] = raw
[1] = 0UL;
700 /* Update head pointer of hardware ring-buffer */
701 head
= (head
+ PPR_ENTRY_SIZE
) % PPR_LOG_SIZE
;
702 writel(head
, iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
704 /* Handle PPR entry */
705 iommu_handle_ppr_entry(iommu
, entry
);
707 /* Refresh ring-buffer information */
708 head
= readl(iommu
->mmio_base
+ MMIO_PPR_HEAD_OFFSET
);
709 tail
= readl(iommu
->mmio_base
+ MMIO_PPR_TAIL_OFFSET
);
713 #ifdef CONFIG_IRQ_REMAP
714 static int (*iommu_ga_log_notifier
)(u32
);
716 int amd_iommu_register_ga_log_notifier(int (*notifier
)(u32
))
718 iommu_ga_log_notifier
= notifier
;
722 EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier
);
724 static void iommu_poll_ga_log(struct amd_iommu
*iommu
)
726 u32 head
, tail
, cnt
= 0;
728 if (iommu
->ga_log
== NULL
)
731 head
= readl(iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
732 tail
= readl(iommu
->mmio_base
+ MMIO_GA_TAIL_OFFSET
);
734 while (head
!= tail
) {
738 raw
= (u64
*)(iommu
->ga_log
+ head
);
741 /* Avoid memcpy function-call overhead */
744 /* Update head pointer of hardware ring-buffer */
745 head
= (head
+ GA_ENTRY_SIZE
) % GA_LOG_SIZE
;
746 writel(head
, iommu
->mmio_base
+ MMIO_GA_HEAD_OFFSET
);
748 /* Handle GA entry */
749 switch (GA_REQ_TYPE(log_entry
)) {
751 if (!iommu_ga_log_notifier
)
754 pr_debug("AMD-Vi: %s: devid=%#x, ga_tag=%#x\n",
755 __func__
, GA_DEVID(log_entry
),
758 if (iommu_ga_log_notifier(GA_TAG(log_entry
)) != 0)
759 pr_err("AMD-Vi: GA log notifier failed.\n");
766 #endif /* CONFIG_IRQ_REMAP */
768 #define AMD_IOMMU_INT_MASK \
769 (MMIO_STATUS_EVT_INT_MASK | \
770 MMIO_STATUS_PPR_INT_MASK | \
771 MMIO_STATUS_GALOG_INT_MASK)
773 irqreturn_t
amd_iommu_int_thread(int irq
, void *data
)
775 struct amd_iommu
*iommu
= (struct amd_iommu
*) data
;
776 u32 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
778 while (status
& AMD_IOMMU_INT_MASK
) {
779 /* Enable EVT and PPR and GA interrupts again */
780 writel(AMD_IOMMU_INT_MASK
,
781 iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
783 if (status
& MMIO_STATUS_EVT_INT_MASK
) {
784 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
785 iommu_poll_events(iommu
);
788 if (status
& MMIO_STATUS_PPR_INT_MASK
) {
789 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
790 iommu_poll_ppr_log(iommu
);
793 #ifdef CONFIG_IRQ_REMAP
794 if (status
& MMIO_STATUS_GALOG_INT_MASK
) {
795 pr_devel("AMD-Vi: Processing IOMMU GA Log\n");
796 iommu_poll_ga_log(iommu
);
801 * Hardware bug: ERBT1312
802 * When re-enabling interrupt (by writing 1
803 * to clear the bit), the hardware might also try to set
804 * the interrupt bit in the event status register.
805 * In this scenario, the bit will be set, and disable
806 * subsequent interrupts.
808 * Workaround: The IOMMU driver should read back the
809 * status register and check if the interrupt bits are cleared.
810 * If not, driver will need to go through the interrupt handler
811 * again and re-clear the bits
813 status
= readl(iommu
->mmio_base
+ MMIO_STATUS_OFFSET
);
818 irqreturn_t
amd_iommu_int_handler(int irq
, void *data
)
820 return IRQ_WAKE_THREAD
;
823 /****************************************************************************
825 * IOMMU command queuing functions
827 ****************************************************************************/
829 static int wait_on_sem(volatile u64
*sem
)
833 while (*sem
== 0 && i
< LOOP_TIMEOUT
) {
838 if (i
== LOOP_TIMEOUT
) {
839 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
846 static void copy_cmd_to_buffer(struct amd_iommu
*iommu
,
847 struct iommu_cmd
*cmd
,
852 target
= iommu
->cmd_buf
+ tail
;
853 tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
855 /* Copy command to buffer */
856 memcpy(target
, cmd
, sizeof(*cmd
));
858 /* Tell the IOMMU about it */
859 writel(tail
, iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
862 static void build_completion_wait(struct iommu_cmd
*cmd
, u64 address
)
864 WARN_ON(address
& 0x7ULL
);
866 memset(cmd
, 0, sizeof(*cmd
));
867 cmd
->data
[0] = lower_32_bits(__pa(address
)) | CMD_COMPL_WAIT_STORE_MASK
;
868 cmd
->data
[1] = upper_32_bits(__pa(address
));
870 CMD_SET_TYPE(cmd
, CMD_COMPL_WAIT
);
873 static void build_inv_dte(struct iommu_cmd
*cmd
, u16 devid
)
875 memset(cmd
, 0, sizeof(*cmd
));
876 cmd
->data
[0] = devid
;
877 CMD_SET_TYPE(cmd
, CMD_INV_DEV_ENTRY
);
880 static void build_inv_iommu_pages(struct iommu_cmd
*cmd
, u64 address
,
881 size_t size
, u16 domid
, int pde
)
886 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
891 * If we have to flush more than one page, flush all
892 * TLB entries for this domain
894 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
898 address
&= PAGE_MASK
;
900 memset(cmd
, 0, sizeof(*cmd
));
901 cmd
->data
[1] |= domid
;
902 cmd
->data
[2] = lower_32_bits(address
);
903 cmd
->data
[3] = upper_32_bits(address
);
904 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
905 if (s
) /* size bit - we flush more than one 4kb page */
906 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
907 if (pde
) /* PDE bit - we want to flush everything, not only the PTEs */
908 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
911 static void build_inv_iotlb_pages(struct iommu_cmd
*cmd
, u16 devid
, int qdep
,
912 u64 address
, size_t size
)
917 pages
= iommu_num_pages(address
, size
, PAGE_SIZE
);
922 * If we have to flush more than one page, flush all
923 * TLB entries for this domain
925 address
= CMD_INV_IOMMU_ALL_PAGES_ADDRESS
;
929 address
&= PAGE_MASK
;
931 memset(cmd
, 0, sizeof(*cmd
));
932 cmd
->data
[0] = devid
;
933 cmd
->data
[0] |= (qdep
& 0xff) << 24;
934 cmd
->data
[1] = devid
;
935 cmd
->data
[2] = lower_32_bits(address
);
936 cmd
->data
[3] = upper_32_bits(address
);
937 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
939 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
942 static void build_inv_iommu_pasid(struct iommu_cmd
*cmd
, u16 domid
, int pasid
,
943 u64 address
, bool size
)
945 memset(cmd
, 0, sizeof(*cmd
));
947 address
&= ~(0xfffULL
);
949 cmd
->data
[0] = pasid
;
950 cmd
->data
[1] = domid
;
951 cmd
->data
[2] = lower_32_bits(address
);
952 cmd
->data
[3] = upper_32_bits(address
);
953 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK
;
954 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
956 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
957 CMD_SET_TYPE(cmd
, CMD_INV_IOMMU_PAGES
);
960 static void build_inv_iotlb_pasid(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
961 int qdep
, u64 address
, bool size
)
963 memset(cmd
, 0, sizeof(*cmd
));
965 address
&= ~(0xfffULL
);
967 cmd
->data
[0] = devid
;
968 cmd
->data
[0] |= ((pasid
>> 8) & 0xff) << 16;
969 cmd
->data
[0] |= (qdep
& 0xff) << 24;
970 cmd
->data
[1] = devid
;
971 cmd
->data
[1] |= (pasid
& 0xff) << 16;
972 cmd
->data
[2] = lower_32_bits(address
);
973 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_GN_MASK
;
974 cmd
->data
[3] = upper_32_bits(address
);
976 cmd
->data
[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK
;
977 CMD_SET_TYPE(cmd
, CMD_INV_IOTLB_PAGES
);
980 static void build_complete_ppr(struct iommu_cmd
*cmd
, u16 devid
, int pasid
,
981 int status
, int tag
, bool gn
)
983 memset(cmd
, 0, sizeof(*cmd
));
985 cmd
->data
[0] = devid
;
987 cmd
->data
[1] = pasid
;
988 cmd
->data
[2] = CMD_INV_IOMMU_PAGES_GN_MASK
;
990 cmd
->data
[3] = tag
& 0x1ff;
991 cmd
->data
[3] |= (status
& PPR_STATUS_MASK
) << PPR_STATUS_SHIFT
;
993 CMD_SET_TYPE(cmd
, CMD_COMPLETE_PPR
);
996 static void build_inv_all(struct iommu_cmd
*cmd
)
998 memset(cmd
, 0, sizeof(*cmd
));
999 CMD_SET_TYPE(cmd
, CMD_INV_ALL
);
1002 static void build_inv_irt(struct iommu_cmd
*cmd
, u16 devid
)
1004 memset(cmd
, 0, sizeof(*cmd
));
1005 cmd
->data
[0] = devid
;
1006 CMD_SET_TYPE(cmd
, CMD_INV_IRT
);
1010 * Writes the command to the IOMMUs command buffer and informs the
1011 * hardware about the new command.
1013 static int __iommu_queue_command_sync(struct amd_iommu
*iommu
,
1014 struct iommu_cmd
*cmd
,
1017 u32 left
, tail
, head
, next_tail
;
1021 head
= readl(iommu
->mmio_base
+ MMIO_CMD_HEAD_OFFSET
);
1022 tail
= readl(iommu
->mmio_base
+ MMIO_CMD_TAIL_OFFSET
);
1023 next_tail
= (tail
+ sizeof(*cmd
)) % CMD_BUFFER_SIZE
;
1024 left
= (head
- next_tail
) % CMD_BUFFER_SIZE
;
1027 struct iommu_cmd sync_cmd
;
1032 build_completion_wait(&sync_cmd
, (u64
)&iommu
->cmd_sem
);
1033 copy_cmd_to_buffer(iommu
, &sync_cmd
, tail
);
1035 if ((ret
= wait_on_sem(&iommu
->cmd_sem
)) != 0)
1041 copy_cmd_to_buffer(iommu
, cmd
, tail
);
1043 /* We need to sync now to make sure all commands are processed */
1044 iommu
->need_sync
= sync
;
1049 static int iommu_queue_command_sync(struct amd_iommu
*iommu
,
1050 struct iommu_cmd
*cmd
,
1053 unsigned long flags
;
1056 spin_lock_irqsave(&iommu
->lock
, flags
);
1057 ret
= __iommu_queue_command_sync(iommu
, cmd
, sync
);
1058 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1063 static int iommu_queue_command(struct amd_iommu
*iommu
, struct iommu_cmd
*cmd
)
1065 return iommu_queue_command_sync(iommu
, cmd
, true);
1069 * This function queues a completion wait command into the command
1070 * buffer of an IOMMU
1072 static int iommu_completion_wait(struct amd_iommu
*iommu
)
1074 struct iommu_cmd cmd
;
1075 unsigned long flags
;
1078 if (!iommu
->need_sync
)
1082 build_completion_wait(&cmd
, (u64
)&iommu
->cmd_sem
);
1084 spin_lock_irqsave(&iommu
->lock
, flags
);
1088 ret
= __iommu_queue_command_sync(iommu
, &cmd
, false);
1092 ret
= wait_on_sem(&iommu
->cmd_sem
);
1095 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1100 static int iommu_flush_dte(struct amd_iommu
*iommu
, u16 devid
)
1102 struct iommu_cmd cmd
;
1104 build_inv_dte(&cmd
, devid
);
1106 return iommu_queue_command(iommu
, &cmd
);
1109 static void iommu_flush_dte_all(struct amd_iommu
*iommu
)
1113 for (devid
= 0; devid
<= 0xffff; ++devid
)
1114 iommu_flush_dte(iommu
, devid
);
1116 iommu_completion_wait(iommu
);
1120 * This function uses heavy locking and may disable irqs for some time. But
1121 * this is no issue because it is only called during resume.
1123 static void iommu_flush_tlb_all(struct amd_iommu
*iommu
)
1127 for (dom_id
= 0; dom_id
<= 0xffff; ++dom_id
) {
1128 struct iommu_cmd cmd
;
1129 build_inv_iommu_pages(&cmd
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
1131 iommu_queue_command(iommu
, &cmd
);
1134 iommu_completion_wait(iommu
);
1137 static void iommu_flush_all(struct amd_iommu
*iommu
)
1139 struct iommu_cmd cmd
;
1141 build_inv_all(&cmd
);
1143 iommu_queue_command(iommu
, &cmd
);
1144 iommu_completion_wait(iommu
);
1147 static void iommu_flush_irt(struct amd_iommu
*iommu
, u16 devid
)
1149 struct iommu_cmd cmd
;
1151 build_inv_irt(&cmd
, devid
);
1153 iommu_queue_command(iommu
, &cmd
);
1156 static void iommu_flush_irt_all(struct amd_iommu
*iommu
)
1160 for (devid
= 0; devid
<= MAX_DEV_TABLE_ENTRIES
; devid
++)
1161 iommu_flush_irt(iommu
, devid
);
1163 iommu_completion_wait(iommu
);
1166 void iommu_flush_all_caches(struct amd_iommu
*iommu
)
1168 if (iommu_feature(iommu
, FEATURE_IA
)) {
1169 iommu_flush_all(iommu
);
1171 iommu_flush_dte_all(iommu
);
1172 iommu_flush_irt_all(iommu
);
1173 iommu_flush_tlb_all(iommu
);
1178 * Command send function for flushing on-device TLB
1180 static int device_flush_iotlb(struct iommu_dev_data
*dev_data
,
1181 u64 address
, size_t size
)
1183 struct amd_iommu
*iommu
;
1184 struct iommu_cmd cmd
;
1187 qdep
= dev_data
->ats
.qdep
;
1188 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1190 build_inv_iotlb_pages(&cmd
, dev_data
->devid
, qdep
, address
, size
);
1192 return iommu_queue_command(iommu
, &cmd
);
1196 * Command send function for invalidating a device table entry
1198 static int device_flush_dte(struct iommu_dev_data
*dev_data
)
1200 struct amd_iommu
*iommu
;
1204 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1205 alias
= dev_data
->alias
;
1207 ret
= iommu_flush_dte(iommu
, dev_data
->devid
);
1208 if (!ret
&& alias
!= dev_data
->devid
)
1209 ret
= iommu_flush_dte(iommu
, alias
);
1213 if (dev_data
->ats
.enabled
)
1214 ret
= device_flush_iotlb(dev_data
, 0, ~0UL);
1220 * TLB invalidation function which is called from the mapping functions.
1221 * It invalidates a single PTE if the range to flush is within a single
1222 * page. Otherwise it flushes the whole TLB of the IOMMU.
1224 static void __domain_flush_pages(struct protection_domain
*domain
,
1225 u64 address
, size_t size
, int pde
)
1227 struct iommu_dev_data
*dev_data
;
1228 struct iommu_cmd cmd
;
1231 build_inv_iommu_pages(&cmd
, address
, size
, domain
->id
, pde
);
1233 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1234 if (!domain
->dev_iommu
[i
])
1238 * Devices of this domain are behind this IOMMU
1239 * We need a TLB flush
1241 ret
|= iommu_queue_command(amd_iommus
[i
], &cmd
);
1244 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
1246 if (!dev_data
->ats
.enabled
)
1249 ret
|= device_flush_iotlb(dev_data
, address
, size
);
1255 static void domain_flush_pages(struct protection_domain
*domain
,
1256 u64 address
, size_t size
)
1258 __domain_flush_pages(domain
, address
, size
, 0);
1261 /* Flush the whole IO/TLB for a given protection domain */
1262 static void domain_flush_tlb(struct protection_domain
*domain
)
1264 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 0);
1267 /* Flush the whole IO/TLB for a given protection domain - including PDE */
1268 static void domain_flush_tlb_pde(struct protection_domain
*domain
)
1270 __domain_flush_pages(domain
, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
, 1);
1273 static void domain_flush_complete(struct protection_domain
*domain
)
1277 for (i
= 0; i
< amd_iommus_present
; ++i
) {
1278 if (domain
&& !domain
->dev_iommu
[i
])
1282 * Devices of this domain are behind this IOMMU
1283 * We need to wait for completion of all commands.
1285 iommu_completion_wait(amd_iommus
[i
]);
1291 * This function flushes the DTEs for all devices in domain
1293 static void domain_flush_devices(struct protection_domain
*domain
)
1295 struct iommu_dev_data
*dev_data
;
1297 list_for_each_entry(dev_data
, &domain
->dev_list
, list
)
1298 device_flush_dte(dev_data
);
1301 /****************************************************************************
1303 * The functions below are used the create the page table mappings for
1304 * unity mapped regions.
1306 ****************************************************************************/
1309 * This function is used to add another level to an IO page table. Adding
1310 * another level increases the size of the address space by 9 bits to a size up
1313 static bool increase_address_space(struct protection_domain
*domain
,
1318 if (domain
->mode
== PAGE_MODE_6_LEVEL
)
1319 /* address space already 64 bit large */
1322 pte
= (void *)get_zeroed_page(gfp
);
1326 *pte
= PM_LEVEL_PDE(domain
->mode
,
1327 virt_to_phys(domain
->pt_root
));
1328 domain
->pt_root
= pte
;
1330 domain
->updated
= true;
1335 static u64
*alloc_pte(struct protection_domain
*domain
,
1336 unsigned long address
,
1337 unsigned long page_size
,
1344 BUG_ON(!is_power_of_2(page_size
));
1346 while (address
> PM_LEVEL_SIZE(domain
->mode
))
1347 increase_address_space(domain
, gfp
);
1349 level
= domain
->mode
- 1;
1350 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1351 address
= PAGE_SIZE_ALIGN(address
, page_size
);
1352 end_lvl
= PAGE_SIZE_LEVEL(page_size
);
1354 while (level
> end_lvl
) {
1359 if (!IOMMU_PTE_PRESENT(__pte
)) {
1360 page
= (u64
*)get_zeroed_page(gfp
);
1364 __npte
= PM_LEVEL_PDE(level
, virt_to_phys(page
));
1366 /* pte could have been changed somewhere. */
1367 if (cmpxchg64(pte
, __pte
, __npte
) != __pte
) {
1368 free_page((unsigned long)page
);
1373 /* No level skipping support yet */
1374 if (PM_PTE_LEVEL(*pte
) != level
)
1379 pte
= IOMMU_PTE_PAGE(*pte
);
1381 if (pte_page
&& level
== end_lvl
)
1384 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1391 * This function checks if there is a PTE for a given dma address. If
1392 * there is one, it returns the pointer to it.
1394 static u64
*fetch_pte(struct protection_domain
*domain
,
1395 unsigned long address
,
1396 unsigned long *page_size
)
1401 if (address
> PM_LEVEL_SIZE(domain
->mode
))
1404 level
= domain
->mode
- 1;
1405 pte
= &domain
->pt_root
[PM_LEVEL_INDEX(level
, address
)];
1406 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1411 if (!IOMMU_PTE_PRESENT(*pte
))
1415 if (PM_PTE_LEVEL(*pte
) == 7 ||
1416 PM_PTE_LEVEL(*pte
) == 0)
1419 /* No level skipping support yet */
1420 if (PM_PTE_LEVEL(*pte
) != level
)
1425 /* Walk to the next level */
1426 pte
= IOMMU_PTE_PAGE(*pte
);
1427 pte
= &pte
[PM_LEVEL_INDEX(level
, address
)];
1428 *page_size
= PTE_LEVEL_PAGE_SIZE(level
);
1431 if (PM_PTE_LEVEL(*pte
) == 0x07) {
1432 unsigned long pte_mask
;
1435 * If we have a series of large PTEs, make
1436 * sure to return a pointer to the first one.
1438 *page_size
= pte_mask
= PTE_PAGE_SIZE(*pte
);
1439 pte_mask
= ~((PAGE_SIZE_PTE_COUNT(pte_mask
) << 3) - 1);
1440 pte
= (u64
*)(((unsigned long)pte
) & pte_mask
);
1447 * Generic mapping functions. It maps a physical address into a DMA
1448 * address space. It allocates the page table pages if necessary.
1449 * In the future it can be extended to a generic mapping function
1450 * supporting all features of AMD IOMMU page tables like level skipping
1451 * and full 64 bit address spaces.
1453 static int iommu_map_page(struct protection_domain
*dom
,
1454 unsigned long bus_addr
,
1455 unsigned long phys_addr
,
1456 unsigned long page_size
,
1463 BUG_ON(!IS_ALIGNED(bus_addr
, page_size
));
1464 BUG_ON(!IS_ALIGNED(phys_addr
, page_size
));
1466 if (!(prot
& IOMMU_PROT_MASK
))
1469 count
= PAGE_SIZE_PTE_COUNT(page_size
);
1470 pte
= alloc_pte(dom
, bus_addr
, page_size
, NULL
, gfp
);
1475 for (i
= 0; i
< count
; ++i
)
1476 if (IOMMU_PTE_PRESENT(pte
[i
]))
1480 __pte
= PAGE_SIZE_PTE(phys_addr
, page_size
);
1481 __pte
|= PM_LEVEL_ENC(7) | IOMMU_PTE_P
| IOMMU_PTE_FC
;
1483 __pte
= phys_addr
| IOMMU_PTE_P
| IOMMU_PTE_FC
;
1485 if (prot
& IOMMU_PROT_IR
)
1486 __pte
|= IOMMU_PTE_IR
;
1487 if (prot
& IOMMU_PROT_IW
)
1488 __pte
|= IOMMU_PTE_IW
;
1490 for (i
= 0; i
< count
; ++i
)
1498 static unsigned long iommu_unmap_page(struct protection_domain
*dom
,
1499 unsigned long bus_addr
,
1500 unsigned long page_size
)
1502 unsigned long long unmapped
;
1503 unsigned long unmap_size
;
1506 BUG_ON(!is_power_of_2(page_size
));
1510 while (unmapped
< page_size
) {
1512 pte
= fetch_pte(dom
, bus_addr
, &unmap_size
);
1517 count
= PAGE_SIZE_PTE_COUNT(unmap_size
);
1518 for (i
= 0; i
< count
; i
++)
1522 bus_addr
= (bus_addr
& ~(unmap_size
- 1)) + unmap_size
;
1523 unmapped
+= unmap_size
;
1526 BUG_ON(unmapped
&& !is_power_of_2(unmapped
));
1531 /****************************************************************************
1533 * The next functions belong to the address allocator for the dma_ops
1534 * interface functions.
1536 ****************************************************************************/
1539 static unsigned long dma_ops_alloc_iova(struct device
*dev
,
1540 struct dma_ops_domain
*dma_dom
,
1541 unsigned int pages
, u64 dma_mask
)
1543 unsigned long pfn
= 0;
1545 pages
= __roundup_pow_of_two(pages
);
1547 if (dma_mask
> DMA_BIT_MASK(32))
1548 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
,
1549 IOVA_PFN(DMA_BIT_MASK(32)));
1552 pfn
= alloc_iova_fast(&dma_dom
->iovad
, pages
, IOVA_PFN(dma_mask
));
1554 return (pfn
<< PAGE_SHIFT
);
1557 static void dma_ops_free_iova(struct dma_ops_domain
*dma_dom
,
1558 unsigned long address
,
1561 pages
= __roundup_pow_of_two(pages
);
1562 address
>>= PAGE_SHIFT
;
1564 free_iova_fast(&dma_dom
->iovad
, address
, pages
);
1567 /****************************************************************************
1569 * The next functions belong to the domain allocation. A domain is
1570 * allocated for every IOMMU as the default domain. If device isolation
1571 * is enabled, every device get its own domain. The most important thing
1572 * about domains is the page table mapping the DMA address space they
1575 ****************************************************************************/
1578 * This function adds a protection domain to the global protection domain list
1580 static void add_domain_to_list(struct protection_domain
*domain
)
1582 unsigned long flags
;
1584 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1585 list_add(&domain
->list
, &amd_iommu_pd_list
);
1586 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1590 * This function removes a protection domain to the global
1591 * protection domain list
1593 static void del_domain_from_list(struct protection_domain
*domain
)
1595 unsigned long flags
;
1597 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
1598 list_del(&domain
->list
);
1599 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
1602 static u16
domain_id_alloc(void)
1604 unsigned long flags
;
1607 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1608 id
= find_first_zero_bit(amd_iommu_pd_alloc_bitmap
, MAX_DOMAIN_ID
);
1610 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1611 __set_bit(id
, amd_iommu_pd_alloc_bitmap
);
1614 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1619 static void domain_id_free(int id
)
1621 unsigned long flags
;
1623 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
1624 if (id
> 0 && id
< MAX_DOMAIN_ID
)
1625 __clear_bit(id
, amd_iommu_pd_alloc_bitmap
);
1626 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
1629 #define DEFINE_FREE_PT_FN(LVL, FN) \
1630 static void free_pt_##LVL (unsigned long __pt) \
1638 for (i = 0; i < 512; ++i) { \
1639 /* PTE present? */ \
1640 if (!IOMMU_PTE_PRESENT(pt[i])) \
1644 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1645 PM_PTE_LEVEL(pt[i]) == 7) \
1648 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1651 free_page((unsigned long)pt); \
1654 DEFINE_FREE_PT_FN(l2
, free_page
)
1655 DEFINE_FREE_PT_FN(l3
, free_pt_l2
)
1656 DEFINE_FREE_PT_FN(l4
, free_pt_l3
)
1657 DEFINE_FREE_PT_FN(l5
, free_pt_l4
)
1658 DEFINE_FREE_PT_FN(l6
, free_pt_l5
)
1660 static void free_pagetable(struct protection_domain
*domain
)
1662 unsigned long root
= (unsigned long)domain
->pt_root
;
1664 switch (domain
->mode
) {
1665 case PAGE_MODE_NONE
:
1667 case PAGE_MODE_1_LEVEL
:
1670 case PAGE_MODE_2_LEVEL
:
1673 case PAGE_MODE_3_LEVEL
:
1676 case PAGE_MODE_4_LEVEL
:
1679 case PAGE_MODE_5_LEVEL
:
1682 case PAGE_MODE_6_LEVEL
:
1690 static void free_gcr3_tbl_level1(u64
*tbl
)
1695 for (i
= 0; i
< 512; ++i
) {
1696 if (!(tbl
[i
] & GCR3_VALID
))
1699 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1701 free_page((unsigned long)ptr
);
1705 static void free_gcr3_tbl_level2(u64
*tbl
)
1710 for (i
= 0; i
< 512; ++i
) {
1711 if (!(tbl
[i
] & GCR3_VALID
))
1714 ptr
= __va(tbl
[i
] & PAGE_MASK
);
1716 free_gcr3_tbl_level1(ptr
);
1720 static void free_gcr3_table(struct protection_domain
*domain
)
1722 if (domain
->glx
== 2)
1723 free_gcr3_tbl_level2(domain
->gcr3_tbl
);
1724 else if (domain
->glx
== 1)
1725 free_gcr3_tbl_level1(domain
->gcr3_tbl
);
1727 BUG_ON(domain
->glx
!= 0);
1729 free_page((unsigned long)domain
->gcr3_tbl
);
1733 * Free a domain, only used if something went wrong in the
1734 * allocation path and we need to free an already allocated page table
1736 static void dma_ops_domain_free(struct dma_ops_domain
*dom
)
1741 del_domain_from_list(&dom
->domain
);
1743 put_iova_domain(&dom
->iovad
);
1745 free_pagetable(&dom
->domain
);
1748 domain_id_free(dom
->domain
.id
);
1754 * Allocates a new protection domain usable for the dma_ops functions.
1755 * It also initializes the page table and the address allocator data
1756 * structures required for the dma_ops interface
1758 static struct dma_ops_domain
*dma_ops_domain_alloc(void)
1760 struct dma_ops_domain
*dma_dom
;
1762 dma_dom
= kzalloc(sizeof(struct dma_ops_domain
), GFP_KERNEL
);
1766 if (protection_domain_init(&dma_dom
->domain
))
1769 dma_dom
->domain
.mode
= PAGE_MODE_3_LEVEL
;
1770 dma_dom
->domain
.pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
1771 dma_dom
->domain
.flags
= PD_DMA_OPS_MASK
;
1772 if (!dma_dom
->domain
.pt_root
)
1775 init_iova_domain(&dma_dom
->iovad
, PAGE_SIZE
,
1776 IOVA_START_PFN
, DMA_32BIT_PFN
);
1778 /* Initialize reserved ranges */
1779 copy_reserved_iova(&reserved_iova_ranges
, &dma_dom
->iovad
);
1781 add_domain_to_list(&dma_dom
->domain
);
1786 dma_ops_domain_free(dma_dom
);
1792 * little helper function to check whether a given protection domain is a
1795 static bool dma_ops_domain(struct protection_domain
*domain
)
1797 return domain
->flags
& PD_DMA_OPS_MASK
;
1800 static void set_dte_entry(u16 devid
, struct protection_domain
*domain
, bool ats
)
1805 if (domain
->mode
!= PAGE_MODE_NONE
)
1806 pte_root
= virt_to_phys(domain
->pt_root
);
1808 pte_root
|= (domain
->mode
& DEV_ENTRY_MODE_MASK
)
1809 << DEV_ENTRY_MODE_SHIFT
;
1810 pte_root
|= IOMMU_PTE_IR
| IOMMU_PTE_IW
| IOMMU_PTE_P
| IOMMU_PTE_TV
;
1812 flags
= amd_iommu_dev_table
[devid
].data
[1];
1815 flags
|= DTE_FLAG_IOTLB
;
1817 if (domain
->flags
& PD_IOMMUV2_MASK
) {
1818 u64 gcr3
= __pa(domain
->gcr3_tbl
);
1819 u64 glx
= domain
->glx
;
1822 pte_root
|= DTE_FLAG_GV
;
1823 pte_root
|= (glx
& DTE_GLX_MASK
) << DTE_GLX_SHIFT
;
1825 /* First mask out possible old values for GCR3 table */
1826 tmp
= DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B
;
1829 tmp
= DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C
;
1832 /* Encode GCR3 table into DTE */
1833 tmp
= DTE_GCR3_VAL_A(gcr3
) << DTE_GCR3_SHIFT_A
;
1836 tmp
= DTE_GCR3_VAL_B(gcr3
) << DTE_GCR3_SHIFT_B
;
1839 tmp
= DTE_GCR3_VAL_C(gcr3
) << DTE_GCR3_SHIFT_C
;
1843 flags
&= ~(0xffffUL
);
1844 flags
|= domain
->id
;
1846 amd_iommu_dev_table
[devid
].data
[1] = flags
;
1847 amd_iommu_dev_table
[devid
].data
[0] = pte_root
;
1850 static void clear_dte_entry(u16 devid
)
1852 /* remove entry from the device table seen by the hardware */
1853 amd_iommu_dev_table
[devid
].data
[0] = IOMMU_PTE_P
| IOMMU_PTE_TV
;
1854 amd_iommu_dev_table
[devid
].data
[1] &= DTE_FLAG_MASK
;
1856 amd_iommu_apply_erratum_63(devid
);
1859 static void do_attach(struct iommu_dev_data
*dev_data
,
1860 struct protection_domain
*domain
)
1862 struct amd_iommu
*iommu
;
1866 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1867 alias
= dev_data
->alias
;
1868 ats
= dev_data
->ats
.enabled
;
1870 /* Update data structures */
1871 dev_data
->domain
= domain
;
1872 list_add(&dev_data
->list
, &domain
->dev_list
);
1874 /* Do reference counting */
1875 domain
->dev_iommu
[iommu
->index
] += 1;
1876 domain
->dev_cnt
+= 1;
1878 /* Update device table */
1879 set_dte_entry(dev_data
->devid
, domain
, ats
);
1880 if (alias
!= dev_data
->devid
)
1881 set_dte_entry(alias
, domain
, ats
);
1883 device_flush_dte(dev_data
);
1886 static void do_detach(struct iommu_dev_data
*dev_data
)
1888 struct amd_iommu
*iommu
;
1892 * First check if the device is still attached. It might already
1893 * be detached from its domain because the generic
1894 * iommu_detach_group code detached it and we try again here in
1895 * our alias handling.
1897 if (!dev_data
->domain
)
1900 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
1901 alias
= dev_data
->alias
;
1903 /* decrease reference counters */
1904 dev_data
->domain
->dev_iommu
[iommu
->index
] -= 1;
1905 dev_data
->domain
->dev_cnt
-= 1;
1907 /* Update data structures */
1908 dev_data
->domain
= NULL
;
1909 list_del(&dev_data
->list
);
1910 clear_dte_entry(dev_data
->devid
);
1911 if (alias
!= dev_data
->devid
)
1912 clear_dte_entry(alias
);
1914 /* Flush the DTE entry */
1915 device_flush_dte(dev_data
);
1919 * If a device is not yet associated with a domain, this function does
1920 * assigns it visible for the hardware
1922 static int __attach_device(struct iommu_dev_data
*dev_data
,
1923 struct protection_domain
*domain
)
1928 * Must be called with IRQs disabled. Warn here to detect early
1931 WARN_ON(!irqs_disabled());
1934 spin_lock(&domain
->lock
);
1937 if (dev_data
->domain
!= NULL
)
1940 /* Attach alias group root */
1941 do_attach(dev_data
, domain
);
1948 spin_unlock(&domain
->lock
);
1954 static void pdev_iommuv2_disable(struct pci_dev
*pdev
)
1956 pci_disable_ats(pdev
);
1957 pci_disable_pri(pdev
);
1958 pci_disable_pasid(pdev
);
1961 /* FIXME: Change generic reset-function to do the same */
1962 static int pri_reset_while_enabled(struct pci_dev
*pdev
)
1967 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
1971 pci_read_config_word(pdev
, pos
+ PCI_PRI_CTRL
, &control
);
1972 control
|= PCI_PRI_CTRL_RESET
;
1973 pci_write_config_word(pdev
, pos
+ PCI_PRI_CTRL
, control
);
1978 static int pdev_iommuv2_enable(struct pci_dev
*pdev
)
1983 /* FIXME: Hardcode number of outstanding requests for now */
1985 if (pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE
))
1987 reset_enable
= pdev_pri_erratum(pdev
, AMD_PRI_DEV_ERRATUM_ENABLE_RESET
);
1989 /* Only allow access to user-accessible pages */
1990 ret
= pci_enable_pasid(pdev
, 0);
1994 /* First reset the PRI state of the device */
1995 ret
= pci_reset_pri(pdev
);
2000 ret
= pci_enable_pri(pdev
, reqs
);
2005 ret
= pri_reset_while_enabled(pdev
);
2010 ret
= pci_enable_ats(pdev
, PAGE_SHIFT
);
2017 pci_disable_pri(pdev
);
2018 pci_disable_pasid(pdev
);
2023 /* FIXME: Move this to PCI code */
2024 #define PCI_PRI_TLP_OFF (1 << 15)
2026 static bool pci_pri_tlp_required(struct pci_dev
*pdev
)
2031 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
2035 pci_read_config_word(pdev
, pos
+ PCI_PRI_STATUS
, &status
);
2037 return (status
& PCI_PRI_TLP_OFF
) ? true : false;
2041 * If a device is not yet associated with a domain, this function
2042 * assigns it visible for the hardware
2044 static int attach_device(struct device
*dev
,
2045 struct protection_domain
*domain
)
2047 struct pci_dev
*pdev
;
2048 struct iommu_dev_data
*dev_data
;
2049 unsigned long flags
;
2052 dev_data
= get_dev_data(dev
);
2054 if (!dev_is_pci(dev
))
2055 goto skip_ats_check
;
2057 pdev
= to_pci_dev(dev
);
2058 if (domain
->flags
& PD_IOMMUV2_MASK
) {
2059 if (!dev_data
->passthrough
)
2062 if (dev_data
->iommu_v2
) {
2063 if (pdev_iommuv2_enable(pdev
) != 0)
2066 dev_data
->ats
.enabled
= true;
2067 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2068 dev_data
->pri_tlp
= pci_pri_tlp_required(pdev
);
2070 } else if (amd_iommu_iotlb_sup
&&
2071 pci_enable_ats(pdev
, PAGE_SHIFT
) == 0) {
2072 dev_data
->ats
.enabled
= true;
2073 dev_data
->ats
.qdep
= pci_ats_queue_depth(pdev
);
2077 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2078 ret
= __attach_device(dev_data
, domain
);
2079 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2082 * We might boot into a crash-kernel here. The crashed kernel
2083 * left the caches in the IOMMU dirty. So we have to flush
2084 * here to evict all dirty stuff.
2086 domain_flush_tlb_pde(domain
);
2092 * Removes a device from a protection domain (unlocked)
2094 static void __detach_device(struct iommu_dev_data
*dev_data
)
2096 struct protection_domain
*domain
;
2099 * Must be called with IRQs disabled. Warn here to detect early
2102 WARN_ON(!irqs_disabled());
2104 if (WARN_ON(!dev_data
->domain
))
2107 domain
= dev_data
->domain
;
2109 spin_lock(&domain
->lock
);
2111 do_detach(dev_data
);
2113 spin_unlock(&domain
->lock
);
2117 * Removes a device from a protection domain (with devtable_lock held)
2119 static void detach_device(struct device
*dev
)
2121 struct protection_domain
*domain
;
2122 struct iommu_dev_data
*dev_data
;
2123 unsigned long flags
;
2125 dev_data
= get_dev_data(dev
);
2126 domain
= dev_data
->domain
;
2128 /* lock device table */
2129 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2130 __detach_device(dev_data
);
2131 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2133 if (!dev_is_pci(dev
))
2136 if (domain
->flags
& PD_IOMMUV2_MASK
&& dev_data
->iommu_v2
)
2137 pdev_iommuv2_disable(to_pci_dev(dev
));
2138 else if (dev_data
->ats
.enabled
)
2139 pci_disable_ats(to_pci_dev(dev
));
2141 dev_data
->ats
.enabled
= false;
2144 static int amd_iommu_add_device(struct device
*dev
)
2146 struct iommu_dev_data
*dev_data
;
2147 struct iommu_domain
*domain
;
2148 struct amd_iommu
*iommu
;
2151 if (!check_device(dev
) || get_dev_data(dev
))
2154 devid
= get_device_id(dev
);
2158 iommu
= amd_iommu_rlookup_table
[devid
];
2160 ret
= iommu_init_device(dev
);
2162 if (ret
!= -ENOTSUPP
)
2163 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2166 iommu_ignore_device(dev
);
2167 dev
->archdata
.dma_ops
= &nommu_dma_ops
;
2170 init_iommu_group(dev
);
2172 dev_data
= get_dev_data(dev
);
2176 if (iommu_pass_through
|| dev_data
->iommu_v2
)
2177 iommu_request_dm_for_dev(dev
);
2179 /* Domains are initialized for this device - have a look what we ended up with */
2180 domain
= iommu_get_domain_for_dev(dev
);
2181 if (domain
->type
== IOMMU_DOMAIN_IDENTITY
)
2182 dev_data
->passthrough
= true;
2184 dev
->archdata
.dma_ops
= &amd_iommu_dma_ops
;
2187 iommu_completion_wait(iommu
);
2192 static void amd_iommu_remove_device(struct device
*dev
)
2194 struct amd_iommu
*iommu
;
2197 if (!check_device(dev
))
2200 devid
= get_device_id(dev
);
2204 iommu
= amd_iommu_rlookup_table
[devid
];
2206 iommu_uninit_device(dev
);
2207 iommu_completion_wait(iommu
);
2210 static struct iommu_group
*amd_iommu_device_group(struct device
*dev
)
2212 if (dev_is_pci(dev
))
2213 return pci_device_group(dev
);
2215 return acpihid_device_group(dev
);
2218 /*****************************************************************************
2220 * The next functions belong to the dma_ops mapping/unmapping code.
2222 *****************************************************************************/
2224 static void __queue_flush(struct flush_queue
*queue
)
2226 struct protection_domain
*domain
;
2227 unsigned long flags
;
2230 /* First flush TLB of all known domains */
2231 spin_lock_irqsave(&amd_iommu_pd_lock
, flags
);
2232 list_for_each_entry(domain
, &amd_iommu_pd_list
, list
)
2233 domain_flush_tlb(domain
);
2234 spin_unlock_irqrestore(&amd_iommu_pd_lock
, flags
);
2236 /* Wait until flushes have completed */
2237 domain_flush_complete(NULL
);
2239 for (idx
= 0; idx
< queue
->next
; ++idx
) {
2240 struct flush_queue_entry
*entry
;
2242 entry
= queue
->entries
+ idx
;
2244 free_iova_fast(&entry
->dma_dom
->iovad
,
2248 /* Not really necessary, just to make sure we catch any bugs */
2249 entry
->dma_dom
= NULL
;
2255 static void queue_flush_all(void)
2259 for_each_possible_cpu(cpu
) {
2260 struct flush_queue
*queue
;
2261 unsigned long flags
;
2263 queue
= per_cpu_ptr(&flush_queue
, cpu
);
2264 spin_lock_irqsave(&queue
->lock
, flags
);
2265 if (queue
->next
> 0)
2266 __queue_flush(queue
);
2267 spin_unlock_irqrestore(&queue
->lock
, flags
);
2271 static void queue_flush_timeout(unsigned long unsused
)
2273 atomic_set(&queue_timer_on
, 0);
2277 static void queue_add(struct dma_ops_domain
*dma_dom
,
2278 unsigned long address
, unsigned long pages
)
2280 struct flush_queue_entry
*entry
;
2281 struct flush_queue
*queue
;
2282 unsigned long flags
;
2285 pages
= __roundup_pow_of_two(pages
);
2286 address
>>= PAGE_SHIFT
;
2288 queue
= get_cpu_ptr(&flush_queue
);
2289 spin_lock_irqsave(&queue
->lock
, flags
);
2291 if (queue
->next
== FLUSH_QUEUE_SIZE
)
2292 __queue_flush(queue
);
2294 idx
= queue
->next
++;
2295 entry
= queue
->entries
+ idx
;
2297 entry
->iova_pfn
= address
;
2298 entry
->pages
= pages
;
2299 entry
->dma_dom
= dma_dom
;
2301 spin_unlock_irqrestore(&queue
->lock
, flags
);
2303 if (atomic_cmpxchg(&queue_timer_on
, 0, 1) == 0)
2304 mod_timer(&queue_timer
, jiffies
+ msecs_to_jiffies(10));
2306 put_cpu_ptr(&flush_queue
);
2311 * In the dma_ops path we only have the struct device. This function
2312 * finds the corresponding IOMMU, the protection domain and the
2313 * requestor id for a given device.
2314 * If the device is not yet associated with a domain this is also done
2317 static struct protection_domain
*get_domain(struct device
*dev
)
2319 struct protection_domain
*domain
;
2321 if (!check_device(dev
))
2322 return ERR_PTR(-EINVAL
);
2324 domain
= get_dev_data(dev
)->domain
;
2325 if (!dma_ops_domain(domain
))
2326 return ERR_PTR(-EBUSY
);
2331 static void update_device_table(struct protection_domain
*domain
)
2333 struct iommu_dev_data
*dev_data
;
2335 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
2336 set_dte_entry(dev_data
->devid
, domain
, dev_data
->ats
.enabled
);
2338 if (dev_data
->devid
== dev_data
->alias
)
2341 /* There is an alias, update device table entry for it */
2342 set_dte_entry(dev_data
->alias
, domain
, dev_data
->ats
.enabled
);
2346 static void update_domain(struct protection_domain
*domain
)
2348 if (!domain
->updated
)
2351 update_device_table(domain
);
2353 domain_flush_devices(domain
);
2354 domain_flush_tlb_pde(domain
);
2356 domain
->updated
= false;
2359 static int dir2prot(enum dma_data_direction direction
)
2361 if (direction
== DMA_TO_DEVICE
)
2362 return IOMMU_PROT_IR
;
2363 else if (direction
== DMA_FROM_DEVICE
)
2364 return IOMMU_PROT_IW
;
2365 else if (direction
== DMA_BIDIRECTIONAL
)
2366 return IOMMU_PROT_IW
| IOMMU_PROT_IR
;
2371 * This function contains common code for mapping of a physically
2372 * contiguous memory region into DMA address space. It is used by all
2373 * mapping functions provided with this IOMMU driver.
2374 * Must be called with the domain lock held.
2376 static dma_addr_t
__map_single(struct device
*dev
,
2377 struct dma_ops_domain
*dma_dom
,
2380 enum dma_data_direction direction
,
2383 dma_addr_t offset
= paddr
& ~PAGE_MASK
;
2384 dma_addr_t address
, start
, ret
;
2389 pages
= iommu_num_pages(paddr
, size
, PAGE_SIZE
);
2392 address
= dma_ops_alloc_iova(dev
, dma_dom
, pages
, dma_mask
);
2393 if (address
== DMA_ERROR_CODE
)
2396 prot
= dir2prot(direction
);
2399 for (i
= 0; i
< pages
; ++i
) {
2400 ret
= iommu_map_page(&dma_dom
->domain
, start
, paddr
,
2401 PAGE_SIZE
, prot
, GFP_ATOMIC
);
2410 if (unlikely(amd_iommu_np_cache
)) {
2411 domain_flush_pages(&dma_dom
->domain
, address
, size
);
2412 domain_flush_complete(&dma_dom
->domain
);
2420 for (--i
; i
>= 0; --i
) {
2422 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2425 domain_flush_tlb(&dma_dom
->domain
);
2426 domain_flush_complete(&dma_dom
->domain
);
2428 dma_ops_free_iova(dma_dom
, address
, pages
);
2430 return DMA_ERROR_CODE
;
2434 * Does the reverse of the __map_single function. Must be called with
2435 * the domain lock held too
2437 static void __unmap_single(struct dma_ops_domain
*dma_dom
,
2438 dma_addr_t dma_addr
,
2442 dma_addr_t flush_addr
;
2443 dma_addr_t i
, start
;
2446 flush_addr
= dma_addr
;
2447 pages
= iommu_num_pages(dma_addr
, size
, PAGE_SIZE
);
2448 dma_addr
&= PAGE_MASK
;
2451 for (i
= 0; i
< pages
; ++i
) {
2452 iommu_unmap_page(&dma_dom
->domain
, start
, PAGE_SIZE
);
2456 if (amd_iommu_unmap_flush
) {
2457 dma_ops_free_iova(dma_dom
, dma_addr
, pages
);
2458 domain_flush_tlb(&dma_dom
->domain
);
2459 domain_flush_complete(&dma_dom
->domain
);
2461 queue_add(dma_dom
, dma_addr
, pages
);
2466 * The exported map_single function for dma_ops.
2468 static dma_addr_t
map_page(struct device
*dev
, struct page
*page
,
2469 unsigned long offset
, size_t size
,
2470 enum dma_data_direction dir
,
2471 unsigned long attrs
)
2473 phys_addr_t paddr
= page_to_phys(page
) + offset
;
2474 struct protection_domain
*domain
;
2475 struct dma_ops_domain
*dma_dom
;
2478 domain
= get_domain(dev
);
2479 if (PTR_ERR(domain
) == -EINVAL
)
2480 return (dma_addr_t
)paddr
;
2481 else if (IS_ERR(domain
))
2482 return DMA_ERROR_CODE
;
2484 dma_mask
= *dev
->dma_mask
;
2485 dma_dom
= to_dma_ops_domain(domain
);
2487 return __map_single(dev
, dma_dom
, paddr
, size
, dir
, dma_mask
);
2491 * The exported unmap_single function for dma_ops.
2493 static void unmap_page(struct device
*dev
, dma_addr_t dma_addr
, size_t size
,
2494 enum dma_data_direction dir
, unsigned long attrs
)
2496 struct protection_domain
*domain
;
2497 struct dma_ops_domain
*dma_dom
;
2499 domain
= get_domain(dev
);
2503 dma_dom
= to_dma_ops_domain(domain
);
2505 __unmap_single(dma_dom
, dma_addr
, size
, dir
);
2508 static int sg_num_pages(struct device
*dev
,
2509 struct scatterlist
*sglist
,
2512 unsigned long mask
, boundary_size
;
2513 struct scatterlist
*s
;
2516 mask
= dma_get_seg_boundary(dev
);
2517 boundary_size
= mask
+ 1 ? ALIGN(mask
+ 1, PAGE_SIZE
) >> PAGE_SHIFT
:
2518 1UL << (BITS_PER_LONG
- PAGE_SHIFT
);
2520 for_each_sg(sglist
, s
, nelems
, i
) {
2523 s
->dma_address
= npages
<< PAGE_SHIFT
;
2524 p
= npages
% boundary_size
;
2525 n
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2526 if (p
+ n
> boundary_size
)
2527 npages
+= boundary_size
- p
;
2535 * The exported map_sg function for dma_ops (handles scatter-gather
2538 static int map_sg(struct device
*dev
, struct scatterlist
*sglist
,
2539 int nelems
, enum dma_data_direction direction
,
2540 unsigned long attrs
)
2542 int mapped_pages
= 0, npages
= 0, prot
= 0, i
;
2543 struct protection_domain
*domain
;
2544 struct dma_ops_domain
*dma_dom
;
2545 struct scatterlist
*s
;
2546 unsigned long address
;
2549 domain
= get_domain(dev
);
2553 dma_dom
= to_dma_ops_domain(domain
);
2554 dma_mask
= *dev
->dma_mask
;
2556 npages
= sg_num_pages(dev
, sglist
, nelems
);
2558 address
= dma_ops_alloc_iova(dev
, dma_dom
, npages
, dma_mask
);
2559 if (address
== DMA_ERROR_CODE
)
2562 prot
= dir2prot(direction
);
2564 /* Map all sg entries */
2565 for_each_sg(sglist
, s
, nelems
, i
) {
2566 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2568 for (j
= 0; j
< pages
; ++j
) {
2569 unsigned long bus_addr
, phys_addr
;
2572 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2573 phys_addr
= (sg_phys(s
) & PAGE_MASK
) + (j
<< PAGE_SHIFT
);
2574 ret
= iommu_map_page(domain
, bus_addr
, phys_addr
, PAGE_SIZE
, prot
, GFP_ATOMIC
);
2582 /* Everything is mapped - write the right values into s->dma_address */
2583 for_each_sg(sglist
, s
, nelems
, i
) {
2584 s
->dma_address
+= address
+ s
->offset
;
2585 s
->dma_length
= s
->length
;
2591 pr_err("%s: IOMMU mapping error in map_sg (io-pages: %d)\n",
2592 dev_name(dev
), npages
);
2594 for_each_sg(sglist
, s
, nelems
, i
) {
2595 int j
, pages
= iommu_num_pages(sg_phys(s
), s
->length
, PAGE_SIZE
);
2597 for (j
= 0; j
< pages
; ++j
) {
2598 unsigned long bus_addr
;
2600 bus_addr
= address
+ s
->dma_address
+ (j
<< PAGE_SHIFT
);
2601 iommu_unmap_page(domain
, bus_addr
, PAGE_SIZE
);
2609 free_iova_fast(&dma_dom
->iovad
, address
, npages
);
2616 * The exported map_sg function for dma_ops (handles scatter-gather
2619 static void unmap_sg(struct device
*dev
, struct scatterlist
*sglist
,
2620 int nelems
, enum dma_data_direction dir
,
2621 unsigned long attrs
)
2623 struct protection_domain
*domain
;
2624 struct dma_ops_domain
*dma_dom
;
2625 unsigned long startaddr
;
2628 domain
= get_domain(dev
);
2632 startaddr
= sg_dma_address(sglist
) & PAGE_MASK
;
2633 dma_dom
= to_dma_ops_domain(domain
);
2634 npages
= sg_num_pages(dev
, sglist
, nelems
);
2636 __unmap_single(dma_dom
, startaddr
, npages
<< PAGE_SHIFT
, dir
);
2640 * The exported alloc_coherent function for dma_ops.
2642 static void *alloc_coherent(struct device
*dev
, size_t size
,
2643 dma_addr_t
*dma_addr
, gfp_t flag
,
2644 unsigned long attrs
)
2646 u64 dma_mask
= dev
->coherent_dma_mask
;
2647 struct protection_domain
*domain
;
2648 struct dma_ops_domain
*dma_dom
;
2651 domain
= get_domain(dev
);
2652 if (PTR_ERR(domain
) == -EINVAL
) {
2653 page
= alloc_pages(flag
, get_order(size
));
2654 *dma_addr
= page_to_phys(page
);
2655 return page_address(page
);
2656 } else if (IS_ERR(domain
))
2659 dma_dom
= to_dma_ops_domain(domain
);
2660 size
= PAGE_ALIGN(size
);
2661 dma_mask
= dev
->coherent_dma_mask
;
2662 flag
&= ~(__GFP_DMA
| __GFP_HIGHMEM
| __GFP_DMA32
);
2665 page
= alloc_pages(flag
| __GFP_NOWARN
, get_order(size
));
2667 if (!gfpflags_allow_blocking(flag
))
2670 page
= dma_alloc_from_contiguous(dev
, size
>> PAGE_SHIFT
,
2677 dma_mask
= *dev
->dma_mask
;
2679 *dma_addr
= __map_single(dev
, dma_dom
, page_to_phys(page
),
2680 size
, DMA_BIDIRECTIONAL
, dma_mask
);
2682 if (*dma_addr
== DMA_ERROR_CODE
)
2685 return page_address(page
);
2689 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2690 __free_pages(page
, get_order(size
));
2696 * The exported free_coherent function for dma_ops.
2698 static void free_coherent(struct device
*dev
, size_t size
,
2699 void *virt_addr
, dma_addr_t dma_addr
,
2700 unsigned long attrs
)
2702 struct protection_domain
*domain
;
2703 struct dma_ops_domain
*dma_dom
;
2706 page
= virt_to_page(virt_addr
);
2707 size
= PAGE_ALIGN(size
);
2709 domain
= get_domain(dev
);
2713 dma_dom
= to_dma_ops_domain(domain
);
2715 __unmap_single(dma_dom
, dma_addr
, size
, DMA_BIDIRECTIONAL
);
2718 if (!dma_release_from_contiguous(dev
, page
, size
>> PAGE_SHIFT
))
2719 __free_pages(page
, get_order(size
));
2723 * This function is called by the DMA layer to find out if we can handle a
2724 * particular device. It is part of the dma_ops.
2726 static int amd_iommu_dma_supported(struct device
*dev
, u64 mask
)
2728 return check_device(dev
);
2731 static struct dma_map_ops amd_iommu_dma_ops
= {
2732 .alloc
= alloc_coherent
,
2733 .free
= free_coherent
,
2734 .map_page
= map_page
,
2735 .unmap_page
= unmap_page
,
2737 .unmap_sg
= unmap_sg
,
2738 .dma_supported
= amd_iommu_dma_supported
,
2741 static int init_reserved_iova_ranges(void)
2743 struct pci_dev
*pdev
= NULL
;
2746 init_iova_domain(&reserved_iova_ranges
, PAGE_SIZE
,
2747 IOVA_START_PFN
, DMA_32BIT_PFN
);
2749 lockdep_set_class(&reserved_iova_ranges
.iova_rbtree_lock
,
2750 &reserved_rbtree_key
);
2752 /* MSI memory range */
2753 val
= reserve_iova(&reserved_iova_ranges
,
2754 IOVA_PFN(MSI_RANGE_START
), IOVA_PFN(MSI_RANGE_END
));
2756 pr_err("Reserving MSI range failed\n");
2760 /* HT memory range */
2761 val
= reserve_iova(&reserved_iova_ranges
,
2762 IOVA_PFN(HT_RANGE_START
), IOVA_PFN(HT_RANGE_END
));
2764 pr_err("Reserving HT range failed\n");
2769 * Memory used for PCI resources
2770 * FIXME: Check whether we can reserve the PCI-hole completly
2772 for_each_pci_dev(pdev
) {
2775 for (i
= 0; i
< PCI_NUM_RESOURCES
; ++i
) {
2776 struct resource
*r
= &pdev
->resource
[i
];
2778 if (!(r
->flags
& IORESOURCE_MEM
))
2781 val
= reserve_iova(&reserved_iova_ranges
,
2785 pr_err("Reserve pci-resource range failed\n");
2794 int __init
amd_iommu_init_api(void)
2796 int ret
, cpu
, err
= 0;
2798 ret
= iova_cache_get();
2802 ret
= init_reserved_iova_ranges();
2806 for_each_possible_cpu(cpu
) {
2807 struct flush_queue
*queue
= per_cpu_ptr(&flush_queue
, cpu
);
2809 queue
->entries
= kzalloc(FLUSH_QUEUE_SIZE
*
2810 sizeof(*queue
->entries
),
2812 if (!queue
->entries
)
2815 spin_lock_init(&queue
->lock
);
2818 err
= bus_set_iommu(&pci_bus_type
, &amd_iommu_ops
);
2821 #ifdef CONFIG_ARM_AMBA
2822 err
= bus_set_iommu(&amba_bustype
, &amd_iommu_ops
);
2826 err
= bus_set_iommu(&platform_bus_type
, &amd_iommu_ops
);
2832 for_each_possible_cpu(cpu
) {
2833 struct flush_queue
*queue
= per_cpu_ptr(&flush_queue
, cpu
);
2835 kfree(queue
->entries
);
2841 int __init
amd_iommu_init_dma_ops(void)
2843 setup_timer(&queue_timer
, queue_flush_timeout
, 0);
2844 atomic_set(&queue_timer_on
, 0);
2846 swiotlb
= iommu_pass_through
? 1 : 0;
2850 * In case we don't initialize SWIOTLB (actually the common case
2851 * when AMD IOMMU is enabled), make sure there are global
2852 * dma_ops set as a fall-back for devices not handled by this
2853 * driver (for example non-PCI devices).
2856 dma_ops
= &nommu_dma_ops
;
2858 if (amd_iommu_unmap_flush
)
2859 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2861 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2867 /*****************************************************************************
2869 * The following functions belong to the exported interface of AMD IOMMU
2871 * This interface allows access to lower level functions of the IOMMU
2872 * like protection domain handling and assignement of devices to domains
2873 * which is not possible with the dma_ops interface.
2875 *****************************************************************************/
2877 static void cleanup_domain(struct protection_domain
*domain
)
2879 struct iommu_dev_data
*entry
;
2880 unsigned long flags
;
2882 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
2884 while (!list_empty(&domain
->dev_list
)) {
2885 entry
= list_first_entry(&domain
->dev_list
,
2886 struct iommu_dev_data
, list
);
2887 __detach_device(entry
);
2890 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
2893 static void protection_domain_free(struct protection_domain
*domain
)
2898 del_domain_from_list(domain
);
2901 domain_id_free(domain
->id
);
2906 static int protection_domain_init(struct protection_domain
*domain
)
2908 spin_lock_init(&domain
->lock
);
2909 mutex_init(&domain
->api_lock
);
2910 domain
->id
= domain_id_alloc();
2913 INIT_LIST_HEAD(&domain
->dev_list
);
2918 static struct protection_domain
*protection_domain_alloc(void)
2920 struct protection_domain
*domain
;
2922 domain
= kzalloc(sizeof(*domain
), GFP_KERNEL
);
2926 if (protection_domain_init(domain
))
2929 add_domain_to_list(domain
);
2939 static struct iommu_domain
*amd_iommu_domain_alloc(unsigned type
)
2941 struct protection_domain
*pdomain
;
2942 struct dma_ops_domain
*dma_domain
;
2945 case IOMMU_DOMAIN_UNMANAGED
:
2946 pdomain
= protection_domain_alloc();
2950 pdomain
->mode
= PAGE_MODE_3_LEVEL
;
2951 pdomain
->pt_root
= (void *)get_zeroed_page(GFP_KERNEL
);
2952 if (!pdomain
->pt_root
) {
2953 protection_domain_free(pdomain
);
2957 pdomain
->domain
.geometry
.aperture_start
= 0;
2958 pdomain
->domain
.geometry
.aperture_end
= ~0ULL;
2959 pdomain
->domain
.geometry
.force_aperture
= true;
2962 case IOMMU_DOMAIN_DMA
:
2963 dma_domain
= dma_ops_domain_alloc();
2965 pr_err("AMD-Vi: Failed to allocate\n");
2968 pdomain
= &dma_domain
->domain
;
2970 case IOMMU_DOMAIN_IDENTITY
:
2971 pdomain
= protection_domain_alloc();
2975 pdomain
->mode
= PAGE_MODE_NONE
;
2981 return &pdomain
->domain
;
2984 static void amd_iommu_domain_free(struct iommu_domain
*dom
)
2986 struct protection_domain
*domain
;
2987 struct dma_ops_domain
*dma_dom
;
2989 domain
= to_pdomain(dom
);
2991 if (domain
->dev_cnt
> 0)
2992 cleanup_domain(domain
);
2994 BUG_ON(domain
->dev_cnt
!= 0);
2999 switch (dom
->type
) {
3000 case IOMMU_DOMAIN_DMA
:
3002 * First make sure the domain is no longer referenced from the
3007 /* Now release the domain */
3008 dma_dom
= to_dma_ops_domain(domain
);
3009 dma_ops_domain_free(dma_dom
);
3012 if (domain
->mode
!= PAGE_MODE_NONE
)
3013 free_pagetable(domain
);
3015 if (domain
->flags
& PD_IOMMUV2_MASK
)
3016 free_gcr3_table(domain
);
3018 protection_domain_free(domain
);
3023 static void amd_iommu_detach_device(struct iommu_domain
*dom
,
3026 struct iommu_dev_data
*dev_data
= dev
->archdata
.iommu
;
3027 struct amd_iommu
*iommu
;
3030 if (!check_device(dev
))
3033 devid
= get_device_id(dev
);
3037 if (dev_data
->domain
!= NULL
)
3040 iommu
= amd_iommu_rlookup_table
[devid
];
3044 #ifdef CONFIG_IRQ_REMAP
3045 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) &&
3046 (dom
->type
== IOMMU_DOMAIN_UNMANAGED
))
3047 dev_data
->use_vapic
= 0;
3050 iommu_completion_wait(iommu
);
3053 static int amd_iommu_attach_device(struct iommu_domain
*dom
,
3056 struct protection_domain
*domain
= to_pdomain(dom
);
3057 struct iommu_dev_data
*dev_data
;
3058 struct amd_iommu
*iommu
;
3061 if (!check_device(dev
))
3064 dev_data
= dev
->archdata
.iommu
;
3066 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3070 if (dev_data
->domain
)
3073 ret
= attach_device(dev
, domain
);
3075 #ifdef CONFIG_IRQ_REMAP
3076 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
3077 if (dom
->type
== IOMMU_DOMAIN_UNMANAGED
)
3078 dev_data
->use_vapic
= 1;
3080 dev_data
->use_vapic
= 0;
3084 iommu_completion_wait(iommu
);
3089 static int amd_iommu_map(struct iommu_domain
*dom
, unsigned long iova
,
3090 phys_addr_t paddr
, size_t page_size
, int iommu_prot
)
3092 struct protection_domain
*domain
= to_pdomain(dom
);
3096 if (domain
->mode
== PAGE_MODE_NONE
)
3099 if (iommu_prot
& IOMMU_READ
)
3100 prot
|= IOMMU_PROT_IR
;
3101 if (iommu_prot
& IOMMU_WRITE
)
3102 prot
|= IOMMU_PROT_IW
;
3104 mutex_lock(&domain
->api_lock
);
3105 ret
= iommu_map_page(domain
, iova
, paddr
, page_size
, prot
, GFP_KERNEL
);
3106 mutex_unlock(&domain
->api_lock
);
3111 static size_t amd_iommu_unmap(struct iommu_domain
*dom
, unsigned long iova
,
3114 struct protection_domain
*domain
= to_pdomain(dom
);
3117 if (domain
->mode
== PAGE_MODE_NONE
)
3120 mutex_lock(&domain
->api_lock
);
3121 unmap_size
= iommu_unmap_page(domain
, iova
, page_size
);
3122 mutex_unlock(&domain
->api_lock
);
3124 domain_flush_tlb_pde(domain
);
3129 static phys_addr_t
amd_iommu_iova_to_phys(struct iommu_domain
*dom
,
3132 struct protection_domain
*domain
= to_pdomain(dom
);
3133 unsigned long offset_mask
, pte_pgsize
;
3136 if (domain
->mode
== PAGE_MODE_NONE
)
3139 pte
= fetch_pte(domain
, iova
, &pte_pgsize
);
3141 if (!pte
|| !IOMMU_PTE_PRESENT(*pte
))
3144 offset_mask
= pte_pgsize
- 1;
3145 __pte
= *pte
& PM_ADDR_MASK
;
3147 return (__pte
& ~offset_mask
) | (iova
& offset_mask
);
3150 static bool amd_iommu_capable(enum iommu_cap cap
)
3153 case IOMMU_CAP_CACHE_COHERENCY
:
3155 case IOMMU_CAP_INTR_REMAP
:
3156 return (irq_remapping_enabled
== 1);
3157 case IOMMU_CAP_NOEXEC
:
3164 static void amd_iommu_get_dm_regions(struct device
*dev
,
3165 struct list_head
*head
)
3167 struct unity_map_entry
*entry
;
3170 devid
= get_device_id(dev
);
3174 list_for_each_entry(entry
, &amd_iommu_unity_map
, list
) {
3175 struct iommu_dm_region
*region
;
3177 if (devid
< entry
->devid_start
|| devid
> entry
->devid_end
)
3180 region
= kzalloc(sizeof(*region
), GFP_KERNEL
);
3182 pr_err("Out of memory allocating dm-regions for %s\n",
3187 region
->start
= entry
->address_start
;
3188 region
->length
= entry
->address_end
- entry
->address_start
;
3189 if (entry
->prot
& IOMMU_PROT_IR
)
3190 region
->prot
|= IOMMU_READ
;
3191 if (entry
->prot
& IOMMU_PROT_IW
)
3192 region
->prot
|= IOMMU_WRITE
;
3194 list_add_tail(®ion
->list
, head
);
3198 static void amd_iommu_put_dm_regions(struct device
*dev
,
3199 struct list_head
*head
)
3201 struct iommu_dm_region
*entry
, *next
;
3203 list_for_each_entry_safe(entry
, next
, head
, list
)
3207 static void amd_iommu_apply_dm_region(struct device
*dev
,
3208 struct iommu_domain
*domain
,
3209 struct iommu_dm_region
*region
)
3211 struct dma_ops_domain
*dma_dom
= to_dma_ops_domain(to_pdomain(domain
));
3212 unsigned long start
, end
;
3214 start
= IOVA_PFN(region
->start
);
3215 end
= IOVA_PFN(region
->start
+ region
->length
);
3217 WARN_ON_ONCE(reserve_iova(&dma_dom
->iovad
, start
, end
) == NULL
);
3220 static const struct iommu_ops amd_iommu_ops
= {
3221 .capable
= amd_iommu_capable
,
3222 .domain_alloc
= amd_iommu_domain_alloc
,
3223 .domain_free
= amd_iommu_domain_free
,
3224 .attach_dev
= amd_iommu_attach_device
,
3225 .detach_dev
= amd_iommu_detach_device
,
3226 .map
= amd_iommu_map
,
3227 .unmap
= amd_iommu_unmap
,
3228 .map_sg
= default_iommu_map_sg
,
3229 .iova_to_phys
= amd_iommu_iova_to_phys
,
3230 .add_device
= amd_iommu_add_device
,
3231 .remove_device
= amd_iommu_remove_device
,
3232 .device_group
= amd_iommu_device_group
,
3233 .get_dm_regions
= amd_iommu_get_dm_regions
,
3234 .put_dm_regions
= amd_iommu_put_dm_regions
,
3235 .apply_dm_region
= amd_iommu_apply_dm_region
,
3236 .pgsize_bitmap
= AMD_IOMMU_PGSIZES
,
3239 /*****************************************************************************
3241 * The next functions do a basic initialization of IOMMU for pass through
3244 * In passthrough mode the IOMMU is initialized and enabled but not used for
3245 * DMA-API translation.
3247 *****************************************************************************/
3249 /* IOMMUv2 specific functions */
3250 int amd_iommu_register_ppr_notifier(struct notifier_block
*nb
)
3252 return atomic_notifier_chain_register(&ppr_notifier
, nb
);
3254 EXPORT_SYMBOL(amd_iommu_register_ppr_notifier
);
3256 int amd_iommu_unregister_ppr_notifier(struct notifier_block
*nb
)
3258 return atomic_notifier_chain_unregister(&ppr_notifier
, nb
);
3260 EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier
);
3262 void amd_iommu_domain_direct_map(struct iommu_domain
*dom
)
3264 struct protection_domain
*domain
= to_pdomain(dom
);
3265 unsigned long flags
;
3267 spin_lock_irqsave(&domain
->lock
, flags
);
3269 /* Update data structure */
3270 domain
->mode
= PAGE_MODE_NONE
;
3271 domain
->updated
= true;
3273 /* Make changes visible to IOMMUs */
3274 update_domain(domain
);
3276 /* Page-table is not visible to IOMMU anymore, so free it */
3277 free_pagetable(domain
);
3279 spin_unlock_irqrestore(&domain
->lock
, flags
);
3281 EXPORT_SYMBOL(amd_iommu_domain_direct_map
);
3283 int amd_iommu_domain_enable_v2(struct iommu_domain
*dom
, int pasids
)
3285 struct protection_domain
*domain
= to_pdomain(dom
);
3286 unsigned long flags
;
3289 if (pasids
<= 0 || pasids
> (PASID_MASK
+ 1))
3292 /* Number of GCR3 table levels required */
3293 for (levels
= 0; (pasids
- 1) & ~0x1ff; pasids
>>= 9)
3296 if (levels
> amd_iommu_max_glx_val
)
3299 spin_lock_irqsave(&domain
->lock
, flags
);
3302 * Save us all sanity checks whether devices already in the
3303 * domain support IOMMUv2. Just force that the domain has no
3304 * devices attached when it is switched into IOMMUv2 mode.
3307 if (domain
->dev_cnt
> 0 || domain
->flags
& PD_IOMMUV2_MASK
)
3311 domain
->gcr3_tbl
= (void *)get_zeroed_page(GFP_ATOMIC
);
3312 if (domain
->gcr3_tbl
== NULL
)
3315 domain
->glx
= levels
;
3316 domain
->flags
|= PD_IOMMUV2_MASK
;
3317 domain
->updated
= true;
3319 update_domain(domain
);
3324 spin_unlock_irqrestore(&domain
->lock
, flags
);
3328 EXPORT_SYMBOL(amd_iommu_domain_enable_v2
);
3330 static int __flush_pasid(struct protection_domain
*domain
, int pasid
,
3331 u64 address
, bool size
)
3333 struct iommu_dev_data
*dev_data
;
3334 struct iommu_cmd cmd
;
3337 if (!(domain
->flags
& PD_IOMMUV2_MASK
))
3340 build_inv_iommu_pasid(&cmd
, domain
->id
, pasid
, address
, size
);
3343 * IOMMU TLB needs to be flushed before Device TLB to
3344 * prevent device TLB refill from IOMMU TLB
3346 for (i
= 0; i
< amd_iommus_present
; ++i
) {
3347 if (domain
->dev_iommu
[i
] == 0)
3350 ret
= iommu_queue_command(amd_iommus
[i
], &cmd
);
3355 /* Wait until IOMMU TLB flushes are complete */
3356 domain_flush_complete(domain
);
3358 /* Now flush device TLBs */
3359 list_for_each_entry(dev_data
, &domain
->dev_list
, list
) {
3360 struct amd_iommu
*iommu
;
3364 There might be non-IOMMUv2 capable devices in an IOMMUv2
3367 if (!dev_data
->ats
.enabled
)
3370 qdep
= dev_data
->ats
.qdep
;
3371 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3373 build_inv_iotlb_pasid(&cmd
, dev_data
->devid
, pasid
,
3374 qdep
, address
, size
);
3376 ret
= iommu_queue_command(iommu
, &cmd
);
3381 /* Wait until all device TLBs are flushed */
3382 domain_flush_complete(domain
);
3391 static int __amd_iommu_flush_page(struct protection_domain
*domain
, int pasid
,
3394 return __flush_pasid(domain
, pasid
, address
, false);
3397 int amd_iommu_flush_page(struct iommu_domain
*dom
, int pasid
,
3400 struct protection_domain
*domain
= to_pdomain(dom
);
3401 unsigned long flags
;
3404 spin_lock_irqsave(&domain
->lock
, flags
);
3405 ret
= __amd_iommu_flush_page(domain
, pasid
, address
);
3406 spin_unlock_irqrestore(&domain
->lock
, flags
);
3410 EXPORT_SYMBOL(amd_iommu_flush_page
);
3412 static int __amd_iommu_flush_tlb(struct protection_domain
*domain
, int pasid
)
3414 return __flush_pasid(domain
, pasid
, CMD_INV_IOMMU_ALL_PAGES_ADDRESS
,
3418 int amd_iommu_flush_tlb(struct iommu_domain
*dom
, int pasid
)
3420 struct protection_domain
*domain
= to_pdomain(dom
);
3421 unsigned long flags
;
3424 spin_lock_irqsave(&domain
->lock
, flags
);
3425 ret
= __amd_iommu_flush_tlb(domain
, pasid
);
3426 spin_unlock_irqrestore(&domain
->lock
, flags
);
3430 EXPORT_SYMBOL(amd_iommu_flush_tlb
);
3432 static u64
*__get_gcr3_pte(u64
*root
, int level
, int pasid
, bool alloc
)
3439 index
= (pasid
>> (9 * level
)) & 0x1ff;
3445 if (!(*pte
& GCR3_VALID
)) {
3449 root
= (void *)get_zeroed_page(GFP_ATOMIC
);
3453 *pte
= __pa(root
) | GCR3_VALID
;
3456 root
= __va(*pte
& PAGE_MASK
);
3464 static int __set_gcr3(struct protection_domain
*domain
, int pasid
,
3469 if (domain
->mode
!= PAGE_MODE_NONE
)
3472 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, true);
3476 *pte
= (cr3
& PAGE_MASK
) | GCR3_VALID
;
3478 return __amd_iommu_flush_tlb(domain
, pasid
);
3481 static int __clear_gcr3(struct protection_domain
*domain
, int pasid
)
3485 if (domain
->mode
!= PAGE_MODE_NONE
)
3488 pte
= __get_gcr3_pte(domain
->gcr3_tbl
, domain
->glx
, pasid
, false);
3494 return __amd_iommu_flush_tlb(domain
, pasid
);
3497 int amd_iommu_domain_set_gcr3(struct iommu_domain
*dom
, int pasid
,
3500 struct protection_domain
*domain
= to_pdomain(dom
);
3501 unsigned long flags
;
3504 spin_lock_irqsave(&domain
->lock
, flags
);
3505 ret
= __set_gcr3(domain
, pasid
, cr3
);
3506 spin_unlock_irqrestore(&domain
->lock
, flags
);
3510 EXPORT_SYMBOL(amd_iommu_domain_set_gcr3
);
3512 int amd_iommu_domain_clear_gcr3(struct iommu_domain
*dom
, int pasid
)
3514 struct protection_domain
*domain
= to_pdomain(dom
);
3515 unsigned long flags
;
3518 spin_lock_irqsave(&domain
->lock
, flags
);
3519 ret
= __clear_gcr3(domain
, pasid
);
3520 spin_unlock_irqrestore(&domain
->lock
, flags
);
3524 EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3
);
3526 int amd_iommu_complete_ppr(struct pci_dev
*pdev
, int pasid
,
3527 int status
, int tag
)
3529 struct iommu_dev_data
*dev_data
;
3530 struct amd_iommu
*iommu
;
3531 struct iommu_cmd cmd
;
3533 dev_data
= get_dev_data(&pdev
->dev
);
3534 iommu
= amd_iommu_rlookup_table
[dev_data
->devid
];
3536 build_complete_ppr(&cmd
, dev_data
->devid
, pasid
, status
,
3537 tag
, dev_data
->pri_tlp
);
3539 return iommu_queue_command(iommu
, &cmd
);
3541 EXPORT_SYMBOL(amd_iommu_complete_ppr
);
3543 struct iommu_domain
*amd_iommu_get_v2_domain(struct pci_dev
*pdev
)
3545 struct protection_domain
*pdomain
;
3547 pdomain
= get_domain(&pdev
->dev
);
3548 if (IS_ERR(pdomain
))
3551 /* Only return IOMMUv2 domains */
3552 if (!(pdomain
->flags
& PD_IOMMUV2_MASK
))
3555 return &pdomain
->domain
;
3557 EXPORT_SYMBOL(amd_iommu_get_v2_domain
);
3559 void amd_iommu_enable_device_erratum(struct pci_dev
*pdev
, u32 erratum
)
3561 struct iommu_dev_data
*dev_data
;
3563 if (!amd_iommu_v2_supported())
3566 dev_data
= get_dev_data(&pdev
->dev
);
3567 dev_data
->errata
|= (1 << erratum
);
3569 EXPORT_SYMBOL(amd_iommu_enable_device_erratum
);
3571 int amd_iommu_device_info(struct pci_dev
*pdev
,
3572 struct amd_iommu_device_info
*info
)
3577 if (pdev
== NULL
|| info
== NULL
)
3580 if (!amd_iommu_v2_supported())
3583 memset(info
, 0, sizeof(*info
));
3585 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ATS
);
3587 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_ATS_SUP
;
3589 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PRI
);
3591 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRI_SUP
;
3593 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_PASID
);
3597 max_pasids
= 1 << (9 * (amd_iommu_max_glx_val
+ 1));
3598 max_pasids
= min(max_pasids
, (1 << 20));
3600 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PASID_SUP
;
3601 info
->max_pasids
= min(pci_max_pasids(pdev
), max_pasids
);
3603 features
= pci_pasid_features(pdev
);
3604 if (features
& PCI_PASID_CAP_EXEC
)
3605 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP
;
3606 if (features
& PCI_PASID_CAP_PRIV
)
3607 info
->flags
|= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP
;
3612 EXPORT_SYMBOL(amd_iommu_device_info
);
3614 #ifdef CONFIG_IRQ_REMAP
3616 /*****************************************************************************
3618 * Interrupt Remapping Implementation
3620 *****************************************************************************/
3622 static struct irq_chip amd_ir_chip
;
3624 #define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3625 #define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3626 #define DTE_IRQ_TABLE_LEN (8ULL << 1)
3627 #define DTE_IRQ_REMAP_ENABLE 1ULL
3629 static void set_dte_irq_entry(u16 devid
, struct irq_remap_table
*table
)
3633 dte
= amd_iommu_dev_table
[devid
].data
[2];
3634 dte
&= ~DTE_IRQ_PHYS_ADDR_MASK
;
3635 dte
|= virt_to_phys(table
->table
);
3636 dte
|= DTE_IRQ_REMAP_INTCTL
;
3637 dte
|= DTE_IRQ_TABLE_LEN
;
3638 dte
|= DTE_IRQ_REMAP_ENABLE
;
3640 amd_iommu_dev_table
[devid
].data
[2] = dte
;
3643 static struct irq_remap_table
*get_irq_table(u16 devid
, bool ioapic
)
3645 struct irq_remap_table
*table
= NULL
;
3646 struct amd_iommu
*iommu
;
3647 unsigned long flags
;
3650 write_lock_irqsave(&amd_iommu_devtable_lock
, flags
);
3652 iommu
= amd_iommu_rlookup_table
[devid
];
3656 table
= irq_lookup_table
[devid
];
3660 alias
= amd_iommu_alias_table
[devid
];
3661 table
= irq_lookup_table
[alias
];
3663 irq_lookup_table
[devid
] = table
;
3664 set_dte_irq_entry(devid
, table
);
3665 iommu_flush_dte(iommu
, devid
);
3669 /* Nothing there yet, allocate new irq remapping table */
3670 table
= kzalloc(sizeof(*table
), GFP_ATOMIC
);
3674 /* Initialize table spin-lock */
3675 spin_lock_init(&table
->lock
);
3678 /* Keep the first 32 indexes free for IOAPIC interrupts */
3679 table
->min_index
= 32;
3681 table
->table
= kmem_cache_alloc(amd_iommu_irq_cache
, GFP_ATOMIC
);
3682 if (!table
->table
) {
3688 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
3689 memset(table
->table
, 0,
3690 MAX_IRQS_PER_TABLE
* sizeof(u32
));
3692 memset(table
->table
, 0,
3693 (MAX_IRQS_PER_TABLE
* (sizeof(u64
) * 2)));
3698 for (i
= 0; i
< 32; ++i
)
3699 iommu
->irte_ops
->set_allocated(table
, i
);
3702 irq_lookup_table
[devid
] = table
;
3703 set_dte_irq_entry(devid
, table
);
3704 iommu_flush_dte(iommu
, devid
);
3705 if (devid
!= alias
) {
3706 irq_lookup_table
[alias
] = table
;
3707 set_dte_irq_entry(alias
, table
);
3708 iommu_flush_dte(iommu
, alias
);
3712 iommu_completion_wait(iommu
);
3715 write_unlock_irqrestore(&amd_iommu_devtable_lock
, flags
);
3720 static int alloc_irq_index(u16 devid
, int count
)
3722 struct irq_remap_table
*table
;
3723 unsigned long flags
;
3725 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
3730 table
= get_irq_table(devid
, false);
3734 spin_lock_irqsave(&table
->lock
, flags
);
3736 /* Scan table for free entries */
3737 for (c
= 0, index
= table
->min_index
;
3738 index
< MAX_IRQS_PER_TABLE
;
3740 if (!iommu
->irte_ops
->is_allocated(table
, index
))
3747 iommu
->irte_ops
->set_allocated(table
, index
- c
+ 1);
3757 spin_unlock_irqrestore(&table
->lock
, flags
);
3762 static int modify_irte_ga(u16 devid
, int index
, struct irte_ga
*irte
,
3763 struct amd_ir_data
*data
)
3765 struct irq_remap_table
*table
;
3766 struct amd_iommu
*iommu
;
3767 unsigned long flags
;
3768 struct irte_ga
*entry
;
3770 iommu
= amd_iommu_rlookup_table
[devid
];
3774 table
= get_irq_table(devid
, false);
3778 spin_lock_irqsave(&table
->lock
, flags
);
3780 entry
= (struct irte_ga
*)table
->table
;
3781 entry
= &entry
[index
];
3782 entry
->lo
.fields_remap
.valid
= 0;
3783 entry
->hi
.val
= irte
->hi
.val
;
3784 entry
->lo
.val
= irte
->lo
.val
;
3785 entry
->lo
.fields_remap
.valid
= 1;
3789 spin_unlock_irqrestore(&table
->lock
, flags
);
3791 iommu_flush_irt(iommu
, devid
);
3792 iommu_completion_wait(iommu
);
3797 static int modify_irte(u16 devid
, int index
, union irte
*irte
)
3799 struct irq_remap_table
*table
;
3800 struct amd_iommu
*iommu
;
3801 unsigned long flags
;
3803 iommu
= amd_iommu_rlookup_table
[devid
];
3807 table
= get_irq_table(devid
, false);
3811 spin_lock_irqsave(&table
->lock
, flags
);
3812 table
->table
[index
] = irte
->val
;
3813 spin_unlock_irqrestore(&table
->lock
, flags
);
3815 iommu_flush_irt(iommu
, devid
);
3816 iommu_completion_wait(iommu
);
3821 static void free_irte(u16 devid
, int index
)
3823 struct irq_remap_table
*table
;
3824 struct amd_iommu
*iommu
;
3825 unsigned long flags
;
3827 iommu
= amd_iommu_rlookup_table
[devid
];
3831 table
= get_irq_table(devid
, false);
3835 spin_lock_irqsave(&table
->lock
, flags
);
3836 iommu
->irte_ops
->clear_allocated(table
, index
);
3837 spin_unlock_irqrestore(&table
->lock
, flags
);
3839 iommu_flush_irt(iommu
, devid
);
3840 iommu_completion_wait(iommu
);
3843 static void irte_prepare(void *entry
,
3844 u32 delivery_mode
, u32 dest_mode
,
3845 u8 vector
, u32 dest_apicid
, int devid
)
3847 union irte
*irte
= (union irte
*) entry
;
3850 irte
->fields
.vector
= vector
;
3851 irte
->fields
.int_type
= delivery_mode
;
3852 irte
->fields
.destination
= dest_apicid
;
3853 irte
->fields
.dm
= dest_mode
;
3854 irte
->fields
.valid
= 1;
3857 static void irte_ga_prepare(void *entry
,
3858 u32 delivery_mode
, u32 dest_mode
,
3859 u8 vector
, u32 dest_apicid
, int devid
)
3861 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3862 struct iommu_dev_data
*dev_data
= search_dev_data(devid
);
3866 irte
->lo
.fields_remap
.guest_mode
= dev_data
? dev_data
->use_vapic
: 0;
3867 irte
->lo
.fields_remap
.int_type
= delivery_mode
;
3868 irte
->lo
.fields_remap
.dm
= dest_mode
;
3869 irte
->hi
.fields
.vector
= vector
;
3870 irte
->lo
.fields_remap
.destination
= dest_apicid
;
3871 irte
->lo
.fields_remap
.valid
= 1;
3874 static void irte_activate(void *entry
, u16 devid
, u16 index
)
3876 union irte
*irte
= (union irte
*) entry
;
3878 irte
->fields
.valid
= 1;
3879 modify_irte(devid
, index
, irte
);
3882 static void irte_ga_activate(void *entry
, u16 devid
, u16 index
)
3884 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3886 irte
->lo
.fields_remap
.valid
= 1;
3887 modify_irte_ga(devid
, index
, irte
, NULL
);
3890 static void irte_deactivate(void *entry
, u16 devid
, u16 index
)
3892 union irte
*irte
= (union irte
*) entry
;
3894 irte
->fields
.valid
= 0;
3895 modify_irte(devid
, index
, irte
);
3898 static void irte_ga_deactivate(void *entry
, u16 devid
, u16 index
)
3900 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3902 irte
->lo
.fields_remap
.valid
= 0;
3903 modify_irte_ga(devid
, index
, irte
, NULL
);
3906 static void irte_set_affinity(void *entry
, u16 devid
, u16 index
,
3907 u8 vector
, u32 dest_apicid
)
3909 union irte
*irte
= (union irte
*) entry
;
3911 irte
->fields
.vector
= vector
;
3912 irte
->fields
.destination
= dest_apicid
;
3913 modify_irte(devid
, index
, irte
);
3916 static void irte_ga_set_affinity(void *entry
, u16 devid
, u16 index
,
3917 u8 vector
, u32 dest_apicid
)
3919 struct irte_ga
*irte
= (struct irte_ga
*) entry
;
3920 struct iommu_dev_data
*dev_data
= search_dev_data(devid
);
3922 if (!dev_data
|| !dev_data
->use_vapic
) {
3923 irte
->hi
.fields
.vector
= vector
;
3924 irte
->lo
.fields_remap
.destination
= dest_apicid
;
3925 irte
->lo
.fields_remap
.guest_mode
= 0;
3926 modify_irte_ga(devid
, index
, irte
, NULL
);
3930 #define IRTE_ALLOCATED (~1U)
3931 static void irte_set_allocated(struct irq_remap_table
*table
, int index
)
3933 table
->table
[index
] = IRTE_ALLOCATED
;
3936 static void irte_ga_set_allocated(struct irq_remap_table
*table
, int index
)
3938 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3939 struct irte_ga
*irte
= &ptr
[index
];
3941 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3942 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3943 irte
->hi
.fields
.vector
= 0xff;
3946 static bool irte_is_allocated(struct irq_remap_table
*table
, int index
)
3948 union irte
*ptr
= (union irte
*)table
->table
;
3949 union irte
*irte
= &ptr
[index
];
3951 return irte
->val
!= 0;
3954 static bool irte_ga_is_allocated(struct irq_remap_table
*table
, int index
)
3956 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3957 struct irte_ga
*irte
= &ptr
[index
];
3959 return irte
->hi
.fields
.vector
!= 0;
3962 static void irte_clear_allocated(struct irq_remap_table
*table
, int index
)
3964 table
->table
[index
] = 0;
3967 static void irte_ga_clear_allocated(struct irq_remap_table
*table
, int index
)
3969 struct irte_ga
*ptr
= (struct irte_ga
*)table
->table
;
3970 struct irte_ga
*irte
= &ptr
[index
];
3972 memset(&irte
->lo
.val
, 0, sizeof(u64
));
3973 memset(&irte
->hi
.val
, 0, sizeof(u64
));
3976 static int get_devid(struct irq_alloc_info
*info
)
3980 switch (info
->type
) {
3981 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
3982 devid
= get_ioapic_devid(info
->ioapic_id
);
3984 case X86_IRQ_ALLOC_TYPE_HPET
:
3985 devid
= get_hpet_devid(info
->hpet_id
);
3987 case X86_IRQ_ALLOC_TYPE_MSI
:
3988 case X86_IRQ_ALLOC_TYPE_MSIX
:
3989 devid
= get_device_id(&info
->msi_dev
->dev
);
3999 static struct irq_domain
*get_ir_irq_domain(struct irq_alloc_info
*info
)
4001 struct amd_iommu
*iommu
;
4007 devid
= get_devid(info
);
4009 iommu
= amd_iommu_rlookup_table
[devid
];
4011 return iommu
->ir_domain
;
4017 static struct irq_domain
*get_irq_domain(struct irq_alloc_info
*info
)
4019 struct amd_iommu
*iommu
;
4025 switch (info
->type
) {
4026 case X86_IRQ_ALLOC_TYPE_MSI
:
4027 case X86_IRQ_ALLOC_TYPE_MSIX
:
4028 devid
= get_device_id(&info
->msi_dev
->dev
);
4032 iommu
= amd_iommu_rlookup_table
[devid
];
4034 return iommu
->msi_domain
;
4043 struct irq_remap_ops amd_iommu_irq_ops
= {
4044 .prepare
= amd_iommu_prepare
,
4045 .enable
= amd_iommu_enable
,
4046 .disable
= amd_iommu_disable
,
4047 .reenable
= amd_iommu_reenable
,
4048 .enable_faulting
= amd_iommu_enable_faulting
,
4049 .get_ir_irq_domain
= get_ir_irq_domain
,
4050 .get_irq_domain
= get_irq_domain
,
4053 static void irq_remapping_prepare_irte(struct amd_ir_data
*data
,
4054 struct irq_cfg
*irq_cfg
,
4055 struct irq_alloc_info
*info
,
4056 int devid
, int index
, int sub_handle
)
4058 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4059 struct msi_msg
*msg
= &data
->msi_entry
;
4060 struct IO_APIC_route_entry
*entry
;
4061 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[devid
];
4066 data
->irq_2_irte
.devid
= devid
;
4067 data
->irq_2_irte
.index
= index
+ sub_handle
;
4068 iommu
->irte_ops
->prepare(data
->entry
, apic
->irq_delivery_mode
,
4069 apic
->irq_dest_mode
, irq_cfg
->vector
,
4070 irq_cfg
->dest_apicid
, devid
);
4072 switch (info
->type
) {
4073 case X86_IRQ_ALLOC_TYPE_IOAPIC
:
4074 /* Setup IOAPIC entry */
4075 entry
= info
->ioapic_entry
;
4076 info
->ioapic_entry
= NULL
;
4077 memset(entry
, 0, sizeof(*entry
));
4078 entry
->vector
= index
;
4080 entry
->trigger
= info
->ioapic_trigger
;
4081 entry
->polarity
= info
->ioapic_polarity
;
4082 /* Mask level triggered irqs. */
4083 if (info
->ioapic_trigger
)
4087 case X86_IRQ_ALLOC_TYPE_HPET
:
4088 case X86_IRQ_ALLOC_TYPE_MSI
:
4089 case X86_IRQ_ALLOC_TYPE_MSIX
:
4090 msg
->address_hi
= MSI_ADDR_BASE_HI
;
4091 msg
->address_lo
= MSI_ADDR_BASE_LO
;
4092 msg
->data
= irte_info
->index
;
4101 struct amd_irte_ops irte_32_ops
= {
4102 .prepare
= irte_prepare
,
4103 .activate
= irte_activate
,
4104 .deactivate
= irte_deactivate
,
4105 .set_affinity
= irte_set_affinity
,
4106 .set_allocated
= irte_set_allocated
,
4107 .is_allocated
= irte_is_allocated
,
4108 .clear_allocated
= irte_clear_allocated
,
4111 struct amd_irte_ops irte_128_ops
= {
4112 .prepare
= irte_ga_prepare
,
4113 .activate
= irte_ga_activate
,
4114 .deactivate
= irte_ga_deactivate
,
4115 .set_affinity
= irte_ga_set_affinity
,
4116 .set_allocated
= irte_ga_set_allocated
,
4117 .is_allocated
= irte_ga_is_allocated
,
4118 .clear_allocated
= irte_ga_clear_allocated
,
4121 static int irq_remapping_alloc(struct irq_domain
*domain
, unsigned int virq
,
4122 unsigned int nr_irqs
, void *arg
)
4124 struct irq_alloc_info
*info
= arg
;
4125 struct irq_data
*irq_data
;
4126 struct amd_ir_data
*data
= NULL
;
4127 struct irq_cfg
*cfg
;
4133 if (nr_irqs
> 1 && info
->type
!= X86_IRQ_ALLOC_TYPE_MSI
&&
4134 info
->type
!= X86_IRQ_ALLOC_TYPE_MSIX
)
4138 * With IRQ remapping enabled, don't need contiguous CPU vectors
4139 * to support multiple MSI interrupts.
4141 if (info
->type
== X86_IRQ_ALLOC_TYPE_MSI
)
4142 info
->flags
&= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS
;
4144 devid
= get_devid(info
);
4148 ret
= irq_domain_alloc_irqs_parent(domain
, virq
, nr_irqs
, arg
);
4152 if (info
->type
== X86_IRQ_ALLOC_TYPE_IOAPIC
) {
4153 if (get_irq_table(devid
, true))
4154 index
= info
->ioapic_pin
;
4158 index
= alloc_irq_index(devid
, nr_irqs
);
4161 pr_warn("Failed to allocate IRTE\n");
4163 goto out_free_parent
;
4166 for (i
= 0; i
< nr_irqs
; i
++) {
4167 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4168 cfg
= irqd_cfg(irq_data
);
4169 if (!irq_data
|| !cfg
) {
4175 data
= kzalloc(sizeof(*data
), GFP_KERNEL
);
4179 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir
))
4180 data
->entry
= kzalloc(sizeof(union irte
), GFP_KERNEL
);
4182 data
->entry
= kzalloc(sizeof(struct irte_ga
),
4189 irq_data
->hwirq
= (devid
<< 16) + i
;
4190 irq_data
->chip_data
= data
;
4191 irq_data
->chip
= &amd_ir_chip
;
4192 irq_remapping_prepare_irte(data
, cfg
, info
, devid
, index
, i
);
4193 irq_set_status_flags(virq
+ i
, IRQ_MOVE_PCNTXT
);
4199 for (i
--; i
>= 0; i
--) {
4200 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4202 kfree(irq_data
->chip_data
);
4204 for (i
= 0; i
< nr_irqs
; i
++)
4205 free_irte(devid
, index
+ i
);
4207 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4211 static void irq_remapping_free(struct irq_domain
*domain
, unsigned int virq
,
4212 unsigned int nr_irqs
)
4214 struct irq_2_irte
*irte_info
;
4215 struct irq_data
*irq_data
;
4216 struct amd_ir_data
*data
;
4219 for (i
= 0; i
< nr_irqs
; i
++) {
4220 irq_data
= irq_domain_get_irq_data(domain
, virq
+ i
);
4221 if (irq_data
&& irq_data
->chip_data
) {
4222 data
= irq_data
->chip_data
;
4223 irte_info
= &data
->irq_2_irte
;
4224 free_irte(irte_info
->devid
, irte_info
->index
);
4229 irq_domain_free_irqs_common(domain
, virq
, nr_irqs
);
4232 static void irq_remapping_activate(struct irq_domain
*domain
,
4233 struct irq_data
*irq_data
)
4235 struct amd_ir_data
*data
= irq_data
->chip_data
;
4236 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4237 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4240 iommu
->irte_ops
->activate(data
->entry
, irte_info
->devid
,
4244 static void irq_remapping_deactivate(struct irq_domain
*domain
,
4245 struct irq_data
*irq_data
)
4247 struct amd_ir_data
*data
= irq_data
->chip_data
;
4248 struct irq_2_irte
*irte_info
= &data
->irq_2_irte
;
4249 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4252 iommu
->irte_ops
->deactivate(data
->entry
, irte_info
->devid
,
4256 static struct irq_domain_ops amd_ir_domain_ops
= {
4257 .alloc
= irq_remapping_alloc
,
4258 .free
= irq_remapping_free
,
4259 .activate
= irq_remapping_activate
,
4260 .deactivate
= irq_remapping_deactivate
,
4263 static int amd_ir_set_vcpu_affinity(struct irq_data
*data
, void *vcpu_info
)
4265 struct amd_iommu
*iommu
;
4266 struct amd_iommu_pi_data
*pi_data
= vcpu_info
;
4267 struct vcpu_data
*vcpu_pi_info
= pi_data
->vcpu_data
;
4268 struct amd_ir_data
*ir_data
= data
->chip_data
;
4269 struct irte_ga
*irte
= (struct irte_ga
*) ir_data
->entry
;
4270 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4271 struct iommu_dev_data
*dev_data
= search_dev_data(irte_info
->devid
);
4274 * This device has never been set up for guest mode.
4275 * we should not modify the IRTE
4277 if (!dev_data
|| !dev_data
->use_vapic
)
4280 pi_data
->ir_data
= ir_data
;
4283 * SVM tries to set up for VAPIC mode, but we are in
4284 * legacy mode. So, we force legacy mode instead.
4286 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
)) {
4287 pr_debug("AMD-Vi: %s: Fall back to using intr legacy remap\n",
4289 pi_data
->is_guest_mode
= false;
4292 iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4296 pi_data
->prev_ga_tag
= ir_data
->cached_ga_tag
;
4297 if (pi_data
->is_guest_mode
) {
4299 irte
->hi
.fields
.ga_root_ptr
= (pi_data
->base
>> 12);
4300 irte
->hi
.fields
.vector
= vcpu_pi_info
->vector
;
4301 irte
->lo
.fields_vapic
.guest_mode
= 1;
4302 irte
->lo
.fields_vapic
.ga_tag
= pi_data
->ga_tag
;
4304 ir_data
->cached_ga_tag
= pi_data
->ga_tag
;
4307 struct irq_cfg
*cfg
= irqd_cfg(data
);
4311 irte
->hi
.fields
.vector
= cfg
->vector
;
4312 irte
->lo
.fields_remap
.guest_mode
= 0;
4313 irte
->lo
.fields_remap
.destination
= cfg
->dest_apicid
;
4314 irte
->lo
.fields_remap
.int_type
= apic
->irq_delivery_mode
;
4315 irte
->lo
.fields_remap
.dm
= apic
->irq_dest_mode
;
4318 * This communicates the ga_tag back to the caller
4319 * so that it can do all the necessary clean up.
4321 ir_data
->cached_ga_tag
= 0;
4324 return modify_irte_ga(irte_info
->devid
, irte_info
->index
, irte
, ir_data
);
4327 static int amd_ir_set_affinity(struct irq_data
*data
,
4328 const struct cpumask
*mask
, bool force
)
4330 struct amd_ir_data
*ir_data
= data
->chip_data
;
4331 struct irq_2_irte
*irte_info
= &ir_data
->irq_2_irte
;
4332 struct irq_cfg
*cfg
= irqd_cfg(data
);
4333 struct irq_data
*parent
= data
->parent_data
;
4334 struct amd_iommu
*iommu
= amd_iommu_rlookup_table
[irte_info
->devid
];
4340 ret
= parent
->chip
->irq_set_affinity(parent
, mask
, force
);
4341 if (ret
< 0 || ret
== IRQ_SET_MASK_OK_DONE
)
4345 * Atomically updates the IRTE with the new destination, vector
4346 * and flushes the interrupt entry cache.
4348 iommu
->irte_ops
->set_affinity(ir_data
->entry
, irte_info
->devid
,
4349 irte_info
->index
, cfg
->vector
, cfg
->dest_apicid
);
4352 * After this point, all the interrupts will start arriving
4353 * at the new destination. So, time to cleanup the previous
4354 * vector allocation.
4356 send_cleanup_vector(cfg
);
4358 return IRQ_SET_MASK_OK_DONE
;
4361 static void ir_compose_msi_msg(struct irq_data
*irq_data
, struct msi_msg
*msg
)
4363 struct amd_ir_data
*ir_data
= irq_data
->chip_data
;
4365 *msg
= ir_data
->msi_entry
;
4368 static struct irq_chip amd_ir_chip
= {
4369 .irq_ack
= ir_ack_apic_edge
,
4370 .irq_set_affinity
= amd_ir_set_affinity
,
4371 .irq_set_vcpu_affinity
= amd_ir_set_vcpu_affinity
,
4372 .irq_compose_msi_msg
= ir_compose_msi_msg
,
4375 int amd_iommu_create_irq_domain(struct amd_iommu
*iommu
)
4377 iommu
->ir_domain
= irq_domain_add_tree(NULL
, &amd_ir_domain_ops
, iommu
);
4378 if (!iommu
->ir_domain
)
4381 iommu
->ir_domain
->parent
= arch_get_ir_parent_domain();
4382 iommu
->msi_domain
= arch_create_msi_irq_domain(iommu
->ir_domain
);
4387 int amd_iommu_update_ga(int cpu
, bool is_run
, void *data
)
4389 unsigned long flags
;
4390 struct amd_iommu
*iommu
;
4391 struct irq_remap_table
*irt
;
4392 struct amd_ir_data
*ir_data
= (struct amd_ir_data
*)data
;
4393 int devid
= ir_data
->irq_2_irte
.devid
;
4394 struct irte_ga
*entry
= (struct irte_ga
*) ir_data
->entry
;
4395 struct irte_ga
*ref
= (struct irte_ga
*) ir_data
->ref
;
4397 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir
) ||
4398 !ref
|| !entry
|| !entry
->lo
.fields_vapic
.guest_mode
)
4401 iommu
= amd_iommu_rlookup_table
[devid
];
4405 irt
= get_irq_table(devid
, false);
4409 spin_lock_irqsave(&irt
->lock
, flags
);
4411 if (ref
->lo
.fields_vapic
.guest_mode
) {
4413 ref
->lo
.fields_vapic
.destination
= cpu
;
4414 ref
->lo
.fields_vapic
.is_run
= is_run
;
4418 spin_unlock_irqrestore(&irt
->lock
, flags
);
4420 iommu_flush_irt(iommu
, devid
);
4421 iommu_completion_wait(iommu
);
4424 EXPORT_SYMBOL(amd_iommu_update_ga
);