2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <keys/user-type.h>
36 #include <linux/device-mapper.h>
38 #define DM_MSG_PREFIX "crypt"
41 * context holding the current state of a multi-part conversion
43 struct convert_context
{
44 struct completion restart
;
47 struct bvec_iter iter_in
;
48 struct bvec_iter iter_out
;
51 struct skcipher_request
*req
;
55 * per bio private data
58 struct crypt_config
*cc
;
60 struct work_struct work
;
62 struct convert_context ctx
;
68 struct rb_node rb_node
;
69 } CRYPTO_MINALIGN_ATTR
;
71 struct dm_crypt_request
{
72 struct convert_context
*ctx
;
73 struct scatterlist sg_in
;
74 struct scatterlist sg_out
;
80 struct crypt_iv_operations
{
81 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
83 void (*dtr
)(struct crypt_config
*cc
);
84 int (*init
)(struct crypt_config
*cc
);
85 int (*wipe
)(struct crypt_config
*cc
);
86 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
87 struct dm_crypt_request
*dmreq
);
88 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
89 struct dm_crypt_request
*dmreq
);
92 struct iv_essiv_private
{
93 struct crypto_ahash
*hash_tfm
;
97 struct iv_benbi_private
{
101 #define LMK_SEED_SIZE 64 /* hash + 0 */
102 struct iv_lmk_private
{
103 struct crypto_shash
*hash_tfm
;
107 #define TCW_WHITENING_SIZE 16
108 struct iv_tcw_private
{
109 struct crypto_shash
*crc32_tfm
;
115 * Crypt: maps a linear range of a block device
116 * and encrypts / decrypts at the same time.
118 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
,
119 DM_CRYPT_SAME_CPU
, DM_CRYPT_NO_OFFLOAD
};
122 * The fields in here must be read only after initialization.
124 struct crypt_config
{
129 * pool for per bio private data, crypto requests and
130 * encryption requeusts/buffer pages
133 mempool_t
*page_pool
;
135 struct mutex bio_alloc_lock
;
137 struct workqueue_struct
*io_queue
;
138 struct workqueue_struct
*crypt_queue
;
140 struct task_struct
*write_thread
;
141 wait_queue_head_t write_thread_wait
;
142 struct rb_root write_tree
;
148 const struct crypt_iv_operations
*iv_gen_ops
;
150 struct iv_essiv_private essiv
;
151 struct iv_benbi_private benbi
;
152 struct iv_lmk_private lmk
;
153 struct iv_tcw_private tcw
;
156 unsigned int iv_size
;
158 /* ESSIV: struct crypto_cipher *essiv_tfm */
160 struct crypto_skcipher
**tfms
;
164 * Layout of each crypto request:
166 * struct skcipher_request
169 * struct dm_crypt_request
173 * The padding is added so that dm_crypt_request and the IV are
176 unsigned int dmreq_start
;
178 unsigned int per_bio_data_size
;
181 unsigned int key_size
;
182 unsigned int key_parts
; /* independent parts in key buffer */
183 unsigned int key_extra_size
; /* additional keys length */
189 static void clone_init(struct dm_crypt_io
*, struct bio
*);
190 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
191 static u8
*iv_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
);
194 * Use this to access cipher attributes that are the same for each CPU.
196 static struct crypto_skcipher
*any_tfm(struct crypt_config
*cc
)
202 * Different IV generation algorithms:
204 * plain: the initial vector is the 32-bit little-endian version of the sector
205 * number, padded with zeros if necessary.
207 * plain64: the initial vector is the 64-bit little-endian version of the sector
208 * number, padded with zeros if necessary.
210 * essiv: "encrypted sector|salt initial vector", the sector number is
211 * encrypted with the bulk cipher using a salt as key. The salt
212 * should be derived from the bulk cipher's key via hashing.
214 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
215 * (needed for LRW-32-AES and possible other narrow block modes)
217 * null: the initial vector is always zero. Provides compatibility with
218 * obsolete loop_fish2 devices. Do not use for new devices.
220 * lmk: Compatible implementation of the block chaining mode used
221 * by the Loop-AES block device encryption system
222 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
223 * It operates on full 512 byte sectors and uses CBC
224 * with an IV derived from the sector number, the data and
225 * optionally extra IV seed.
226 * This means that after decryption the first block
227 * of sector must be tweaked according to decrypted data.
228 * Loop-AES can use three encryption schemes:
229 * version 1: is plain aes-cbc mode
230 * version 2: uses 64 multikey scheme with lmk IV generator
231 * version 3: the same as version 2 with additional IV seed
232 * (it uses 65 keys, last key is used as IV seed)
234 * tcw: Compatible implementation of the block chaining mode used
235 * by the TrueCrypt device encryption system (prior to version 4.1).
236 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
237 * It operates on full 512 byte sectors and uses CBC
238 * with an IV derived from initial key and the sector number.
239 * In addition, whitening value is applied on every sector, whitening
240 * is calculated from initial key, sector number and mixed using CRC32.
241 * Note that this encryption scheme is vulnerable to watermarking attacks
242 * and should be used for old compatible containers access only.
244 * plumb: unimplemented, see:
245 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
248 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
249 struct dm_crypt_request
*dmreq
)
251 memset(iv
, 0, cc
->iv_size
);
252 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
257 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
258 struct dm_crypt_request
*dmreq
)
260 memset(iv
, 0, cc
->iv_size
);
261 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
266 /* Initialise ESSIV - compute salt but no local memory allocations */
267 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
269 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
270 AHASH_REQUEST_ON_STACK(req
, essiv
->hash_tfm
);
271 struct scatterlist sg
;
272 struct crypto_cipher
*essiv_tfm
;
275 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
276 ahash_request_set_tfm(req
, essiv
->hash_tfm
);
277 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_SLEEP
, NULL
, NULL
);
278 ahash_request_set_crypt(req
, &sg
, essiv
->salt
, cc
->key_size
);
280 err
= crypto_ahash_digest(req
);
281 ahash_request_zero(req
);
285 essiv_tfm
= cc
->iv_private
;
287 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
288 crypto_ahash_digestsize(essiv
->hash_tfm
));
295 /* Wipe salt and reset key derived from volume key */
296 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
298 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
299 unsigned salt_size
= crypto_ahash_digestsize(essiv
->hash_tfm
);
300 struct crypto_cipher
*essiv_tfm
;
303 memset(essiv
->salt
, 0, salt_size
);
305 essiv_tfm
= cc
->iv_private
;
306 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
313 /* Set up per cpu cipher state */
314 static struct crypto_cipher
*setup_essiv_cpu(struct crypt_config
*cc
,
315 struct dm_target
*ti
,
316 u8
*salt
, unsigned saltsize
)
318 struct crypto_cipher
*essiv_tfm
;
321 /* Setup the essiv_tfm with the given salt */
322 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
323 if (IS_ERR(essiv_tfm
)) {
324 ti
->error
= "Error allocating crypto tfm for ESSIV";
328 if (crypto_cipher_blocksize(essiv_tfm
) !=
329 crypto_skcipher_ivsize(any_tfm(cc
))) {
330 ti
->error
= "Block size of ESSIV cipher does "
331 "not match IV size of block cipher";
332 crypto_free_cipher(essiv_tfm
);
333 return ERR_PTR(-EINVAL
);
336 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
338 ti
->error
= "Failed to set key for ESSIV cipher";
339 crypto_free_cipher(essiv_tfm
);
346 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
348 struct crypto_cipher
*essiv_tfm
;
349 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
351 crypto_free_ahash(essiv
->hash_tfm
);
352 essiv
->hash_tfm
= NULL
;
357 essiv_tfm
= cc
->iv_private
;
360 crypto_free_cipher(essiv_tfm
);
362 cc
->iv_private
= NULL
;
365 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
368 struct crypto_cipher
*essiv_tfm
= NULL
;
369 struct crypto_ahash
*hash_tfm
= NULL
;
374 ti
->error
= "Digest algorithm missing for ESSIV mode";
378 /* Allocate hash algorithm */
379 hash_tfm
= crypto_alloc_ahash(opts
, 0, CRYPTO_ALG_ASYNC
);
380 if (IS_ERR(hash_tfm
)) {
381 ti
->error
= "Error initializing ESSIV hash";
382 err
= PTR_ERR(hash_tfm
);
386 salt
= kzalloc(crypto_ahash_digestsize(hash_tfm
), GFP_KERNEL
);
388 ti
->error
= "Error kmallocing salt storage in ESSIV";
393 cc
->iv_gen_private
.essiv
.salt
= salt
;
394 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
396 essiv_tfm
= setup_essiv_cpu(cc
, ti
, salt
,
397 crypto_ahash_digestsize(hash_tfm
));
398 if (IS_ERR(essiv_tfm
)) {
399 crypt_iv_essiv_dtr(cc
);
400 return PTR_ERR(essiv_tfm
);
402 cc
->iv_private
= essiv_tfm
;
407 if (hash_tfm
&& !IS_ERR(hash_tfm
))
408 crypto_free_ahash(hash_tfm
);
413 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
414 struct dm_crypt_request
*dmreq
)
416 struct crypto_cipher
*essiv_tfm
= cc
->iv_private
;
418 memset(iv
, 0, cc
->iv_size
);
419 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
420 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
425 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
428 unsigned bs
= crypto_skcipher_blocksize(any_tfm(cc
));
431 /* we need to calculate how far we must shift the sector count
432 * to get the cipher block count, we use this shift in _gen */
434 if (1 << log
!= bs
) {
435 ti
->error
= "cypher blocksize is not a power of 2";
440 ti
->error
= "cypher blocksize is > 512";
444 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
449 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
453 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
454 struct dm_crypt_request
*dmreq
)
458 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
460 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
461 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
466 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
467 struct dm_crypt_request
*dmreq
)
469 memset(iv
, 0, cc
->iv_size
);
474 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
476 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
478 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
479 crypto_free_shash(lmk
->hash_tfm
);
480 lmk
->hash_tfm
= NULL
;
486 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
489 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
491 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
492 if (IS_ERR(lmk
->hash_tfm
)) {
493 ti
->error
= "Error initializing LMK hash";
494 return PTR_ERR(lmk
->hash_tfm
);
497 /* No seed in LMK version 2 */
498 if (cc
->key_parts
== cc
->tfms_count
) {
503 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
505 crypt_iv_lmk_dtr(cc
);
506 ti
->error
= "Error kmallocing seed storage in LMK";
513 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
515 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
516 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
518 /* LMK seed is on the position of LMK_KEYS + 1 key */
520 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
521 crypto_shash_digestsize(lmk
->hash_tfm
));
526 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
528 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
531 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
536 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
537 struct dm_crypt_request
*dmreq
,
540 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
541 SHASH_DESC_ON_STACK(desc
, lmk
->hash_tfm
);
542 struct md5_state md5state
;
546 desc
->tfm
= lmk
->hash_tfm
;
547 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
549 r
= crypto_shash_init(desc
);
554 r
= crypto_shash_update(desc
, lmk
->seed
, LMK_SEED_SIZE
);
559 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
560 r
= crypto_shash_update(desc
, data
+ 16, 16 * 31);
564 /* Sector is cropped to 56 bits here */
565 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
566 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
567 buf
[2] = cpu_to_le32(4024);
569 r
= crypto_shash_update(desc
, (u8
*)buf
, sizeof(buf
));
573 /* No MD5 padding here */
574 r
= crypto_shash_export(desc
, &md5state
);
578 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
579 __cpu_to_le32s(&md5state
.hash
[i
]);
580 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
585 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
586 struct dm_crypt_request
*dmreq
)
591 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
592 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
593 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ dmreq
->sg_in
.offset
);
596 memset(iv
, 0, cc
->iv_size
);
601 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
602 struct dm_crypt_request
*dmreq
)
607 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
610 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
611 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
613 /* Tweak the first block of plaintext sector */
615 crypto_xor(dst
+ dmreq
->sg_out
.offset
, iv
, cc
->iv_size
);
621 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
623 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
625 kzfree(tcw
->iv_seed
);
627 kzfree(tcw
->whitening
);
628 tcw
->whitening
= NULL
;
630 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
631 crypto_free_shash(tcw
->crc32_tfm
);
632 tcw
->crc32_tfm
= NULL
;
635 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
638 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
640 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
641 ti
->error
= "Wrong key size for TCW";
645 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0, 0);
646 if (IS_ERR(tcw
->crc32_tfm
)) {
647 ti
->error
= "Error initializing CRC32 in TCW";
648 return PTR_ERR(tcw
->crc32_tfm
);
651 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
652 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
653 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
654 crypt_iv_tcw_dtr(cc
);
655 ti
->error
= "Error allocating seed storage in TCW";
662 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
664 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
665 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
667 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
668 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
674 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
676 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
678 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
679 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
684 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
685 struct dm_crypt_request
*dmreq
,
688 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
689 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
690 u8 buf
[TCW_WHITENING_SIZE
];
691 SHASH_DESC_ON_STACK(desc
, tcw
->crc32_tfm
);
694 /* xor whitening with sector number */
695 memcpy(buf
, tcw
->whitening
, TCW_WHITENING_SIZE
);
696 crypto_xor(buf
, (u8
*)§or
, 8);
697 crypto_xor(&buf
[8], (u8
*)§or
, 8);
699 /* calculate crc32 for every 32bit part and xor it */
700 desc
->tfm
= tcw
->crc32_tfm
;
701 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
702 for (i
= 0; i
< 4; i
++) {
703 r
= crypto_shash_init(desc
);
706 r
= crypto_shash_update(desc
, &buf
[i
* 4], 4);
709 r
= crypto_shash_final(desc
, &buf
[i
* 4]);
713 crypto_xor(&buf
[0], &buf
[12], 4);
714 crypto_xor(&buf
[4], &buf
[8], 4);
716 /* apply whitening (8 bytes) to whole sector */
717 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
718 crypto_xor(data
+ i
* 8, buf
, 8);
720 memzero_explicit(buf
, sizeof(buf
));
724 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
725 struct dm_crypt_request
*dmreq
)
727 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
728 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
732 /* Remove whitening from ciphertext */
733 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
734 src
= kmap_atomic(sg_page(&dmreq
->sg_in
));
735 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ dmreq
->sg_in
.offset
);
740 memcpy(iv
, tcw
->iv_seed
, cc
->iv_size
);
741 crypto_xor(iv
, (u8
*)§or
, 8);
743 crypto_xor(&iv
[8], (u8
*)§or
, cc
->iv_size
- 8);
748 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
749 struct dm_crypt_request
*dmreq
)
754 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
757 /* Apply whitening on ciphertext */
758 dst
= kmap_atomic(sg_page(&dmreq
->sg_out
));
759 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ dmreq
->sg_out
.offset
);
765 static const struct crypt_iv_operations crypt_iv_plain_ops
= {
766 .generator
= crypt_iv_plain_gen
769 static const struct crypt_iv_operations crypt_iv_plain64_ops
= {
770 .generator
= crypt_iv_plain64_gen
773 static const struct crypt_iv_operations crypt_iv_essiv_ops
= {
774 .ctr
= crypt_iv_essiv_ctr
,
775 .dtr
= crypt_iv_essiv_dtr
,
776 .init
= crypt_iv_essiv_init
,
777 .wipe
= crypt_iv_essiv_wipe
,
778 .generator
= crypt_iv_essiv_gen
781 static const struct crypt_iv_operations crypt_iv_benbi_ops
= {
782 .ctr
= crypt_iv_benbi_ctr
,
783 .dtr
= crypt_iv_benbi_dtr
,
784 .generator
= crypt_iv_benbi_gen
787 static const struct crypt_iv_operations crypt_iv_null_ops
= {
788 .generator
= crypt_iv_null_gen
791 static const struct crypt_iv_operations crypt_iv_lmk_ops
= {
792 .ctr
= crypt_iv_lmk_ctr
,
793 .dtr
= crypt_iv_lmk_dtr
,
794 .init
= crypt_iv_lmk_init
,
795 .wipe
= crypt_iv_lmk_wipe
,
796 .generator
= crypt_iv_lmk_gen
,
797 .post
= crypt_iv_lmk_post
800 static const struct crypt_iv_operations crypt_iv_tcw_ops
= {
801 .ctr
= crypt_iv_tcw_ctr
,
802 .dtr
= crypt_iv_tcw_dtr
,
803 .init
= crypt_iv_tcw_init
,
804 .wipe
= crypt_iv_tcw_wipe
,
805 .generator
= crypt_iv_tcw_gen
,
806 .post
= crypt_iv_tcw_post
809 static void crypt_convert_init(struct crypt_config
*cc
,
810 struct convert_context
*ctx
,
811 struct bio
*bio_out
, struct bio
*bio_in
,
814 ctx
->bio_in
= bio_in
;
815 ctx
->bio_out
= bio_out
;
817 ctx
->iter_in
= bio_in
->bi_iter
;
819 ctx
->iter_out
= bio_out
->bi_iter
;
820 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
821 init_completion(&ctx
->restart
);
824 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
825 struct skcipher_request
*req
)
827 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
830 static struct skcipher_request
*req_of_dmreq(struct crypt_config
*cc
,
831 struct dm_crypt_request
*dmreq
)
833 return (struct skcipher_request
*)((char *)dmreq
- cc
->dmreq_start
);
836 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
837 struct dm_crypt_request
*dmreq
)
839 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
840 crypto_skcipher_alignmask(any_tfm(cc
)) + 1);
843 static int crypt_convert_block(struct crypt_config
*cc
,
844 struct convert_context
*ctx
,
845 struct skcipher_request
*req
)
847 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
848 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
849 struct dm_crypt_request
*dmreq
;
853 dmreq
= dmreq_of_req(cc
, req
);
854 iv
= iv_of_dmreq(cc
, dmreq
);
856 dmreq
->iv_sector
= ctx
->cc_sector
;
858 sg_init_table(&dmreq
->sg_in
, 1);
859 sg_set_page(&dmreq
->sg_in
, bv_in
.bv_page
, 1 << SECTOR_SHIFT
,
862 sg_init_table(&dmreq
->sg_out
, 1);
863 sg_set_page(&dmreq
->sg_out
, bv_out
.bv_page
, 1 << SECTOR_SHIFT
,
866 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, 1 << SECTOR_SHIFT
);
867 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, 1 << SECTOR_SHIFT
);
869 if (cc
->iv_gen_ops
) {
870 r
= cc
->iv_gen_ops
->generator(cc
, iv
, dmreq
);
875 skcipher_request_set_crypt(req
, &dmreq
->sg_in
, &dmreq
->sg_out
,
876 1 << SECTOR_SHIFT
, iv
);
878 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
879 r
= crypto_skcipher_encrypt(req
);
881 r
= crypto_skcipher_decrypt(req
);
883 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
884 r
= cc
->iv_gen_ops
->post(cc
, iv
, dmreq
);
889 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
892 static void crypt_alloc_req(struct crypt_config
*cc
,
893 struct convert_context
*ctx
)
895 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
898 ctx
->req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
900 skcipher_request_set_tfm(ctx
->req
, cc
->tfms
[key_index
]);
903 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
904 * requests if driver request queue is full.
906 skcipher_request_set_callback(ctx
->req
,
907 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
908 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->req
));
911 static void crypt_free_req(struct crypt_config
*cc
,
912 struct skcipher_request
*req
, struct bio
*base_bio
)
914 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
916 if ((struct skcipher_request
*)(io
+ 1) != req
)
917 mempool_free(req
, cc
->req_pool
);
921 * Encrypt / decrypt data from one bio to another one (can be the same one)
923 static int crypt_convert(struct crypt_config
*cc
,
924 struct convert_context
*ctx
)
928 atomic_set(&ctx
->cc_pending
, 1);
930 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
932 crypt_alloc_req(cc
, ctx
);
934 atomic_inc(&ctx
->cc_pending
);
936 r
= crypt_convert_block(cc
, ctx
, ctx
->req
);
940 * The request was queued by a crypto driver
941 * but the driver request queue is full, let's wait.
944 wait_for_completion(&ctx
->restart
);
945 reinit_completion(&ctx
->restart
);
948 * The request is queued and processed asynchronously,
949 * completion function kcryptd_async_done() will be called.
956 * The request was already processed (synchronously).
959 atomic_dec(&ctx
->cc_pending
);
964 /* There was an error while processing the request. */
966 atomic_dec(&ctx
->cc_pending
);
974 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
);
977 * Generate a new unfragmented bio with the given size
978 * This should never violate the device limitations (but only because
979 * max_segment_size is being constrained to PAGE_SIZE).
981 * This function may be called concurrently. If we allocate from the mempool
982 * concurrently, there is a possibility of deadlock. For example, if we have
983 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
984 * the mempool concurrently, it may deadlock in a situation where both processes
985 * have allocated 128 pages and the mempool is exhausted.
987 * In order to avoid this scenario we allocate the pages under a mutex.
989 * In order to not degrade performance with excessive locking, we try
990 * non-blocking allocations without a mutex first but on failure we fallback
991 * to blocking allocations with a mutex.
993 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
995 struct crypt_config
*cc
= io
->cc
;
997 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
998 gfp_t gfp_mask
= GFP_NOWAIT
| __GFP_HIGHMEM
;
999 unsigned i
, len
, remaining_size
;
1003 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1004 mutex_lock(&cc
->bio_alloc_lock
);
1006 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
1010 clone_init(io
, clone
);
1012 remaining_size
= size
;
1014 for (i
= 0; i
< nr_iovecs
; i
++) {
1015 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
1017 crypt_free_buffer_pages(cc
, clone
);
1019 gfp_mask
|= __GFP_DIRECT_RECLAIM
;
1023 len
= (remaining_size
> PAGE_SIZE
) ? PAGE_SIZE
: remaining_size
;
1025 bio_add_page(clone
, page
, len
, 0);
1027 remaining_size
-= len
;
1031 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1032 mutex_unlock(&cc
->bio_alloc_lock
);
1037 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1042 bio_for_each_segment_all(bv
, clone
, i
) {
1043 BUG_ON(!bv
->bv_page
);
1044 mempool_free(bv
->bv_page
, cc
->page_pool
);
1049 static void crypt_io_init(struct dm_crypt_io
*io
, struct crypt_config
*cc
,
1050 struct bio
*bio
, sector_t sector
)
1054 io
->sector
= sector
;
1057 atomic_set(&io
->io_pending
, 0);
1060 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1062 atomic_inc(&io
->io_pending
);
1066 * One of the bios was finished. Check for completion of
1067 * the whole request and correctly clean up the buffer.
1069 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1071 struct crypt_config
*cc
= io
->cc
;
1072 struct bio
*base_bio
= io
->base_bio
;
1073 int error
= io
->error
;
1075 if (!atomic_dec_and_test(&io
->io_pending
))
1079 crypt_free_req(cc
, io
->ctx
.req
, base_bio
);
1081 base_bio
->bi_error
= error
;
1082 bio_endio(base_bio
);
1086 * kcryptd/kcryptd_io:
1088 * Needed because it would be very unwise to do decryption in an
1089 * interrupt context.
1091 * kcryptd performs the actual encryption or decryption.
1093 * kcryptd_io performs the IO submission.
1095 * They must be separated as otherwise the final stages could be
1096 * starved by new requests which can block in the first stages due
1097 * to memory allocation.
1099 * The work is done per CPU global for all dm-crypt instances.
1100 * They should not depend on each other and do not block.
1102 static void crypt_endio(struct bio
*clone
)
1104 struct dm_crypt_io
*io
= clone
->bi_private
;
1105 struct crypt_config
*cc
= io
->cc
;
1106 unsigned rw
= bio_data_dir(clone
);
1110 * free the processed pages
1113 crypt_free_buffer_pages(cc
, clone
);
1115 error
= clone
->bi_error
;
1118 if (rw
== READ
&& !error
) {
1119 kcryptd_queue_crypt(io
);
1123 if (unlikely(error
))
1126 crypt_dec_pending(io
);
1129 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1131 struct crypt_config
*cc
= io
->cc
;
1133 clone
->bi_private
= io
;
1134 clone
->bi_end_io
= crypt_endio
;
1135 clone
->bi_bdev
= cc
->dev
->bdev
;
1136 clone
->bi_opf
= io
->base_bio
->bi_opf
;
1139 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1141 struct crypt_config
*cc
= io
->cc
;
1145 * We need the original biovec array in order to decrypt
1146 * the whole bio data *afterwards* -- thanks to immutable
1147 * biovecs we don't need to worry about the block layer
1148 * modifying the biovec array; so leverage bio_clone_fast().
1150 clone
= bio_clone_fast(io
->base_bio
, gfp
, cc
->bs
);
1154 crypt_inc_pending(io
);
1156 clone_init(io
, clone
);
1157 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1159 generic_make_request(clone
);
1163 static void kcryptd_io_read_work(struct work_struct
*work
)
1165 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1167 crypt_inc_pending(io
);
1168 if (kcryptd_io_read(io
, GFP_NOIO
))
1169 io
->error
= -ENOMEM
;
1170 crypt_dec_pending(io
);
1173 static void kcryptd_queue_read(struct dm_crypt_io
*io
)
1175 struct crypt_config
*cc
= io
->cc
;
1177 INIT_WORK(&io
->work
, kcryptd_io_read_work
);
1178 queue_work(cc
->io_queue
, &io
->work
);
1181 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1183 struct bio
*clone
= io
->ctx
.bio_out
;
1185 generic_make_request(clone
);
1188 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1190 static int dmcrypt_write(void *data
)
1192 struct crypt_config
*cc
= data
;
1193 struct dm_crypt_io
*io
;
1196 struct rb_root write_tree
;
1197 struct blk_plug plug
;
1199 DECLARE_WAITQUEUE(wait
, current
);
1201 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1204 if (!RB_EMPTY_ROOT(&cc
->write_tree
))
1207 set_current_state(TASK_INTERRUPTIBLE
);
1208 __add_wait_queue(&cc
->write_thread_wait
, &wait
);
1210 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1212 if (unlikely(kthread_should_stop())) {
1213 set_task_state(current
, TASK_RUNNING
);
1214 remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1220 set_task_state(current
, TASK_RUNNING
);
1221 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1222 __remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1223 goto continue_locked
;
1226 write_tree
= cc
->write_tree
;
1227 cc
->write_tree
= RB_ROOT
;
1228 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1230 BUG_ON(rb_parent(write_tree
.rb_node
));
1233 * Note: we cannot walk the tree here with rb_next because
1234 * the structures may be freed when kcryptd_io_write is called.
1236 blk_start_plug(&plug
);
1238 io
= crypt_io_from_node(rb_first(&write_tree
));
1239 rb_erase(&io
->rb_node
, &write_tree
);
1240 kcryptd_io_write(io
);
1241 } while (!RB_EMPTY_ROOT(&write_tree
));
1242 blk_finish_plug(&plug
);
1247 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1249 struct bio
*clone
= io
->ctx
.bio_out
;
1250 struct crypt_config
*cc
= io
->cc
;
1251 unsigned long flags
;
1253 struct rb_node
**rbp
, *parent
;
1255 if (unlikely(io
->error
< 0)) {
1256 crypt_free_buffer_pages(cc
, clone
);
1258 crypt_dec_pending(io
);
1262 /* crypt_convert should have filled the clone bio */
1263 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1265 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1267 if (likely(!async
) && test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
)) {
1268 generic_make_request(clone
);
1272 spin_lock_irqsave(&cc
->write_thread_wait
.lock
, flags
);
1273 rbp
= &cc
->write_tree
.rb_node
;
1275 sector
= io
->sector
;
1278 if (sector
< crypt_io_from_node(parent
)->sector
)
1279 rbp
= &(*rbp
)->rb_left
;
1281 rbp
= &(*rbp
)->rb_right
;
1283 rb_link_node(&io
->rb_node
, parent
, rbp
);
1284 rb_insert_color(&io
->rb_node
, &cc
->write_tree
);
1286 wake_up_locked(&cc
->write_thread_wait
);
1287 spin_unlock_irqrestore(&cc
->write_thread_wait
.lock
, flags
);
1290 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1292 struct crypt_config
*cc
= io
->cc
;
1295 sector_t sector
= io
->sector
;
1299 * Prevent io from disappearing until this function completes.
1301 crypt_inc_pending(io
);
1302 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1304 clone
= crypt_alloc_buffer(io
, io
->base_bio
->bi_iter
.bi_size
);
1305 if (unlikely(!clone
)) {
1310 io
->ctx
.bio_out
= clone
;
1311 io
->ctx
.iter_out
= clone
->bi_iter
;
1313 sector
+= bio_sectors(clone
);
1315 crypt_inc_pending(io
);
1316 r
= crypt_convert(cc
, &io
->ctx
);
1319 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1321 /* Encryption was already finished, submit io now */
1322 if (crypt_finished
) {
1323 kcryptd_crypt_write_io_submit(io
, 0);
1324 io
->sector
= sector
;
1328 crypt_dec_pending(io
);
1331 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1333 crypt_dec_pending(io
);
1336 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1338 struct crypt_config
*cc
= io
->cc
;
1341 crypt_inc_pending(io
);
1343 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1346 r
= crypt_convert(cc
, &io
->ctx
);
1350 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1351 kcryptd_crypt_read_done(io
);
1353 crypt_dec_pending(io
);
1356 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1359 struct dm_crypt_request
*dmreq
= async_req
->data
;
1360 struct convert_context
*ctx
= dmreq
->ctx
;
1361 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1362 struct crypt_config
*cc
= io
->cc
;
1365 * A request from crypto driver backlog is going to be processed now,
1366 * finish the completion and continue in crypt_convert().
1367 * (Callback will be called for the second time for this request.)
1369 if (error
== -EINPROGRESS
) {
1370 complete(&ctx
->restart
);
1374 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1375 error
= cc
->iv_gen_ops
->post(cc
, iv_of_dmreq(cc
, dmreq
), dmreq
);
1380 crypt_free_req(cc
, req_of_dmreq(cc
, dmreq
), io
->base_bio
);
1382 if (!atomic_dec_and_test(&ctx
->cc_pending
))
1385 if (bio_data_dir(io
->base_bio
) == READ
)
1386 kcryptd_crypt_read_done(io
);
1388 kcryptd_crypt_write_io_submit(io
, 1);
1391 static void kcryptd_crypt(struct work_struct
*work
)
1393 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1395 if (bio_data_dir(io
->base_bio
) == READ
)
1396 kcryptd_crypt_read_convert(io
);
1398 kcryptd_crypt_write_convert(io
);
1401 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1403 struct crypt_config
*cc
= io
->cc
;
1405 INIT_WORK(&io
->work
, kcryptd_crypt
);
1406 queue_work(cc
->crypt_queue
, &io
->work
);
1410 * Decode key from its hex representation
1412 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
1419 for (i
= 0; i
< size
; i
++) {
1423 if (kstrtou8(buffer
, 16, &key
[i
]))
1433 static void crypt_free_tfms(struct crypt_config
*cc
)
1440 for (i
= 0; i
< cc
->tfms_count
; i
++)
1441 if (cc
->tfms
[i
] && !IS_ERR(cc
->tfms
[i
])) {
1442 crypto_free_skcipher(cc
->tfms
[i
]);
1450 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
1455 cc
->tfms
= kzalloc(cc
->tfms_count
* sizeof(struct crypto_skcipher
*),
1460 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1461 cc
->tfms
[i
] = crypto_alloc_skcipher(ciphermode
, 0, 0);
1462 if (IS_ERR(cc
->tfms
[i
])) {
1463 err
= PTR_ERR(cc
->tfms
[i
]);
1464 crypt_free_tfms(cc
);
1472 static int crypt_setkey(struct crypt_config
*cc
)
1474 unsigned subkey_size
;
1477 /* Ignore extra keys (which are used for IV etc) */
1478 subkey_size
= (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
1480 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1481 r
= crypto_skcipher_setkey(cc
->tfms
[i
],
1482 cc
->key
+ (i
* subkey_size
),
1493 static bool contains_whitespace(const char *str
)
1496 if (isspace(*str
++))
1501 static int crypt_set_keyring_key(struct crypt_config
*cc
, const char *key_string
)
1503 char *new_key_string
, *key_desc
;
1506 const struct user_key_payload
*ukp
;
1509 * Reject key_string with whitespace. dm core currently lacks code for
1510 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
1512 if (contains_whitespace(key_string
)) {
1513 DMERR("whitespace chars not allowed in key string");
1517 /* look for next ':' separating key_type from key_description */
1518 key_desc
= strpbrk(key_string
, ":");
1519 if (!key_desc
|| key_desc
== key_string
|| !strlen(key_desc
+ 1))
1522 if (strncmp(key_string
, "logon:", key_desc
- key_string
+ 1) &&
1523 strncmp(key_string
, "user:", key_desc
- key_string
+ 1))
1526 new_key_string
= kstrdup(key_string
, GFP_KERNEL
);
1527 if (!new_key_string
)
1530 key
= request_key(key_string
[0] == 'l' ? &key_type_logon
: &key_type_user
,
1531 key_desc
+ 1, NULL
);
1533 kzfree(new_key_string
);
1534 return PTR_ERR(key
);
1539 ukp
= user_key_payload(key
);
1543 kzfree(new_key_string
);
1544 return -EKEYREVOKED
;
1547 if (cc
->key_size
!= ukp
->datalen
) {
1550 kzfree(new_key_string
);
1554 memcpy(cc
->key
, ukp
->data
, cc
->key_size
);
1559 /* clear the flag since following operations may invalidate previously valid key */
1560 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1562 ret
= crypt_setkey(cc
);
1564 /* wipe the kernel key payload copy in each case */
1565 memset(cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1568 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1569 kzfree(cc
->key_string
);
1570 cc
->key_string
= new_key_string
;
1572 kzfree(new_key_string
);
1577 static int get_key_size(char **key_string
)
1582 if (*key_string
[0] != ':')
1583 return strlen(*key_string
) >> 1;
1585 /* look for next ':' in key string */
1586 colon
= strpbrk(*key_string
+ 1, ":");
1590 if (sscanf(*key_string
+ 1, "%u%c", &ret
, &dummy
) != 2 || dummy
!= ':')
1593 *key_string
= colon
;
1595 /* remaining key string should be :<logon|user>:<key_desc> */
1602 static int crypt_set_keyring_key(struct crypt_config
*cc
, const char *key_string
)
1607 static int get_key_size(char **key_string
)
1609 return (*key_string
[0] == ':') ? -EINVAL
: strlen(*key_string
) >> 1;
1614 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
1617 int key_string_len
= strlen(key
);
1619 /* Hyphen (which gives a key_size of zero) means there is no key. */
1620 if (!cc
->key_size
&& strcmp(key
, "-"))
1623 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
1624 if (key
[0] == ':') {
1625 r
= crypt_set_keyring_key(cc
, key
+ 1);
1629 /* clear the flag since following operations may invalidate previously valid key */
1630 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1632 /* wipe references to any kernel keyring key */
1633 kzfree(cc
->key_string
);
1634 cc
->key_string
= NULL
;
1636 if (cc
->key_size
&& crypt_decode_key(cc
->key
, key
, cc
->key_size
) < 0)
1639 r
= crypt_setkey(cc
);
1641 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1644 /* Hex key string not needed after here, so wipe it. */
1645 memset(key
, '0', key_string_len
);
1650 static int crypt_wipe_key(struct crypt_config
*cc
)
1652 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
1653 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
1654 kzfree(cc
->key_string
);
1655 cc
->key_string
= NULL
;
1657 return crypt_setkey(cc
);
1660 static void crypt_dtr(struct dm_target
*ti
)
1662 struct crypt_config
*cc
= ti
->private;
1669 if (cc
->write_thread
)
1670 kthread_stop(cc
->write_thread
);
1673 destroy_workqueue(cc
->io_queue
);
1674 if (cc
->crypt_queue
)
1675 destroy_workqueue(cc
->crypt_queue
);
1677 crypt_free_tfms(cc
);
1680 bioset_free(cc
->bs
);
1682 mempool_destroy(cc
->page_pool
);
1683 mempool_destroy(cc
->req_pool
);
1685 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
1686 cc
->iv_gen_ops
->dtr(cc
);
1689 dm_put_device(ti
, cc
->dev
);
1692 kzfree(cc
->cipher_string
);
1693 kzfree(cc
->key_string
);
1695 /* Must zero key material before freeing */
1699 static int crypt_ctr_cipher(struct dm_target
*ti
,
1700 char *cipher_in
, char *key
)
1702 struct crypt_config
*cc
= ti
->private;
1703 char *tmp
, *cipher
, *chainmode
, *ivmode
, *ivopts
, *keycount
;
1704 char *cipher_api
= NULL
;
1708 /* Convert to crypto api definition? */
1709 if (strchr(cipher_in
, '(')) {
1710 ti
->error
= "Bad cipher specification";
1714 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
1715 if (!cc
->cipher_string
)
1719 * Legacy dm-crypt cipher specification
1720 * cipher[:keycount]-mode-iv:ivopts
1723 keycount
= strsep(&tmp
, "-");
1724 cipher
= strsep(&keycount
, ":");
1728 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
1729 !is_power_of_2(cc
->tfms_count
)) {
1730 ti
->error
= "Bad cipher key count specification";
1733 cc
->key_parts
= cc
->tfms_count
;
1734 cc
->key_extra_size
= 0;
1736 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
1740 chainmode
= strsep(&tmp
, "-");
1741 ivopts
= strsep(&tmp
, "-");
1742 ivmode
= strsep(&ivopts
, ":");
1745 DMWARN("Ignoring unexpected additional cipher options");
1748 * For compatibility with the original dm-crypt mapping format, if
1749 * only the cipher name is supplied, use cbc-plain.
1751 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !ivmode
)) {
1756 if (strcmp(chainmode
, "ecb") && !ivmode
) {
1757 ti
->error
= "IV mechanism required";
1761 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
1765 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
1766 "%s(%s)", chainmode
, cipher
);
1772 /* Allocate cipher */
1773 ret
= crypt_alloc_tfms(cc
, cipher_api
);
1775 ti
->error
= "Error allocating crypto tfm";
1780 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
1782 /* at least a 64 bit sector number should fit in our buffer */
1783 cc
->iv_size
= max(cc
->iv_size
,
1784 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
1786 DMWARN("Selected cipher does not support IVs");
1790 /* Choose ivmode, see comments at iv code. */
1792 cc
->iv_gen_ops
= NULL
;
1793 else if (strcmp(ivmode
, "plain") == 0)
1794 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
1795 else if (strcmp(ivmode
, "plain64") == 0)
1796 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
1797 else if (strcmp(ivmode
, "essiv") == 0)
1798 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
1799 else if (strcmp(ivmode
, "benbi") == 0)
1800 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
1801 else if (strcmp(ivmode
, "null") == 0)
1802 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
1803 else if (strcmp(ivmode
, "lmk") == 0) {
1804 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
1806 * Version 2 and 3 is recognised according
1807 * to length of provided multi-key string.
1808 * If present (version 3), last key is used as IV seed.
1809 * All keys (including IV seed) are always the same size.
1811 if (cc
->key_size
% cc
->key_parts
) {
1813 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
1815 } else if (strcmp(ivmode
, "tcw") == 0) {
1816 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
1817 cc
->key_parts
+= 2; /* IV + whitening */
1818 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
1821 ti
->error
= "Invalid IV mode";
1825 /* Initialize and set key */
1826 ret
= crypt_set_key(cc
, key
);
1828 ti
->error
= "Error decoding and setting key";
1833 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
1834 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
1836 ti
->error
= "Error creating IV";
1841 /* Initialize IV (set keys for ESSIV etc) */
1842 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
1843 ret
= cc
->iv_gen_ops
->init(cc
);
1845 ti
->error
= "Error initialising IV";
1856 ti
->error
= "Cannot allocate cipher strings";
1861 * Construct an encryption mapping:
1862 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
1864 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
1866 struct crypt_config
*cc
;
1868 unsigned int opt_params
;
1869 unsigned long long tmpll
;
1871 size_t iv_size_padding
;
1872 struct dm_arg_set as
;
1873 const char *opt_string
;
1876 static struct dm_arg _args
[] = {
1877 {0, 3, "Invalid number of feature args"},
1881 ti
->error
= "Not enough arguments";
1885 key_size
= get_key_size(&argv
[1]);
1887 ti
->error
= "Cannot parse key size";
1891 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
1893 ti
->error
= "Cannot allocate encryption context";
1896 cc
->key_size
= key_size
;
1899 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
1903 cc
->dmreq_start
= sizeof(struct skcipher_request
);
1904 cc
->dmreq_start
+= crypto_skcipher_reqsize(any_tfm(cc
));
1905 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
1907 if (crypto_skcipher_alignmask(any_tfm(cc
)) < CRYPTO_MINALIGN
) {
1908 /* Allocate the padding exactly */
1909 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
1910 & crypto_skcipher_alignmask(any_tfm(cc
));
1913 * If the cipher requires greater alignment than kmalloc
1914 * alignment, we don't know the exact position of the
1915 * initialization vector. We must assume worst case.
1917 iv_size_padding
= crypto_skcipher_alignmask(any_tfm(cc
));
1921 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+
1922 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
);
1923 if (!cc
->req_pool
) {
1924 ti
->error
= "Cannot allocate crypt request mempool";
1928 cc
->per_bio_data_size
= ti
->per_io_data_size
=
1929 ALIGN(sizeof(struct dm_crypt_io
) + cc
->dmreq_start
+
1930 sizeof(struct dm_crypt_request
) + iv_size_padding
+ cc
->iv_size
,
1931 ARCH_KMALLOC_MINALIGN
);
1933 cc
->page_pool
= mempool_create_page_pool(BIO_MAX_PAGES
, 0);
1934 if (!cc
->page_pool
) {
1935 ti
->error
= "Cannot allocate page mempool";
1939 cc
->bs
= bioset_create(MIN_IOS
, 0);
1941 ti
->error
= "Cannot allocate crypt bioset";
1945 mutex_init(&cc
->bio_alloc_lock
);
1948 if (sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) {
1949 ti
->error
= "Invalid iv_offset sector";
1952 cc
->iv_offset
= tmpll
;
1954 ret
= dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
);
1956 ti
->error
= "Device lookup failed";
1961 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1) {
1962 ti
->error
= "Invalid device sector";
1970 /* Optional parameters */
1975 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
1980 while (opt_params
--) {
1981 opt_string
= dm_shift_arg(&as
);
1983 ti
->error
= "Not enough feature arguments";
1987 if (!strcasecmp(opt_string
, "allow_discards"))
1988 ti
->num_discard_bios
= 1;
1990 else if (!strcasecmp(opt_string
, "same_cpu_crypt"))
1991 set_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
1993 else if (!strcasecmp(opt_string
, "submit_from_crypt_cpus"))
1994 set_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
1997 ti
->error
= "Invalid feature arguments";
2004 cc
->io_queue
= alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM
, 1);
2005 if (!cc
->io_queue
) {
2006 ti
->error
= "Couldn't create kcryptd io queue";
2010 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
2011 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
2013 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
| WQ_UNBOUND
,
2015 if (!cc
->crypt_queue
) {
2016 ti
->error
= "Couldn't create kcryptd queue";
2020 init_waitqueue_head(&cc
->write_thread_wait
);
2021 cc
->write_tree
= RB_ROOT
;
2023 cc
->write_thread
= kthread_create(dmcrypt_write
, cc
, "dmcrypt_write");
2024 if (IS_ERR(cc
->write_thread
)) {
2025 ret
= PTR_ERR(cc
->write_thread
);
2026 cc
->write_thread
= NULL
;
2027 ti
->error
= "Couldn't spawn write thread";
2030 wake_up_process(cc
->write_thread
);
2032 ti
->num_flush_bios
= 1;
2033 ti
->discard_zeroes_data_unsupported
= true;
2042 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
2044 struct dm_crypt_io
*io
;
2045 struct crypt_config
*cc
= ti
->private;
2048 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2049 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2050 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2052 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
||
2053 bio_op(bio
) == REQ_OP_DISCARD
)) {
2054 bio
->bi_bdev
= cc
->dev
->bdev
;
2055 if (bio_sectors(bio
))
2056 bio
->bi_iter
.bi_sector
= cc
->start
+
2057 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
2058 return DM_MAPIO_REMAPPED
;
2062 * Check if bio is too large, split as needed.
2064 if (unlikely(bio
->bi_iter
.bi_size
> (BIO_MAX_PAGES
<< PAGE_SHIFT
)) &&
2065 bio_data_dir(bio
) == WRITE
)
2066 dm_accept_partial_bio(bio
, ((BIO_MAX_PAGES
<< PAGE_SHIFT
) >> SECTOR_SHIFT
));
2068 io
= dm_per_bio_data(bio
, cc
->per_bio_data_size
);
2069 crypt_io_init(io
, cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
2070 io
->ctx
.req
= (struct skcipher_request
*)(io
+ 1);
2072 if (bio_data_dir(io
->base_bio
) == READ
) {
2073 if (kcryptd_io_read(io
, GFP_NOWAIT
))
2074 kcryptd_queue_read(io
);
2076 kcryptd_queue_crypt(io
);
2078 return DM_MAPIO_SUBMITTED
;
2081 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
2082 unsigned status_flags
, char *result
, unsigned maxlen
)
2084 struct crypt_config
*cc
= ti
->private;
2086 int num_feature_args
= 0;
2089 case STATUSTYPE_INFO
:
2093 case STATUSTYPE_TABLE
:
2094 DMEMIT("%s ", cc
->cipher_string
);
2096 if (cc
->key_size
> 0) {
2098 DMEMIT(":%u:%s", cc
->key_size
, cc
->key_string
);
2100 for (i
= 0; i
< cc
->key_size
; i
++)
2101 DMEMIT("%02x", cc
->key
[i
]);
2105 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
2106 cc
->dev
->name
, (unsigned long long)cc
->start
);
2108 num_feature_args
+= !!ti
->num_discard_bios
;
2109 num_feature_args
+= test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
2110 num_feature_args
+= test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
2111 if (num_feature_args
) {
2112 DMEMIT(" %d", num_feature_args
);
2113 if (ti
->num_discard_bios
)
2114 DMEMIT(" allow_discards");
2115 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
2116 DMEMIT(" same_cpu_crypt");
2117 if (test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
))
2118 DMEMIT(" submit_from_crypt_cpus");
2125 static void crypt_postsuspend(struct dm_target
*ti
)
2127 struct crypt_config
*cc
= ti
->private;
2129 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
2132 static int crypt_preresume(struct dm_target
*ti
)
2134 struct crypt_config
*cc
= ti
->private;
2136 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
2137 DMERR("aborting resume - crypt key is not set.");
2144 static void crypt_resume(struct dm_target
*ti
)
2146 struct crypt_config
*cc
= ti
->private;
2148 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
2151 /* Message interface
2155 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
2157 struct crypt_config
*cc
= ti
->private;
2158 int key_size
, ret
= -EINVAL
;
2163 if (!strcasecmp(argv
[0], "key")) {
2164 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
2165 DMWARN("not suspended during key manipulation.");
2168 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
2169 /* The key size may not be changed. */
2170 key_size
= get_key_size(&argv
[2]);
2171 if (key_size
< 0 || cc
->key_size
!= key_size
) {
2172 memset(argv
[2], '0', strlen(argv
[2]));
2176 ret
= crypt_set_key(cc
, argv
[2]);
2179 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
2180 ret
= cc
->iv_gen_ops
->init(cc
);
2183 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
2184 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
2185 ret
= cc
->iv_gen_ops
->wipe(cc
);
2189 return crypt_wipe_key(cc
);
2194 DMWARN("unrecognised message received.");
2198 static int crypt_iterate_devices(struct dm_target
*ti
,
2199 iterate_devices_callout_fn fn
, void *data
)
2201 struct crypt_config
*cc
= ti
->private;
2203 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
2206 static void crypt_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
2209 * Unfortunate constraint that is required to avoid the potential
2210 * for exceeding underlying device's max_segments limits -- due to
2211 * crypt_alloc_buffer() possibly allocating pages for the encryption
2212 * bio that are not as physically contiguous as the original bio.
2214 limits
->max_segment_size
= PAGE_SIZE
;
2217 static struct target_type crypt_target
= {
2219 .version
= {1, 15, 0},
2220 .module
= THIS_MODULE
,
2224 .status
= crypt_status
,
2225 .postsuspend
= crypt_postsuspend
,
2226 .preresume
= crypt_preresume
,
2227 .resume
= crypt_resume
,
2228 .message
= crypt_message
,
2229 .iterate_devices
= crypt_iterate_devices
,
2230 .io_hints
= crypt_io_hints
,
2233 static int __init
dm_crypt_init(void)
2237 r
= dm_register_target(&crypt_target
);
2239 DMERR("register failed %d", r
);
2244 static void __exit
dm_crypt_exit(void)
2246 dm_unregister_target(&crypt_target
);
2249 module_init(dm_crypt_init
);
2250 module_exit(dm_crypt_exit
);
2252 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2253 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
2254 MODULE_LICENSE("GPL");