2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
76 * Number of guaranteed r10bios in case of extreme VM load:
78 #define NR_RAID10_BIOS 256
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
90 #define IO_MADE_GOOD ((struct bio *)2)
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
98 static int max_queued_requests
= 1024;
100 static void allow_barrier(struct r10conf
*conf
);
101 static void lower_barrier(struct r10conf
*conf
);
102 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
103 static int enough(struct r10conf
*conf
, int ignore
);
104 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
106 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
107 static void end_reshape_write(struct bio
*bio
);
108 static void end_reshape(struct r10conf
*conf
);
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
113 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
115 struct r10conf
*conf
= data
;
116 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
118 /* allocate a r10bio with room for raid_disks entries in the
120 return kzalloc(size
, gfp_flags
);
123 static void r10bio_pool_free(void *r10_bio
, void *data
)
128 /* Maximum size of each resync request */
129 #define RESYNC_BLOCK_SIZE (64*1024)
130 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
131 /* amount of memory to reserve for resync requests */
132 #define RESYNC_WINDOW (1024*1024)
133 /* maximum number of concurrent requests, memory permitting */
134 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
137 * When performing a resync, we need to read and compare, so
138 * we need as many pages are there are copies.
139 * When performing a recovery, we need 2 bios, one for read,
140 * one for write (we recover only one drive per r10buf)
143 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
145 struct r10conf
*conf
= data
;
147 struct r10bio
*r10_bio
;
152 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
156 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
157 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
158 nalloc
= conf
->copies
; /* resync */
160 nalloc
= 2; /* recovery */
165 for (j
= nalloc
; j
-- ; ) {
166 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
169 r10_bio
->devs
[j
].bio
= bio
;
170 if (!conf
->have_replacement
)
172 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
175 r10_bio
->devs
[j
].repl_bio
= bio
;
178 * Allocate RESYNC_PAGES data pages and attach them
181 for (j
= 0 ; j
< nalloc
; j
++) {
182 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
183 bio
= r10_bio
->devs
[j
].bio
;
184 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
185 if (j
> 0 && !test_bit(MD_RECOVERY_SYNC
,
186 &conf
->mddev
->recovery
)) {
187 /* we can share bv_page's during recovery
189 struct bio
*rbio
= r10_bio
->devs
[0].bio
;
190 page
= rbio
->bi_io_vec
[i
].bv_page
;
193 page
= alloc_page(gfp_flags
);
197 bio
->bi_io_vec
[i
].bv_page
= page
;
199 rbio
->bi_io_vec
[i
].bv_page
= page
;
207 safe_put_page(bio
->bi_io_vec
[i
-1].bv_page
);
209 for (i
= 0; i
< RESYNC_PAGES
; i
++)
210 safe_put_page(r10_bio
->devs
[j
].bio
->bi_io_vec
[i
].bv_page
);
213 for ( ; j
< nalloc
; j
++) {
214 if (r10_bio
->devs
[j
].bio
)
215 bio_put(r10_bio
->devs
[j
].bio
);
216 if (r10_bio
->devs
[j
].repl_bio
)
217 bio_put(r10_bio
->devs
[j
].repl_bio
);
219 r10bio_pool_free(r10_bio
, conf
);
223 static void r10buf_pool_free(void *__r10_bio
, void *data
)
226 struct r10conf
*conf
= data
;
227 struct r10bio
*r10bio
= __r10_bio
;
230 for (j
=0; j
< conf
->copies
; j
++) {
231 struct bio
*bio
= r10bio
->devs
[j
].bio
;
233 for (i
= 0; i
< RESYNC_PAGES
; i
++) {
234 safe_put_page(bio
->bi_io_vec
[i
].bv_page
);
235 bio
->bi_io_vec
[i
].bv_page
= NULL
;
239 bio
= r10bio
->devs
[j
].repl_bio
;
243 r10bio_pool_free(r10bio
, conf
);
246 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
250 for (i
= 0; i
< conf
->copies
; i
++) {
251 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
252 if (!BIO_SPECIAL(*bio
))
255 bio
= &r10_bio
->devs
[i
].repl_bio
;
256 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
262 static void free_r10bio(struct r10bio
*r10_bio
)
264 struct r10conf
*conf
= r10_bio
->mddev
->private;
266 put_all_bios(conf
, r10_bio
);
267 mempool_free(r10_bio
, conf
->r10bio_pool
);
270 static void put_buf(struct r10bio
*r10_bio
)
272 struct r10conf
*conf
= r10_bio
->mddev
->private;
274 mempool_free(r10_bio
, conf
->r10buf_pool
);
279 static void reschedule_retry(struct r10bio
*r10_bio
)
282 struct mddev
*mddev
= r10_bio
->mddev
;
283 struct r10conf
*conf
= mddev
->private;
285 spin_lock_irqsave(&conf
->device_lock
, flags
);
286 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
288 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
290 /* wake up frozen array... */
291 wake_up(&conf
->wait_barrier
);
293 md_wakeup_thread(mddev
->thread
);
297 * raid_end_bio_io() is called when we have finished servicing a mirrored
298 * operation and are ready to return a success/failure code to the buffer
301 static void raid_end_bio_io(struct r10bio
*r10_bio
)
303 struct bio
*bio
= r10_bio
->master_bio
;
305 struct r10conf
*conf
= r10_bio
->mddev
->private;
307 if (bio
->bi_phys_segments
) {
309 spin_lock_irqsave(&conf
->device_lock
, flags
);
310 bio
->bi_phys_segments
--;
311 done
= (bio
->bi_phys_segments
== 0);
312 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
315 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
316 bio
->bi_error
= -EIO
;
320 * Wake up any possible resync thread that waits for the device
325 free_r10bio(r10_bio
);
329 * Update disk head position estimator based on IRQ completion info.
331 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
333 struct r10conf
*conf
= r10_bio
->mddev
->private;
335 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
336 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
340 * Find the disk number which triggered given bio
342 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
343 struct bio
*bio
, int *slotp
, int *replp
)
348 for (slot
= 0; slot
< conf
->copies
; slot
++) {
349 if (r10_bio
->devs
[slot
].bio
== bio
)
351 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
357 BUG_ON(slot
== conf
->copies
);
358 update_head_pos(slot
, r10_bio
);
364 return r10_bio
->devs
[slot
].devnum
;
367 static void raid10_end_read_request(struct bio
*bio
)
369 int uptodate
= !bio
->bi_error
;
370 struct r10bio
*r10_bio
= bio
->bi_private
;
372 struct md_rdev
*rdev
;
373 struct r10conf
*conf
= r10_bio
->mddev
->private;
375 slot
= r10_bio
->read_slot
;
376 dev
= r10_bio
->devs
[slot
].devnum
;
377 rdev
= r10_bio
->devs
[slot
].rdev
;
379 * this branch is our 'one mirror IO has finished' event handler:
381 update_head_pos(slot
, r10_bio
);
385 * Set R10BIO_Uptodate in our master bio, so that
386 * we will return a good error code to the higher
387 * levels even if IO on some other mirrored buffer fails.
389 * The 'master' represents the composite IO operation to
390 * user-side. So if something waits for IO, then it will
391 * wait for the 'master' bio.
393 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
395 /* If all other devices that store this block have
396 * failed, we want to return the error upwards rather
397 * than fail the last device. Here we redefine
398 * "uptodate" to mean "Don't want to retry"
400 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
405 raid_end_bio_io(r10_bio
);
406 rdev_dec_pending(rdev
, conf
->mddev
);
409 * oops, read error - keep the refcount on the rdev
411 char b
[BDEVNAME_SIZE
];
412 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
414 bdevname(rdev
->bdev
, b
),
415 (unsigned long long)r10_bio
->sector
);
416 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
417 reschedule_retry(r10_bio
);
421 static void close_write(struct r10bio
*r10_bio
)
423 /* clear the bitmap if all writes complete successfully */
424 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
426 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
428 md_write_end(r10_bio
->mddev
);
431 static void one_write_done(struct r10bio
*r10_bio
)
433 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
434 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
435 reschedule_retry(r10_bio
);
437 close_write(r10_bio
);
438 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
439 reschedule_retry(r10_bio
);
441 raid_end_bio_io(r10_bio
);
446 static void raid10_end_write_request(struct bio
*bio
)
448 struct r10bio
*r10_bio
= bio
->bi_private
;
451 struct r10conf
*conf
= r10_bio
->mddev
->private;
453 struct md_rdev
*rdev
= NULL
;
454 struct bio
*to_put
= NULL
;
457 discard_error
= bio
->bi_error
&& bio_op(bio
) == REQ_OP_DISCARD
;
459 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
462 rdev
= conf
->mirrors
[dev
].replacement
;
466 rdev
= conf
->mirrors
[dev
].rdev
;
469 * this branch is our 'one mirror IO has finished' event handler:
471 if (bio
->bi_error
&& !discard_error
) {
473 /* Never record new bad blocks to replacement,
476 md_error(rdev
->mddev
, rdev
);
478 set_bit(WriteErrorSeen
, &rdev
->flags
);
479 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
480 set_bit(MD_RECOVERY_NEEDED
,
481 &rdev
->mddev
->recovery
);
484 if (test_bit(FailFast
, &rdev
->flags
) &&
485 (bio
->bi_opf
& MD_FAILFAST
)) {
486 md_error(rdev
->mddev
, rdev
);
487 if (!test_bit(Faulty
, &rdev
->flags
))
488 /* This is the only remaining device,
489 * We need to retry the write without
492 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
494 r10_bio
->devs
[slot
].bio
= NULL
;
499 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
503 * Set R10BIO_Uptodate in our master bio, so that
504 * we will return a good error code for to the higher
505 * levels even if IO on some other mirrored buffer fails.
507 * The 'master' represents the composite IO operation to
508 * user-side. So if something waits for IO, then it will
509 * wait for the 'master' bio.
515 * Do not set R10BIO_Uptodate if the current device is
516 * rebuilding or Faulty. This is because we cannot use
517 * such device for properly reading the data back (we could
518 * potentially use it, if the current write would have felt
519 * before rdev->recovery_offset, but for simplicity we don't
522 if (test_bit(In_sync
, &rdev
->flags
) &&
523 !test_bit(Faulty
, &rdev
->flags
))
524 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
526 /* Maybe we can clear some bad blocks. */
527 if (is_badblock(rdev
,
528 r10_bio
->devs
[slot
].addr
,
530 &first_bad
, &bad_sectors
) && !discard_error
) {
533 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
535 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
537 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
543 * Let's see if all mirrored write operations have finished
546 one_write_done(r10_bio
);
548 rdev_dec_pending(rdev
, conf
->mddev
);
554 * RAID10 layout manager
555 * As well as the chunksize and raid_disks count, there are two
556 * parameters: near_copies and far_copies.
557 * near_copies * far_copies must be <= raid_disks.
558 * Normally one of these will be 1.
559 * If both are 1, we get raid0.
560 * If near_copies == raid_disks, we get raid1.
562 * Chunks are laid out in raid0 style with near_copies copies of the
563 * first chunk, followed by near_copies copies of the next chunk and
565 * If far_copies > 1, then after 1/far_copies of the array has been assigned
566 * as described above, we start again with a device offset of near_copies.
567 * So we effectively have another copy of the whole array further down all
568 * the drives, but with blocks on different drives.
569 * With this layout, and block is never stored twice on the one device.
571 * raid10_find_phys finds the sector offset of a given virtual sector
572 * on each device that it is on.
574 * raid10_find_virt does the reverse mapping, from a device and a
575 * sector offset to a virtual address
578 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
586 int last_far_set_start
, last_far_set_size
;
588 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
589 last_far_set_start
*= geo
->far_set_size
;
591 last_far_set_size
= geo
->far_set_size
;
592 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
594 /* now calculate first sector/dev */
595 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
596 sector
= r10bio
->sector
& geo
->chunk_mask
;
598 chunk
*= geo
->near_copies
;
600 dev
= sector_div(stripe
, geo
->raid_disks
);
602 stripe
*= geo
->far_copies
;
604 sector
+= stripe
<< geo
->chunk_shift
;
606 /* and calculate all the others */
607 for (n
= 0; n
< geo
->near_copies
; n
++) {
611 r10bio
->devs
[slot
].devnum
= d
;
612 r10bio
->devs
[slot
].addr
= s
;
615 for (f
= 1; f
< geo
->far_copies
; f
++) {
616 set
= d
/ geo
->far_set_size
;
617 d
+= geo
->near_copies
;
619 if ((geo
->raid_disks
% geo
->far_set_size
) &&
620 (d
> last_far_set_start
)) {
621 d
-= last_far_set_start
;
622 d
%= last_far_set_size
;
623 d
+= last_far_set_start
;
625 d
%= geo
->far_set_size
;
626 d
+= geo
->far_set_size
* set
;
629 r10bio
->devs
[slot
].devnum
= d
;
630 r10bio
->devs
[slot
].addr
= s
;
634 if (dev
>= geo
->raid_disks
) {
636 sector
+= (geo
->chunk_mask
+ 1);
641 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
643 struct geom
*geo
= &conf
->geo
;
645 if (conf
->reshape_progress
!= MaxSector
&&
646 ((r10bio
->sector
>= conf
->reshape_progress
) !=
647 conf
->mddev
->reshape_backwards
)) {
648 set_bit(R10BIO_Previous
, &r10bio
->state
);
651 clear_bit(R10BIO_Previous
, &r10bio
->state
);
653 __raid10_find_phys(geo
, r10bio
);
656 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
658 sector_t offset
, chunk
, vchunk
;
659 /* Never use conf->prev as this is only called during resync
660 * or recovery, so reshape isn't happening
662 struct geom
*geo
= &conf
->geo
;
663 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
664 int far_set_size
= geo
->far_set_size
;
665 int last_far_set_start
;
667 if (geo
->raid_disks
% geo
->far_set_size
) {
668 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
669 last_far_set_start
*= geo
->far_set_size
;
671 if (dev
>= last_far_set_start
) {
672 far_set_size
= geo
->far_set_size
;
673 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
674 far_set_start
= last_far_set_start
;
678 offset
= sector
& geo
->chunk_mask
;
679 if (geo
->far_offset
) {
681 chunk
= sector
>> geo
->chunk_shift
;
682 fc
= sector_div(chunk
, geo
->far_copies
);
683 dev
-= fc
* geo
->near_copies
;
684 if (dev
< far_set_start
)
687 while (sector
>= geo
->stride
) {
688 sector
-= geo
->stride
;
689 if (dev
< (geo
->near_copies
+ far_set_start
))
690 dev
+= far_set_size
- geo
->near_copies
;
692 dev
-= geo
->near_copies
;
694 chunk
= sector
>> geo
->chunk_shift
;
696 vchunk
= chunk
* geo
->raid_disks
+ dev
;
697 sector_div(vchunk
, geo
->near_copies
);
698 return (vchunk
<< geo
->chunk_shift
) + offset
;
702 * This routine returns the disk from which the requested read should
703 * be done. There is a per-array 'next expected sequential IO' sector
704 * number - if this matches on the next IO then we use the last disk.
705 * There is also a per-disk 'last know head position' sector that is
706 * maintained from IRQ contexts, both the normal and the resync IO
707 * completion handlers update this position correctly. If there is no
708 * perfect sequential match then we pick the disk whose head is closest.
710 * If there are 2 mirrors in the same 2 devices, performance degrades
711 * because position is mirror, not device based.
713 * The rdev for the device selected will have nr_pending incremented.
717 * FIXME: possibly should rethink readbalancing and do it differently
718 * depending on near_copies / far_copies geometry.
720 static struct md_rdev
*read_balance(struct r10conf
*conf
,
721 struct r10bio
*r10_bio
,
724 const sector_t this_sector
= r10_bio
->sector
;
726 int sectors
= r10_bio
->sectors
;
727 int best_good_sectors
;
728 sector_t new_distance
, best_dist
;
729 struct md_rdev
*best_rdev
, *rdev
= NULL
;
732 struct geom
*geo
= &conf
->geo
;
734 raid10_find_phys(conf
, r10_bio
);
736 sectors
= r10_bio
->sectors
;
739 best_dist
= MaxSector
;
740 best_good_sectors
= 0;
742 clear_bit(R10BIO_FailFast
, &r10_bio
->state
);
744 * Check if we can balance. We can balance on the whole
745 * device if no resync is going on (recovery is ok), or below
746 * the resync window. We take the first readable disk when
747 * above the resync window.
749 if (conf
->mddev
->recovery_cp
< MaxSector
750 && (this_sector
+ sectors
>= conf
->next_resync
))
753 for (slot
= 0; slot
< conf
->copies
; slot
++) {
758 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
760 disk
= r10_bio
->devs
[slot
].devnum
;
761 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
762 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
763 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
764 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
766 test_bit(Faulty
, &rdev
->flags
))
768 if (!test_bit(In_sync
, &rdev
->flags
) &&
769 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
772 dev_sector
= r10_bio
->devs
[slot
].addr
;
773 if (is_badblock(rdev
, dev_sector
, sectors
,
774 &first_bad
, &bad_sectors
)) {
775 if (best_dist
< MaxSector
)
776 /* Already have a better slot */
778 if (first_bad
<= dev_sector
) {
779 /* Cannot read here. If this is the
780 * 'primary' device, then we must not read
781 * beyond 'bad_sectors' from another device.
783 bad_sectors
-= (dev_sector
- first_bad
);
784 if (!do_balance
&& sectors
> bad_sectors
)
785 sectors
= bad_sectors
;
786 if (best_good_sectors
> sectors
)
787 best_good_sectors
= sectors
;
789 sector_t good_sectors
=
790 first_bad
- dev_sector
;
791 if (good_sectors
> best_good_sectors
) {
792 best_good_sectors
= good_sectors
;
797 /* Must read from here */
802 best_good_sectors
= sectors
;
808 /* At least 2 disks to choose from so failfast is OK */
809 set_bit(R10BIO_FailFast
, &r10_bio
->state
);
810 /* This optimisation is debatable, and completely destroys
811 * sequential read speed for 'far copies' arrays. So only
812 * keep it for 'near' arrays, and review those later.
814 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
817 /* for far > 1 always use the lowest address */
818 else if (geo
->far_copies
> 1)
819 new_distance
= r10_bio
->devs
[slot
].addr
;
821 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
822 conf
->mirrors
[disk
].head_position
);
823 if (new_distance
< best_dist
) {
824 best_dist
= new_distance
;
829 if (slot
>= conf
->copies
) {
835 atomic_inc(&rdev
->nr_pending
);
836 r10_bio
->read_slot
= slot
;
840 *max_sectors
= best_good_sectors
;
845 static int raid10_congested(struct mddev
*mddev
, int bits
)
847 struct r10conf
*conf
= mddev
->private;
850 if ((bits
& (1 << WB_async_congested
)) &&
851 conf
->pending_count
>= max_queued_requests
)
856 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
859 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
860 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
861 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
863 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
870 static void flush_pending_writes(struct r10conf
*conf
)
872 /* Any writes that have been queued but are awaiting
873 * bitmap updates get flushed here.
875 spin_lock_irq(&conf
->device_lock
);
877 if (conf
->pending_bio_list
.head
) {
879 bio
= bio_list_get(&conf
->pending_bio_list
);
880 conf
->pending_count
= 0;
881 spin_unlock_irq(&conf
->device_lock
);
882 /* flush any pending bitmap writes to disk
883 * before proceeding w/ I/O */
884 bitmap_unplug(conf
->mddev
->bitmap
);
885 wake_up(&conf
->wait_barrier
);
887 while (bio
) { /* submit pending writes */
888 struct bio
*next
= bio
->bi_next
;
889 struct md_rdev
*rdev
= (void*)bio
->bi_bdev
;
891 bio
->bi_bdev
= rdev
->bdev
;
892 if (test_bit(Faulty
, &rdev
->flags
)) {
893 bio
->bi_error
= -EIO
;
895 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
896 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
900 generic_make_request(bio
);
904 spin_unlock_irq(&conf
->device_lock
);
908 * Sometimes we need to suspend IO while we do something else,
909 * either some resync/recovery, or reconfigure the array.
910 * To do this we raise a 'barrier'.
911 * The 'barrier' is a counter that can be raised multiple times
912 * to count how many activities are happening which preclude
914 * We can only raise the barrier if there is no pending IO.
915 * i.e. if nr_pending == 0.
916 * We choose only to raise the barrier if no-one is waiting for the
917 * barrier to go down. This means that as soon as an IO request
918 * is ready, no other operations which require a barrier will start
919 * until the IO request has had a chance.
921 * So: regular IO calls 'wait_barrier'. When that returns there
922 * is no backgroup IO happening, It must arrange to call
923 * allow_barrier when it has finished its IO.
924 * backgroup IO calls must call raise_barrier. Once that returns
925 * there is no normal IO happeing. It must arrange to call
926 * lower_barrier when the particular background IO completes.
929 static void raise_barrier(struct r10conf
*conf
, int force
)
931 BUG_ON(force
&& !conf
->barrier
);
932 spin_lock_irq(&conf
->resync_lock
);
934 /* Wait until no block IO is waiting (unless 'force') */
935 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
938 /* block any new IO from starting */
941 /* Now wait for all pending IO to complete */
942 wait_event_lock_irq(conf
->wait_barrier
,
943 !atomic_read(&conf
->nr_pending
) && conf
->barrier
< RESYNC_DEPTH
,
946 spin_unlock_irq(&conf
->resync_lock
);
949 static void lower_barrier(struct r10conf
*conf
)
952 spin_lock_irqsave(&conf
->resync_lock
, flags
);
954 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
955 wake_up(&conf
->wait_barrier
);
958 static void wait_barrier(struct r10conf
*conf
)
960 spin_lock_irq(&conf
->resync_lock
);
963 /* Wait for the barrier to drop.
964 * However if there are already pending
965 * requests (preventing the barrier from
966 * rising completely), and the
967 * pre-process bio queue isn't empty,
968 * then don't wait, as we need to empty
969 * that queue to get the nr_pending
972 raid10_log(conf
->mddev
, "wait barrier");
973 wait_event_lock_irq(conf
->wait_barrier
,
975 (atomic_read(&conf
->nr_pending
) &&
977 !bio_list_empty(current
->bio_list
)),
980 if (!conf
->nr_waiting
)
981 wake_up(&conf
->wait_barrier
);
983 atomic_inc(&conf
->nr_pending
);
984 spin_unlock_irq(&conf
->resync_lock
);
987 static void allow_barrier(struct r10conf
*conf
)
989 if ((atomic_dec_and_test(&conf
->nr_pending
)) ||
990 (conf
->array_freeze_pending
))
991 wake_up(&conf
->wait_barrier
);
994 static void freeze_array(struct r10conf
*conf
, int extra
)
996 /* stop syncio and normal IO and wait for everything to
998 * We increment barrier and nr_waiting, and then
999 * wait until nr_pending match nr_queued+extra
1000 * This is called in the context of one normal IO request
1001 * that has failed. Thus any sync request that might be pending
1002 * will be blocked by nr_pending, and we need to wait for
1003 * pending IO requests to complete or be queued for re-try.
1004 * Thus the number queued (nr_queued) plus this request (extra)
1005 * must match the number of pending IOs (nr_pending) before
1008 spin_lock_irq(&conf
->resync_lock
);
1009 conf
->array_freeze_pending
++;
1012 wait_event_lock_irq_cmd(conf
->wait_barrier
,
1013 atomic_read(&conf
->nr_pending
) == conf
->nr_queued
+extra
,
1015 flush_pending_writes(conf
));
1017 conf
->array_freeze_pending
--;
1018 spin_unlock_irq(&conf
->resync_lock
);
1021 static void unfreeze_array(struct r10conf
*conf
)
1023 /* reverse the effect of the freeze */
1024 spin_lock_irq(&conf
->resync_lock
);
1027 wake_up(&conf
->wait_barrier
);
1028 spin_unlock_irq(&conf
->resync_lock
);
1031 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1032 struct md_rdev
*rdev
)
1034 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1035 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1036 return rdev
->data_offset
;
1038 return rdev
->new_data_offset
;
1041 struct raid10_plug_cb
{
1042 struct blk_plug_cb cb
;
1043 struct bio_list pending
;
1047 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1049 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1051 struct mddev
*mddev
= plug
->cb
.data
;
1052 struct r10conf
*conf
= mddev
->private;
1055 if (from_schedule
|| current
->bio_list
) {
1056 spin_lock_irq(&conf
->device_lock
);
1057 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1058 conf
->pending_count
+= plug
->pending_cnt
;
1059 spin_unlock_irq(&conf
->device_lock
);
1060 wake_up(&conf
->wait_barrier
);
1061 md_wakeup_thread(mddev
->thread
);
1066 /* we aren't scheduling, so we can do the write-out directly. */
1067 bio
= bio_list_get(&plug
->pending
);
1068 bitmap_unplug(mddev
->bitmap
);
1069 wake_up(&conf
->wait_barrier
);
1071 while (bio
) { /* submit pending writes */
1072 struct bio
*next
= bio
->bi_next
;
1073 struct md_rdev
*rdev
= (void*)bio
->bi_bdev
;
1074 bio
->bi_next
= NULL
;
1075 bio
->bi_bdev
= rdev
->bdev
;
1076 if (test_bit(Faulty
, &rdev
->flags
)) {
1077 bio
->bi_error
= -EIO
;
1079 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1080 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1081 /* Just ignore it */
1084 generic_make_request(bio
);
1090 static void __make_request(struct mddev
*mddev
, struct bio
*bio
)
1092 struct r10conf
*conf
= mddev
->private;
1093 struct r10bio
*r10_bio
;
1094 struct bio
*read_bio
;
1096 const int op
= bio_op(bio
);
1097 const int rw
= bio_data_dir(bio
);
1098 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1099 const unsigned long do_fua
= (bio
->bi_opf
& REQ_FUA
);
1100 unsigned long flags
;
1101 struct md_rdev
*blocked_rdev
;
1102 struct blk_plug_cb
*cb
;
1103 struct raid10_plug_cb
*plug
= NULL
;
1104 int sectors_handled
;
1108 md_write_start(mddev
, bio
);
1111 * Register the new request and wait if the reconstruction
1112 * thread has put up a bar for new requests.
1113 * Continue immediately if no resync is active currently.
1117 sectors
= bio_sectors(bio
);
1118 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1119 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1120 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1121 /* IO spans the reshape position. Need to wait for
1124 raid10_log(conf
->mddev
, "wait reshape");
1125 allow_barrier(conf
);
1126 wait_event(conf
->wait_barrier
,
1127 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1128 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1132 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1133 bio_data_dir(bio
) == WRITE
&&
1134 (mddev
->reshape_backwards
1135 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1136 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1137 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1138 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1139 /* Need to update reshape_position in metadata */
1140 mddev
->reshape_position
= conf
->reshape_progress
;
1141 set_mask_bits(&mddev
->sb_flags
, 0,
1142 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1143 md_wakeup_thread(mddev
->thread
);
1144 raid10_log(conf
->mddev
, "wait reshape metadata");
1145 wait_event(mddev
->sb_wait
,
1146 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
1148 conf
->reshape_safe
= mddev
->reshape_position
;
1151 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1153 r10_bio
->master_bio
= bio
;
1154 r10_bio
->sectors
= sectors
;
1156 r10_bio
->mddev
= mddev
;
1157 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1160 /* We might need to issue multiple reads to different
1161 * devices if there are bad blocks around, so we keep
1162 * track of the number of reads in bio->bi_phys_segments.
1163 * If this is 0, there is only one r10_bio and no locking
1164 * will be needed when the request completes. If it is
1165 * non-zero, then it is the number of not-completed requests.
1167 bio
->bi_phys_segments
= 0;
1168 bio_clear_flag(bio
, BIO_SEG_VALID
);
1172 * read balancing logic:
1174 struct md_rdev
*rdev
;
1178 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1180 raid_end_bio_io(r10_bio
);
1183 slot
= r10_bio
->read_slot
;
1185 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1186 bio_trim(read_bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1189 r10_bio
->devs
[slot
].bio
= read_bio
;
1190 r10_bio
->devs
[slot
].rdev
= rdev
;
1192 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1193 choose_data_offset(r10_bio
, rdev
);
1194 read_bio
->bi_bdev
= rdev
->bdev
;
1195 read_bio
->bi_end_io
= raid10_end_read_request
;
1196 bio_set_op_attrs(read_bio
, op
, do_sync
);
1197 if (test_bit(FailFast
, &rdev
->flags
) &&
1198 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
1199 read_bio
->bi_opf
|= MD_FAILFAST
;
1200 read_bio
->bi_private
= r10_bio
;
1203 trace_block_bio_remap(bdev_get_queue(read_bio
->bi_bdev
),
1204 read_bio
, disk_devt(mddev
->gendisk
),
1206 if (max_sectors
< r10_bio
->sectors
) {
1207 /* Could not read all from this device, so we will
1208 * need another r10_bio.
1210 sectors_handled
= (r10_bio
->sector
+ max_sectors
1211 - bio
->bi_iter
.bi_sector
);
1212 r10_bio
->sectors
= max_sectors
;
1213 spin_lock_irq(&conf
->device_lock
);
1214 if (bio
->bi_phys_segments
== 0)
1215 bio
->bi_phys_segments
= 2;
1217 bio
->bi_phys_segments
++;
1218 spin_unlock_irq(&conf
->device_lock
);
1219 /* Cannot call generic_make_request directly
1220 * as that will be queued in __generic_make_request
1221 * and subsequent mempool_alloc might block
1222 * waiting for it. so hand bio over to raid10d.
1224 reschedule_retry(r10_bio
);
1226 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1228 r10_bio
->master_bio
= bio
;
1229 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1231 r10_bio
->mddev
= mddev
;
1232 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+
1236 generic_make_request(read_bio
);
1243 if (conf
->pending_count
>= max_queued_requests
) {
1244 md_wakeup_thread(mddev
->thread
);
1245 raid10_log(mddev
, "wait queued");
1246 wait_event(conf
->wait_barrier
,
1247 conf
->pending_count
< max_queued_requests
);
1249 /* first select target devices under rcu_lock and
1250 * inc refcount on their rdev. Record them by setting
1252 * If there are known/acknowledged bad blocks on any device
1253 * on which we have seen a write error, we want to avoid
1254 * writing to those blocks. This potentially requires several
1255 * writes to write around the bad blocks. Each set of writes
1256 * gets its own r10_bio with a set of bios attached. The number
1257 * of r10_bios is recored in bio->bi_phys_segments just as with
1261 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1262 raid10_find_phys(conf
, r10_bio
);
1264 blocked_rdev
= NULL
;
1266 max_sectors
= r10_bio
->sectors
;
1268 for (i
= 0; i
< conf
->copies
; i
++) {
1269 int d
= r10_bio
->devs
[i
].devnum
;
1270 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1271 struct md_rdev
*rrdev
= rcu_dereference(
1272 conf
->mirrors
[d
].replacement
);
1275 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1276 atomic_inc(&rdev
->nr_pending
);
1277 blocked_rdev
= rdev
;
1280 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1281 atomic_inc(&rrdev
->nr_pending
);
1282 blocked_rdev
= rrdev
;
1285 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1287 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1290 r10_bio
->devs
[i
].bio
= NULL
;
1291 r10_bio
->devs
[i
].repl_bio
= NULL
;
1293 if (!rdev
&& !rrdev
) {
1294 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1297 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1299 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1303 is_bad
= is_badblock(rdev
, dev_sector
,
1305 &first_bad
, &bad_sectors
);
1307 /* Mustn't write here until the bad block
1310 atomic_inc(&rdev
->nr_pending
);
1311 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1312 blocked_rdev
= rdev
;
1315 if (is_bad
&& first_bad
<= dev_sector
) {
1316 /* Cannot write here at all */
1317 bad_sectors
-= (dev_sector
- first_bad
);
1318 if (bad_sectors
< max_sectors
)
1319 /* Mustn't write more than bad_sectors
1320 * to other devices yet
1322 max_sectors
= bad_sectors
;
1323 /* We don't set R10BIO_Degraded as that
1324 * only applies if the disk is missing,
1325 * so it might be re-added, and we want to
1326 * know to recover this chunk.
1327 * In this case the device is here, and the
1328 * fact that this chunk is not in-sync is
1329 * recorded in the bad block log.
1334 int good_sectors
= first_bad
- dev_sector
;
1335 if (good_sectors
< max_sectors
)
1336 max_sectors
= good_sectors
;
1340 r10_bio
->devs
[i
].bio
= bio
;
1341 atomic_inc(&rdev
->nr_pending
);
1344 r10_bio
->devs
[i
].repl_bio
= bio
;
1345 atomic_inc(&rrdev
->nr_pending
);
1350 if (unlikely(blocked_rdev
)) {
1351 /* Have to wait for this device to get unblocked, then retry */
1355 for (j
= 0; j
< i
; j
++) {
1356 if (r10_bio
->devs
[j
].bio
) {
1357 d
= r10_bio
->devs
[j
].devnum
;
1358 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1360 if (r10_bio
->devs
[j
].repl_bio
) {
1361 struct md_rdev
*rdev
;
1362 d
= r10_bio
->devs
[j
].devnum
;
1363 rdev
= conf
->mirrors
[d
].replacement
;
1365 /* Race with remove_disk */
1367 rdev
= conf
->mirrors
[d
].rdev
;
1369 rdev_dec_pending(rdev
, mddev
);
1372 allow_barrier(conf
);
1373 raid10_log(conf
->mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1374 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1379 if (max_sectors
< r10_bio
->sectors
) {
1380 /* We are splitting this into multiple parts, so
1381 * we need to prepare for allocating another r10_bio.
1383 r10_bio
->sectors
= max_sectors
;
1384 spin_lock_irq(&conf
->device_lock
);
1385 if (bio
->bi_phys_segments
== 0)
1386 bio
->bi_phys_segments
= 2;
1388 bio
->bi_phys_segments
++;
1389 spin_unlock_irq(&conf
->device_lock
);
1391 sectors_handled
= r10_bio
->sector
+ max_sectors
-
1392 bio
->bi_iter
.bi_sector
;
1394 atomic_set(&r10_bio
->remaining
, 1);
1395 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1397 for (i
= 0; i
< conf
->copies
; i
++) {
1399 int d
= r10_bio
->devs
[i
].devnum
;
1400 if (r10_bio
->devs
[i
].bio
) {
1401 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
1402 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1403 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1405 r10_bio
->devs
[i
].bio
= mbio
;
1407 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1408 choose_data_offset(r10_bio
,
1410 mbio
->bi_bdev
= rdev
->bdev
;
1411 mbio
->bi_end_io
= raid10_end_write_request
;
1412 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1413 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
) &&
1415 mbio
->bi_opf
|= MD_FAILFAST
;
1416 mbio
->bi_private
= r10_bio
;
1418 if (conf
->mddev
->gendisk
)
1419 trace_block_bio_remap(bdev_get_queue(mbio
->bi_bdev
),
1420 mbio
, disk_devt(conf
->mddev
->gendisk
),
1422 /* flush_pending_writes() needs access to the rdev so...*/
1423 mbio
->bi_bdev
= (void*)rdev
;
1425 atomic_inc(&r10_bio
->remaining
);
1427 cb
= blk_check_plugged(raid10_unplug
, mddev
,
1430 plug
= container_of(cb
, struct raid10_plug_cb
,
1434 spin_lock_irqsave(&conf
->device_lock
, flags
);
1436 bio_list_add(&plug
->pending
, mbio
);
1437 plug
->pending_cnt
++;
1439 bio_list_add(&conf
->pending_bio_list
, mbio
);
1440 conf
->pending_count
++;
1442 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1444 md_wakeup_thread(mddev
->thread
);
1447 if (r10_bio
->devs
[i
].repl_bio
) {
1448 struct md_rdev
*rdev
= conf
->mirrors
[d
].replacement
;
1450 /* Replacement just got moved to main 'rdev' */
1452 rdev
= conf
->mirrors
[d
].rdev
;
1454 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1455 bio_trim(mbio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
,
1457 r10_bio
->devs
[i
].repl_bio
= mbio
;
1459 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[i
].addr
+
1462 mbio
->bi_bdev
= rdev
->bdev
;
1463 mbio
->bi_end_io
= raid10_end_write_request
;
1464 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1465 mbio
->bi_private
= r10_bio
;
1467 if (conf
->mddev
->gendisk
)
1468 trace_block_bio_remap(bdev_get_queue(mbio
->bi_bdev
),
1469 mbio
, disk_devt(conf
->mddev
->gendisk
),
1471 /* flush_pending_writes() needs access to the rdev so...*/
1472 mbio
->bi_bdev
= (void*)rdev
;
1474 atomic_inc(&r10_bio
->remaining
);
1475 spin_lock_irqsave(&conf
->device_lock
, flags
);
1476 bio_list_add(&conf
->pending_bio_list
, mbio
);
1477 conf
->pending_count
++;
1478 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1479 if (!mddev_check_plugged(mddev
))
1480 md_wakeup_thread(mddev
->thread
);
1484 /* Don't remove the bias on 'remaining' (one_write_done) until
1485 * after checking if we need to go around again.
1488 if (sectors_handled
< bio_sectors(bio
)) {
1489 one_write_done(r10_bio
);
1490 /* We need another r10_bio. It has already been counted
1491 * in bio->bi_phys_segments.
1493 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1495 r10_bio
->master_bio
= bio
;
1496 r10_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1498 r10_bio
->mddev
= mddev
;
1499 r10_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1503 one_write_done(r10_bio
);
1506 static void raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1508 struct r10conf
*conf
= mddev
->private;
1509 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1510 int chunk_sects
= chunk_mask
+ 1;
1514 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1515 md_flush_request(mddev
, bio
);
1522 * If this request crosses a chunk boundary, we need to split
1525 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1526 bio_sectors(bio
) > chunk_sects
1527 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1528 || conf
->prev
.near_copies
<
1529 conf
->prev
.raid_disks
))) {
1530 split
= bio_split(bio
, chunk_sects
-
1531 (bio
->bi_iter
.bi_sector
&
1533 GFP_NOIO
, fs_bio_set
);
1534 bio_chain(split
, bio
);
1539 __make_request(mddev
, split
);
1540 } while (split
!= bio
);
1542 /* In case raid10d snuck in to freeze_array */
1543 wake_up(&conf
->wait_barrier
);
1546 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1548 struct r10conf
*conf
= mddev
->private;
1551 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1552 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1553 if (conf
->geo
.near_copies
> 1)
1554 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1555 if (conf
->geo
.far_copies
> 1) {
1556 if (conf
->geo
.far_offset
)
1557 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1559 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1560 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1561 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1563 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1564 conf
->geo
.raid_disks
- mddev
->degraded
);
1566 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1567 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1568 seq_printf(seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1571 seq_printf(seq
, "]");
1574 /* check if there are enough drives for
1575 * every block to appear on atleast one.
1576 * Don't consider the device numbered 'ignore'
1577 * as we might be about to remove it.
1579 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1585 disks
= conf
->prev
.raid_disks
;
1586 ncopies
= conf
->prev
.near_copies
;
1588 disks
= conf
->geo
.raid_disks
;
1589 ncopies
= conf
->geo
.near_copies
;
1594 int n
= conf
->copies
;
1598 struct md_rdev
*rdev
;
1599 if (this != ignore
&&
1600 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1601 test_bit(In_sync
, &rdev
->flags
))
1603 this = (this+1) % disks
;
1607 first
= (first
+ ncopies
) % disks
;
1608 } while (first
!= 0);
1615 static int enough(struct r10conf
*conf
, int ignore
)
1617 /* when calling 'enough', both 'prev' and 'geo' must
1619 * This is ensured if ->reconfig_mutex or ->device_lock
1622 return _enough(conf
, 0, ignore
) &&
1623 _enough(conf
, 1, ignore
);
1626 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1628 char b
[BDEVNAME_SIZE
];
1629 struct r10conf
*conf
= mddev
->private;
1630 unsigned long flags
;
1633 * If it is not operational, then we have already marked it as dead
1634 * else if it is the last working disks, ignore the error, let the
1635 * next level up know.
1636 * else mark the drive as failed
1638 spin_lock_irqsave(&conf
->device_lock
, flags
);
1639 if (test_bit(In_sync
, &rdev
->flags
)
1640 && !enough(conf
, rdev
->raid_disk
)) {
1642 * Don't fail the drive, just return an IO error.
1644 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1647 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1650 * If recovery is running, make sure it aborts.
1652 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1653 set_bit(Blocked
, &rdev
->flags
);
1654 set_bit(Faulty
, &rdev
->flags
);
1655 set_mask_bits(&mddev
->sb_flags
, 0,
1656 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1657 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1658 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1659 "md/raid10:%s: Operation continuing on %d devices.\n",
1660 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1661 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1664 static void print_conf(struct r10conf
*conf
)
1667 struct md_rdev
*rdev
;
1669 pr_debug("RAID10 conf printout:\n");
1671 pr_debug("(!conf)\n");
1674 pr_debug(" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1675 conf
->geo
.raid_disks
);
1677 /* This is only called with ->reconfix_mutex held, so
1678 * rcu protection of rdev is not needed */
1679 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1680 char b
[BDEVNAME_SIZE
];
1681 rdev
= conf
->mirrors
[i
].rdev
;
1683 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1684 i
, !test_bit(In_sync
, &rdev
->flags
),
1685 !test_bit(Faulty
, &rdev
->flags
),
1686 bdevname(rdev
->bdev
,b
));
1690 static void close_sync(struct r10conf
*conf
)
1693 allow_barrier(conf
);
1695 mempool_destroy(conf
->r10buf_pool
);
1696 conf
->r10buf_pool
= NULL
;
1699 static int raid10_spare_active(struct mddev
*mddev
)
1702 struct r10conf
*conf
= mddev
->private;
1703 struct raid10_info
*tmp
;
1705 unsigned long flags
;
1708 * Find all non-in_sync disks within the RAID10 configuration
1709 * and mark them in_sync
1711 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1712 tmp
= conf
->mirrors
+ i
;
1713 if (tmp
->replacement
1714 && tmp
->replacement
->recovery_offset
== MaxSector
1715 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1716 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1717 /* Replacement has just become active */
1719 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1722 /* Replaced device not technically faulty,
1723 * but we need to be sure it gets removed
1724 * and never re-added.
1726 set_bit(Faulty
, &tmp
->rdev
->flags
);
1727 sysfs_notify_dirent_safe(
1728 tmp
->rdev
->sysfs_state
);
1730 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1731 } else if (tmp
->rdev
1732 && tmp
->rdev
->recovery_offset
== MaxSector
1733 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1734 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1736 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1739 spin_lock_irqsave(&conf
->device_lock
, flags
);
1740 mddev
->degraded
-= count
;
1741 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1747 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1749 struct r10conf
*conf
= mddev
->private;
1753 int last
= conf
->geo
.raid_disks
- 1;
1755 if (mddev
->recovery_cp
< MaxSector
)
1756 /* only hot-add to in-sync arrays, as recovery is
1757 * very different from resync
1760 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1763 if (md_integrity_add_rdev(rdev
, mddev
))
1766 if (rdev
->raid_disk
>= 0)
1767 first
= last
= rdev
->raid_disk
;
1769 if (rdev
->saved_raid_disk
>= first
&&
1770 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1771 mirror
= rdev
->saved_raid_disk
;
1774 for ( ; mirror
<= last
; mirror
++) {
1775 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1776 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1779 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1780 p
->replacement
!= NULL
)
1782 clear_bit(In_sync
, &rdev
->flags
);
1783 set_bit(Replacement
, &rdev
->flags
);
1784 rdev
->raid_disk
= mirror
;
1787 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1788 rdev
->data_offset
<< 9);
1790 rcu_assign_pointer(p
->replacement
, rdev
);
1795 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1796 rdev
->data_offset
<< 9);
1798 p
->head_position
= 0;
1799 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1800 rdev
->raid_disk
= mirror
;
1802 if (rdev
->saved_raid_disk
!= mirror
)
1804 rcu_assign_pointer(p
->rdev
, rdev
);
1807 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1808 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1814 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1816 struct r10conf
*conf
= mddev
->private;
1818 int number
= rdev
->raid_disk
;
1819 struct md_rdev
**rdevp
;
1820 struct raid10_info
*p
= conf
->mirrors
+ number
;
1823 if (rdev
== p
->rdev
)
1825 else if (rdev
== p
->replacement
)
1826 rdevp
= &p
->replacement
;
1830 if (test_bit(In_sync
, &rdev
->flags
) ||
1831 atomic_read(&rdev
->nr_pending
)) {
1835 /* Only remove non-faulty devices if recovery
1838 if (!test_bit(Faulty
, &rdev
->flags
) &&
1839 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1840 (!p
->replacement
|| p
->replacement
== rdev
) &&
1841 number
< conf
->geo
.raid_disks
&&
1847 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1849 if (atomic_read(&rdev
->nr_pending
)) {
1850 /* lost the race, try later */
1856 if (p
->replacement
) {
1857 /* We must have just cleared 'rdev' */
1858 p
->rdev
= p
->replacement
;
1859 clear_bit(Replacement
, &p
->replacement
->flags
);
1860 smp_mb(); /* Make sure other CPUs may see both as identical
1861 * but will never see neither -- if they are careful.
1863 p
->replacement
= NULL
;
1864 clear_bit(WantReplacement
, &rdev
->flags
);
1866 /* We might have just remove the Replacement as faulty
1867 * Clear the flag just in case
1869 clear_bit(WantReplacement
, &rdev
->flags
);
1871 err
= md_integrity_register(mddev
);
1879 static void end_sync_read(struct bio
*bio
)
1881 struct r10bio
*r10_bio
= bio
->bi_private
;
1882 struct r10conf
*conf
= r10_bio
->mddev
->private;
1885 if (bio
== r10_bio
->master_bio
) {
1886 /* this is a reshape read */
1887 d
= r10_bio
->read_slot
; /* really the read dev */
1889 d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1892 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1894 /* The write handler will notice the lack of
1895 * R10BIO_Uptodate and record any errors etc
1897 atomic_add(r10_bio
->sectors
,
1898 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1900 /* for reconstruct, we always reschedule after a read.
1901 * for resync, only after all reads
1903 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1904 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1905 atomic_dec_and_test(&r10_bio
->remaining
)) {
1906 /* we have read all the blocks,
1907 * do the comparison in process context in raid10d
1909 reschedule_retry(r10_bio
);
1913 static void end_sync_request(struct r10bio
*r10_bio
)
1915 struct mddev
*mddev
= r10_bio
->mddev
;
1917 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1918 if (r10_bio
->master_bio
== NULL
) {
1919 /* the primary of several recovery bios */
1920 sector_t s
= r10_bio
->sectors
;
1921 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1922 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1923 reschedule_retry(r10_bio
);
1926 md_done_sync(mddev
, s
, 1);
1929 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1930 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1931 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1932 reschedule_retry(r10_bio
);
1940 static void end_sync_write(struct bio
*bio
)
1942 struct r10bio
*r10_bio
= bio
->bi_private
;
1943 struct mddev
*mddev
= r10_bio
->mddev
;
1944 struct r10conf
*conf
= mddev
->private;
1950 struct md_rdev
*rdev
= NULL
;
1952 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1954 rdev
= conf
->mirrors
[d
].replacement
;
1956 rdev
= conf
->mirrors
[d
].rdev
;
1958 if (bio
->bi_error
) {
1960 md_error(mddev
, rdev
);
1962 set_bit(WriteErrorSeen
, &rdev
->flags
);
1963 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1964 set_bit(MD_RECOVERY_NEEDED
,
1965 &rdev
->mddev
->recovery
);
1966 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1968 } else if (is_badblock(rdev
,
1969 r10_bio
->devs
[slot
].addr
,
1971 &first_bad
, &bad_sectors
))
1972 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1974 rdev_dec_pending(rdev
, mddev
);
1976 end_sync_request(r10_bio
);
1980 * Note: sync and recover and handled very differently for raid10
1981 * This code is for resync.
1982 * For resync, we read through virtual addresses and read all blocks.
1983 * If there is any error, we schedule a write. The lowest numbered
1984 * drive is authoritative.
1985 * However requests come for physical address, so we need to map.
1986 * For every physical address there are raid_disks/copies virtual addresses,
1987 * which is always are least one, but is not necessarly an integer.
1988 * This means that a physical address can span multiple chunks, so we may
1989 * have to submit multiple io requests for a single sync request.
1992 * We check if all blocks are in-sync and only write to blocks that
1995 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
1997 struct r10conf
*conf
= mddev
->private;
1999 struct bio
*tbio
, *fbio
;
2002 atomic_set(&r10_bio
->remaining
, 1);
2004 /* find the first device with a block */
2005 for (i
=0; i
<conf
->copies
; i
++)
2006 if (!r10_bio
->devs
[i
].bio
->bi_error
)
2009 if (i
== conf
->copies
)
2013 fbio
= r10_bio
->devs
[i
].bio
;
2014 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
2015 fbio
->bi_iter
.bi_idx
= 0;
2017 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
2018 /* now find blocks with errors */
2019 for (i
=0 ; i
< conf
->copies
; i
++) {
2021 struct md_rdev
*rdev
;
2023 tbio
= r10_bio
->devs
[i
].bio
;
2025 if (tbio
->bi_end_io
!= end_sync_read
)
2029 d
= r10_bio
->devs
[i
].devnum
;
2030 rdev
= conf
->mirrors
[d
].rdev
;
2031 if (!r10_bio
->devs
[i
].bio
->bi_error
) {
2032 /* We know that the bi_io_vec layout is the same for
2033 * both 'first' and 'i', so we just compare them.
2034 * All vec entries are PAGE_SIZE;
2036 int sectors
= r10_bio
->sectors
;
2037 for (j
= 0; j
< vcnt
; j
++) {
2038 int len
= PAGE_SIZE
;
2039 if (sectors
< (len
/ 512))
2040 len
= sectors
* 512;
2041 if (memcmp(page_address(fbio
->bi_io_vec
[j
].bv_page
),
2042 page_address(tbio
->bi_io_vec
[j
].bv_page
),
2049 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2050 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2051 /* Don't fix anything. */
2053 } else if (test_bit(FailFast
, &rdev
->flags
)) {
2054 /* Just give up on this device */
2055 md_error(rdev
->mddev
, rdev
);
2058 /* Ok, we need to write this bio, either to correct an
2059 * inconsistency or to correct an unreadable block.
2060 * First we need to fixup bv_offset, bv_len and
2061 * bi_vecs, as the read request might have corrupted these
2065 tbio
->bi_vcnt
= vcnt
;
2066 tbio
->bi_iter
.bi_size
= fbio
->bi_iter
.bi_size
;
2067 tbio
->bi_private
= r10_bio
;
2068 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
2069 tbio
->bi_end_io
= end_sync_write
;
2070 bio_set_op_attrs(tbio
, REQ_OP_WRITE
, 0);
2072 bio_copy_data(tbio
, fbio
);
2074 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2075 atomic_inc(&r10_bio
->remaining
);
2076 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2078 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
2079 tbio
->bi_opf
|= MD_FAILFAST
;
2080 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2081 tbio
->bi_bdev
= conf
->mirrors
[d
].rdev
->bdev
;
2082 generic_make_request(tbio
);
2085 /* Now write out to any replacement devices
2088 for (i
= 0; i
< conf
->copies
; i
++) {
2091 tbio
= r10_bio
->devs
[i
].repl_bio
;
2092 if (!tbio
|| !tbio
->bi_end_io
)
2094 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2095 && r10_bio
->devs
[i
].bio
!= fbio
)
2096 bio_copy_data(tbio
, fbio
);
2097 d
= r10_bio
->devs
[i
].devnum
;
2098 atomic_inc(&r10_bio
->remaining
);
2099 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2101 generic_make_request(tbio
);
2105 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2106 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2112 * Now for the recovery code.
2113 * Recovery happens across physical sectors.
2114 * We recover all non-is_sync drives by finding the virtual address of
2115 * each, and then choose a working drive that also has that virt address.
2116 * There is a separate r10_bio for each non-in_sync drive.
2117 * Only the first two slots are in use. The first for reading,
2118 * The second for writing.
2121 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2123 /* We got a read error during recovery.
2124 * We repeat the read in smaller page-sized sections.
2125 * If a read succeeds, write it to the new device or record
2126 * a bad block if we cannot.
2127 * If a read fails, record a bad block on both old and
2130 struct mddev
*mddev
= r10_bio
->mddev
;
2131 struct r10conf
*conf
= mddev
->private;
2132 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2134 int sectors
= r10_bio
->sectors
;
2136 int dr
= r10_bio
->devs
[0].devnum
;
2137 int dw
= r10_bio
->devs
[1].devnum
;
2141 struct md_rdev
*rdev
;
2145 if (s
> (PAGE_SIZE
>>9))
2148 rdev
= conf
->mirrors
[dr
].rdev
;
2149 addr
= r10_bio
->devs
[0].addr
+ sect
,
2150 ok
= sync_page_io(rdev
,
2153 bio
->bi_io_vec
[idx
].bv_page
,
2154 REQ_OP_READ
, 0, false);
2156 rdev
= conf
->mirrors
[dw
].rdev
;
2157 addr
= r10_bio
->devs
[1].addr
+ sect
;
2158 ok
= sync_page_io(rdev
,
2161 bio
->bi_io_vec
[idx
].bv_page
,
2162 REQ_OP_WRITE
, 0, false);
2164 set_bit(WriteErrorSeen
, &rdev
->flags
);
2165 if (!test_and_set_bit(WantReplacement
,
2167 set_bit(MD_RECOVERY_NEEDED
,
2168 &rdev
->mddev
->recovery
);
2172 /* We don't worry if we cannot set a bad block -
2173 * it really is bad so there is no loss in not
2176 rdev_set_badblocks(rdev
, addr
, s
, 0);
2178 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2179 /* need bad block on destination too */
2180 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2181 addr
= r10_bio
->devs
[1].addr
+ sect
;
2182 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2184 /* just abort the recovery */
2185 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2188 conf
->mirrors
[dw
].recovery_disabled
2189 = mddev
->recovery_disabled
;
2190 set_bit(MD_RECOVERY_INTR
,
2203 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2205 struct r10conf
*conf
= mddev
->private;
2207 struct bio
*wbio
, *wbio2
;
2209 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2210 fix_recovery_read_error(r10_bio
);
2211 end_sync_request(r10_bio
);
2216 * share the pages with the first bio
2217 * and submit the write request
2219 d
= r10_bio
->devs
[1].devnum
;
2220 wbio
= r10_bio
->devs
[1].bio
;
2221 wbio2
= r10_bio
->devs
[1].repl_bio
;
2222 /* Need to test wbio2->bi_end_io before we call
2223 * generic_make_request as if the former is NULL,
2224 * the latter is free to free wbio2.
2226 if (wbio2
&& !wbio2
->bi_end_io
)
2228 if (wbio
->bi_end_io
) {
2229 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2230 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2231 generic_make_request(wbio
);
2234 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2235 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2236 bio_sectors(wbio2
));
2237 generic_make_request(wbio2
);
2242 * Used by fix_read_error() to decay the per rdev read_errors.
2243 * We halve the read error count for every hour that has elapsed
2244 * since the last recorded read error.
2247 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2250 unsigned long hours_since_last
;
2251 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2253 cur_time_mon
= ktime_get_seconds();
2255 if (rdev
->last_read_error
== 0) {
2256 /* first time we've seen a read error */
2257 rdev
->last_read_error
= cur_time_mon
;
2261 hours_since_last
= (long)(cur_time_mon
-
2262 rdev
->last_read_error
) / 3600;
2264 rdev
->last_read_error
= cur_time_mon
;
2267 * if hours_since_last is > the number of bits in read_errors
2268 * just set read errors to 0. We do this to avoid
2269 * overflowing the shift of read_errors by hours_since_last.
2271 if (hours_since_last
>= 8 * sizeof(read_errors
))
2272 atomic_set(&rdev
->read_errors
, 0);
2274 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2277 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2278 int sectors
, struct page
*page
, int rw
)
2283 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2284 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2286 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
2290 set_bit(WriteErrorSeen
, &rdev
->flags
);
2291 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2292 set_bit(MD_RECOVERY_NEEDED
,
2293 &rdev
->mddev
->recovery
);
2295 /* need to record an error - either for the block or the device */
2296 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2297 md_error(rdev
->mddev
, rdev
);
2302 * This is a kernel thread which:
2304 * 1. Retries failed read operations on working mirrors.
2305 * 2. Updates the raid superblock when problems encounter.
2306 * 3. Performs writes following reads for array synchronising.
2309 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2311 int sect
= 0; /* Offset from r10_bio->sector */
2312 int sectors
= r10_bio
->sectors
;
2313 struct md_rdev
*rdev
;
2314 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2315 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2317 /* still own a reference to this rdev, so it cannot
2318 * have been cleared recently.
2320 rdev
= conf
->mirrors
[d
].rdev
;
2322 if (test_bit(Faulty
, &rdev
->flags
))
2323 /* drive has already been failed, just ignore any
2324 more fix_read_error() attempts */
2327 check_decay_read_errors(mddev
, rdev
);
2328 atomic_inc(&rdev
->read_errors
);
2329 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2330 char b
[BDEVNAME_SIZE
];
2331 bdevname(rdev
->bdev
, b
);
2333 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2335 atomic_read(&rdev
->read_errors
), max_read_errors
);
2336 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2338 md_error(mddev
, rdev
);
2339 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2345 int sl
= r10_bio
->read_slot
;
2349 if (s
> (PAGE_SIZE
>>9))
2357 d
= r10_bio
->devs
[sl
].devnum
;
2358 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2360 test_bit(In_sync
, &rdev
->flags
) &&
2361 !test_bit(Faulty
, &rdev
->flags
) &&
2362 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2363 &first_bad
, &bad_sectors
) == 0) {
2364 atomic_inc(&rdev
->nr_pending
);
2366 success
= sync_page_io(rdev
,
2367 r10_bio
->devs
[sl
].addr
+
2371 REQ_OP_READ
, 0, false);
2372 rdev_dec_pending(rdev
, mddev
);
2378 if (sl
== conf
->copies
)
2380 } while (!success
&& sl
!= r10_bio
->read_slot
);
2384 /* Cannot read from anywhere, just mark the block
2385 * as bad on the first device to discourage future
2388 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2389 rdev
= conf
->mirrors
[dn
].rdev
;
2391 if (!rdev_set_badblocks(
2393 r10_bio
->devs
[r10_bio
->read_slot
].addr
2396 md_error(mddev
, rdev
);
2397 r10_bio
->devs
[r10_bio
->read_slot
].bio
2404 /* write it back and re-read */
2406 while (sl
!= r10_bio
->read_slot
) {
2407 char b
[BDEVNAME_SIZE
];
2412 d
= r10_bio
->devs
[sl
].devnum
;
2413 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2415 test_bit(Faulty
, &rdev
->flags
) ||
2416 !test_bit(In_sync
, &rdev
->flags
))
2419 atomic_inc(&rdev
->nr_pending
);
2421 if (r10_sync_page_io(rdev
,
2422 r10_bio
->devs
[sl
].addr
+
2424 s
, conf
->tmppage
, WRITE
)
2426 /* Well, this device is dead */
2427 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2429 (unsigned long long)(
2431 choose_data_offset(r10_bio
,
2433 bdevname(rdev
->bdev
, b
));
2434 pr_notice("md/raid10:%s: %s: failing drive\n",
2436 bdevname(rdev
->bdev
, b
));
2438 rdev_dec_pending(rdev
, mddev
);
2442 while (sl
!= r10_bio
->read_slot
) {
2443 char b
[BDEVNAME_SIZE
];
2448 d
= r10_bio
->devs
[sl
].devnum
;
2449 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2451 test_bit(Faulty
, &rdev
->flags
) ||
2452 !test_bit(In_sync
, &rdev
->flags
))
2455 atomic_inc(&rdev
->nr_pending
);
2457 switch (r10_sync_page_io(rdev
,
2458 r10_bio
->devs
[sl
].addr
+
2463 /* Well, this device is dead */
2464 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2466 (unsigned long long)(
2468 choose_data_offset(r10_bio
, rdev
)),
2469 bdevname(rdev
->bdev
, b
));
2470 pr_notice("md/raid10:%s: %s: failing drive\n",
2472 bdevname(rdev
->bdev
, b
));
2475 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2477 (unsigned long long)(
2479 choose_data_offset(r10_bio
, rdev
)),
2480 bdevname(rdev
->bdev
, b
));
2481 atomic_add(s
, &rdev
->corrected_errors
);
2484 rdev_dec_pending(rdev
, mddev
);
2494 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2496 struct bio
*bio
= r10_bio
->master_bio
;
2497 struct mddev
*mddev
= r10_bio
->mddev
;
2498 struct r10conf
*conf
= mddev
->private;
2499 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2500 /* bio has the data to be written to slot 'i' where
2501 * we just recently had a write error.
2502 * We repeatedly clone the bio and trim down to one block,
2503 * then try the write. Where the write fails we record
2505 * It is conceivable that the bio doesn't exactly align with
2506 * blocks. We must handle this.
2508 * We currently own a reference to the rdev.
2514 int sect_to_write
= r10_bio
->sectors
;
2517 if (rdev
->badblocks
.shift
< 0)
2520 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2521 bdev_logical_block_size(rdev
->bdev
) >> 9);
2522 sector
= r10_bio
->sector
;
2523 sectors
= ((r10_bio
->sector
+ block_sectors
)
2524 & ~(sector_t
)(block_sectors
- 1))
2527 while (sect_to_write
) {
2530 if (sectors
> sect_to_write
)
2531 sectors
= sect_to_write
;
2532 /* Write at 'sector' for 'sectors' */
2533 wbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
2534 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2535 wsector
= r10_bio
->devs
[i
].addr
+ (sector
- r10_bio
->sector
);
2536 wbio
->bi_iter
.bi_sector
= wsector
+
2537 choose_data_offset(r10_bio
, rdev
);
2538 wbio
->bi_bdev
= rdev
->bdev
;
2539 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2541 if (submit_bio_wait(wbio
) < 0)
2543 ok
= rdev_set_badblocks(rdev
, wsector
,
2548 sect_to_write
-= sectors
;
2550 sectors
= block_sectors
;
2555 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2557 int slot
= r10_bio
->read_slot
;
2559 struct r10conf
*conf
= mddev
->private;
2560 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2561 char b
[BDEVNAME_SIZE
];
2562 unsigned long do_sync
;
2565 sector_t bio_last_sector
;
2567 /* we got a read error. Maybe the drive is bad. Maybe just
2568 * the block and we can fix it.
2569 * We freeze all other IO, and try reading the block from
2570 * other devices. When we find one, we re-write
2571 * and check it that fixes the read error.
2572 * This is all done synchronously while the array is
2575 bio
= r10_bio
->devs
[slot
].bio
;
2576 bdevname(bio
->bi_bdev
, b
);
2577 bio_dev
= bio
->bi_bdev
->bd_dev
;
2578 bio_last_sector
= r10_bio
->devs
[slot
].addr
+ rdev
->data_offset
+ r10_bio
->sectors
;
2580 r10_bio
->devs
[slot
].bio
= NULL
;
2583 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2584 else if (!test_bit(FailFast
, &rdev
->flags
)) {
2585 freeze_array(conf
, 1);
2586 fix_read_error(conf
, mddev
, r10_bio
);
2587 unfreeze_array(conf
);
2589 md_error(mddev
, rdev
);
2591 rdev_dec_pending(rdev
, mddev
);
2594 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
2596 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
2598 (unsigned long long)r10_bio
->sector
);
2599 raid_end_bio_io(r10_bio
);
2603 do_sync
= (r10_bio
->master_bio
->bi_opf
& REQ_SYNC
);
2604 slot
= r10_bio
->read_slot
;
2605 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
2607 bdevname(rdev
->bdev
, b
),
2608 (unsigned long long)r10_bio
->sector
);
2609 bio
= bio_clone_mddev(r10_bio
->master_bio
,
2611 bio_trim(bio
, r10_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
2612 r10_bio
->devs
[slot
].bio
= bio
;
2613 r10_bio
->devs
[slot
].rdev
= rdev
;
2614 bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
2615 + choose_data_offset(r10_bio
, rdev
);
2616 bio
->bi_bdev
= rdev
->bdev
;
2617 bio_set_op_attrs(bio
, REQ_OP_READ
, do_sync
);
2618 if (test_bit(FailFast
, &rdev
->flags
) &&
2619 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
2620 bio
->bi_opf
|= MD_FAILFAST
;
2621 bio
->bi_private
= r10_bio
;
2622 bio
->bi_end_io
= raid10_end_read_request
;
2623 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
),
2625 bio_last_sector
- r10_bio
->sectors
);
2627 if (max_sectors
< r10_bio
->sectors
) {
2628 /* Drat - have to split this up more */
2629 struct bio
*mbio
= r10_bio
->master_bio
;
2630 int sectors_handled
=
2631 r10_bio
->sector
+ max_sectors
2632 - mbio
->bi_iter
.bi_sector
;
2633 r10_bio
->sectors
= max_sectors
;
2634 spin_lock_irq(&conf
->device_lock
);
2635 if (mbio
->bi_phys_segments
== 0)
2636 mbio
->bi_phys_segments
= 2;
2638 mbio
->bi_phys_segments
++;
2639 spin_unlock_irq(&conf
->device_lock
);
2640 generic_make_request(bio
);
2642 r10_bio
= mempool_alloc(conf
->r10bio_pool
,
2644 r10_bio
->master_bio
= mbio
;
2645 r10_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2647 set_bit(R10BIO_ReadError
,
2649 r10_bio
->mddev
= mddev
;
2650 r10_bio
->sector
= mbio
->bi_iter
.bi_sector
2655 generic_make_request(bio
);
2658 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2660 /* Some sort of write request has finished and it
2661 * succeeded in writing where we thought there was a
2662 * bad block. So forget the bad block.
2663 * Or possibly if failed and we need to record
2667 struct md_rdev
*rdev
;
2669 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2670 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2671 for (m
= 0; m
< conf
->copies
; m
++) {
2672 int dev
= r10_bio
->devs
[m
].devnum
;
2673 rdev
= conf
->mirrors
[dev
].rdev
;
2674 if (r10_bio
->devs
[m
].bio
== NULL
)
2676 if (!r10_bio
->devs
[m
].bio
->bi_error
) {
2677 rdev_clear_badblocks(
2679 r10_bio
->devs
[m
].addr
,
2680 r10_bio
->sectors
, 0);
2682 if (!rdev_set_badblocks(
2684 r10_bio
->devs
[m
].addr
,
2685 r10_bio
->sectors
, 0))
2686 md_error(conf
->mddev
, rdev
);
2688 rdev
= conf
->mirrors
[dev
].replacement
;
2689 if (r10_bio
->devs
[m
].repl_bio
== NULL
)
2692 if (!r10_bio
->devs
[m
].repl_bio
->bi_error
) {
2693 rdev_clear_badblocks(
2695 r10_bio
->devs
[m
].addr
,
2696 r10_bio
->sectors
, 0);
2698 if (!rdev_set_badblocks(
2700 r10_bio
->devs
[m
].addr
,
2701 r10_bio
->sectors
, 0))
2702 md_error(conf
->mddev
, rdev
);
2708 for (m
= 0; m
< conf
->copies
; m
++) {
2709 int dev
= r10_bio
->devs
[m
].devnum
;
2710 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2711 rdev
= conf
->mirrors
[dev
].rdev
;
2712 if (bio
== IO_MADE_GOOD
) {
2713 rdev_clear_badblocks(
2715 r10_bio
->devs
[m
].addr
,
2716 r10_bio
->sectors
, 0);
2717 rdev_dec_pending(rdev
, conf
->mddev
);
2718 } else if (bio
!= NULL
&& bio
->bi_error
) {
2720 if (!narrow_write_error(r10_bio
, m
)) {
2721 md_error(conf
->mddev
, rdev
);
2722 set_bit(R10BIO_Degraded
,
2725 rdev_dec_pending(rdev
, conf
->mddev
);
2727 bio
= r10_bio
->devs
[m
].repl_bio
;
2728 rdev
= conf
->mirrors
[dev
].replacement
;
2729 if (rdev
&& bio
== IO_MADE_GOOD
) {
2730 rdev_clear_badblocks(
2732 r10_bio
->devs
[m
].addr
,
2733 r10_bio
->sectors
, 0);
2734 rdev_dec_pending(rdev
, conf
->mddev
);
2738 spin_lock_irq(&conf
->device_lock
);
2739 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2741 spin_unlock_irq(&conf
->device_lock
);
2742 md_wakeup_thread(conf
->mddev
->thread
);
2744 if (test_bit(R10BIO_WriteError
,
2746 close_write(r10_bio
);
2747 raid_end_bio_io(r10_bio
);
2752 static void raid10d(struct md_thread
*thread
)
2754 struct mddev
*mddev
= thread
->mddev
;
2755 struct r10bio
*r10_bio
;
2756 unsigned long flags
;
2757 struct r10conf
*conf
= mddev
->private;
2758 struct list_head
*head
= &conf
->retry_list
;
2759 struct blk_plug plug
;
2761 md_check_recovery(mddev
);
2763 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2764 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2766 spin_lock_irqsave(&conf
->device_lock
, flags
);
2767 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2768 while (!list_empty(&conf
->bio_end_io_list
)) {
2769 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2773 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2774 while (!list_empty(&tmp
)) {
2775 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2777 list_del(&r10_bio
->retry_list
);
2778 if (mddev
->degraded
)
2779 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2781 if (test_bit(R10BIO_WriteError
,
2783 close_write(r10_bio
);
2784 raid_end_bio_io(r10_bio
);
2788 blk_start_plug(&plug
);
2791 flush_pending_writes(conf
);
2793 spin_lock_irqsave(&conf
->device_lock
, flags
);
2794 if (list_empty(head
)) {
2795 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2798 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2799 list_del(head
->prev
);
2801 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2803 mddev
= r10_bio
->mddev
;
2804 conf
= mddev
->private;
2805 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2806 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2807 handle_write_completed(conf
, r10_bio
);
2808 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2809 reshape_request_write(mddev
, r10_bio
);
2810 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2811 sync_request_write(mddev
, r10_bio
);
2812 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2813 recovery_request_write(mddev
, r10_bio
);
2814 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2815 handle_read_error(mddev
, r10_bio
);
2817 /* just a partial read to be scheduled from a
2820 int slot
= r10_bio
->read_slot
;
2821 generic_make_request(r10_bio
->devs
[slot
].bio
);
2825 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2826 md_check_recovery(mddev
);
2828 blk_finish_plug(&plug
);
2831 static int init_resync(struct r10conf
*conf
)
2836 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2837 BUG_ON(conf
->r10buf_pool
);
2838 conf
->have_replacement
= 0;
2839 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2840 if (conf
->mirrors
[i
].replacement
)
2841 conf
->have_replacement
= 1;
2842 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2843 if (!conf
->r10buf_pool
)
2845 conf
->next_resync
= 0;
2850 * perform a "sync" on one "block"
2852 * We need to make sure that no normal I/O request - particularly write
2853 * requests - conflict with active sync requests.
2855 * This is achieved by tracking pending requests and a 'barrier' concept
2856 * that can be installed to exclude normal IO requests.
2858 * Resync and recovery are handled very differently.
2859 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2861 * For resync, we iterate over virtual addresses, read all copies,
2862 * and update if there are differences. If only one copy is live,
2864 * For recovery, we iterate over physical addresses, read a good
2865 * value for each non-in_sync drive, and over-write.
2867 * So, for recovery we may have several outstanding complex requests for a
2868 * given address, one for each out-of-sync device. We model this by allocating
2869 * a number of r10_bio structures, one for each out-of-sync device.
2870 * As we setup these structures, we collect all bio's together into a list
2871 * which we then process collectively to add pages, and then process again
2872 * to pass to generic_make_request.
2874 * The r10_bio structures are linked using a borrowed master_bio pointer.
2875 * This link is counted in ->remaining. When the r10_bio that points to NULL
2876 * has its remaining count decremented to 0, the whole complex operation
2881 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2884 struct r10conf
*conf
= mddev
->private;
2885 struct r10bio
*r10_bio
;
2886 struct bio
*biolist
= NULL
, *bio
;
2887 sector_t max_sector
, nr_sectors
;
2890 sector_t sync_blocks
;
2891 sector_t sectors_skipped
= 0;
2892 int chunks_skipped
= 0;
2893 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2895 if (!conf
->r10buf_pool
)
2896 if (init_resync(conf
))
2900 * Allow skipping a full rebuild for incremental assembly
2901 * of a clean array, like RAID1 does.
2903 if (mddev
->bitmap
== NULL
&&
2904 mddev
->recovery_cp
== MaxSector
&&
2905 mddev
->reshape_position
== MaxSector
&&
2906 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2907 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2908 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2909 conf
->fullsync
== 0) {
2911 return mddev
->dev_sectors
- sector_nr
;
2915 max_sector
= mddev
->dev_sectors
;
2916 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2917 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2918 max_sector
= mddev
->resync_max_sectors
;
2919 if (sector_nr
>= max_sector
) {
2920 /* If we aborted, we need to abort the
2921 * sync on the 'current' bitmap chucks (there can
2922 * be several when recovering multiple devices).
2923 * as we may have started syncing it but not finished.
2924 * We can find the current address in
2925 * mddev->curr_resync, but for recovery,
2926 * we need to convert that to several
2927 * virtual addresses.
2929 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2935 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2936 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2937 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2939 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2941 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2942 bitmap_end_sync(mddev
->bitmap
, sect
,
2946 /* completed sync */
2947 if ((!mddev
->bitmap
|| conf
->fullsync
)
2948 && conf
->have_replacement
2949 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2950 /* Completed a full sync so the replacements
2951 * are now fully recovered.
2954 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2955 struct md_rdev
*rdev
=
2956 rcu_dereference(conf
->mirrors
[i
].replacement
);
2958 rdev
->recovery_offset
= MaxSector
;
2964 bitmap_close_sync(mddev
->bitmap
);
2967 return sectors_skipped
;
2970 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2971 return reshape_request(mddev
, sector_nr
, skipped
);
2973 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2974 /* if there has been nothing to do on any drive,
2975 * then there is nothing to do at all..
2978 return (max_sector
- sector_nr
) + sectors_skipped
;
2981 if (max_sector
> mddev
->resync_max
)
2982 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2984 /* make sure whole request will fit in a chunk - if chunks
2987 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2988 max_sector
> (sector_nr
| chunk_mask
))
2989 max_sector
= (sector_nr
| chunk_mask
) + 1;
2992 * If there is non-resync activity waiting for a turn, then let it
2993 * though before starting on this new sync request.
2995 if (conf
->nr_waiting
)
2996 schedule_timeout_uninterruptible(1);
2998 /* Again, very different code for resync and recovery.
2999 * Both must result in an r10bio with a list of bios that
3000 * have bi_end_io, bi_sector, bi_bdev set,
3001 * and bi_private set to the r10bio.
3002 * For recovery, we may actually create several r10bios
3003 * with 2 bios in each, that correspond to the bios in the main one.
3004 * In this case, the subordinate r10bios link back through a
3005 * borrowed master_bio pointer, and the counter in the master
3006 * includes a ref from each subordinate.
3008 /* First, we decide what to do and set ->bi_end_io
3009 * To end_sync_read if we want to read, and
3010 * end_sync_write if we will want to write.
3013 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
3014 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3015 /* recovery... the complicated one */
3019 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
3025 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
3026 struct md_rdev
*mrdev
, *mreplace
;
3029 mrdev
= rcu_dereference(mirror
->rdev
);
3030 mreplace
= rcu_dereference(mirror
->replacement
);
3032 if ((mrdev
== NULL
||
3033 test_bit(Faulty
, &mrdev
->flags
) ||
3034 test_bit(In_sync
, &mrdev
->flags
)) &&
3035 (mreplace
== NULL
||
3036 test_bit(Faulty
, &mreplace
->flags
))) {
3042 /* want to reconstruct this device */
3044 sect
= raid10_find_virt(conf
, sector_nr
, i
);
3045 if (sect
>= mddev
->resync_max_sectors
) {
3046 /* last stripe is not complete - don't
3047 * try to recover this sector.
3052 if (mreplace
&& test_bit(Faulty
, &mreplace
->flags
))
3054 /* Unless we are doing a full sync, or a replacement
3055 * we only need to recover the block if it is set in
3058 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3060 if (sync_blocks
< max_sync
)
3061 max_sync
= sync_blocks
;
3065 /* yep, skip the sync_blocks here, but don't assume
3066 * that there will never be anything to do here
3068 chunks_skipped
= -1;
3072 atomic_inc(&mrdev
->nr_pending
);
3074 atomic_inc(&mreplace
->nr_pending
);
3077 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3079 raise_barrier(conf
, rb2
!= NULL
);
3080 atomic_set(&r10_bio
->remaining
, 0);
3082 r10_bio
->master_bio
= (struct bio
*)rb2
;
3084 atomic_inc(&rb2
->remaining
);
3085 r10_bio
->mddev
= mddev
;
3086 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3087 r10_bio
->sector
= sect
;
3089 raid10_find_phys(conf
, r10_bio
);
3091 /* Need to check if the array will still be
3095 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++) {
3096 struct md_rdev
*rdev
= rcu_dereference(
3097 conf
->mirrors
[j
].rdev
);
3098 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3104 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3105 &sync_blocks
, still_degraded
);
3108 for (j
=0; j
<conf
->copies
;j
++) {
3110 int d
= r10_bio
->devs
[j
].devnum
;
3111 sector_t from_addr
, to_addr
;
3112 struct md_rdev
*rdev
=
3113 rcu_dereference(conf
->mirrors
[d
].rdev
);
3114 sector_t sector
, first_bad
;
3117 !test_bit(In_sync
, &rdev
->flags
))
3119 /* This is where we read from */
3121 sector
= r10_bio
->devs
[j
].addr
;
3123 if (is_badblock(rdev
, sector
, max_sync
,
3124 &first_bad
, &bad_sectors
)) {
3125 if (first_bad
> sector
)
3126 max_sync
= first_bad
- sector
;
3128 bad_sectors
-= (sector
3130 if (max_sync
> bad_sectors
)
3131 max_sync
= bad_sectors
;
3135 bio
= r10_bio
->devs
[0].bio
;
3137 bio
->bi_next
= biolist
;
3139 bio
->bi_private
= r10_bio
;
3140 bio
->bi_end_io
= end_sync_read
;
3141 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3142 if (test_bit(FailFast
, &rdev
->flags
))
3143 bio
->bi_opf
|= MD_FAILFAST
;
3144 from_addr
= r10_bio
->devs
[j
].addr
;
3145 bio
->bi_iter
.bi_sector
= from_addr
+
3147 bio
->bi_bdev
= rdev
->bdev
;
3148 atomic_inc(&rdev
->nr_pending
);
3149 /* and we write to 'i' (if not in_sync) */
3151 for (k
=0; k
<conf
->copies
; k
++)
3152 if (r10_bio
->devs
[k
].devnum
== i
)
3154 BUG_ON(k
== conf
->copies
);
3155 to_addr
= r10_bio
->devs
[k
].addr
;
3156 r10_bio
->devs
[0].devnum
= d
;
3157 r10_bio
->devs
[0].addr
= from_addr
;
3158 r10_bio
->devs
[1].devnum
= i
;
3159 r10_bio
->devs
[1].addr
= to_addr
;
3161 if (!test_bit(In_sync
, &mrdev
->flags
)) {
3162 bio
= r10_bio
->devs
[1].bio
;
3164 bio
->bi_next
= biolist
;
3166 bio
->bi_private
= r10_bio
;
3167 bio
->bi_end_io
= end_sync_write
;
3168 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3169 bio
->bi_iter
.bi_sector
= to_addr
3170 + mrdev
->data_offset
;
3171 bio
->bi_bdev
= mrdev
->bdev
;
3172 atomic_inc(&r10_bio
->remaining
);
3174 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3176 /* and maybe write to replacement */
3177 bio
= r10_bio
->devs
[1].repl_bio
;
3179 bio
->bi_end_io
= NULL
;
3180 /* Note: if mreplace != NULL, then bio
3181 * cannot be NULL as r10buf_pool_alloc will
3182 * have allocated it.
3183 * So the second test here is pointless.
3184 * But it keeps semantic-checkers happy, and
3185 * this comment keeps human reviewers
3188 if (mreplace
== NULL
|| bio
== NULL
||
3189 test_bit(Faulty
, &mreplace
->flags
))
3192 bio
->bi_next
= biolist
;
3194 bio
->bi_private
= r10_bio
;
3195 bio
->bi_end_io
= end_sync_write
;
3196 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3197 bio
->bi_iter
.bi_sector
= to_addr
+
3198 mreplace
->data_offset
;
3199 bio
->bi_bdev
= mreplace
->bdev
;
3200 atomic_inc(&r10_bio
->remaining
);
3204 if (j
== conf
->copies
) {
3205 /* Cannot recover, so abort the recovery or
3206 * record a bad block */
3208 /* problem is that there are bad blocks
3209 * on other device(s)
3212 for (k
= 0; k
< conf
->copies
; k
++)
3213 if (r10_bio
->devs
[k
].devnum
== i
)
3215 if (!test_bit(In_sync
,
3217 && !rdev_set_badblocks(
3219 r10_bio
->devs
[k
].addr
,
3223 !rdev_set_badblocks(
3225 r10_bio
->devs
[k
].addr
,
3230 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3232 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3234 mirror
->recovery_disabled
3235 = mddev
->recovery_disabled
;
3239 atomic_dec(&rb2
->remaining
);
3241 rdev_dec_pending(mrdev
, mddev
);
3243 rdev_dec_pending(mreplace
, mddev
);
3246 rdev_dec_pending(mrdev
, mddev
);
3248 rdev_dec_pending(mreplace
, mddev
);
3249 if (r10_bio
->devs
[0].bio
->bi_opf
& MD_FAILFAST
) {
3250 /* Only want this if there is elsewhere to
3251 * read from. 'j' is currently the first
3255 for (; j
< conf
->copies
; j
++) {
3256 int d
= r10_bio
->devs
[j
].devnum
;
3257 if (conf
->mirrors
[d
].rdev
&&
3259 &conf
->mirrors
[d
].rdev
->flags
))
3263 r10_bio
->devs
[0].bio
->bi_opf
3267 if (biolist
== NULL
) {
3269 struct r10bio
*rb2
= r10_bio
;
3270 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3271 rb2
->master_bio
= NULL
;
3277 /* resync. Schedule a read for every block at this virt offset */
3280 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, 0);
3282 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3283 &sync_blocks
, mddev
->degraded
) &&
3284 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3285 &mddev
->recovery
)) {
3286 /* We can skip this block */
3288 return sync_blocks
+ sectors_skipped
;
3290 if (sync_blocks
< max_sync
)
3291 max_sync
= sync_blocks
;
3292 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
3295 r10_bio
->mddev
= mddev
;
3296 atomic_set(&r10_bio
->remaining
, 0);
3297 raise_barrier(conf
, 0);
3298 conf
->next_resync
= sector_nr
;
3300 r10_bio
->master_bio
= NULL
;
3301 r10_bio
->sector
= sector_nr
;
3302 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3303 raid10_find_phys(conf
, r10_bio
);
3304 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3306 for (i
= 0; i
< conf
->copies
; i
++) {
3307 int d
= r10_bio
->devs
[i
].devnum
;
3308 sector_t first_bad
, sector
;
3310 struct md_rdev
*rdev
;
3312 if (r10_bio
->devs
[i
].repl_bio
)
3313 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3315 bio
= r10_bio
->devs
[i
].bio
;
3317 bio
->bi_error
= -EIO
;
3319 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
3320 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3324 sector
= r10_bio
->devs
[i
].addr
;
3325 if (is_badblock(rdev
, sector
, max_sync
,
3326 &first_bad
, &bad_sectors
)) {
3327 if (first_bad
> sector
)
3328 max_sync
= first_bad
- sector
;
3330 bad_sectors
-= (sector
- first_bad
);
3331 if (max_sync
> bad_sectors
)
3332 max_sync
= bad_sectors
;
3337 atomic_inc(&rdev
->nr_pending
);
3338 atomic_inc(&r10_bio
->remaining
);
3339 bio
->bi_next
= biolist
;
3341 bio
->bi_private
= r10_bio
;
3342 bio
->bi_end_io
= end_sync_read
;
3343 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3344 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
3345 bio
->bi_opf
|= MD_FAILFAST
;
3346 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3347 bio
->bi_bdev
= rdev
->bdev
;
3350 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
3351 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3355 atomic_inc(&rdev
->nr_pending
);
3358 /* Need to set up for writing to the replacement */
3359 bio
= r10_bio
->devs
[i
].repl_bio
;
3361 bio
->bi_error
= -EIO
;
3363 sector
= r10_bio
->devs
[i
].addr
;
3364 bio
->bi_next
= biolist
;
3366 bio
->bi_private
= r10_bio
;
3367 bio
->bi_end_io
= end_sync_write
;
3368 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3369 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
3370 bio
->bi_opf
|= MD_FAILFAST
;
3371 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3372 bio
->bi_bdev
= rdev
->bdev
;
3377 for (i
=0; i
<conf
->copies
; i
++) {
3378 int d
= r10_bio
->devs
[i
].devnum
;
3379 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3380 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3382 if (r10_bio
->devs
[i
].repl_bio
&&
3383 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3385 conf
->mirrors
[d
].replacement
,
3395 if (sector_nr
+ max_sync
< max_sector
)
3396 max_sector
= sector_nr
+ max_sync
;
3399 int len
= PAGE_SIZE
;
3400 if (sector_nr
+ (len
>>9) > max_sector
)
3401 len
= (max_sector
- sector_nr
) << 9;
3404 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3406 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
3407 if (bio_add_page(bio
, page
, len
, 0))
3411 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
3412 for (bio2
= biolist
;
3413 bio2
&& bio2
!= bio
;
3414 bio2
= bio2
->bi_next
) {
3415 /* remove last page from this bio */
3417 bio2
->bi_iter
.bi_size
-= len
;
3418 bio_clear_flag(bio2
, BIO_SEG_VALID
);
3422 nr_sectors
+= len
>>9;
3423 sector_nr
+= len
>>9;
3424 } while (biolist
->bi_vcnt
< RESYNC_PAGES
);
3426 r10_bio
->sectors
= nr_sectors
;
3430 biolist
= biolist
->bi_next
;
3432 bio
->bi_next
= NULL
;
3433 r10_bio
= bio
->bi_private
;
3434 r10_bio
->sectors
= nr_sectors
;
3436 if (bio
->bi_end_io
== end_sync_read
) {
3437 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
3439 generic_make_request(bio
);
3443 if (sectors_skipped
)
3444 /* pretend they weren't skipped, it makes
3445 * no important difference in this case
3447 md_done_sync(mddev
, sectors_skipped
, 1);
3449 return sectors_skipped
+ nr_sectors
;
3451 /* There is nowhere to write, so all non-sync
3452 * drives must be failed or in resync, all drives
3453 * have a bad block, so try the next chunk...
3455 if (sector_nr
+ max_sync
< max_sector
)
3456 max_sector
= sector_nr
+ max_sync
;
3458 sectors_skipped
+= (max_sector
- sector_nr
);
3460 sector_nr
= max_sector
;
3465 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3468 struct r10conf
*conf
= mddev
->private;
3471 raid_disks
= min(conf
->geo
.raid_disks
,
3472 conf
->prev
.raid_disks
);
3474 sectors
= conf
->dev_sectors
;
3476 size
= sectors
>> conf
->geo
.chunk_shift
;
3477 sector_div(size
, conf
->geo
.far_copies
);
3478 size
= size
* raid_disks
;
3479 sector_div(size
, conf
->geo
.near_copies
);
3481 return size
<< conf
->geo
.chunk_shift
;
3484 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3486 /* Calculate the number of sectors-per-device that will
3487 * actually be used, and set conf->dev_sectors and
3491 size
= size
>> conf
->geo
.chunk_shift
;
3492 sector_div(size
, conf
->geo
.far_copies
);
3493 size
= size
* conf
->geo
.raid_disks
;
3494 sector_div(size
, conf
->geo
.near_copies
);
3495 /* 'size' is now the number of chunks in the array */
3496 /* calculate "used chunks per device" */
3497 size
= size
* conf
->copies
;
3499 /* We need to round up when dividing by raid_disks to
3500 * get the stride size.
3502 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3504 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3506 if (conf
->geo
.far_offset
)
3507 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3509 sector_div(size
, conf
->geo
.far_copies
);
3510 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3514 enum geo_type
{geo_new
, geo_old
, geo_start
};
3515 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3518 int layout
, chunk
, disks
;
3521 layout
= mddev
->layout
;
3522 chunk
= mddev
->chunk_sectors
;
3523 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3526 layout
= mddev
->new_layout
;
3527 chunk
= mddev
->new_chunk_sectors
;
3528 disks
= mddev
->raid_disks
;
3530 default: /* avoid 'may be unused' warnings */
3531 case geo_start
: /* new when starting reshape - raid_disks not
3533 layout
= mddev
->new_layout
;
3534 chunk
= mddev
->new_chunk_sectors
;
3535 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3540 if (chunk
< (PAGE_SIZE
>> 9) ||
3541 !is_power_of_2(chunk
))
3544 fc
= (layout
>> 8) & 255;
3545 fo
= layout
& (1<<16);
3546 geo
->raid_disks
= disks
;
3547 geo
->near_copies
= nc
;
3548 geo
->far_copies
= fc
;
3549 geo
->far_offset
= fo
;
3550 switch (layout
>> 17) {
3551 case 0: /* original layout. simple but not always optimal */
3552 geo
->far_set_size
= disks
;
3554 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3555 * actually using this, but leave code here just in case.*/
3556 geo
->far_set_size
= disks
/fc
;
3557 WARN(geo
->far_set_size
< fc
,
3558 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3560 case 2: /* "improved" layout fixed to match documentation */
3561 geo
->far_set_size
= fc
* nc
;
3563 default: /* Not a valid layout */
3566 geo
->chunk_mask
= chunk
- 1;
3567 geo
->chunk_shift
= ffz(~chunk
);
3571 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3573 struct r10conf
*conf
= NULL
;
3578 copies
= setup_geo(&geo
, mddev
, geo_new
);
3581 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3582 mdname(mddev
), PAGE_SIZE
);
3586 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3587 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3588 mdname(mddev
), mddev
->new_layout
);
3593 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3597 /* FIXME calc properly */
3598 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3599 max(0,-mddev
->delta_disks
)),
3604 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3609 conf
->copies
= copies
;
3610 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3611 r10bio_pool_free
, conf
);
3612 if (!conf
->r10bio_pool
)
3615 calc_sectors(conf
, mddev
->dev_sectors
);
3616 if (mddev
->reshape_position
== MaxSector
) {
3617 conf
->prev
= conf
->geo
;
3618 conf
->reshape_progress
= MaxSector
;
3620 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3624 conf
->reshape_progress
= mddev
->reshape_position
;
3625 if (conf
->prev
.far_offset
)
3626 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3628 /* far_copies must be 1 */
3629 conf
->prev
.stride
= conf
->dev_sectors
;
3631 conf
->reshape_safe
= conf
->reshape_progress
;
3632 spin_lock_init(&conf
->device_lock
);
3633 INIT_LIST_HEAD(&conf
->retry_list
);
3634 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3636 spin_lock_init(&conf
->resync_lock
);
3637 init_waitqueue_head(&conf
->wait_barrier
);
3638 atomic_set(&conf
->nr_pending
, 0);
3640 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3644 conf
->mddev
= mddev
;
3649 mempool_destroy(conf
->r10bio_pool
);
3650 kfree(conf
->mirrors
);
3651 safe_put_page(conf
->tmppage
);
3654 return ERR_PTR(err
);
3657 static int raid10_run(struct mddev
*mddev
)
3659 struct r10conf
*conf
;
3660 int i
, disk_idx
, chunk_size
;
3661 struct raid10_info
*disk
;
3662 struct md_rdev
*rdev
;
3664 sector_t min_offset_diff
= 0;
3666 bool discard_supported
= false;
3668 if (mddev
->private == NULL
) {
3669 conf
= setup_conf(mddev
);
3671 return PTR_ERR(conf
);
3672 mddev
->private = conf
;
3674 conf
= mddev
->private;
3678 mddev
->thread
= conf
->thread
;
3679 conf
->thread
= NULL
;
3681 chunk_size
= mddev
->chunk_sectors
<< 9;
3683 blk_queue_max_discard_sectors(mddev
->queue
,
3684 mddev
->chunk_sectors
);
3685 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3686 blk_queue_io_min(mddev
->queue
, chunk_size
);
3687 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3688 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3690 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3691 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3694 rdev_for_each(rdev
, mddev
) {
3696 struct request_queue
*q
;
3698 disk_idx
= rdev
->raid_disk
;
3701 if (disk_idx
>= conf
->geo
.raid_disks
&&
3702 disk_idx
>= conf
->prev
.raid_disks
)
3704 disk
= conf
->mirrors
+ disk_idx
;
3706 if (test_bit(Replacement
, &rdev
->flags
)) {
3707 if (disk
->replacement
)
3709 disk
->replacement
= rdev
;
3715 q
= bdev_get_queue(rdev
->bdev
);
3716 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3717 if (!mddev
->reshape_backwards
)
3721 if (first
|| diff
< min_offset_diff
)
3722 min_offset_diff
= diff
;
3725 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3726 rdev
->data_offset
<< 9);
3728 disk
->head_position
= 0;
3730 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3731 discard_supported
= true;
3735 if (discard_supported
)
3736 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3739 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3742 /* need to check that every block has at least one working mirror */
3743 if (!enough(conf
, -1)) {
3744 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3749 if (conf
->reshape_progress
!= MaxSector
) {
3750 /* must ensure that shape change is supported */
3751 if (conf
->geo
.far_copies
!= 1 &&
3752 conf
->geo
.far_offset
== 0)
3754 if (conf
->prev
.far_copies
!= 1 &&
3755 conf
->prev
.far_offset
== 0)
3759 mddev
->degraded
= 0;
3761 i
< conf
->geo
.raid_disks
3762 || i
< conf
->prev
.raid_disks
;
3765 disk
= conf
->mirrors
+ i
;
3767 if (!disk
->rdev
&& disk
->replacement
) {
3768 /* The replacement is all we have - use it */
3769 disk
->rdev
= disk
->replacement
;
3770 disk
->replacement
= NULL
;
3771 clear_bit(Replacement
, &disk
->rdev
->flags
);
3775 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3776 disk
->head_position
= 0;
3779 disk
->rdev
->saved_raid_disk
< 0)
3782 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3785 if (mddev
->recovery_cp
!= MaxSector
)
3786 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3788 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3789 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3790 conf
->geo
.raid_disks
);
3792 * Ok, everything is just fine now
3794 mddev
->dev_sectors
= conf
->dev_sectors
;
3795 size
= raid10_size(mddev
, 0, 0);
3796 md_set_array_sectors(mddev
, size
);
3797 mddev
->resync_max_sectors
= size
;
3798 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3801 int stripe
= conf
->geo
.raid_disks
*
3802 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3804 /* Calculate max read-ahead size.
3805 * We need to readahead at least twice a whole stripe....
3808 stripe
/= conf
->geo
.near_copies
;
3809 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
3810 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
3813 if (md_integrity_register(mddev
))
3816 if (conf
->reshape_progress
!= MaxSector
) {
3817 unsigned long before_length
, after_length
;
3819 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3820 conf
->prev
.far_copies
);
3821 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3822 conf
->geo
.far_copies
);
3824 if (max(before_length
, after_length
) > min_offset_diff
) {
3825 /* This cannot work */
3826 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3829 conf
->offset_diff
= min_offset_diff
;
3831 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3832 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3833 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3834 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3835 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3842 md_unregister_thread(&mddev
->thread
);
3843 mempool_destroy(conf
->r10bio_pool
);
3844 safe_put_page(conf
->tmppage
);
3845 kfree(conf
->mirrors
);
3847 mddev
->private = NULL
;
3852 static void raid10_free(struct mddev
*mddev
, void *priv
)
3854 struct r10conf
*conf
= priv
;
3856 mempool_destroy(conf
->r10bio_pool
);
3857 safe_put_page(conf
->tmppage
);
3858 kfree(conf
->mirrors
);
3859 kfree(conf
->mirrors_old
);
3860 kfree(conf
->mirrors_new
);
3864 static void raid10_quiesce(struct mddev
*mddev
, int state
)
3866 struct r10conf
*conf
= mddev
->private;
3870 raise_barrier(conf
, 0);
3873 lower_barrier(conf
);
3878 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3880 /* Resize of 'far' arrays is not supported.
3881 * For 'near' and 'offset' arrays we can set the
3882 * number of sectors used to be an appropriate multiple
3883 * of the chunk size.
3884 * For 'offset', this is far_copies*chunksize.
3885 * For 'near' the multiplier is the LCM of
3886 * near_copies and raid_disks.
3887 * So if far_copies > 1 && !far_offset, fail.
3888 * Else find LCM(raid_disks, near_copy)*far_copies and
3889 * multiply by chunk_size. Then round to this number.
3890 * This is mostly done by raid10_size()
3892 struct r10conf
*conf
= mddev
->private;
3893 sector_t oldsize
, size
;
3895 if (mddev
->reshape_position
!= MaxSector
)
3898 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3901 oldsize
= raid10_size(mddev
, 0, 0);
3902 size
= raid10_size(mddev
, sectors
, 0);
3903 if (mddev
->external_size
&&
3904 mddev
->array_sectors
> size
)
3906 if (mddev
->bitmap
) {
3907 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3911 md_set_array_sectors(mddev
, size
);
3913 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3914 revalidate_disk(mddev
->gendisk
);
3916 if (sectors
> mddev
->dev_sectors
&&
3917 mddev
->recovery_cp
> oldsize
) {
3918 mddev
->recovery_cp
= oldsize
;
3919 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3921 calc_sectors(conf
, sectors
);
3922 mddev
->dev_sectors
= conf
->dev_sectors
;
3923 mddev
->resync_max_sectors
= size
;
3927 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
3929 struct md_rdev
*rdev
;
3930 struct r10conf
*conf
;
3932 if (mddev
->degraded
> 0) {
3933 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3935 return ERR_PTR(-EINVAL
);
3937 sector_div(size
, devs
);
3939 /* Set new parameters */
3940 mddev
->new_level
= 10;
3941 /* new layout: far_copies = 1, near_copies = 2 */
3942 mddev
->new_layout
= (1<<8) + 2;
3943 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3944 mddev
->delta_disks
= mddev
->raid_disks
;
3945 mddev
->raid_disks
*= 2;
3946 /* make sure it will be not marked as dirty */
3947 mddev
->recovery_cp
= MaxSector
;
3948 mddev
->dev_sectors
= size
;
3950 conf
= setup_conf(mddev
);
3951 if (!IS_ERR(conf
)) {
3952 rdev_for_each(rdev
, mddev
)
3953 if (rdev
->raid_disk
>= 0) {
3954 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3955 rdev
->sectors
= size
;
3963 static void *raid10_takeover(struct mddev
*mddev
)
3965 struct r0conf
*raid0_conf
;
3967 /* raid10 can take over:
3968 * raid0 - providing it has only two drives
3970 if (mddev
->level
== 0) {
3971 /* for raid0 takeover only one zone is supported */
3972 raid0_conf
= mddev
->private;
3973 if (raid0_conf
->nr_strip_zones
> 1) {
3974 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3976 return ERR_PTR(-EINVAL
);
3978 return raid10_takeover_raid0(mddev
,
3979 raid0_conf
->strip_zone
->zone_end
,
3980 raid0_conf
->strip_zone
->nb_dev
);
3982 return ERR_PTR(-EINVAL
);
3985 static int raid10_check_reshape(struct mddev
*mddev
)
3987 /* Called when there is a request to change
3988 * - layout (to ->new_layout)
3989 * - chunk size (to ->new_chunk_sectors)
3990 * - raid_disks (by delta_disks)
3991 * or when trying to restart a reshape that was ongoing.
3993 * We need to validate the request and possibly allocate
3994 * space if that might be an issue later.
3996 * Currently we reject any reshape of a 'far' mode array,
3997 * allow chunk size to change if new is generally acceptable,
3998 * allow raid_disks to increase, and allow
3999 * a switch between 'near' mode and 'offset' mode.
4001 struct r10conf
*conf
= mddev
->private;
4004 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
4007 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
4008 /* mustn't change number of copies */
4010 if (geo
.far_copies
> 1 && !geo
.far_offset
)
4011 /* Cannot switch to 'far' mode */
4014 if (mddev
->array_sectors
& geo
.chunk_mask
)
4015 /* not factor of array size */
4018 if (!enough(conf
, -1))
4021 kfree(conf
->mirrors_new
);
4022 conf
->mirrors_new
= NULL
;
4023 if (mddev
->delta_disks
> 0) {
4024 /* allocate new 'mirrors' list */
4025 conf
->mirrors_new
= kzalloc(
4026 sizeof(struct raid10_info
)
4027 *(mddev
->raid_disks
+
4028 mddev
->delta_disks
),
4030 if (!conf
->mirrors_new
)
4037 * Need to check if array has failed when deciding whether to:
4039 * - remove non-faulty devices
4042 * This determination is simple when no reshape is happening.
4043 * However if there is a reshape, we need to carefully check
4044 * both the before and after sections.
4045 * This is because some failed devices may only affect one
4046 * of the two sections, and some non-in_sync devices may
4047 * be insync in the section most affected by failed devices.
4049 static int calc_degraded(struct r10conf
*conf
)
4051 int degraded
, degraded2
;
4056 /* 'prev' section first */
4057 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
4058 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4059 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4061 else if (!test_bit(In_sync
, &rdev
->flags
))
4062 /* When we can reduce the number of devices in
4063 * an array, this might not contribute to
4064 * 'degraded'. It does now.
4069 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
4073 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
4074 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4075 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4077 else if (!test_bit(In_sync
, &rdev
->flags
)) {
4078 /* If reshape is increasing the number of devices,
4079 * this section has already been recovered, so
4080 * it doesn't contribute to degraded.
4083 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4088 if (degraded2
> degraded
)
4093 static int raid10_start_reshape(struct mddev
*mddev
)
4095 /* A 'reshape' has been requested. This commits
4096 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4097 * This also checks if there are enough spares and adds them
4099 * We currently require enough spares to make the final
4100 * array non-degraded. We also require that the difference
4101 * between old and new data_offset - on each device - is
4102 * enough that we never risk over-writing.
4105 unsigned long before_length
, after_length
;
4106 sector_t min_offset_diff
= 0;
4109 struct r10conf
*conf
= mddev
->private;
4110 struct md_rdev
*rdev
;
4114 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4117 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4120 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4121 conf
->prev
.far_copies
);
4122 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4123 conf
->geo
.far_copies
);
4125 rdev_for_each(rdev
, mddev
) {
4126 if (!test_bit(In_sync
, &rdev
->flags
)
4127 && !test_bit(Faulty
, &rdev
->flags
))
4129 if (rdev
->raid_disk
>= 0) {
4130 long long diff
= (rdev
->new_data_offset
4131 - rdev
->data_offset
);
4132 if (!mddev
->reshape_backwards
)
4136 if (first
|| diff
< min_offset_diff
)
4137 min_offset_diff
= diff
;
4141 if (max(before_length
, after_length
) > min_offset_diff
)
4144 if (spares
< mddev
->delta_disks
)
4147 conf
->offset_diff
= min_offset_diff
;
4148 spin_lock_irq(&conf
->device_lock
);
4149 if (conf
->mirrors_new
) {
4150 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4151 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4153 kfree(conf
->mirrors_old
);
4154 conf
->mirrors_old
= conf
->mirrors
;
4155 conf
->mirrors
= conf
->mirrors_new
;
4156 conf
->mirrors_new
= NULL
;
4158 setup_geo(&conf
->geo
, mddev
, geo_start
);
4160 if (mddev
->reshape_backwards
) {
4161 sector_t size
= raid10_size(mddev
, 0, 0);
4162 if (size
< mddev
->array_sectors
) {
4163 spin_unlock_irq(&conf
->device_lock
);
4164 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4168 mddev
->resync_max_sectors
= size
;
4169 conf
->reshape_progress
= size
;
4171 conf
->reshape_progress
= 0;
4172 conf
->reshape_safe
= conf
->reshape_progress
;
4173 spin_unlock_irq(&conf
->device_lock
);
4175 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4176 ret
= bitmap_resize(mddev
->bitmap
,
4177 raid10_size(mddev
, 0,
4178 conf
->geo
.raid_disks
),
4183 if (mddev
->delta_disks
> 0) {
4184 rdev_for_each(rdev
, mddev
)
4185 if (rdev
->raid_disk
< 0 &&
4186 !test_bit(Faulty
, &rdev
->flags
)) {
4187 if (raid10_add_disk(mddev
, rdev
) == 0) {
4188 if (rdev
->raid_disk
>=
4189 conf
->prev
.raid_disks
)
4190 set_bit(In_sync
, &rdev
->flags
);
4192 rdev
->recovery_offset
= 0;
4194 if (sysfs_link_rdev(mddev
, rdev
))
4195 /* Failure here is OK */;
4197 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4198 && !test_bit(Faulty
, &rdev
->flags
)) {
4199 /* This is a spare that was manually added */
4200 set_bit(In_sync
, &rdev
->flags
);
4203 /* When a reshape changes the number of devices,
4204 * ->degraded is measured against the larger of the
4205 * pre and post numbers.
4207 spin_lock_irq(&conf
->device_lock
);
4208 mddev
->degraded
= calc_degraded(conf
);
4209 spin_unlock_irq(&conf
->device_lock
);
4210 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4211 mddev
->reshape_position
= conf
->reshape_progress
;
4212 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4214 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4215 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4216 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4217 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4218 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4220 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4222 if (!mddev
->sync_thread
) {
4226 conf
->reshape_checkpoint
= jiffies
;
4227 md_wakeup_thread(mddev
->sync_thread
);
4228 md_new_event(mddev
);
4232 mddev
->recovery
= 0;
4233 spin_lock_irq(&conf
->device_lock
);
4234 conf
->geo
= conf
->prev
;
4235 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4236 rdev_for_each(rdev
, mddev
)
4237 rdev
->new_data_offset
= rdev
->data_offset
;
4239 conf
->reshape_progress
= MaxSector
;
4240 conf
->reshape_safe
= MaxSector
;
4241 mddev
->reshape_position
= MaxSector
;
4242 spin_unlock_irq(&conf
->device_lock
);
4246 /* Calculate the last device-address that could contain
4247 * any block from the chunk that includes the array-address 's'
4248 * and report the next address.
4249 * i.e. the address returned will be chunk-aligned and after
4250 * any data that is in the chunk containing 's'.
4252 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4254 s
= (s
| geo
->chunk_mask
) + 1;
4255 s
>>= geo
->chunk_shift
;
4256 s
*= geo
->near_copies
;
4257 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4258 s
*= geo
->far_copies
;
4259 s
<<= geo
->chunk_shift
;
4263 /* Calculate the first device-address that could contain
4264 * any block from the chunk that includes the array-address 's'.
4265 * This too will be the start of a chunk
4267 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4269 s
>>= geo
->chunk_shift
;
4270 s
*= geo
->near_copies
;
4271 sector_div(s
, geo
->raid_disks
);
4272 s
*= geo
->far_copies
;
4273 s
<<= geo
->chunk_shift
;
4277 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4280 /* We simply copy at most one chunk (smallest of old and new)
4281 * at a time, possibly less if that exceeds RESYNC_PAGES,
4282 * or we hit a bad block or something.
4283 * This might mean we pause for normal IO in the middle of
4284 * a chunk, but that is not a problem as mddev->reshape_position
4285 * can record any location.
4287 * If we will want to write to a location that isn't
4288 * yet recorded as 'safe' (i.e. in metadata on disk) then
4289 * we need to flush all reshape requests and update the metadata.
4291 * When reshaping forwards (e.g. to more devices), we interpret
4292 * 'safe' as the earliest block which might not have been copied
4293 * down yet. We divide this by previous stripe size and multiply
4294 * by previous stripe length to get lowest device offset that we
4295 * cannot write to yet.
4296 * We interpret 'sector_nr' as an address that we want to write to.
4297 * From this we use last_device_address() to find where we might
4298 * write to, and first_device_address on the 'safe' position.
4299 * If this 'next' write position is after the 'safe' position,
4300 * we must update the metadata to increase the 'safe' position.
4302 * When reshaping backwards, we round in the opposite direction
4303 * and perform the reverse test: next write position must not be
4304 * less than current safe position.
4306 * In all this the minimum difference in data offsets
4307 * (conf->offset_diff - always positive) allows a bit of slack,
4308 * so next can be after 'safe', but not by more than offset_diff
4310 * We need to prepare all the bios here before we start any IO
4311 * to ensure the size we choose is acceptable to all devices.
4312 * The means one for each copy for write-out and an extra one for
4314 * We store the read-in bio in ->master_bio and the others in
4315 * ->devs[x].bio and ->devs[x].repl_bio.
4317 struct r10conf
*conf
= mddev
->private;
4318 struct r10bio
*r10_bio
;
4319 sector_t next
, safe
, last
;
4323 struct md_rdev
*rdev
;
4326 struct bio
*bio
, *read_bio
;
4327 int sectors_done
= 0;
4329 if (sector_nr
== 0) {
4330 /* If restarting in the middle, skip the initial sectors */
4331 if (mddev
->reshape_backwards
&&
4332 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4333 sector_nr
= (raid10_size(mddev
, 0, 0)
4334 - conf
->reshape_progress
);
4335 } else if (!mddev
->reshape_backwards
&&
4336 conf
->reshape_progress
> 0)
4337 sector_nr
= conf
->reshape_progress
;
4339 mddev
->curr_resync_completed
= sector_nr
;
4340 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4346 /* We don't use sector_nr to track where we are up to
4347 * as that doesn't work well for ->reshape_backwards.
4348 * So just use ->reshape_progress.
4350 if (mddev
->reshape_backwards
) {
4351 /* 'next' is the earliest device address that we might
4352 * write to for this chunk in the new layout
4354 next
= first_dev_address(conf
->reshape_progress
- 1,
4357 /* 'safe' is the last device address that we might read from
4358 * in the old layout after a restart
4360 safe
= last_dev_address(conf
->reshape_safe
- 1,
4363 if (next
+ conf
->offset_diff
< safe
)
4366 last
= conf
->reshape_progress
- 1;
4367 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4368 & conf
->prev
.chunk_mask
);
4369 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4370 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4372 /* 'next' is after the last device address that we
4373 * might write to for this chunk in the new layout
4375 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4377 /* 'safe' is the earliest device address that we might
4378 * read from in the old layout after a restart
4380 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4382 /* Need to update metadata if 'next' might be beyond 'safe'
4383 * as that would possibly corrupt data
4385 if (next
> safe
+ conf
->offset_diff
)
4388 sector_nr
= conf
->reshape_progress
;
4389 last
= sector_nr
| (conf
->geo
.chunk_mask
4390 & conf
->prev
.chunk_mask
);
4392 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4393 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4397 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4398 /* Need to update reshape_position in metadata */
4400 mddev
->reshape_position
= conf
->reshape_progress
;
4401 if (mddev
->reshape_backwards
)
4402 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4403 - conf
->reshape_progress
;
4405 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4406 conf
->reshape_checkpoint
= jiffies
;
4407 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4408 md_wakeup_thread(mddev
->thread
);
4409 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
4410 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4411 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4412 allow_barrier(conf
);
4413 return sectors_done
;
4415 conf
->reshape_safe
= mddev
->reshape_position
;
4416 allow_barrier(conf
);
4420 /* Now schedule reads for blocks from sector_nr to last */
4421 r10_bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
4423 raise_barrier(conf
, sectors_done
!= 0);
4424 atomic_set(&r10_bio
->remaining
, 0);
4425 r10_bio
->mddev
= mddev
;
4426 r10_bio
->sector
= sector_nr
;
4427 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4428 r10_bio
->sectors
= last
- sector_nr
+ 1;
4429 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4430 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4433 /* Cannot read from here, so need to record bad blocks
4434 * on all the target devices.
4437 mempool_free(r10_bio
, conf
->r10buf_pool
);
4438 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4439 return sectors_done
;
4442 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4444 read_bio
->bi_bdev
= rdev
->bdev
;
4445 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4446 + rdev
->data_offset
);
4447 read_bio
->bi_private
= r10_bio
;
4448 read_bio
->bi_end_io
= end_sync_read
;
4449 bio_set_op_attrs(read_bio
, REQ_OP_READ
, 0);
4450 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4451 read_bio
->bi_error
= 0;
4452 read_bio
->bi_vcnt
= 0;
4453 read_bio
->bi_iter
.bi_size
= 0;
4454 r10_bio
->master_bio
= read_bio
;
4455 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4457 /* Now find the locations in the new layout */
4458 __raid10_find_phys(&conf
->geo
, r10_bio
);
4461 read_bio
->bi_next
= NULL
;
4464 for (s
= 0; s
< conf
->copies
*2; s
++) {
4466 int d
= r10_bio
->devs
[s
/2].devnum
;
4467 struct md_rdev
*rdev2
;
4469 rdev2
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4470 b
= r10_bio
->devs
[s
/2].repl_bio
;
4472 rdev2
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4473 b
= r10_bio
->devs
[s
/2].bio
;
4475 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4479 b
->bi_bdev
= rdev2
->bdev
;
4480 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4481 rdev2
->new_data_offset
;
4482 b
->bi_private
= r10_bio
;
4483 b
->bi_end_io
= end_reshape_write
;
4484 bio_set_op_attrs(b
, REQ_OP_WRITE
, 0);
4489 /* Now add as many pages as possible to all of these bios. */
4492 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4493 struct page
*page
= r10_bio
->devs
[0].bio
->bi_io_vec
[s
/(PAGE_SIZE
>>9)].bv_page
;
4494 int len
= (max_sectors
- s
) << 9;
4495 if (len
> PAGE_SIZE
)
4497 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4499 if (bio_add_page(bio
, page
, len
, 0))
4502 /* Didn't fit, must stop */
4504 bio2
&& bio2
!= bio
;
4505 bio2
= bio2
->bi_next
) {
4506 /* Remove last page from this bio */
4508 bio2
->bi_iter
.bi_size
-= len
;
4509 bio_clear_flag(bio2
, BIO_SEG_VALID
);
4513 sector_nr
+= len
>> 9;
4514 nr_sectors
+= len
>> 9;
4518 r10_bio
->sectors
= nr_sectors
;
4520 /* Now submit the read */
4521 md_sync_acct(read_bio
->bi_bdev
, r10_bio
->sectors
);
4522 atomic_inc(&r10_bio
->remaining
);
4523 read_bio
->bi_next
= NULL
;
4524 generic_make_request(read_bio
);
4525 sector_nr
+= nr_sectors
;
4526 sectors_done
+= nr_sectors
;
4527 if (sector_nr
<= last
)
4530 /* Now that we have done the whole section we can
4531 * update reshape_progress
4533 if (mddev
->reshape_backwards
)
4534 conf
->reshape_progress
-= sectors_done
;
4536 conf
->reshape_progress
+= sectors_done
;
4538 return sectors_done
;
4541 static void end_reshape_request(struct r10bio
*r10_bio
);
4542 static int handle_reshape_read_error(struct mddev
*mddev
,
4543 struct r10bio
*r10_bio
);
4544 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4546 /* Reshape read completed. Hopefully we have a block
4548 * If we got a read error then we do sync 1-page reads from
4549 * elsewhere until we find the data - or give up.
4551 struct r10conf
*conf
= mddev
->private;
4554 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4555 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4556 /* Reshape has been aborted */
4557 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4561 /* We definitely have the data in the pages, schedule the
4564 atomic_set(&r10_bio
->remaining
, 1);
4565 for (s
= 0; s
< conf
->copies
*2; s
++) {
4567 int d
= r10_bio
->devs
[s
/2].devnum
;
4568 struct md_rdev
*rdev
;
4571 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4572 b
= r10_bio
->devs
[s
/2].repl_bio
;
4574 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4575 b
= r10_bio
->devs
[s
/2].bio
;
4577 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
4581 atomic_inc(&rdev
->nr_pending
);
4583 md_sync_acct(b
->bi_bdev
, r10_bio
->sectors
);
4584 atomic_inc(&r10_bio
->remaining
);
4586 generic_make_request(b
);
4588 end_reshape_request(r10_bio
);
4591 static void end_reshape(struct r10conf
*conf
)
4593 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4596 spin_lock_irq(&conf
->device_lock
);
4597 conf
->prev
= conf
->geo
;
4598 md_finish_reshape(conf
->mddev
);
4600 conf
->reshape_progress
= MaxSector
;
4601 conf
->reshape_safe
= MaxSector
;
4602 spin_unlock_irq(&conf
->device_lock
);
4604 /* read-ahead size must cover two whole stripes, which is
4605 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4607 if (conf
->mddev
->queue
) {
4608 int stripe
= conf
->geo
.raid_disks
*
4609 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4610 stripe
/= conf
->geo
.near_copies
;
4611 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4612 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4617 static int handle_reshape_read_error(struct mddev
*mddev
,
4618 struct r10bio
*r10_bio
)
4620 /* Use sync reads to get the blocks from somewhere else */
4621 int sectors
= r10_bio
->sectors
;
4622 struct r10conf
*conf
= mddev
->private;
4624 struct r10bio r10_bio
;
4625 struct r10dev devs
[conf
->copies
];
4627 struct r10bio
*r10b
= &on_stack
.r10_bio
;
4630 struct bio_vec
*bvec
= r10_bio
->master_bio
->bi_io_vec
;
4632 r10b
->sector
= r10_bio
->sector
;
4633 __raid10_find_phys(&conf
->prev
, r10b
);
4638 int first_slot
= slot
;
4640 if (s
> (PAGE_SIZE
>> 9))
4645 int d
= r10b
->devs
[slot
].devnum
;
4646 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4649 test_bit(Faulty
, &rdev
->flags
) ||
4650 !test_bit(In_sync
, &rdev
->flags
))
4653 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4654 atomic_inc(&rdev
->nr_pending
);
4656 success
= sync_page_io(rdev
,
4660 REQ_OP_READ
, 0, false);
4661 rdev_dec_pending(rdev
, mddev
);
4667 if (slot
>= conf
->copies
)
4669 if (slot
== first_slot
)
4674 /* couldn't read this block, must give up */
4675 set_bit(MD_RECOVERY_INTR
,
4685 static void end_reshape_write(struct bio
*bio
)
4687 struct r10bio
*r10_bio
= bio
->bi_private
;
4688 struct mddev
*mddev
= r10_bio
->mddev
;
4689 struct r10conf
*conf
= mddev
->private;
4693 struct md_rdev
*rdev
= NULL
;
4695 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4697 rdev
= conf
->mirrors
[d
].replacement
;
4700 rdev
= conf
->mirrors
[d
].rdev
;
4703 if (bio
->bi_error
) {
4704 /* FIXME should record badblock */
4705 md_error(mddev
, rdev
);
4708 rdev_dec_pending(rdev
, mddev
);
4709 end_reshape_request(r10_bio
);
4712 static void end_reshape_request(struct r10bio
*r10_bio
)
4714 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4716 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4717 bio_put(r10_bio
->master_bio
);
4721 static void raid10_finish_reshape(struct mddev
*mddev
)
4723 struct r10conf
*conf
= mddev
->private;
4725 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4728 if (mddev
->delta_disks
> 0) {
4729 sector_t size
= raid10_size(mddev
, 0, 0);
4730 md_set_array_sectors(mddev
, size
);
4731 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4732 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4733 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4735 mddev
->resync_max_sectors
= size
;
4737 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4738 revalidate_disk(mddev
->gendisk
);
4743 for (d
= conf
->geo
.raid_disks
;
4744 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4746 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4748 clear_bit(In_sync
, &rdev
->flags
);
4749 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4751 clear_bit(In_sync
, &rdev
->flags
);
4755 mddev
->layout
= mddev
->new_layout
;
4756 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4757 mddev
->reshape_position
= MaxSector
;
4758 mddev
->delta_disks
= 0;
4759 mddev
->reshape_backwards
= 0;
4762 static struct md_personality raid10_personality
=
4766 .owner
= THIS_MODULE
,
4767 .make_request
= raid10_make_request
,
4769 .free
= raid10_free
,
4770 .status
= raid10_status
,
4771 .error_handler
= raid10_error
,
4772 .hot_add_disk
= raid10_add_disk
,
4773 .hot_remove_disk
= raid10_remove_disk
,
4774 .spare_active
= raid10_spare_active
,
4775 .sync_request
= raid10_sync_request
,
4776 .quiesce
= raid10_quiesce
,
4777 .size
= raid10_size
,
4778 .resize
= raid10_resize
,
4779 .takeover
= raid10_takeover
,
4780 .check_reshape
= raid10_check_reshape
,
4781 .start_reshape
= raid10_start_reshape
,
4782 .finish_reshape
= raid10_finish_reshape
,
4783 .congested
= raid10_congested
,
4786 static int __init
raid_init(void)
4788 return register_md_personality(&raid10_personality
);
4791 static void raid_exit(void)
4793 unregister_md_personality(&raid10_personality
);
4796 module_init(raid_init
);
4797 module_exit(raid_exit
);
4798 MODULE_LICENSE("GPL");
4799 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4800 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4801 MODULE_ALIAS("md-raid10");
4802 MODULE_ALIAS("md-level-10");
4804 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);