staging: rtl8188eu: remove unused members from struct recv_priv
[linux/fpc-iii.git] / drivers / md / raid10.c
blobab5e86209322fc0d0ed3e2db18a468c6f5054f13
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "bitmap.h"
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
37 * chunk_size
38 * raid_disks
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65 * on a device):
66 * A B C D A B C D E
67 * ... ...
68 * D A B C E A B C D
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
76 * Number of guaranteed r10bios in case of extreme VM load:
78 #define NR_RAID10_BIOS 256
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
90 #define IO_MADE_GOOD ((struct bio *)2)
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
96 * for writeback.
98 static int max_queued_requests = 1024;
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
113 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
115 struct r10conf *conf = data;
116 int size = offsetof(struct r10bio, devs[conf->copies]);
118 /* allocate a r10bio with room for raid_disks entries in the
119 * bios array */
120 return kzalloc(size, gfp_flags);
123 static void r10bio_pool_free(void *r10_bio, void *data)
125 kfree(r10_bio);
128 /* Maximum size of each resync request */
129 #define RESYNC_BLOCK_SIZE (64*1024)
130 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
131 /* amount of memory to reserve for resync requests */
132 #define RESYNC_WINDOW (1024*1024)
133 /* maximum number of concurrent requests, memory permitting */
134 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
137 * When performing a resync, we need to read and compare, so
138 * we need as many pages are there are copies.
139 * When performing a recovery, we need 2 bios, one for read,
140 * one for write (we recover only one drive per r10buf)
143 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
145 struct r10conf *conf = data;
146 struct page *page;
147 struct r10bio *r10_bio;
148 struct bio *bio;
149 int i, j;
150 int nalloc;
152 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
153 if (!r10_bio)
154 return NULL;
156 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
157 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
158 nalloc = conf->copies; /* resync */
159 else
160 nalloc = 2; /* recovery */
163 * Allocate bios.
165 for (j = nalloc ; j-- ; ) {
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].bio = bio;
170 if (!conf->have_replacement)
171 continue;
172 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
173 if (!bio)
174 goto out_free_bio;
175 r10_bio->devs[j].repl_bio = bio;
178 * Allocate RESYNC_PAGES data pages and attach them
179 * where needed.
181 for (j = 0 ; j < nalloc; j++) {
182 struct bio *rbio = r10_bio->devs[j].repl_bio;
183 bio = r10_bio->devs[j].bio;
184 for (i = 0; i < RESYNC_PAGES; i++) {
185 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
186 &conf->mddev->recovery)) {
187 /* we can share bv_page's during recovery
188 * and reshape */
189 struct bio *rbio = r10_bio->devs[0].bio;
190 page = rbio->bi_io_vec[i].bv_page;
191 get_page(page);
192 } else
193 page = alloc_page(gfp_flags);
194 if (unlikely(!page))
195 goto out_free_pages;
197 bio->bi_io_vec[i].bv_page = page;
198 if (rbio)
199 rbio->bi_io_vec[i].bv_page = page;
203 return r10_bio;
205 out_free_pages:
206 for ( ; i > 0 ; i--)
207 safe_put_page(bio->bi_io_vec[i-1].bv_page);
208 while (j--)
209 for (i = 0; i < RESYNC_PAGES ; i++)
210 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
211 j = 0;
212 out_free_bio:
213 for ( ; j < nalloc; j++) {
214 if (r10_bio->devs[j].bio)
215 bio_put(r10_bio->devs[j].bio);
216 if (r10_bio->devs[j].repl_bio)
217 bio_put(r10_bio->devs[j].repl_bio);
219 r10bio_pool_free(r10_bio, conf);
220 return NULL;
223 static void r10buf_pool_free(void *__r10_bio, void *data)
225 int i;
226 struct r10conf *conf = data;
227 struct r10bio *r10bio = __r10_bio;
228 int j;
230 for (j=0; j < conf->copies; j++) {
231 struct bio *bio = r10bio->devs[j].bio;
232 if (bio) {
233 for (i = 0; i < RESYNC_PAGES; i++) {
234 safe_put_page(bio->bi_io_vec[i].bv_page);
235 bio->bi_io_vec[i].bv_page = NULL;
237 bio_put(bio);
239 bio = r10bio->devs[j].repl_bio;
240 if (bio)
241 bio_put(bio);
243 r10bio_pool_free(r10bio, conf);
246 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
248 int i;
250 for (i = 0; i < conf->copies; i++) {
251 struct bio **bio = & r10_bio->devs[i].bio;
252 if (!BIO_SPECIAL(*bio))
253 bio_put(*bio);
254 *bio = NULL;
255 bio = &r10_bio->devs[i].repl_bio;
256 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
257 bio_put(*bio);
258 *bio = NULL;
262 static void free_r10bio(struct r10bio *r10_bio)
264 struct r10conf *conf = r10_bio->mddev->private;
266 put_all_bios(conf, r10_bio);
267 mempool_free(r10_bio, conf->r10bio_pool);
270 static void put_buf(struct r10bio *r10_bio)
272 struct r10conf *conf = r10_bio->mddev->private;
274 mempool_free(r10_bio, conf->r10buf_pool);
276 lower_barrier(conf);
279 static void reschedule_retry(struct r10bio *r10_bio)
281 unsigned long flags;
282 struct mddev *mddev = r10_bio->mddev;
283 struct r10conf *conf = mddev->private;
285 spin_lock_irqsave(&conf->device_lock, flags);
286 list_add(&r10_bio->retry_list, &conf->retry_list);
287 conf->nr_queued ++;
288 spin_unlock_irqrestore(&conf->device_lock, flags);
290 /* wake up frozen array... */
291 wake_up(&conf->wait_barrier);
293 md_wakeup_thread(mddev->thread);
297 * raid_end_bio_io() is called when we have finished servicing a mirrored
298 * operation and are ready to return a success/failure code to the buffer
299 * cache layer.
301 static void raid_end_bio_io(struct r10bio *r10_bio)
303 struct bio *bio = r10_bio->master_bio;
304 int done;
305 struct r10conf *conf = r10_bio->mddev->private;
307 if (bio->bi_phys_segments) {
308 unsigned long flags;
309 spin_lock_irqsave(&conf->device_lock, flags);
310 bio->bi_phys_segments--;
311 done = (bio->bi_phys_segments == 0);
312 spin_unlock_irqrestore(&conf->device_lock, flags);
313 } else
314 done = 1;
315 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
316 bio->bi_error = -EIO;
317 if (done) {
318 bio_endio(bio);
320 * Wake up any possible resync thread that waits for the device
321 * to go idle.
323 allow_barrier(conf);
325 free_r10bio(r10_bio);
329 * Update disk head position estimator based on IRQ completion info.
331 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
333 struct r10conf *conf = r10_bio->mddev->private;
335 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
336 r10_bio->devs[slot].addr + (r10_bio->sectors);
340 * Find the disk number which triggered given bio
342 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
343 struct bio *bio, int *slotp, int *replp)
345 int slot;
346 int repl = 0;
348 for (slot = 0; slot < conf->copies; slot++) {
349 if (r10_bio->devs[slot].bio == bio)
350 break;
351 if (r10_bio->devs[slot].repl_bio == bio) {
352 repl = 1;
353 break;
357 BUG_ON(slot == conf->copies);
358 update_head_pos(slot, r10_bio);
360 if (slotp)
361 *slotp = slot;
362 if (replp)
363 *replp = repl;
364 return r10_bio->devs[slot].devnum;
367 static void raid10_end_read_request(struct bio *bio)
369 int uptodate = !bio->bi_error;
370 struct r10bio *r10_bio = bio->bi_private;
371 int slot, dev;
372 struct md_rdev *rdev;
373 struct r10conf *conf = r10_bio->mddev->private;
375 slot = r10_bio->read_slot;
376 dev = r10_bio->devs[slot].devnum;
377 rdev = r10_bio->devs[slot].rdev;
379 * this branch is our 'one mirror IO has finished' event handler:
381 update_head_pos(slot, r10_bio);
383 if (uptodate) {
385 * Set R10BIO_Uptodate in our master bio, so that
386 * we will return a good error code to the higher
387 * levels even if IO on some other mirrored buffer fails.
389 * The 'master' represents the composite IO operation to
390 * user-side. So if something waits for IO, then it will
391 * wait for the 'master' bio.
393 set_bit(R10BIO_Uptodate, &r10_bio->state);
394 } else {
395 /* If all other devices that store this block have
396 * failed, we want to return the error upwards rather
397 * than fail the last device. Here we redefine
398 * "uptodate" to mean "Don't want to retry"
400 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
401 rdev->raid_disk))
402 uptodate = 1;
404 if (uptodate) {
405 raid_end_bio_io(r10_bio);
406 rdev_dec_pending(rdev, conf->mddev);
407 } else {
409 * oops, read error - keep the refcount on the rdev
411 char b[BDEVNAME_SIZE];
412 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
413 mdname(conf->mddev),
414 bdevname(rdev->bdev, b),
415 (unsigned long long)r10_bio->sector);
416 set_bit(R10BIO_ReadError, &r10_bio->state);
417 reschedule_retry(r10_bio);
421 static void close_write(struct r10bio *r10_bio)
423 /* clear the bitmap if all writes complete successfully */
424 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
425 r10_bio->sectors,
426 !test_bit(R10BIO_Degraded, &r10_bio->state),
428 md_write_end(r10_bio->mddev);
431 static void one_write_done(struct r10bio *r10_bio)
433 if (atomic_dec_and_test(&r10_bio->remaining)) {
434 if (test_bit(R10BIO_WriteError, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else {
437 close_write(r10_bio);
438 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
439 reschedule_retry(r10_bio);
440 else
441 raid_end_bio_io(r10_bio);
446 static void raid10_end_write_request(struct bio *bio)
448 struct r10bio *r10_bio = bio->bi_private;
449 int dev;
450 int dec_rdev = 1;
451 struct r10conf *conf = r10_bio->mddev->private;
452 int slot, repl;
453 struct md_rdev *rdev = NULL;
454 struct bio *to_put = NULL;
455 bool discard_error;
457 discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
459 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
461 if (repl)
462 rdev = conf->mirrors[dev].replacement;
463 if (!rdev) {
464 smp_rmb();
465 repl = 0;
466 rdev = conf->mirrors[dev].rdev;
469 * this branch is our 'one mirror IO has finished' event handler:
471 if (bio->bi_error && !discard_error) {
472 if (repl)
473 /* Never record new bad blocks to replacement,
474 * just fail it.
476 md_error(rdev->mddev, rdev);
477 else {
478 set_bit(WriteErrorSeen, &rdev->flags);
479 if (!test_and_set_bit(WantReplacement, &rdev->flags))
480 set_bit(MD_RECOVERY_NEEDED,
481 &rdev->mddev->recovery);
483 dec_rdev = 0;
484 if (test_bit(FailFast, &rdev->flags) &&
485 (bio->bi_opf & MD_FAILFAST)) {
486 md_error(rdev->mddev, rdev);
487 if (!test_bit(Faulty, &rdev->flags))
488 /* This is the only remaining device,
489 * We need to retry the write without
490 * FailFast
492 set_bit(R10BIO_WriteError, &r10_bio->state);
493 else {
494 r10_bio->devs[slot].bio = NULL;
495 to_put = bio;
496 dec_rdev = 1;
498 } else
499 set_bit(R10BIO_WriteError, &r10_bio->state);
501 } else {
503 * Set R10BIO_Uptodate in our master bio, so that
504 * we will return a good error code for to the higher
505 * levels even if IO on some other mirrored buffer fails.
507 * The 'master' represents the composite IO operation to
508 * user-side. So if something waits for IO, then it will
509 * wait for the 'master' bio.
511 sector_t first_bad;
512 int bad_sectors;
515 * Do not set R10BIO_Uptodate if the current device is
516 * rebuilding or Faulty. This is because we cannot use
517 * such device for properly reading the data back (we could
518 * potentially use it, if the current write would have felt
519 * before rdev->recovery_offset, but for simplicity we don't
520 * check this here.
522 if (test_bit(In_sync, &rdev->flags) &&
523 !test_bit(Faulty, &rdev->flags))
524 set_bit(R10BIO_Uptodate, &r10_bio->state);
526 /* Maybe we can clear some bad blocks. */
527 if (is_badblock(rdev,
528 r10_bio->devs[slot].addr,
529 r10_bio->sectors,
530 &first_bad, &bad_sectors) && !discard_error) {
531 bio_put(bio);
532 if (repl)
533 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
534 else
535 r10_bio->devs[slot].bio = IO_MADE_GOOD;
536 dec_rdev = 0;
537 set_bit(R10BIO_MadeGood, &r10_bio->state);
543 * Let's see if all mirrored write operations have finished
544 * already.
546 one_write_done(r10_bio);
547 if (dec_rdev)
548 rdev_dec_pending(rdev, conf->mddev);
549 if (to_put)
550 bio_put(to_put);
554 * RAID10 layout manager
555 * As well as the chunksize and raid_disks count, there are two
556 * parameters: near_copies and far_copies.
557 * near_copies * far_copies must be <= raid_disks.
558 * Normally one of these will be 1.
559 * If both are 1, we get raid0.
560 * If near_copies == raid_disks, we get raid1.
562 * Chunks are laid out in raid0 style with near_copies copies of the
563 * first chunk, followed by near_copies copies of the next chunk and
564 * so on.
565 * If far_copies > 1, then after 1/far_copies of the array has been assigned
566 * as described above, we start again with a device offset of near_copies.
567 * So we effectively have another copy of the whole array further down all
568 * the drives, but with blocks on different drives.
569 * With this layout, and block is never stored twice on the one device.
571 * raid10_find_phys finds the sector offset of a given virtual sector
572 * on each device that it is on.
574 * raid10_find_virt does the reverse mapping, from a device and a
575 * sector offset to a virtual address
578 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
580 int n,f;
581 sector_t sector;
582 sector_t chunk;
583 sector_t stripe;
584 int dev;
585 int slot = 0;
586 int last_far_set_start, last_far_set_size;
588 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
589 last_far_set_start *= geo->far_set_size;
591 last_far_set_size = geo->far_set_size;
592 last_far_set_size += (geo->raid_disks % geo->far_set_size);
594 /* now calculate first sector/dev */
595 chunk = r10bio->sector >> geo->chunk_shift;
596 sector = r10bio->sector & geo->chunk_mask;
598 chunk *= geo->near_copies;
599 stripe = chunk;
600 dev = sector_div(stripe, geo->raid_disks);
601 if (geo->far_offset)
602 stripe *= geo->far_copies;
604 sector += stripe << geo->chunk_shift;
606 /* and calculate all the others */
607 for (n = 0; n < geo->near_copies; n++) {
608 int d = dev;
609 int set;
610 sector_t s = sector;
611 r10bio->devs[slot].devnum = d;
612 r10bio->devs[slot].addr = s;
613 slot++;
615 for (f = 1; f < geo->far_copies; f++) {
616 set = d / geo->far_set_size;
617 d += geo->near_copies;
619 if ((geo->raid_disks % geo->far_set_size) &&
620 (d > last_far_set_start)) {
621 d -= last_far_set_start;
622 d %= last_far_set_size;
623 d += last_far_set_start;
624 } else {
625 d %= geo->far_set_size;
626 d += geo->far_set_size * set;
628 s += geo->stride;
629 r10bio->devs[slot].devnum = d;
630 r10bio->devs[slot].addr = s;
631 slot++;
633 dev++;
634 if (dev >= geo->raid_disks) {
635 dev = 0;
636 sector += (geo->chunk_mask + 1);
641 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
643 struct geom *geo = &conf->geo;
645 if (conf->reshape_progress != MaxSector &&
646 ((r10bio->sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards)) {
648 set_bit(R10BIO_Previous, &r10bio->state);
649 geo = &conf->prev;
650 } else
651 clear_bit(R10BIO_Previous, &r10bio->state);
653 __raid10_find_phys(geo, r10bio);
656 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
658 sector_t offset, chunk, vchunk;
659 /* Never use conf->prev as this is only called during resync
660 * or recovery, so reshape isn't happening
662 struct geom *geo = &conf->geo;
663 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
664 int far_set_size = geo->far_set_size;
665 int last_far_set_start;
667 if (geo->raid_disks % geo->far_set_size) {
668 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
669 last_far_set_start *= geo->far_set_size;
671 if (dev >= last_far_set_start) {
672 far_set_size = geo->far_set_size;
673 far_set_size += (geo->raid_disks % geo->far_set_size);
674 far_set_start = last_far_set_start;
678 offset = sector & geo->chunk_mask;
679 if (geo->far_offset) {
680 int fc;
681 chunk = sector >> geo->chunk_shift;
682 fc = sector_div(chunk, geo->far_copies);
683 dev -= fc * geo->near_copies;
684 if (dev < far_set_start)
685 dev += far_set_size;
686 } else {
687 while (sector >= geo->stride) {
688 sector -= geo->stride;
689 if (dev < (geo->near_copies + far_set_start))
690 dev += far_set_size - geo->near_copies;
691 else
692 dev -= geo->near_copies;
694 chunk = sector >> geo->chunk_shift;
696 vchunk = chunk * geo->raid_disks + dev;
697 sector_div(vchunk, geo->near_copies);
698 return (vchunk << geo->chunk_shift) + offset;
702 * This routine returns the disk from which the requested read should
703 * be done. There is a per-array 'next expected sequential IO' sector
704 * number - if this matches on the next IO then we use the last disk.
705 * There is also a per-disk 'last know head position' sector that is
706 * maintained from IRQ contexts, both the normal and the resync IO
707 * completion handlers update this position correctly. If there is no
708 * perfect sequential match then we pick the disk whose head is closest.
710 * If there are 2 mirrors in the same 2 devices, performance degrades
711 * because position is mirror, not device based.
713 * The rdev for the device selected will have nr_pending incremented.
717 * FIXME: possibly should rethink readbalancing and do it differently
718 * depending on near_copies / far_copies geometry.
720 static struct md_rdev *read_balance(struct r10conf *conf,
721 struct r10bio *r10_bio,
722 int *max_sectors)
724 const sector_t this_sector = r10_bio->sector;
725 int disk, slot;
726 int sectors = r10_bio->sectors;
727 int best_good_sectors;
728 sector_t new_distance, best_dist;
729 struct md_rdev *best_rdev, *rdev = NULL;
730 int do_balance;
731 int best_slot;
732 struct geom *geo = &conf->geo;
734 raid10_find_phys(conf, r10_bio);
735 rcu_read_lock();
736 sectors = r10_bio->sectors;
737 best_slot = -1;
738 best_rdev = NULL;
739 best_dist = MaxSector;
740 best_good_sectors = 0;
741 do_balance = 1;
742 clear_bit(R10BIO_FailFast, &r10_bio->state);
744 * Check if we can balance. We can balance on the whole
745 * device if no resync is going on (recovery is ok), or below
746 * the resync window. We take the first readable disk when
747 * above the resync window.
749 if (conf->mddev->recovery_cp < MaxSector
750 && (this_sector + sectors >= conf->next_resync))
751 do_balance = 0;
753 for (slot = 0; slot < conf->copies ; slot++) {
754 sector_t first_bad;
755 int bad_sectors;
756 sector_t dev_sector;
758 if (r10_bio->devs[slot].bio == IO_BLOCKED)
759 continue;
760 disk = r10_bio->devs[slot].devnum;
761 rdev = rcu_dereference(conf->mirrors[disk].replacement);
762 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
763 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
764 rdev = rcu_dereference(conf->mirrors[disk].rdev);
765 if (rdev == NULL ||
766 test_bit(Faulty, &rdev->flags))
767 continue;
768 if (!test_bit(In_sync, &rdev->flags) &&
769 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770 continue;
772 dev_sector = r10_bio->devs[slot].addr;
773 if (is_badblock(rdev, dev_sector, sectors,
774 &first_bad, &bad_sectors)) {
775 if (best_dist < MaxSector)
776 /* Already have a better slot */
777 continue;
778 if (first_bad <= dev_sector) {
779 /* Cannot read here. If this is the
780 * 'primary' device, then we must not read
781 * beyond 'bad_sectors' from another device.
783 bad_sectors -= (dev_sector - first_bad);
784 if (!do_balance && sectors > bad_sectors)
785 sectors = bad_sectors;
786 if (best_good_sectors > sectors)
787 best_good_sectors = sectors;
788 } else {
789 sector_t good_sectors =
790 first_bad - dev_sector;
791 if (good_sectors > best_good_sectors) {
792 best_good_sectors = good_sectors;
793 best_slot = slot;
794 best_rdev = rdev;
796 if (!do_balance)
797 /* Must read from here */
798 break;
800 continue;
801 } else
802 best_good_sectors = sectors;
804 if (!do_balance)
805 break;
807 if (best_slot >= 0)
808 /* At least 2 disks to choose from so failfast is OK */
809 set_bit(R10BIO_FailFast, &r10_bio->state);
810 /* This optimisation is debatable, and completely destroys
811 * sequential read speed for 'far copies' arrays. So only
812 * keep it for 'near' arrays, and review those later.
814 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
815 new_distance = 0;
817 /* for far > 1 always use the lowest address */
818 else if (geo->far_copies > 1)
819 new_distance = r10_bio->devs[slot].addr;
820 else
821 new_distance = abs(r10_bio->devs[slot].addr -
822 conf->mirrors[disk].head_position);
823 if (new_distance < best_dist) {
824 best_dist = new_distance;
825 best_slot = slot;
826 best_rdev = rdev;
829 if (slot >= conf->copies) {
830 slot = best_slot;
831 rdev = best_rdev;
834 if (slot >= 0) {
835 atomic_inc(&rdev->nr_pending);
836 r10_bio->read_slot = slot;
837 } else
838 rdev = NULL;
839 rcu_read_unlock();
840 *max_sectors = best_good_sectors;
842 return rdev;
845 static int raid10_congested(struct mddev *mddev, int bits)
847 struct r10conf *conf = mddev->private;
848 int i, ret = 0;
850 if ((bits & (1 << WB_async_congested)) &&
851 conf->pending_count >= max_queued_requests)
852 return 1;
854 rcu_read_lock();
855 for (i = 0;
856 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857 && ret == 0;
858 i++) {
859 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
860 if (rdev && !test_bit(Faulty, &rdev->flags)) {
861 struct request_queue *q = bdev_get_queue(rdev->bdev);
863 ret |= bdi_congested(&q->backing_dev_info, bits);
866 rcu_read_unlock();
867 return ret;
870 static void flush_pending_writes(struct r10conf *conf)
872 /* Any writes that have been queued but are awaiting
873 * bitmap updates get flushed here.
875 spin_lock_irq(&conf->device_lock);
877 if (conf->pending_bio_list.head) {
878 struct bio *bio;
879 bio = bio_list_get(&conf->pending_bio_list);
880 conf->pending_count = 0;
881 spin_unlock_irq(&conf->device_lock);
882 /* flush any pending bitmap writes to disk
883 * before proceeding w/ I/O */
884 bitmap_unplug(conf->mddev->bitmap);
885 wake_up(&conf->wait_barrier);
887 while (bio) { /* submit pending writes */
888 struct bio *next = bio->bi_next;
889 struct md_rdev *rdev = (void*)bio->bi_bdev;
890 bio->bi_next = NULL;
891 bio->bi_bdev = rdev->bdev;
892 if (test_bit(Faulty, &rdev->flags)) {
893 bio->bi_error = -EIO;
894 bio_endio(bio);
895 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
896 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
897 /* Just ignore it */
898 bio_endio(bio);
899 else
900 generic_make_request(bio);
901 bio = next;
903 } else
904 spin_unlock_irq(&conf->device_lock);
907 /* Barriers....
908 * Sometimes we need to suspend IO while we do something else,
909 * either some resync/recovery, or reconfigure the array.
910 * To do this we raise a 'barrier'.
911 * The 'barrier' is a counter that can be raised multiple times
912 * to count how many activities are happening which preclude
913 * normal IO.
914 * We can only raise the barrier if there is no pending IO.
915 * i.e. if nr_pending == 0.
916 * We choose only to raise the barrier if no-one is waiting for the
917 * barrier to go down. This means that as soon as an IO request
918 * is ready, no other operations which require a barrier will start
919 * until the IO request has had a chance.
921 * So: regular IO calls 'wait_barrier'. When that returns there
922 * is no backgroup IO happening, It must arrange to call
923 * allow_barrier when it has finished its IO.
924 * backgroup IO calls must call raise_barrier. Once that returns
925 * there is no normal IO happeing. It must arrange to call
926 * lower_barrier when the particular background IO completes.
929 static void raise_barrier(struct r10conf *conf, int force)
931 BUG_ON(force && !conf->barrier);
932 spin_lock_irq(&conf->resync_lock);
934 /* Wait until no block IO is waiting (unless 'force') */
935 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
936 conf->resync_lock);
938 /* block any new IO from starting */
939 conf->barrier++;
941 /* Now wait for all pending IO to complete */
942 wait_event_lock_irq(conf->wait_barrier,
943 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
944 conf->resync_lock);
946 spin_unlock_irq(&conf->resync_lock);
949 static void lower_barrier(struct r10conf *conf)
951 unsigned long flags;
952 spin_lock_irqsave(&conf->resync_lock, flags);
953 conf->barrier--;
954 spin_unlock_irqrestore(&conf->resync_lock, flags);
955 wake_up(&conf->wait_barrier);
958 static void wait_barrier(struct r10conf *conf)
960 spin_lock_irq(&conf->resync_lock);
961 if (conf->barrier) {
962 conf->nr_waiting++;
963 /* Wait for the barrier to drop.
964 * However if there are already pending
965 * requests (preventing the barrier from
966 * rising completely), and the
967 * pre-process bio queue isn't empty,
968 * then don't wait, as we need to empty
969 * that queue to get the nr_pending
970 * count down.
972 raid10_log(conf->mddev, "wait barrier");
973 wait_event_lock_irq(conf->wait_barrier,
974 !conf->barrier ||
975 (atomic_read(&conf->nr_pending) &&
976 current->bio_list &&
977 !bio_list_empty(current->bio_list)),
978 conf->resync_lock);
979 conf->nr_waiting--;
980 if (!conf->nr_waiting)
981 wake_up(&conf->wait_barrier);
983 atomic_inc(&conf->nr_pending);
984 spin_unlock_irq(&conf->resync_lock);
987 static void allow_barrier(struct r10conf *conf)
989 if ((atomic_dec_and_test(&conf->nr_pending)) ||
990 (conf->array_freeze_pending))
991 wake_up(&conf->wait_barrier);
994 static void freeze_array(struct r10conf *conf, int extra)
996 /* stop syncio and normal IO and wait for everything to
997 * go quiet.
998 * We increment barrier and nr_waiting, and then
999 * wait until nr_pending match nr_queued+extra
1000 * This is called in the context of one normal IO request
1001 * that has failed. Thus any sync request that might be pending
1002 * will be blocked by nr_pending, and we need to wait for
1003 * pending IO requests to complete or be queued for re-try.
1004 * Thus the number queued (nr_queued) plus this request (extra)
1005 * must match the number of pending IOs (nr_pending) before
1006 * we continue.
1008 spin_lock_irq(&conf->resync_lock);
1009 conf->array_freeze_pending++;
1010 conf->barrier++;
1011 conf->nr_waiting++;
1012 wait_event_lock_irq_cmd(conf->wait_barrier,
1013 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1014 conf->resync_lock,
1015 flush_pending_writes(conf));
1017 conf->array_freeze_pending--;
1018 spin_unlock_irq(&conf->resync_lock);
1021 static void unfreeze_array(struct r10conf *conf)
1023 /* reverse the effect of the freeze */
1024 spin_lock_irq(&conf->resync_lock);
1025 conf->barrier--;
1026 conf->nr_waiting--;
1027 wake_up(&conf->wait_barrier);
1028 spin_unlock_irq(&conf->resync_lock);
1031 static sector_t choose_data_offset(struct r10bio *r10_bio,
1032 struct md_rdev *rdev)
1034 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1035 test_bit(R10BIO_Previous, &r10_bio->state))
1036 return rdev->data_offset;
1037 else
1038 return rdev->new_data_offset;
1041 struct raid10_plug_cb {
1042 struct blk_plug_cb cb;
1043 struct bio_list pending;
1044 int pending_cnt;
1047 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1049 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1050 cb);
1051 struct mddev *mddev = plug->cb.data;
1052 struct r10conf *conf = mddev->private;
1053 struct bio *bio;
1055 if (from_schedule || current->bio_list) {
1056 spin_lock_irq(&conf->device_lock);
1057 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1058 conf->pending_count += plug->pending_cnt;
1059 spin_unlock_irq(&conf->device_lock);
1060 wake_up(&conf->wait_barrier);
1061 md_wakeup_thread(mddev->thread);
1062 kfree(plug);
1063 return;
1066 /* we aren't scheduling, so we can do the write-out directly. */
1067 bio = bio_list_get(&plug->pending);
1068 bitmap_unplug(mddev->bitmap);
1069 wake_up(&conf->wait_barrier);
1071 while (bio) { /* submit pending writes */
1072 struct bio *next = bio->bi_next;
1073 struct md_rdev *rdev = (void*)bio->bi_bdev;
1074 bio->bi_next = NULL;
1075 bio->bi_bdev = rdev->bdev;
1076 if (test_bit(Faulty, &rdev->flags)) {
1077 bio->bi_error = -EIO;
1078 bio_endio(bio);
1079 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1080 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1081 /* Just ignore it */
1082 bio_endio(bio);
1083 else
1084 generic_make_request(bio);
1085 bio = next;
1087 kfree(plug);
1090 static void __make_request(struct mddev *mddev, struct bio *bio)
1092 struct r10conf *conf = mddev->private;
1093 struct r10bio *r10_bio;
1094 struct bio *read_bio;
1095 int i;
1096 const int op = bio_op(bio);
1097 const int rw = bio_data_dir(bio);
1098 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1099 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1100 unsigned long flags;
1101 struct md_rdev *blocked_rdev;
1102 struct blk_plug_cb *cb;
1103 struct raid10_plug_cb *plug = NULL;
1104 int sectors_handled;
1105 int max_sectors;
1106 int sectors;
1108 md_write_start(mddev, bio);
1111 * Register the new request and wait if the reconstruction
1112 * thread has put up a bar for new requests.
1113 * Continue immediately if no resync is active currently.
1115 wait_barrier(conf);
1117 sectors = bio_sectors(bio);
1118 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1119 bio->bi_iter.bi_sector < conf->reshape_progress &&
1120 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1121 /* IO spans the reshape position. Need to wait for
1122 * reshape to pass
1124 raid10_log(conf->mddev, "wait reshape");
1125 allow_barrier(conf);
1126 wait_event(conf->wait_barrier,
1127 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1128 conf->reshape_progress >= bio->bi_iter.bi_sector +
1129 sectors);
1130 wait_barrier(conf);
1132 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1133 bio_data_dir(bio) == WRITE &&
1134 (mddev->reshape_backwards
1135 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1136 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1137 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1138 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1139 /* Need to update reshape_position in metadata */
1140 mddev->reshape_position = conf->reshape_progress;
1141 set_mask_bits(&mddev->sb_flags, 0,
1142 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1143 md_wakeup_thread(mddev->thread);
1144 raid10_log(conf->mddev, "wait reshape metadata");
1145 wait_event(mddev->sb_wait,
1146 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1148 conf->reshape_safe = mddev->reshape_position;
1151 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1153 r10_bio->master_bio = bio;
1154 r10_bio->sectors = sectors;
1156 r10_bio->mddev = mddev;
1157 r10_bio->sector = bio->bi_iter.bi_sector;
1158 r10_bio->state = 0;
1160 /* We might need to issue multiple reads to different
1161 * devices if there are bad blocks around, so we keep
1162 * track of the number of reads in bio->bi_phys_segments.
1163 * If this is 0, there is only one r10_bio and no locking
1164 * will be needed when the request completes. If it is
1165 * non-zero, then it is the number of not-completed requests.
1167 bio->bi_phys_segments = 0;
1168 bio_clear_flag(bio, BIO_SEG_VALID);
1170 if (rw == READ) {
1172 * read balancing logic:
1174 struct md_rdev *rdev;
1175 int slot;
1177 read_again:
1178 rdev = read_balance(conf, r10_bio, &max_sectors);
1179 if (!rdev) {
1180 raid_end_bio_io(r10_bio);
1181 return;
1183 slot = r10_bio->read_slot;
1185 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1186 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1187 max_sectors);
1189 r10_bio->devs[slot].bio = read_bio;
1190 r10_bio->devs[slot].rdev = rdev;
1192 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1193 choose_data_offset(r10_bio, rdev);
1194 read_bio->bi_bdev = rdev->bdev;
1195 read_bio->bi_end_io = raid10_end_read_request;
1196 bio_set_op_attrs(read_bio, op, do_sync);
1197 if (test_bit(FailFast, &rdev->flags) &&
1198 test_bit(R10BIO_FailFast, &r10_bio->state))
1199 read_bio->bi_opf |= MD_FAILFAST;
1200 read_bio->bi_private = r10_bio;
1202 if (mddev->gendisk)
1203 trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1204 read_bio, disk_devt(mddev->gendisk),
1205 r10_bio->sector);
1206 if (max_sectors < r10_bio->sectors) {
1207 /* Could not read all from this device, so we will
1208 * need another r10_bio.
1210 sectors_handled = (r10_bio->sector + max_sectors
1211 - bio->bi_iter.bi_sector);
1212 r10_bio->sectors = max_sectors;
1213 spin_lock_irq(&conf->device_lock);
1214 if (bio->bi_phys_segments == 0)
1215 bio->bi_phys_segments = 2;
1216 else
1217 bio->bi_phys_segments++;
1218 spin_unlock_irq(&conf->device_lock);
1219 /* Cannot call generic_make_request directly
1220 * as that will be queued in __generic_make_request
1221 * and subsequent mempool_alloc might block
1222 * waiting for it. so hand bio over to raid10d.
1224 reschedule_retry(r10_bio);
1226 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1228 r10_bio->master_bio = bio;
1229 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1230 r10_bio->state = 0;
1231 r10_bio->mddev = mddev;
1232 r10_bio->sector = bio->bi_iter.bi_sector +
1233 sectors_handled;
1234 goto read_again;
1235 } else
1236 generic_make_request(read_bio);
1237 return;
1241 * WRITE:
1243 if (conf->pending_count >= max_queued_requests) {
1244 md_wakeup_thread(mddev->thread);
1245 raid10_log(mddev, "wait queued");
1246 wait_event(conf->wait_barrier,
1247 conf->pending_count < max_queued_requests);
1249 /* first select target devices under rcu_lock and
1250 * inc refcount on their rdev. Record them by setting
1251 * bios[x] to bio
1252 * If there are known/acknowledged bad blocks on any device
1253 * on which we have seen a write error, we want to avoid
1254 * writing to those blocks. This potentially requires several
1255 * writes to write around the bad blocks. Each set of writes
1256 * gets its own r10_bio with a set of bios attached. The number
1257 * of r10_bios is recored in bio->bi_phys_segments just as with
1258 * the read case.
1261 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1262 raid10_find_phys(conf, r10_bio);
1263 retry_write:
1264 blocked_rdev = NULL;
1265 rcu_read_lock();
1266 max_sectors = r10_bio->sectors;
1268 for (i = 0; i < conf->copies; i++) {
1269 int d = r10_bio->devs[i].devnum;
1270 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1271 struct md_rdev *rrdev = rcu_dereference(
1272 conf->mirrors[d].replacement);
1273 if (rdev == rrdev)
1274 rrdev = NULL;
1275 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1276 atomic_inc(&rdev->nr_pending);
1277 blocked_rdev = rdev;
1278 break;
1280 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1281 atomic_inc(&rrdev->nr_pending);
1282 blocked_rdev = rrdev;
1283 break;
1285 if (rdev && (test_bit(Faulty, &rdev->flags)))
1286 rdev = NULL;
1287 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1288 rrdev = NULL;
1290 r10_bio->devs[i].bio = NULL;
1291 r10_bio->devs[i].repl_bio = NULL;
1293 if (!rdev && !rrdev) {
1294 set_bit(R10BIO_Degraded, &r10_bio->state);
1295 continue;
1297 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1298 sector_t first_bad;
1299 sector_t dev_sector = r10_bio->devs[i].addr;
1300 int bad_sectors;
1301 int is_bad;
1303 is_bad = is_badblock(rdev, dev_sector,
1304 max_sectors,
1305 &first_bad, &bad_sectors);
1306 if (is_bad < 0) {
1307 /* Mustn't write here until the bad block
1308 * is acknowledged
1310 atomic_inc(&rdev->nr_pending);
1311 set_bit(BlockedBadBlocks, &rdev->flags);
1312 blocked_rdev = rdev;
1313 break;
1315 if (is_bad && first_bad <= dev_sector) {
1316 /* Cannot write here at all */
1317 bad_sectors -= (dev_sector - first_bad);
1318 if (bad_sectors < max_sectors)
1319 /* Mustn't write more than bad_sectors
1320 * to other devices yet
1322 max_sectors = bad_sectors;
1323 /* We don't set R10BIO_Degraded as that
1324 * only applies if the disk is missing,
1325 * so it might be re-added, and we want to
1326 * know to recover this chunk.
1327 * In this case the device is here, and the
1328 * fact that this chunk is not in-sync is
1329 * recorded in the bad block log.
1331 continue;
1333 if (is_bad) {
1334 int good_sectors = first_bad - dev_sector;
1335 if (good_sectors < max_sectors)
1336 max_sectors = good_sectors;
1339 if (rdev) {
1340 r10_bio->devs[i].bio = bio;
1341 atomic_inc(&rdev->nr_pending);
1343 if (rrdev) {
1344 r10_bio->devs[i].repl_bio = bio;
1345 atomic_inc(&rrdev->nr_pending);
1348 rcu_read_unlock();
1350 if (unlikely(blocked_rdev)) {
1351 /* Have to wait for this device to get unblocked, then retry */
1352 int j;
1353 int d;
1355 for (j = 0; j < i; j++) {
1356 if (r10_bio->devs[j].bio) {
1357 d = r10_bio->devs[j].devnum;
1358 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1360 if (r10_bio->devs[j].repl_bio) {
1361 struct md_rdev *rdev;
1362 d = r10_bio->devs[j].devnum;
1363 rdev = conf->mirrors[d].replacement;
1364 if (!rdev) {
1365 /* Race with remove_disk */
1366 smp_mb();
1367 rdev = conf->mirrors[d].rdev;
1369 rdev_dec_pending(rdev, mddev);
1372 allow_barrier(conf);
1373 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1374 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1375 wait_barrier(conf);
1376 goto retry_write;
1379 if (max_sectors < r10_bio->sectors) {
1380 /* We are splitting this into multiple parts, so
1381 * we need to prepare for allocating another r10_bio.
1383 r10_bio->sectors = max_sectors;
1384 spin_lock_irq(&conf->device_lock);
1385 if (bio->bi_phys_segments == 0)
1386 bio->bi_phys_segments = 2;
1387 else
1388 bio->bi_phys_segments++;
1389 spin_unlock_irq(&conf->device_lock);
1391 sectors_handled = r10_bio->sector + max_sectors -
1392 bio->bi_iter.bi_sector;
1394 atomic_set(&r10_bio->remaining, 1);
1395 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1397 for (i = 0; i < conf->copies; i++) {
1398 struct bio *mbio;
1399 int d = r10_bio->devs[i].devnum;
1400 if (r10_bio->devs[i].bio) {
1401 struct md_rdev *rdev = conf->mirrors[d].rdev;
1402 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1403 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1404 max_sectors);
1405 r10_bio->devs[i].bio = mbio;
1407 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1408 choose_data_offset(r10_bio,
1409 rdev));
1410 mbio->bi_bdev = rdev->bdev;
1411 mbio->bi_end_io = raid10_end_write_request;
1412 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1413 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags) &&
1414 enough(conf, d))
1415 mbio->bi_opf |= MD_FAILFAST;
1416 mbio->bi_private = r10_bio;
1418 if (conf->mddev->gendisk)
1419 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1420 mbio, disk_devt(conf->mddev->gendisk),
1421 r10_bio->sector);
1422 /* flush_pending_writes() needs access to the rdev so...*/
1423 mbio->bi_bdev = (void*)rdev;
1425 atomic_inc(&r10_bio->remaining);
1427 cb = blk_check_plugged(raid10_unplug, mddev,
1428 sizeof(*plug));
1429 if (cb)
1430 plug = container_of(cb, struct raid10_plug_cb,
1431 cb);
1432 else
1433 plug = NULL;
1434 spin_lock_irqsave(&conf->device_lock, flags);
1435 if (plug) {
1436 bio_list_add(&plug->pending, mbio);
1437 plug->pending_cnt++;
1438 } else {
1439 bio_list_add(&conf->pending_bio_list, mbio);
1440 conf->pending_count++;
1442 spin_unlock_irqrestore(&conf->device_lock, flags);
1443 if (!plug)
1444 md_wakeup_thread(mddev->thread);
1447 if (r10_bio->devs[i].repl_bio) {
1448 struct md_rdev *rdev = conf->mirrors[d].replacement;
1449 if (rdev == NULL) {
1450 /* Replacement just got moved to main 'rdev' */
1451 smp_mb();
1452 rdev = conf->mirrors[d].rdev;
1454 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1455 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1456 max_sectors);
1457 r10_bio->devs[i].repl_bio = mbio;
1459 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1460 choose_data_offset(
1461 r10_bio, rdev));
1462 mbio->bi_bdev = rdev->bdev;
1463 mbio->bi_end_io = raid10_end_write_request;
1464 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1465 mbio->bi_private = r10_bio;
1467 if (conf->mddev->gendisk)
1468 trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1469 mbio, disk_devt(conf->mddev->gendisk),
1470 r10_bio->sector);
1471 /* flush_pending_writes() needs access to the rdev so...*/
1472 mbio->bi_bdev = (void*)rdev;
1474 atomic_inc(&r10_bio->remaining);
1475 spin_lock_irqsave(&conf->device_lock, flags);
1476 bio_list_add(&conf->pending_bio_list, mbio);
1477 conf->pending_count++;
1478 spin_unlock_irqrestore(&conf->device_lock, flags);
1479 if (!mddev_check_plugged(mddev))
1480 md_wakeup_thread(mddev->thread);
1484 /* Don't remove the bias on 'remaining' (one_write_done) until
1485 * after checking if we need to go around again.
1488 if (sectors_handled < bio_sectors(bio)) {
1489 one_write_done(r10_bio);
1490 /* We need another r10_bio. It has already been counted
1491 * in bio->bi_phys_segments.
1493 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1495 r10_bio->master_bio = bio;
1496 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1498 r10_bio->mddev = mddev;
1499 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1500 r10_bio->state = 0;
1501 goto retry_write;
1503 one_write_done(r10_bio);
1506 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1508 struct r10conf *conf = mddev->private;
1509 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1510 int chunk_sects = chunk_mask + 1;
1512 struct bio *split;
1514 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1515 md_flush_request(mddev, bio);
1516 return;
1519 do {
1522 * If this request crosses a chunk boundary, we need to split
1523 * it.
1525 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1526 bio_sectors(bio) > chunk_sects
1527 && (conf->geo.near_copies < conf->geo.raid_disks
1528 || conf->prev.near_copies <
1529 conf->prev.raid_disks))) {
1530 split = bio_split(bio, chunk_sects -
1531 (bio->bi_iter.bi_sector &
1532 (chunk_sects - 1)),
1533 GFP_NOIO, fs_bio_set);
1534 bio_chain(split, bio);
1535 } else {
1536 split = bio;
1539 __make_request(mddev, split);
1540 } while (split != bio);
1542 /* In case raid10d snuck in to freeze_array */
1543 wake_up(&conf->wait_barrier);
1546 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1548 struct r10conf *conf = mddev->private;
1549 int i;
1551 if (conf->geo.near_copies < conf->geo.raid_disks)
1552 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1553 if (conf->geo.near_copies > 1)
1554 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1555 if (conf->geo.far_copies > 1) {
1556 if (conf->geo.far_offset)
1557 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1558 else
1559 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1560 if (conf->geo.far_set_size != conf->geo.raid_disks)
1561 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1563 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1564 conf->geo.raid_disks - mddev->degraded);
1565 rcu_read_lock();
1566 for (i = 0; i < conf->geo.raid_disks; i++) {
1567 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1568 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1570 rcu_read_unlock();
1571 seq_printf(seq, "]");
1574 /* check if there are enough drives for
1575 * every block to appear on atleast one.
1576 * Don't consider the device numbered 'ignore'
1577 * as we might be about to remove it.
1579 static int _enough(struct r10conf *conf, int previous, int ignore)
1581 int first = 0;
1582 int has_enough = 0;
1583 int disks, ncopies;
1584 if (previous) {
1585 disks = conf->prev.raid_disks;
1586 ncopies = conf->prev.near_copies;
1587 } else {
1588 disks = conf->geo.raid_disks;
1589 ncopies = conf->geo.near_copies;
1592 rcu_read_lock();
1593 do {
1594 int n = conf->copies;
1595 int cnt = 0;
1596 int this = first;
1597 while (n--) {
1598 struct md_rdev *rdev;
1599 if (this != ignore &&
1600 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1601 test_bit(In_sync, &rdev->flags))
1602 cnt++;
1603 this = (this+1) % disks;
1605 if (cnt == 0)
1606 goto out;
1607 first = (first + ncopies) % disks;
1608 } while (first != 0);
1609 has_enough = 1;
1610 out:
1611 rcu_read_unlock();
1612 return has_enough;
1615 static int enough(struct r10conf *conf, int ignore)
1617 /* when calling 'enough', both 'prev' and 'geo' must
1618 * be stable.
1619 * This is ensured if ->reconfig_mutex or ->device_lock
1620 * is held.
1622 return _enough(conf, 0, ignore) &&
1623 _enough(conf, 1, ignore);
1626 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1628 char b[BDEVNAME_SIZE];
1629 struct r10conf *conf = mddev->private;
1630 unsigned long flags;
1633 * If it is not operational, then we have already marked it as dead
1634 * else if it is the last working disks, ignore the error, let the
1635 * next level up know.
1636 * else mark the drive as failed
1638 spin_lock_irqsave(&conf->device_lock, flags);
1639 if (test_bit(In_sync, &rdev->flags)
1640 && !enough(conf, rdev->raid_disk)) {
1642 * Don't fail the drive, just return an IO error.
1644 spin_unlock_irqrestore(&conf->device_lock, flags);
1645 return;
1647 if (test_and_clear_bit(In_sync, &rdev->flags))
1648 mddev->degraded++;
1650 * If recovery is running, make sure it aborts.
1652 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1653 set_bit(Blocked, &rdev->flags);
1654 set_bit(Faulty, &rdev->flags);
1655 set_mask_bits(&mddev->sb_flags, 0,
1656 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1657 spin_unlock_irqrestore(&conf->device_lock, flags);
1658 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1659 "md/raid10:%s: Operation continuing on %d devices.\n",
1660 mdname(mddev), bdevname(rdev->bdev, b),
1661 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1664 static void print_conf(struct r10conf *conf)
1666 int i;
1667 struct md_rdev *rdev;
1669 pr_debug("RAID10 conf printout:\n");
1670 if (!conf) {
1671 pr_debug("(!conf)\n");
1672 return;
1674 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1675 conf->geo.raid_disks);
1677 /* This is only called with ->reconfix_mutex held, so
1678 * rcu protection of rdev is not needed */
1679 for (i = 0; i < conf->geo.raid_disks; i++) {
1680 char b[BDEVNAME_SIZE];
1681 rdev = conf->mirrors[i].rdev;
1682 if (rdev)
1683 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1684 i, !test_bit(In_sync, &rdev->flags),
1685 !test_bit(Faulty, &rdev->flags),
1686 bdevname(rdev->bdev,b));
1690 static void close_sync(struct r10conf *conf)
1692 wait_barrier(conf);
1693 allow_barrier(conf);
1695 mempool_destroy(conf->r10buf_pool);
1696 conf->r10buf_pool = NULL;
1699 static int raid10_spare_active(struct mddev *mddev)
1701 int i;
1702 struct r10conf *conf = mddev->private;
1703 struct raid10_info *tmp;
1704 int count = 0;
1705 unsigned long flags;
1708 * Find all non-in_sync disks within the RAID10 configuration
1709 * and mark them in_sync
1711 for (i = 0; i < conf->geo.raid_disks; i++) {
1712 tmp = conf->mirrors + i;
1713 if (tmp->replacement
1714 && tmp->replacement->recovery_offset == MaxSector
1715 && !test_bit(Faulty, &tmp->replacement->flags)
1716 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1717 /* Replacement has just become active */
1718 if (!tmp->rdev
1719 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1720 count++;
1721 if (tmp->rdev) {
1722 /* Replaced device not technically faulty,
1723 * but we need to be sure it gets removed
1724 * and never re-added.
1726 set_bit(Faulty, &tmp->rdev->flags);
1727 sysfs_notify_dirent_safe(
1728 tmp->rdev->sysfs_state);
1730 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1731 } else if (tmp->rdev
1732 && tmp->rdev->recovery_offset == MaxSector
1733 && !test_bit(Faulty, &tmp->rdev->flags)
1734 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1735 count++;
1736 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1739 spin_lock_irqsave(&conf->device_lock, flags);
1740 mddev->degraded -= count;
1741 spin_unlock_irqrestore(&conf->device_lock, flags);
1743 print_conf(conf);
1744 return count;
1747 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1749 struct r10conf *conf = mddev->private;
1750 int err = -EEXIST;
1751 int mirror;
1752 int first = 0;
1753 int last = conf->geo.raid_disks - 1;
1755 if (mddev->recovery_cp < MaxSector)
1756 /* only hot-add to in-sync arrays, as recovery is
1757 * very different from resync
1759 return -EBUSY;
1760 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1761 return -EINVAL;
1763 if (md_integrity_add_rdev(rdev, mddev))
1764 return -ENXIO;
1766 if (rdev->raid_disk >= 0)
1767 first = last = rdev->raid_disk;
1769 if (rdev->saved_raid_disk >= first &&
1770 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1771 mirror = rdev->saved_raid_disk;
1772 else
1773 mirror = first;
1774 for ( ; mirror <= last ; mirror++) {
1775 struct raid10_info *p = &conf->mirrors[mirror];
1776 if (p->recovery_disabled == mddev->recovery_disabled)
1777 continue;
1778 if (p->rdev) {
1779 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1780 p->replacement != NULL)
1781 continue;
1782 clear_bit(In_sync, &rdev->flags);
1783 set_bit(Replacement, &rdev->flags);
1784 rdev->raid_disk = mirror;
1785 err = 0;
1786 if (mddev->gendisk)
1787 disk_stack_limits(mddev->gendisk, rdev->bdev,
1788 rdev->data_offset << 9);
1789 conf->fullsync = 1;
1790 rcu_assign_pointer(p->replacement, rdev);
1791 break;
1794 if (mddev->gendisk)
1795 disk_stack_limits(mddev->gendisk, rdev->bdev,
1796 rdev->data_offset << 9);
1798 p->head_position = 0;
1799 p->recovery_disabled = mddev->recovery_disabled - 1;
1800 rdev->raid_disk = mirror;
1801 err = 0;
1802 if (rdev->saved_raid_disk != mirror)
1803 conf->fullsync = 1;
1804 rcu_assign_pointer(p->rdev, rdev);
1805 break;
1807 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1808 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1810 print_conf(conf);
1811 return err;
1814 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1816 struct r10conf *conf = mddev->private;
1817 int err = 0;
1818 int number = rdev->raid_disk;
1819 struct md_rdev **rdevp;
1820 struct raid10_info *p = conf->mirrors + number;
1822 print_conf(conf);
1823 if (rdev == p->rdev)
1824 rdevp = &p->rdev;
1825 else if (rdev == p->replacement)
1826 rdevp = &p->replacement;
1827 else
1828 return 0;
1830 if (test_bit(In_sync, &rdev->flags) ||
1831 atomic_read(&rdev->nr_pending)) {
1832 err = -EBUSY;
1833 goto abort;
1835 /* Only remove non-faulty devices if recovery
1836 * is not possible.
1838 if (!test_bit(Faulty, &rdev->flags) &&
1839 mddev->recovery_disabled != p->recovery_disabled &&
1840 (!p->replacement || p->replacement == rdev) &&
1841 number < conf->geo.raid_disks &&
1842 enough(conf, -1)) {
1843 err = -EBUSY;
1844 goto abort;
1846 *rdevp = NULL;
1847 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1848 synchronize_rcu();
1849 if (atomic_read(&rdev->nr_pending)) {
1850 /* lost the race, try later */
1851 err = -EBUSY;
1852 *rdevp = rdev;
1853 goto abort;
1856 if (p->replacement) {
1857 /* We must have just cleared 'rdev' */
1858 p->rdev = p->replacement;
1859 clear_bit(Replacement, &p->replacement->flags);
1860 smp_mb(); /* Make sure other CPUs may see both as identical
1861 * but will never see neither -- if they are careful.
1863 p->replacement = NULL;
1864 clear_bit(WantReplacement, &rdev->flags);
1865 } else
1866 /* We might have just remove the Replacement as faulty
1867 * Clear the flag just in case
1869 clear_bit(WantReplacement, &rdev->flags);
1871 err = md_integrity_register(mddev);
1873 abort:
1875 print_conf(conf);
1876 return err;
1879 static void end_sync_read(struct bio *bio)
1881 struct r10bio *r10_bio = bio->bi_private;
1882 struct r10conf *conf = r10_bio->mddev->private;
1883 int d;
1885 if (bio == r10_bio->master_bio) {
1886 /* this is a reshape read */
1887 d = r10_bio->read_slot; /* really the read dev */
1888 } else
1889 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1891 if (!bio->bi_error)
1892 set_bit(R10BIO_Uptodate, &r10_bio->state);
1893 else
1894 /* The write handler will notice the lack of
1895 * R10BIO_Uptodate and record any errors etc
1897 atomic_add(r10_bio->sectors,
1898 &conf->mirrors[d].rdev->corrected_errors);
1900 /* for reconstruct, we always reschedule after a read.
1901 * for resync, only after all reads
1903 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1904 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1905 atomic_dec_and_test(&r10_bio->remaining)) {
1906 /* we have read all the blocks,
1907 * do the comparison in process context in raid10d
1909 reschedule_retry(r10_bio);
1913 static void end_sync_request(struct r10bio *r10_bio)
1915 struct mddev *mddev = r10_bio->mddev;
1917 while (atomic_dec_and_test(&r10_bio->remaining)) {
1918 if (r10_bio->master_bio == NULL) {
1919 /* the primary of several recovery bios */
1920 sector_t s = r10_bio->sectors;
1921 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1922 test_bit(R10BIO_WriteError, &r10_bio->state))
1923 reschedule_retry(r10_bio);
1924 else
1925 put_buf(r10_bio);
1926 md_done_sync(mddev, s, 1);
1927 break;
1928 } else {
1929 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1930 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1931 test_bit(R10BIO_WriteError, &r10_bio->state))
1932 reschedule_retry(r10_bio);
1933 else
1934 put_buf(r10_bio);
1935 r10_bio = r10_bio2;
1940 static void end_sync_write(struct bio *bio)
1942 struct r10bio *r10_bio = bio->bi_private;
1943 struct mddev *mddev = r10_bio->mddev;
1944 struct r10conf *conf = mddev->private;
1945 int d;
1946 sector_t first_bad;
1947 int bad_sectors;
1948 int slot;
1949 int repl;
1950 struct md_rdev *rdev = NULL;
1952 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1953 if (repl)
1954 rdev = conf->mirrors[d].replacement;
1955 else
1956 rdev = conf->mirrors[d].rdev;
1958 if (bio->bi_error) {
1959 if (repl)
1960 md_error(mddev, rdev);
1961 else {
1962 set_bit(WriteErrorSeen, &rdev->flags);
1963 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1964 set_bit(MD_RECOVERY_NEEDED,
1965 &rdev->mddev->recovery);
1966 set_bit(R10BIO_WriteError, &r10_bio->state);
1968 } else if (is_badblock(rdev,
1969 r10_bio->devs[slot].addr,
1970 r10_bio->sectors,
1971 &first_bad, &bad_sectors))
1972 set_bit(R10BIO_MadeGood, &r10_bio->state);
1974 rdev_dec_pending(rdev, mddev);
1976 end_sync_request(r10_bio);
1980 * Note: sync and recover and handled very differently for raid10
1981 * This code is for resync.
1982 * For resync, we read through virtual addresses and read all blocks.
1983 * If there is any error, we schedule a write. The lowest numbered
1984 * drive is authoritative.
1985 * However requests come for physical address, so we need to map.
1986 * For every physical address there are raid_disks/copies virtual addresses,
1987 * which is always are least one, but is not necessarly an integer.
1988 * This means that a physical address can span multiple chunks, so we may
1989 * have to submit multiple io requests for a single sync request.
1992 * We check if all blocks are in-sync and only write to blocks that
1993 * aren't in sync
1995 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1997 struct r10conf *conf = mddev->private;
1998 int i, first;
1999 struct bio *tbio, *fbio;
2000 int vcnt;
2002 atomic_set(&r10_bio->remaining, 1);
2004 /* find the first device with a block */
2005 for (i=0; i<conf->copies; i++)
2006 if (!r10_bio->devs[i].bio->bi_error)
2007 break;
2009 if (i == conf->copies)
2010 goto done;
2012 first = i;
2013 fbio = r10_bio->devs[i].bio;
2014 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2015 fbio->bi_iter.bi_idx = 0;
2017 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2018 /* now find blocks with errors */
2019 for (i=0 ; i < conf->copies ; i++) {
2020 int j, d;
2021 struct md_rdev *rdev;
2023 tbio = r10_bio->devs[i].bio;
2025 if (tbio->bi_end_io != end_sync_read)
2026 continue;
2027 if (i == first)
2028 continue;
2029 d = r10_bio->devs[i].devnum;
2030 rdev = conf->mirrors[d].rdev;
2031 if (!r10_bio->devs[i].bio->bi_error) {
2032 /* We know that the bi_io_vec layout is the same for
2033 * both 'first' and 'i', so we just compare them.
2034 * All vec entries are PAGE_SIZE;
2036 int sectors = r10_bio->sectors;
2037 for (j = 0; j < vcnt; j++) {
2038 int len = PAGE_SIZE;
2039 if (sectors < (len / 512))
2040 len = sectors * 512;
2041 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2042 page_address(tbio->bi_io_vec[j].bv_page),
2043 len))
2044 break;
2045 sectors -= len/512;
2047 if (j == vcnt)
2048 continue;
2049 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2050 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2051 /* Don't fix anything. */
2052 continue;
2053 } else if (test_bit(FailFast, &rdev->flags)) {
2054 /* Just give up on this device */
2055 md_error(rdev->mddev, rdev);
2056 continue;
2058 /* Ok, we need to write this bio, either to correct an
2059 * inconsistency or to correct an unreadable block.
2060 * First we need to fixup bv_offset, bv_len and
2061 * bi_vecs, as the read request might have corrupted these
2063 bio_reset(tbio);
2065 tbio->bi_vcnt = vcnt;
2066 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
2067 tbio->bi_private = r10_bio;
2068 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2069 tbio->bi_end_io = end_sync_write;
2070 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2072 bio_copy_data(tbio, fbio);
2074 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2075 atomic_inc(&r10_bio->remaining);
2076 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2078 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2079 tbio->bi_opf |= MD_FAILFAST;
2080 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2081 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2082 generic_make_request(tbio);
2085 /* Now write out to any replacement devices
2086 * that are active
2088 for (i = 0; i < conf->copies; i++) {
2089 int d;
2091 tbio = r10_bio->devs[i].repl_bio;
2092 if (!tbio || !tbio->bi_end_io)
2093 continue;
2094 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2095 && r10_bio->devs[i].bio != fbio)
2096 bio_copy_data(tbio, fbio);
2097 d = r10_bio->devs[i].devnum;
2098 atomic_inc(&r10_bio->remaining);
2099 md_sync_acct(conf->mirrors[d].replacement->bdev,
2100 bio_sectors(tbio));
2101 generic_make_request(tbio);
2104 done:
2105 if (atomic_dec_and_test(&r10_bio->remaining)) {
2106 md_done_sync(mddev, r10_bio->sectors, 1);
2107 put_buf(r10_bio);
2112 * Now for the recovery code.
2113 * Recovery happens across physical sectors.
2114 * We recover all non-is_sync drives by finding the virtual address of
2115 * each, and then choose a working drive that also has that virt address.
2116 * There is a separate r10_bio for each non-in_sync drive.
2117 * Only the first two slots are in use. The first for reading,
2118 * The second for writing.
2121 static void fix_recovery_read_error(struct r10bio *r10_bio)
2123 /* We got a read error during recovery.
2124 * We repeat the read in smaller page-sized sections.
2125 * If a read succeeds, write it to the new device or record
2126 * a bad block if we cannot.
2127 * If a read fails, record a bad block on both old and
2128 * new devices.
2130 struct mddev *mddev = r10_bio->mddev;
2131 struct r10conf *conf = mddev->private;
2132 struct bio *bio = r10_bio->devs[0].bio;
2133 sector_t sect = 0;
2134 int sectors = r10_bio->sectors;
2135 int idx = 0;
2136 int dr = r10_bio->devs[0].devnum;
2137 int dw = r10_bio->devs[1].devnum;
2139 while (sectors) {
2140 int s = sectors;
2141 struct md_rdev *rdev;
2142 sector_t addr;
2143 int ok;
2145 if (s > (PAGE_SIZE>>9))
2146 s = PAGE_SIZE >> 9;
2148 rdev = conf->mirrors[dr].rdev;
2149 addr = r10_bio->devs[0].addr + sect,
2150 ok = sync_page_io(rdev,
2151 addr,
2152 s << 9,
2153 bio->bi_io_vec[idx].bv_page,
2154 REQ_OP_READ, 0, false);
2155 if (ok) {
2156 rdev = conf->mirrors[dw].rdev;
2157 addr = r10_bio->devs[1].addr + sect;
2158 ok = sync_page_io(rdev,
2159 addr,
2160 s << 9,
2161 bio->bi_io_vec[idx].bv_page,
2162 REQ_OP_WRITE, 0, false);
2163 if (!ok) {
2164 set_bit(WriteErrorSeen, &rdev->flags);
2165 if (!test_and_set_bit(WantReplacement,
2166 &rdev->flags))
2167 set_bit(MD_RECOVERY_NEEDED,
2168 &rdev->mddev->recovery);
2171 if (!ok) {
2172 /* We don't worry if we cannot set a bad block -
2173 * it really is bad so there is no loss in not
2174 * recording it yet
2176 rdev_set_badblocks(rdev, addr, s, 0);
2178 if (rdev != conf->mirrors[dw].rdev) {
2179 /* need bad block on destination too */
2180 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2181 addr = r10_bio->devs[1].addr + sect;
2182 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2183 if (!ok) {
2184 /* just abort the recovery */
2185 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2186 mdname(mddev));
2188 conf->mirrors[dw].recovery_disabled
2189 = mddev->recovery_disabled;
2190 set_bit(MD_RECOVERY_INTR,
2191 &mddev->recovery);
2192 break;
2197 sectors -= s;
2198 sect += s;
2199 idx++;
2203 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2205 struct r10conf *conf = mddev->private;
2206 int d;
2207 struct bio *wbio, *wbio2;
2209 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2210 fix_recovery_read_error(r10_bio);
2211 end_sync_request(r10_bio);
2212 return;
2216 * share the pages with the first bio
2217 * and submit the write request
2219 d = r10_bio->devs[1].devnum;
2220 wbio = r10_bio->devs[1].bio;
2221 wbio2 = r10_bio->devs[1].repl_bio;
2222 /* Need to test wbio2->bi_end_io before we call
2223 * generic_make_request as if the former is NULL,
2224 * the latter is free to free wbio2.
2226 if (wbio2 && !wbio2->bi_end_io)
2227 wbio2 = NULL;
2228 if (wbio->bi_end_io) {
2229 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2230 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2231 generic_make_request(wbio);
2233 if (wbio2) {
2234 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2235 md_sync_acct(conf->mirrors[d].replacement->bdev,
2236 bio_sectors(wbio2));
2237 generic_make_request(wbio2);
2242 * Used by fix_read_error() to decay the per rdev read_errors.
2243 * We halve the read error count for every hour that has elapsed
2244 * since the last recorded read error.
2247 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2249 long cur_time_mon;
2250 unsigned long hours_since_last;
2251 unsigned int read_errors = atomic_read(&rdev->read_errors);
2253 cur_time_mon = ktime_get_seconds();
2255 if (rdev->last_read_error == 0) {
2256 /* first time we've seen a read error */
2257 rdev->last_read_error = cur_time_mon;
2258 return;
2261 hours_since_last = (long)(cur_time_mon -
2262 rdev->last_read_error) / 3600;
2264 rdev->last_read_error = cur_time_mon;
2267 * if hours_since_last is > the number of bits in read_errors
2268 * just set read errors to 0. We do this to avoid
2269 * overflowing the shift of read_errors by hours_since_last.
2271 if (hours_since_last >= 8 * sizeof(read_errors))
2272 atomic_set(&rdev->read_errors, 0);
2273 else
2274 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2277 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2278 int sectors, struct page *page, int rw)
2280 sector_t first_bad;
2281 int bad_sectors;
2283 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2284 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2285 return -1;
2286 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2287 /* success */
2288 return 1;
2289 if (rw == WRITE) {
2290 set_bit(WriteErrorSeen, &rdev->flags);
2291 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2292 set_bit(MD_RECOVERY_NEEDED,
2293 &rdev->mddev->recovery);
2295 /* need to record an error - either for the block or the device */
2296 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2297 md_error(rdev->mddev, rdev);
2298 return 0;
2302 * This is a kernel thread which:
2304 * 1. Retries failed read operations on working mirrors.
2305 * 2. Updates the raid superblock when problems encounter.
2306 * 3. Performs writes following reads for array synchronising.
2309 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2311 int sect = 0; /* Offset from r10_bio->sector */
2312 int sectors = r10_bio->sectors;
2313 struct md_rdev*rdev;
2314 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2315 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2317 /* still own a reference to this rdev, so it cannot
2318 * have been cleared recently.
2320 rdev = conf->mirrors[d].rdev;
2322 if (test_bit(Faulty, &rdev->flags))
2323 /* drive has already been failed, just ignore any
2324 more fix_read_error() attempts */
2325 return;
2327 check_decay_read_errors(mddev, rdev);
2328 atomic_inc(&rdev->read_errors);
2329 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2330 char b[BDEVNAME_SIZE];
2331 bdevname(rdev->bdev, b);
2333 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2334 mdname(mddev), b,
2335 atomic_read(&rdev->read_errors), max_read_errors);
2336 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2337 mdname(mddev), b);
2338 md_error(mddev, rdev);
2339 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2340 return;
2343 while(sectors) {
2344 int s = sectors;
2345 int sl = r10_bio->read_slot;
2346 int success = 0;
2347 int start;
2349 if (s > (PAGE_SIZE>>9))
2350 s = PAGE_SIZE >> 9;
2352 rcu_read_lock();
2353 do {
2354 sector_t first_bad;
2355 int bad_sectors;
2357 d = r10_bio->devs[sl].devnum;
2358 rdev = rcu_dereference(conf->mirrors[d].rdev);
2359 if (rdev &&
2360 test_bit(In_sync, &rdev->flags) &&
2361 !test_bit(Faulty, &rdev->flags) &&
2362 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2363 &first_bad, &bad_sectors) == 0) {
2364 atomic_inc(&rdev->nr_pending);
2365 rcu_read_unlock();
2366 success = sync_page_io(rdev,
2367 r10_bio->devs[sl].addr +
2368 sect,
2369 s<<9,
2370 conf->tmppage,
2371 REQ_OP_READ, 0, false);
2372 rdev_dec_pending(rdev, mddev);
2373 rcu_read_lock();
2374 if (success)
2375 break;
2377 sl++;
2378 if (sl == conf->copies)
2379 sl = 0;
2380 } while (!success && sl != r10_bio->read_slot);
2381 rcu_read_unlock();
2383 if (!success) {
2384 /* Cannot read from anywhere, just mark the block
2385 * as bad on the first device to discourage future
2386 * reads.
2388 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2389 rdev = conf->mirrors[dn].rdev;
2391 if (!rdev_set_badblocks(
2392 rdev,
2393 r10_bio->devs[r10_bio->read_slot].addr
2394 + sect,
2395 s, 0)) {
2396 md_error(mddev, rdev);
2397 r10_bio->devs[r10_bio->read_slot].bio
2398 = IO_BLOCKED;
2400 break;
2403 start = sl;
2404 /* write it back and re-read */
2405 rcu_read_lock();
2406 while (sl != r10_bio->read_slot) {
2407 char b[BDEVNAME_SIZE];
2409 if (sl==0)
2410 sl = conf->copies;
2411 sl--;
2412 d = r10_bio->devs[sl].devnum;
2413 rdev = rcu_dereference(conf->mirrors[d].rdev);
2414 if (!rdev ||
2415 test_bit(Faulty, &rdev->flags) ||
2416 !test_bit(In_sync, &rdev->flags))
2417 continue;
2419 atomic_inc(&rdev->nr_pending);
2420 rcu_read_unlock();
2421 if (r10_sync_page_io(rdev,
2422 r10_bio->devs[sl].addr +
2423 sect,
2424 s, conf->tmppage, WRITE)
2425 == 0) {
2426 /* Well, this device is dead */
2427 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2428 mdname(mddev), s,
2429 (unsigned long long)(
2430 sect +
2431 choose_data_offset(r10_bio,
2432 rdev)),
2433 bdevname(rdev->bdev, b));
2434 pr_notice("md/raid10:%s: %s: failing drive\n",
2435 mdname(mddev),
2436 bdevname(rdev->bdev, b));
2438 rdev_dec_pending(rdev, mddev);
2439 rcu_read_lock();
2441 sl = start;
2442 while (sl != r10_bio->read_slot) {
2443 char b[BDEVNAME_SIZE];
2445 if (sl==0)
2446 sl = conf->copies;
2447 sl--;
2448 d = r10_bio->devs[sl].devnum;
2449 rdev = rcu_dereference(conf->mirrors[d].rdev);
2450 if (!rdev ||
2451 test_bit(Faulty, &rdev->flags) ||
2452 !test_bit(In_sync, &rdev->flags))
2453 continue;
2455 atomic_inc(&rdev->nr_pending);
2456 rcu_read_unlock();
2457 switch (r10_sync_page_io(rdev,
2458 r10_bio->devs[sl].addr +
2459 sect,
2460 s, conf->tmppage,
2461 READ)) {
2462 case 0:
2463 /* Well, this device is dead */
2464 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2465 mdname(mddev), s,
2466 (unsigned long long)(
2467 sect +
2468 choose_data_offset(r10_bio, rdev)),
2469 bdevname(rdev->bdev, b));
2470 pr_notice("md/raid10:%s: %s: failing drive\n",
2471 mdname(mddev),
2472 bdevname(rdev->bdev, b));
2473 break;
2474 case 1:
2475 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2476 mdname(mddev), s,
2477 (unsigned long long)(
2478 sect +
2479 choose_data_offset(r10_bio, rdev)),
2480 bdevname(rdev->bdev, b));
2481 atomic_add(s, &rdev->corrected_errors);
2484 rdev_dec_pending(rdev, mddev);
2485 rcu_read_lock();
2487 rcu_read_unlock();
2489 sectors -= s;
2490 sect += s;
2494 static int narrow_write_error(struct r10bio *r10_bio, int i)
2496 struct bio *bio = r10_bio->master_bio;
2497 struct mddev *mddev = r10_bio->mddev;
2498 struct r10conf *conf = mddev->private;
2499 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2500 /* bio has the data to be written to slot 'i' where
2501 * we just recently had a write error.
2502 * We repeatedly clone the bio and trim down to one block,
2503 * then try the write. Where the write fails we record
2504 * a bad block.
2505 * It is conceivable that the bio doesn't exactly align with
2506 * blocks. We must handle this.
2508 * We currently own a reference to the rdev.
2511 int block_sectors;
2512 sector_t sector;
2513 int sectors;
2514 int sect_to_write = r10_bio->sectors;
2515 int ok = 1;
2517 if (rdev->badblocks.shift < 0)
2518 return 0;
2520 block_sectors = roundup(1 << rdev->badblocks.shift,
2521 bdev_logical_block_size(rdev->bdev) >> 9);
2522 sector = r10_bio->sector;
2523 sectors = ((r10_bio->sector + block_sectors)
2524 & ~(sector_t)(block_sectors - 1))
2525 - sector;
2527 while (sect_to_write) {
2528 struct bio *wbio;
2529 sector_t wsector;
2530 if (sectors > sect_to_write)
2531 sectors = sect_to_write;
2532 /* Write at 'sector' for 'sectors' */
2533 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2534 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2535 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2536 wbio->bi_iter.bi_sector = wsector +
2537 choose_data_offset(r10_bio, rdev);
2538 wbio->bi_bdev = rdev->bdev;
2539 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2541 if (submit_bio_wait(wbio) < 0)
2542 /* Failure! */
2543 ok = rdev_set_badblocks(rdev, wsector,
2544 sectors, 0)
2545 && ok;
2547 bio_put(wbio);
2548 sect_to_write -= sectors;
2549 sector += sectors;
2550 sectors = block_sectors;
2552 return ok;
2555 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2557 int slot = r10_bio->read_slot;
2558 struct bio *bio;
2559 struct r10conf *conf = mddev->private;
2560 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2561 char b[BDEVNAME_SIZE];
2562 unsigned long do_sync;
2563 int max_sectors;
2564 dev_t bio_dev;
2565 sector_t bio_last_sector;
2567 /* we got a read error. Maybe the drive is bad. Maybe just
2568 * the block and we can fix it.
2569 * We freeze all other IO, and try reading the block from
2570 * other devices. When we find one, we re-write
2571 * and check it that fixes the read error.
2572 * This is all done synchronously while the array is
2573 * frozen.
2575 bio = r10_bio->devs[slot].bio;
2576 bdevname(bio->bi_bdev, b);
2577 bio_dev = bio->bi_bdev->bd_dev;
2578 bio_last_sector = r10_bio->devs[slot].addr + rdev->data_offset + r10_bio->sectors;
2579 bio_put(bio);
2580 r10_bio->devs[slot].bio = NULL;
2582 if (mddev->ro)
2583 r10_bio->devs[slot].bio = IO_BLOCKED;
2584 else if (!test_bit(FailFast, &rdev->flags)) {
2585 freeze_array(conf, 1);
2586 fix_read_error(conf, mddev, r10_bio);
2587 unfreeze_array(conf);
2588 } else
2589 md_error(mddev, rdev);
2591 rdev_dec_pending(rdev, mddev);
2593 read_more:
2594 rdev = read_balance(conf, r10_bio, &max_sectors);
2595 if (rdev == NULL) {
2596 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
2597 mdname(mddev), b,
2598 (unsigned long long)r10_bio->sector);
2599 raid_end_bio_io(r10_bio);
2600 return;
2603 do_sync = (r10_bio->master_bio->bi_opf & REQ_SYNC);
2604 slot = r10_bio->read_slot;
2605 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
2606 mdname(mddev),
2607 bdevname(rdev->bdev, b),
2608 (unsigned long long)r10_bio->sector);
2609 bio = bio_clone_mddev(r10_bio->master_bio,
2610 GFP_NOIO, mddev);
2611 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2612 r10_bio->devs[slot].bio = bio;
2613 r10_bio->devs[slot].rdev = rdev;
2614 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2615 + choose_data_offset(r10_bio, rdev);
2616 bio->bi_bdev = rdev->bdev;
2617 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2618 if (test_bit(FailFast, &rdev->flags) &&
2619 test_bit(R10BIO_FailFast, &r10_bio->state))
2620 bio->bi_opf |= MD_FAILFAST;
2621 bio->bi_private = r10_bio;
2622 bio->bi_end_io = raid10_end_read_request;
2623 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2624 bio, bio_dev,
2625 bio_last_sector - r10_bio->sectors);
2627 if (max_sectors < r10_bio->sectors) {
2628 /* Drat - have to split this up more */
2629 struct bio *mbio = r10_bio->master_bio;
2630 int sectors_handled =
2631 r10_bio->sector + max_sectors
2632 - mbio->bi_iter.bi_sector;
2633 r10_bio->sectors = max_sectors;
2634 spin_lock_irq(&conf->device_lock);
2635 if (mbio->bi_phys_segments == 0)
2636 mbio->bi_phys_segments = 2;
2637 else
2638 mbio->bi_phys_segments++;
2639 spin_unlock_irq(&conf->device_lock);
2640 generic_make_request(bio);
2642 r10_bio = mempool_alloc(conf->r10bio_pool,
2643 GFP_NOIO);
2644 r10_bio->master_bio = mbio;
2645 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2646 r10_bio->state = 0;
2647 set_bit(R10BIO_ReadError,
2648 &r10_bio->state);
2649 r10_bio->mddev = mddev;
2650 r10_bio->sector = mbio->bi_iter.bi_sector
2651 + sectors_handled;
2653 goto read_more;
2654 } else
2655 generic_make_request(bio);
2658 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2660 /* Some sort of write request has finished and it
2661 * succeeded in writing where we thought there was a
2662 * bad block. So forget the bad block.
2663 * Or possibly if failed and we need to record
2664 * a bad block.
2666 int m;
2667 struct md_rdev *rdev;
2669 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2670 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2671 for (m = 0; m < conf->copies; m++) {
2672 int dev = r10_bio->devs[m].devnum;
2673 rdev = conf->mirrors[dev].rdev;
2674 if (r10_bio->devs[m].bio == NULL)
2675 continue;
2676 if (!r10_bio->devs[m].bio->bi_error) {
2677 rdev_clear_badblocks(
2678 rdev,
2679 r10_bio->devs[m].addr,
2680 r10_bio->sectors, 0);
2681 } else {
2682 if (!rdev_set_badblocks(
2683 rdev,
2684 r10_bio->devs[m].addr,
2685 r10_bio->sectors, 0))
2686 md_error(conf->mddev, rdev);
2688 rdev = conf->mirrors[dev].replacement;
2689 if (r10_bio->devs[m].repl_bio == NULL)
2690 continue;
2692 if (!r10_bio->devs[m].repl_bio->bi_error) {
2693 rdev_clear_badblocks(
2694 rdev,
2695 r10_bio->devs[m].addr,
2696 r10_bio->sectors, 0);
2697 } else {
2698 if (!rdev_set_badblocks(
2699 rdev,
2700 r10_bio->devs[m].addr,
2701 r10_bio->sectors, 0))
2702 md_error(conf->mddev, rdev);
2705 put_buf(r10_bio);
2706 } else {
2707 bool fail = false;
2708 for (m = 0; m < conf->copies; m++) {
2709 int dev = r10_bio->devs[m].devnum;
2710 struct bio *bio = r10_bio->devs[m].bio;
2711 rdev = conf->mirrors[dev].rdev;
2712 if (bio == IO_MADE_GOOD) {
2713 rdev_clear_badblocks(
2714 rdev,
2715 r10_bio->devs[m].addr,
2716 r10_bio->sectors, 0);
2717 rdev_dec_pending(rdev, conf->mddev);
2718 } else if (bio != NULL && bio->bi_error) {
2719 fail = true;
2720 if (!narrow_write_error(r10_bio, m)) {
2721 md_error(conf->mddev, rdev);
2722 set_bit(R10BIO_Degraded,
2723 &r10_bio->state);
2725 rdev_dec_pending(rdev, conf->mddev);
2727 bio = r10_bio->devs[m].repl_bio;
2728 rdev = conf->mirrors[dev].replacement;
2729 if (rdev && bio == IO_MADE_GOOD) {
2730 rdev_clear_badblocks(
2731 rdev,
2732 r10_bio->devs[m].addr,
2733 r10_bio->sectors, 0);
2734 rdev_dec_pending(rdev, conf->mddev);
2737 if (fail) {
2738 spin_lock_irq(&conf->device_lock);
2739 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2740 conf->nr_queued++;
2741 spin_unlock_irq(&conf->device_lock);
2742 md_wakeup_thread(conf->mddev->thread);
2743 } else {
2744 if (test_bit(R10BIO_WriteError,
2745 &r10_bio->state))
2746 close_write(r10_bio);
2747 raid_end_bio_io(r10_bio);
2752 static void raid10d(struct md_thread *thread)
2754 struct mddev *mddev = thread->mddev;
2755 struct r10bio *r10_bio;
2756 unsigned long flags;
2757 struct r10conf *conf = mddev->private;
2758 struct list_head *head = &conf->retry_list;
2759 struct blk_plug plug;
2761 md_check_recovery(mddev);
2763 if (!list_empty_careful(&conf->bio_end_io_list) &&
2764 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2765 LIST_HEAD(tmp);
2766 spin_lock_irqsave(&conf->device_lock, flags);
2767 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2768 while (!list_empty(&conf->bio_end_io_list)) {
2769 list_move(conf->bio_end_io_list.prev, &tmp);
2770 conf->nr_queued--;
2773 spin_unlock_irqrestore(&conf->device_lock, flags);
2774 while (!list_empty(&tmp)) {
2775 r10_bio = list_first_entry(&tmp, struct r10bio,
2776 retry_list);
2777 list_del(&r10_bio->retry_list);
2778 if (mddev->degraded)
2779 set_bit(R10BIO_Degraded, &r10_bio->state);
2781 if (test_bit(R10BIO_WriteError,
2782 &r10_bio->state))
2783 close_write(r10_bio);
2784 raid_end_bio_io(r10_bio);
2788 blk_start_plug(&plug);
2789 for (;;) {
2791 flush_pending_writes(conf);
2793 spin_lock_irqsave(&conf->device_lock, flags);
2794 if (list_empty(head)) {
2795 spin_unlock_irqrestore(&conf->device_lock, flags);
2796 break;
2798 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2799 list_del(head->prev);
2800 conf->nr_queued--;
2801 spin_unlock_irqrestore(&conf->device_lock, flags);
2803 mddev = r10_bio->mddev;
2804 conf = mddev->private;
2805 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2806 test_bit(R10BIO_WriteError, &r10_bio->state))
2807 handle_write_completed(conf, r10_bio);
2808 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2809 reshape_request_write(mddev, r10_bio);
2810 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2811 sync_request_write(mddev, r10_bio);
2812 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2813 recovery_request_write(mddev, r10_bio);
2814 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2815 handle_read_error(mddev, r10_bio);
2816 else {
2817 /* just a partial read to be scheduled from a
2818 * separate context
2820 int slot = r10_bio->read_slot;
2821 generic_make_request(r10_bio->devs[slot].bio);
2824 cond_resched();
2825 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2826 md_check_recovery(mddev);
2828 blk_finish_plug(&plug);
2831 static int init_resync(struct r10conf *conf)
2833 int buffs;
2834 int i;
2836 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2837 BUG_ON(conf->r10buf_pool);
2838 conf->have_replacement = 0;
2839 for (i = 0; i < conf->geo.raid_disks; i++)
2840 if (conf->mirrors[i].replacement)
2841 conf->have_replacement = 1;
2842 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2843 if (!conf->r10buf_pool)
2844 return -ENOMEM;
2845 conf->next_resync = 0;
2846 return 0;
2850 * perform a "sync" on one "block"
2852 * We need to make sure that no normal I/O request - particularly write
2853 * requests - conflict with active sync requests.
2855 * This is achieved by tracking pending requests and a 'barrier' concept
2856 * that can be installed to exclude normal IO requests.
2858 * Resync and recovery are handled very differently.
2859 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2861 * For resync, we iterate over virtual addresses, read all copies,
2862 * and update if there are differences. If only one copy is live,
2863 * skip it.
2864 * For recovery, we iterate over physical addresses, read a good
2865 * value for each non-in_sync drive, and over-write.
2867 * So, for recovery we may have several outstanding complex requests for a
2868 * given address, one for each out-of-sync device. We model this by allocating
2869 * a number of r10_bio structures, one for each out-of-sync device.
2870 * As we setup these structures, we collect all bio's together into a list
2871 * which we then process collectively to add pages, and then process again
2872 * to pass to generic_make_request.
2874 * The r10_bio structures are linked using a borrowed master_bio pointer.
2875 * This link is counted in ->remaining. When the r10_bio that points to NULL
2876 * has its remaining count decremented to 0, the whole complex operation
2877 * is complete.
2881 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2882 int *skipped)
2884 struct r10conf *conf = mddev->private;
2885 struct r10bio *r10_bio;
2886 struct bio *biolist = NULL, *bio;
2887 sector_t max_sector, nr_sectors;
2888 int i;
2889 int max_sync;
2890 sector_t sync_blocks;
2891 sector_t sectors_skipped = 0;
2892 int chunks_skipped = 0;
2893 sector_t chunk_mask = conf->geo.chunk_mask;
2895 if (!conf->r10buf_pool)
2896 if (init_resync(conf))
2897 return 0;
2900 * Allow skipping a full rebuild for incremental assembly
2901 * of a clean array, like RAID1 does.
2903 if (mddev->bitmap == NULL &&
2904 mddev->recovery_cp == MaxSector &&
2905 mddev->reshape_position == MaxSector &&
2906 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2907 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2908 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2909 conf->fullsync == 0) {
2910 *skipped = 1;
2911 return mddev->dev_sectors - sector_nr;
2914 skipped:
2915 max_sector = mddev->dev_sectors;
2916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2917 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2918 max_sector = mddev->resync_max_sectors;
2919 if (sector_nr >= max_sector) {
2920 /* If we aborted, we need to abort the
2921 * sync on the 'current' bitmap chucks (there can
2922 * be several when recovering multiple devices).
2923 * as we may have started syncing it but not finished.
2924 * We can find the current address in
2925 * mddev->curr_resync, but for recovery,
2926 * we need to convert that to several
2927 * virtual addresses.
2929 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2930 end_reshape(conf);
2931 close_sync(conf);
2932 return 0;
2935 if (mddev->curr_resync < max_sector) { /* aborted */
2936 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2937 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2938 &sync_blocks, 1);
2939 else for (i = 0; i < conf->geo.raid_disks; i++) {
2940 sector_t sect =
2941 raid10_find_virt(conf, mddev->curr_resync, i);
2942 bitmap_end_sync(mddev->bitmap, sect,
2943 &sync_blocks, 1);
2945 } else {
2946 /* completed sync */
2947 if ((!mddev->bitmap || conf->fullsync)
2948 && conf->have_replacement
2949 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2950 /* Completed a full sync so the replacements
2951 * are now fully recovered.
2953 rcu_read_lock();
2954 for (i = 0; i < conf->geo.raid_disks; i++) {
2955 struct md_rdev *rdev =
2956 rcu_dereference(conf->mirrors[i].replacement);
2957 if (rdev)
2958 rdev->recovery_offset = MaxSector;
2960 rcu_read_unlock();
2962 conf->fullsync = 0;
2964 bitmap_close_sync(mddev->bitmap);
2965 close_sync(conf);
2966 *skipped = 1;
2967 return sectors_skipped;
2970 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2971 return reshape_request(mddev, sector_nr, skipped);
2973 if (chunks_skipped >= conf->geo.raid_disks) {
2974 /* if there has been nothing to do on any drive,
2975 * then there is nothing to do at all..
2977 *skipped = 1;
2978 return (max_sector - sector_nr) + sectors_skipped;
2981 if (max_sector > mddev->resync_max)
2982 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2984 /* make sure whole request will fit in a chunk - if chunks
2985 * are meaningful
2987 if (conf->geo.near_copies < conf->geo.raid_disks &&
2988 max_sector > (sector_nr | chunk_mask))
2989 max_sector = (sector_nr | chunk_mask) + 1;
2992 * If there is non-resync activity waiting for a turn, then let it
2993 * though before starting on this new sync request.
2995 if (conf->nr_waiting)
2996 schedule_timeout_uninterruptible(1);
2998 /* Again, very different code for resync and recovery.
2999 * Both must result in an r10bio with a list of bios that
3000 * have bi_end_io, bi_sector, bi_bdev set,
3001 * and bi_private set to the r10bio.
3002 * For recovery, we may actually create several r10bios
3003 * with 2 bios in each, that correspond to the bios in the main one.
3004 * In this case, the subordinate r10bios link back through a
3005 * borrowed master_bio pointer, and the counter in the master
3006 * includes a ref from each subordinate.
3008 /* First, we decide what to do and set ->bi_end_io
3009 * To end_sync_read if we want to read, and
3010 * end_sync_write if we will want to write.
3013 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3014 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3015 /* recovery... the complicated one */
3016 int j;
3017 r10_bio = NULL;
3019 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3020 int still_degraded;
3021 struct r10bio *rb2;
3022 sector_t sect;
3023 int must_sync;
3024 int any_working;
3025 struct raid10_info *mirror = &conf->mirrors[i];
3026 struct md_rdev *mrdev, *mreplace;
3028 rcu_read_lock();
3029 mrdev = rcu_dereference(mirror->rdev);
3030 mreplace = rcu_dereference(mirror->replacement);
3032 if ((mrdev == NULL ||
3033 test_bit(Faulty, &mrdev->flags) ||
3034 test_bit(In_sync, &mrdev->flags)) &&
3035 (mreplace == NULL ||
3036 test_bit(Faulty, &mreplace->flags))) {
3037 rcu_read_unlock();
3038 continue;
3041 still_degraded = 0;
3042 /* want to reconstruct this device */
3043 rb2 = r10_bio;
3044 sect = raid10_find_virt(conf, sector_nr, i);
3045 if (sect >= mddev->resync_max_sectors) {
3046 /* last stripe is not complete - don't
3047 * try to recover this sector.
3049 rcu_read_unlock();
3050 continue;
3052 if (mreplace && test_bit(Faulty, &mreplace->flags))
3053 mreplace = NULL;
3054 /* Unless we are doing a full sync, or a replacement
3055 * we only need to recover the block if it is set in
3056 * the bitmap
3058 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3059 &sync_blocks, 1);
3060 if (sync_blocks < max_sync)
3061 max_sync = sync_blocks;
3062 if (!must_sync &&
3063 mreplace == NULL &&
3064 !conf->fullsync) {
3065 /* yep, skip the sync_blocks here, but don't assume
3066 * that there will never be anything to do here
3068 chunks_skipped = -1;
3069 rcu_read_unlock();
3070 continue;
3072 atomic_inc(&mrdev->nr_pending);
3073 if (mreplace)
3074 atomic_inc(&mreplace->nr_pending);
3075 rcu_read_unlock();
3077 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3078 r10_bio->state = 0;
3079 raise_barrier(conf, rb2 != NULL);
3080 atomic_set(&r10_bio->remaining, 0);
3082 r10_bio->master_bio = (struct bio*)rb2;
3083 if (rb2)
3084 atomic_inc(&rb2->remaining);
3085 r10_bio->mddev = mddev;
3086 set_bit(R10BIO_IsRecover, &r10_bio->state);
3087 r10_bio->sector = sect;
3089 raid10_find_phys(conf, r10_bio);
3091 /* Need to check if the array will still be
3092 * degraded
3094 rcu_read_lock();
3095 for (j = 0; j < conf->geo.raid_disks; j++) {
3096 struct md_rdev *rdev = rcu_dereference(
3097 conf->mirrors[j].rdev);
3098 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3099 still_degraded = 1;
3100 break;
3104 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3105 &sync_blocks, still_degraded);
3107 any_working = 0;
3108 for (j=0; j<conf->copies;j++) {
3109 int k;
3110 int d = r10_bio->devs[j].devnum;
3111 sector_t from_addr, to_addr;
3112 struct md_rdev *rdev =
3113 rcu_dereference(conf->mirrors[d].rdev);
3114 sector_t sector, first_bad;
3115 int bad_sectors;
3116 if (!rdev ||
3117 !test_bit(In_sync, &rdev->flags))
3118 continue;
3119 /* This is where we read from */
3120 any_working = 1;
3121 sector = r10_bio->devs[j].addr;
3123 if (is_badblock(rdev, sector, max_sync,
3124 &first_bad, &bad_sectors)) {
3125 if (first_bad > sector)
3126 max_sync = first_bad - sector;
3127 else {
3128 bad_sectors -= (sector
3129 - first_bad);
3130 if (max_sync > bad_sectors)
3131 max_sync = bad_sectors;
3132 continue;
3135 bio = r10_bio->devs[0].bio;
3136 bio_reset(bio);
3137 bio->bi_next = biolist;
3138 biolist = bio;
3139 bio->bi_private = r10_bio;
3140 bio->bi_end_io = end_sync_read;
3141 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3142 if (test_bit(FailFast, &rdev->flags))
3143 bio->bi_opf |= MD_FAILFAST;
3144 from_addr = r10_bio->devs[j].addr;
3145 bio->bi_iter.bi_sector = from_addr +
3146 rdev->data_offset;
3147 bio->bi_bdev = rdev->bdev;
3148 atomic_inc(&rdev->nr_pending);
3149 /* and we write to 'i' (if not in_sync) */
3151 for (k=0; k<conf->copies; k++)
3152 if (r10_bio->devs[k].devnum == i)
3153 break;
3154 BUG_ON(k == conf->copies);
3155 to_addr = r10_bio->devs[k].addr;
3156 r10_bio->devs[0].devnum = d;
3157 r10_bio->devs[0].addr = from_addr;
3158 r10_bio->devs[1].devnum = i;
3159 r10_bio->devs[1].addr = to_addr;
3161 if (!test_bit(In_sync, &mrdev->flags)) {
3162 bio = r10_bio->devs[1].bio;
3163 bio_reset(bio);
3164 bio->bi_next = biolist;
3165 biolist = bio;
3166 bio->bi_private = r10_bio;
3167 bio->bi_end_io = end_sync_write;
3168 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3169 bio->bi_iter.bi_sector = to_addr
3170 + mrdev->data_offset;
3171 bio->bi_bdev = mrdev->bdev;
3172 atomic_inc(&r10_bio->remaining);
3173 } else
3174 r10_bio->devs[1].bio->bi_end_io = NULL;
3176 /* and maybe write to replacement */
3177 bio = r10_bio->devs[1].repl_bio;
3178 if (bio)
3179 bio->bi_end_io = NULL;
3180 /* Note: if mreplace != NULL, then bio
3181 * cannot be NULL as r10buf_pool_alloc will
3182 * have allocated it.
3183 * So the second test here is pointless.
3184 * But it keeps semantic-checkers happy, and
3185 * this comment keeps human reviewers
3186 * happy.
3188 if (mreplace == NULL || bio == NULL ||
3189 test_bit(Faulty, &mreplace->flags))
3190 break;
3191 bio_reset(bio);
3192 bio->bi_next = biolist;
3193 biolist = bio;
3194 bio->bi_private = r10_bio;
3195 bio->bi_end_io = end_sync_write;
3196 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3197 bio->bi_iter.bi_sector = to_addr +
3198 mreplace->data_offset;
3199 bio->bi_bdev = mreplace->bdev;
3200 atomic_inc(&r10_bio->remaining);
3201 break;
3203 rcu_read_unlock();
3204 if (j == conf->copies) {
3205 /* Cannot recover, so abort the recovery or
3206 * record a bad block */
3207 if (any_working) {
3208 /* problem is that there are bad blocks
3209 * on other device(s)
3211 int k;
3212 for (k = 0; k < conf->copies; k++)
3213 if (r10_bio->devs[k].devnum == i)
3214 break;
3215 if (!test_bit(In_sync,
3216 &mrdev->flags)
3217 && !rdev_set_badblocks(
3218 mrdev,
3219 r10_bio->devs[k].addr,
3220 max_sync, 0))
3221 any_working = 0;
3222 if (mreplace &&
3223 !rdev_set_badblocks(
3224 mreplace,
3225 r10_bio->devs[k].addr,
3226 max_sync, 0))
3227 any_working = 0;
3229 if (!any_working) {
3230 if (!test_and_set_bit(MD_RECOVERY_INTR,
3231 &mddev->recovery))
3232 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3233 mdname(mddev));
3234 mirror->recovery_disabled
3235 = mddev->recovery_disabled;
3237 put_buf(r10_bio);
3238 if (rb2)
3239 atomic_dec(&rb2->remaining);
3240 r10_bio = rb2;
3241 rdev_dec_pending(mrdev, mddev);
3242 if (mreplace)
3243 rdev_dec_pending(mreplace, mddev);
3244 break;
3246 rdev_dec_pending(mrdev, mddev);
3247 if (mreplace)
3248 rdev_dec_pending(mreplace, mddev);
3249 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3250 /* Only want this if there is elsewhere to
3251 * read from. 'j' is currently the first
3252 * readable copy.
3254 int targets = 1;
3255 for (; j < conf->copies; j++) {
3256 int d = r10_bio->devs[j].devnum;
3257 if (conf->mirrors[d].rdev &&
3258 test_bit(In_sync,
3259 &conf->mirrors[d].rdev->flags))
3260 targets++;
3262 if (targets == 1)
3263 r10_bio->devs[0].bio->bi_opf
3264 &= ~MD_FAILFAST;
3267 if (biolist == NULL) {
3268 while (r10_bio) {
3269 struct r10bio *rb2 = r10_bio;
3270 r10_bio = (struct r10bio*) rb2->master_bio;
3271 rb2->master_bio = NULL;
3272 put_buf(rb2);
3274 goto giveup;
3276 } else {
3277 /* resync. Schedule a read for every block at this virt offset */
3278 int count = 0;
3280 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3282 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3283 &sync_blocks, mddev->degraded) &&
3284 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3285 &mddev->recovery)) {
3286 /* We can skip this block */
3287 *skipped = 1;
3288 return sync_blocks + sectors_skipped;
3290 if (sync_blocks < max_sync)
3291 max_sync = sync_blocks;
3292 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3293 r10_bio->state = 0;
3295 r10_bio->mddev = mddev;
3296 atomic_set(&r10_bio->remaining, 0);
3297 raise_barrier(conf, 0);
3298 conf->next_resync = sector_nr;
3300 r10_bio->master_bio = NULL;
3301 r10_bio->sector = sector_nr;
3302 set_bit(R10BIO_IsSync, &r10_bio->state);
3303 raid10_find_phys(conf, r10_bio);
3304 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3306 for (i = 0; i < conf->copies; i++) {
3307 int d = r10_bio->devs[i].devnum;
3308 sector_t first_bad, sector;
3309 int bad_sectors;
3310 struct md_rdev *rdev;
3312 if (r10_bio->devs[i].repl_bio)
3313 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3315 bio = r10_bio->devs[i].bio;
3316 bio_reset(bio);
3317 bio->bi_error = -EIO;
3318 rcu_read_lock();
3319 rdev = rcu_dereference(conf->mirrors[d].rdev);
3320 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3321 rcu_read_unlock();
3322 continue;
3324 sector = r10_bio->devs[i].addr;
3325 if (is_badblock(rdev, sector, max_sync,
3326 &first_bad, &bad_sectors)) {
3327 if (first_bad > sector)
3328 max_sync = first_bad - sector;
3329 else {
3330 bad_sectors -= (sector - first_bad);
3331 if (max_sync > bad_sectors)
3332 max_sync = bad_sectors;
3333 rcu_read_unlock();
3334 continue;
3337 atomic_inc(&rdev->nr_pending);
3338 atomic_inc(&r10_bio->remaining);
3339 bio->bi_next = biolist;
3340 biolist = bio;
3341 bio->bi_private = r10_bio;
3342 bio->bi_end_io = end_sync_read;
3343 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3344 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3345 bio->bi_opf |= MD_FAILFAST;
3346 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3347 bio->bi_bdev = rdev->bdev;
3348 count++;
3350 rdev = rcu_dereference(conf->mirrors[d].replacement);
3351 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3352 rcu_read_unlock();
3353 continue;
3355 atomic_inc(&rdev->nr_pending);
3356 rcu_read_unlock();
3358 /* Need to set up for writing to the replacement */
3359 bio = r10_bio->devs[i].repl_bio;
3360 bio_reset(bio);
3361 bio->bi_error = -EIO;
3363 sector = r10_bio->devs[i].addr;
3364 bio->bi_next = biolist;
3365 biolist = bio;
3366 bio->bi_private = r10_bio;
3367 bio->bi_end_io = end_sync_write;
3368 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3369 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
3370 bio->bi_opf |= MD_FAILFAST;
3371 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3372 bio->bi_bdev = rdev->bdev;
3373 count++;
3376 if (count < 2) {
3377 for (i=0; i<conf->copies; i++) {
3378 int d = r10_bio->devs[i].devnum;
3379 if (r10_bio->devs[i].bio->bi_end_io)
3380 rdev_dec_pending(conf->mirrors[d].rdev,
3381 mddev);
3382 if (r10_bio->devs[i].repl_bio &&
3383 r10_bio->devs[i].repl_bio->bi_end_io)
3384 rdev_dec_pending(
3385 conf->mirrors[d].replacement,
3386 mddev);
3388 put_buf(r10_bio);
3389 biolist = NULL;
3390 goto giveup;
3394 nr_sectors = 0;
3395 if (sector_nr + max_sync < max_sector)
3396 max_sector = sector_nr + max_sync;
3397 do {
3398 struct page *page;
3399 int len = PAGE_SIZE;
3400 if (sector_nr + (len>>9) > max_sector)
3401 len = (max_sector - sector_nr) << 9;
3402 if (len == 0)
3403 break;
3404 for (bio= biolist ; bio ; bio=bio->bi_next) {
3405 struct bio *bio2;
3406 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3407 if (bio_add_page(bio, page, len, 0))
3408 continue;
3410 /* stop here */
3411 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3412 for (bio2 = biolist;
3413 bio2 && bio2 != bio;
3414 bio2 = bio2->bi_next) {
3415 /* remove last page from this bio */
3416 bio2->bi_vcnt--;
3417 bio2->bi_iter.bi_size -= len;
3418 bio_clear_flag(bio2, BIO_SEG_VALID);
3420 goto bio_full;
3422 nr_sectors += len>>9;
3423 sector_nr += len>>9;
3424 } while (biolist->bi_vcnt < RESYNC_PAGES);
3425 bio_full:
3426 r10_bio->sectors = nr_sectors;
3428 while (biolist) {
3429 bio = biolist;
3430 biolist = biolist->bi_next;
3432 bio->bi_next = NULL;
3433 r10_bio = bio->bi_private;
3434 r10_bio->sectors = nr_sectors;
3436 if (bio->bi_end_io == end_sync_read) {
3437 md_sync_acct(bio->bi_bdev, nr_sectors);
3438 bio->bi_error = 0;
3439 generic_make_request(bio);
3443 if (sectors_skipped)
3444 /* pretend they weren't skipped, it makes
3445 * no important difference in this case
3447 md_done_sync(mddev, sectors_skipped, 1);
3449 return sectors_skipped + nr_sectors;
3450 giveup:
3451 /* There is nowhere to write, so all non-sync
3452 * drives must be failed or in resync, all drives
3453 * have a bad block, so try the next chunk...
3455 if (sector_nr + max_sync < max_sector)
3456 max_sector = sector_nr + max_sync;
3458 sectors_skipped += (max_sector - sector_nr);
3459 chunks_skipped ++;
3460 sector_nr = max_sector;
3461 goto skipped;
3464 static sector_t
3465 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3467 sector_t size;
3468 struct r10conf *conf = mddev->private;
3470 if (!raid_disks)
3471 raid_disks = min(conf->geo.raid_disks,
3472 conf->prev.raid_disks);
3473 if (!sectors)
3474 sectors = conf->dev_sectors;
3476 size = sectors >> conf->geo.chunk_shift;
3477 sector_div(size, conf->geo.far_copies);
3478 size = size * raid_disks;
3479 sector_div(size, conf->geo.near_copies);
3481 return size << conf->geo.chunk_shift;
3484 static void calc_sectors(struct r10conf *conf, sector_t size)
3486 /* Calculate the number of sectors-per-device that will
3487 * actually be used, and set conf->dev_sectors and
3488 * conf->stride
3491 size = size >> conf->geo.chunk_shift;
3492 sector_div(size, conf->geo.far_copies);
3493 size = size * conf->geo.raid_disks;
3494 sector_div(size, conf->geo.near_copies);
3495 /* 'size' is now the number of chunks in the array */
3496 /* calculate "used chunks per device" */
3497 size = size * conf->copies;
3499 /* We need to round up when dividing by raid_disks to
3500 * get the stride size.
3502 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3504 conf->dev_sectors = size << conf->geo.chunk_shift;
3506 if (conf->geo.far_offset)
3507 conf->geo.stride = 1 << conf->geo.chunk_shift;
3508 else {
3509 sector_div(size, conf->geo.far_copies);
3510 conf->geo.stride = size << conf->geo.chunk_shift;
3514 enum geo_type {geo_new, geo_old, geo_start};
3515 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3517 int nc, fc, fo;
3518 int layout, chunk, disks;
3519 switch (new) {
3520 case geo_old:
3521 layout = mddev->layout;
3522 chunk = mddev->chunk_sectors;
3523 disks = mddev->raid_disks - mddev->delta_disks;
3524 break;
3525 case geo_new:
3526 layout = mddev->new_layout;
3527 chunk = mddev->new_chunk_sectors;
3528 disks = mddev->raid_disks;
3529 break;
3530 default: /* avoid 'may be unused' warnings */
3531 case geo_start: /* new when starting reshape - raid_disks not
3532 * updated yet. */
3533 layout = mddev->new_layout;
3534 chunk = mddev->new_chunk_sectors;
3535 disks = mddev->raid_disks + mddev->delta_disks;
3536 break;
3538 if (layout >> 19)
3539 return -1;
3540 if (chunk < (PAGE_SIZE >> 9) ||
3541 !is_power_of_2(chunk))
3542 return -2;
3543 nc = layout & 255;
3544 fc = (layout >> 8) & 255;
3545 fo = layout & (1<<16);
3546 geo->raid_disks = disks;
3547 geo->near_copies = nc;
3548 geo->far_copies = fc;
3549 geo->far_offset = fo;
3550 switch (layout >> 17) {
3551 case 0: /* original layout. simple but not always optimal */
3552 geo->far_set_size = disks;
3553 break;
3554 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3555 * actually using this, but leave code here just in case.*/
3556 geo->far_set_size = disks/fc;
3557 WARN(geo->far_set_size < fc,
3558 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3559 break;
3560 case 2: /* "improved" layout fixed to match documentation */
3561 geo->far_set_size = fc * nc;
3562 break;
3563 default: /* Not a valid layout */
3564 return -1;
3566 geo->chunk_mask = chunk - 1;
3567 geo->chunk_shift = ffz(~chunk);
3568 return nc*fc;
3571 static struct r10conf *setup_conf(struct mddev *mddev)
3573 struct r10conf *conf = NULL;
3574 int err = -EINVAL;
3575 struct geom geo;
3576 int copies;
3578 copies = setup_geo(&geo, mddev, geo_new);
3580 if (copies == -2) {
3581 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3582 mdname(mddev), PAGE_SIZE);
3583 goto out;
3586 if (copies < 2 || copies > mddev->raid_disks) {
3587 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3588 mdname(mddev), mddev->new_layout);
3589 goto out;
3592 err = -ENOMEM;
3593 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3594 if (!conf)
3595 goto out;
3597 /* FIXME calc properly */
3598 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3599 max(0,-mddev->delta_disks)),
3600 GFP_KERNEL);
3601 if (!conf->mirrors)
3602 goto out;
3604 conf->tmppage = alloc_page(GFP_KERNEL);
3605 if (!conf->tmppage)
3606 goto out;
3608 conf->geo = geo;
3609 conf->copies = copies;
3610 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3611 r10bio_pool_free, conf);
3612 if (!conf->r10bio_pool)
3613 goto out;
3615 calc_sectors(conf, mddev->dev_sectors);
3616 if (mddev->reshape_position == MaxSector) {
3617 conf->prev = conf->geo;
3618 conf->reshape_progress = MaxSector;
3619 } else {
3620 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3621 err = -EINVAL;
3622 goto out;
3624 conf->reshape_progress = mddev->reshape_position;
3625 if (conf->prev.far_offset)
3626 conf->prev.stride = 1 << conf->prev.chunk_shift;
3627 else
3628 /* far_copies must be 1 */
3629 conf->prev.stride = conf->dev_sectors;
3631 conf->reshape_safe = conf->reshape_progress;
3632 spin_lock_init(&conf->device_lock);
3633 INIT_LIST_HEAD(&conf->retry_list);
3634 INIT_LIST_HEAD(&conf->bio_end_io_list);
3636 spin_lock_init(&conf->resync_lock);
3637 init_waitqueue_head(&conf->wait_barrier);
3638 atomic_set(&conf->nr_pending, 0);
3640 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3641 if (!conf->thread)
3642 goto out;
3644 conf->mddev = mddev;
3645 return conf;
3647 out:
3648 if (conf) {
3649 mempool_destroy(conf->r10bio_pool);
3650 kfree(conf->mirrors);
3651 safe_put_page(conf->tmppage);
3652 kfree(conf);
3654 return ERR_PTR(err);
3657 static int raid10_run(struct mddev *mddev)
3659 struct r10conf *conf;
3660 int i, disk_idx, chunk_size;
3661 struct raid10_info *disk;
3662 struct md_rdev *rdev;
3663 sector_t size;
3664 sector_t min_offset_diff = 0;
3665 int first = 1;
3666 bool discard_supported = false;
3668 if (mddev->private == NULL) {
3669 conf = setup_conf(mddev);
3670 if (IS_ERR(conf))
3671 return PTR_ERR(conf);
3672 mddev->private = conf;
3674 conf = mddev->private;
3675 if (!conf)
3676 goto out;
3678 mddev->thread = conf->thread;
3679 conf->thread = NULL;
3681 chunk_size = mddev->chunk_sectors << 9;
3682 if (mddev->queue) {
3683 blk_queue_max_discard_sectors(mddev->queue,
3684 mddev->chunk_sectors);
3685 blk_queue_max_write_same_sectors(mddev->queue, 0);
3686 blk_queue_io_min(mddev->queue, chunk_size);
3687 if (conf->geo.raid_disks % conf->geo.near_copies)
3688 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3689 else
3690 blk_queue_io_opt(mddev->queue, chunk_size *
3691 (conf->geo.raid_disks / conf->geo.near_copies));
3694 rdev_for_each(rdev, mddev) {
3695 long long diff;
3696 struct request_queue *q;
3698 disk_idx = rdev->raid_disk;
3699 if (disk_idx < 0)
3700 continue;
3701 if (disk_idx >= conf->geo.raid_disks &&
3702 disk_idx >= conf->prev.raid_disks)
3703 continue;
3704 disk = conf->mirrors + disk_idx;
3706 if (test_bit(Replacement, &rdev->flags)) {
3707 if (disk->replacement)
3708 goto out_free_conf;
3709 disk->replacement = rdev;
3710 } else {
3711 if (disk->rdev)
3712 goto out_free_conf;
3713 disk->rdev = rdev;
3715 q = bdev_get_queue(rdev->bdev);
3716 diff = (rdev->new_data_offset - rdev->data_offset);
3717 if (!mddev->reshape_backwards)
3718 diff = -diff;
3719 if (diff < 0)
3720 diff = 0;
3721 if (first || diff < min_offset_diff)
3722 min_offset_diff = diff;
3724 if (mddev->gendisk)
3725 disk_stack_limits(mddev->gendisk, rdev->bdev,
3726 rdev->data_offset << 9);
3728 disk->head_position = 0;
3730 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3731 discard_supported = true;
3734 if (mddev->queue) {
3735 if (discard_supported)
3736 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3737 mddev->queue);
3738 else
3739 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3740 mddev->queue);
3742 /* need to check that every block has at least one working mirror */
3743 if (!enough(conf, -1)) {
3744 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3745 mdname(mddev));
3746 goto out_free_conf;
3749 if (conf->reshape_progress != MaxSector) {
3750 /* must ensure that shape change is supported */
3751 if (conf->geo.far_copies != 1 &&
3752 conf->geo.far_offset == 0)
3753 goto out_free_conf;
3754 if (conf->prev.far_copies != 1 &&
3755 conf->prev.far_offset == 0)
3756 goto out_free_conf;
3759 mddev->degraded = 0;
3760 for (i = 0;
3761 i < conf->geo.raid_disks
3762 || i < conf->prev.raid_disks;
3763 i++) {
3765 disk = conf->mirrors + i;
3767 if (!disk->rdev && disk->replacement) {
3768 /* The replacement is all we have - use it */
3769 disk->rdev = disk->replacement;
3770 disk->replacement = NULL;
3771 clear_bit(Replacement, &disk->rdev->flags);
3774 if (!disk->rdev ||
3775 !test_bit(In_sync, &disk->rdev->flags)) {
3776 disk->head_position = 0;
3777 mddev->degraded++;
3778 if (disk->rdev &&
3779 disk->rdev->saved_raid_disk < 0)
3780 conf->fullsync = 1;
3782 disk->recovery_disabled = mddev->recovery_disabled - 1;
3785 if (mddev->recovery_cp != MaxSector)
3786 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3787 mdname(mddev));
3788 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3789 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3790 conf->geo.raid_disks);
3792 * Ok, everything is just fine now
3794 mddev->dev_sectors = conf->dev_sectors;
3795 size = raid10_size(mddev, 0, 0);
3796 md_set_array_sectors(mddev, size);
3797 mddev->resync_max_sectors = size;
3798 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3800 if (mddev->queue) {
3801 int stripe = conf->geo.raid_disks *
3802 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3804 /* Calculate max read-ahead size.
3805 * We need to readahead at least twice a whole stripe....
3806 * maybe...
3808 stripe /= conf->geo.near_copies;
3809 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3810 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3813 if (md_integrity_register(mddev))
3814 goto out_free_conf;
3816 if (conf->reshape_progress != MaxSector) {
3817 unsigned long before_length, after_length;
3819 before_length = ((1 << conf->prev.chunk_shift) *
3820 conf->prev.far_copies);
3821 after_length = ((1 << conf->geo.chunk_shift) *
3822 conf->geo.far_copies);
3824 if (max(before_length, after_length) > min_offset_diff) {
3825 /* This cannot work */
3826 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3827 goto out_free_conf;
3829 conf->offset_diff = min_offset_diff;
3831 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3832 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3833 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3834 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3835 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3836 "reshape");
3839 return 0;
3841 out_free_conf:
3842 md_unregister_thread(&mddev->thread);
3843 mempool_destroy(conf->r10bio_pool);
3844 safe_put_page(conf->tmppage);
3845 kfree(conf->mirrors);
3846 kfree(conf);
3847 mddev->private = NULL;
3848 out:
3849 return -EIO;
3852 static void raid10_free(struct mddev *mddev, void *priv)
3854 struct r10conf *conf = priv;
3856 mempool_destroy(conf->r10bio_pool);
3857 safe_put_page(conf->tmppage);
3858 kfree(conf->mirrors);
3859 kfree(conf->mirrors_old);
3860 kfree(conf->mirrors_new);
3861 kfree(conf);
3864 static void raid10_quiesce(struct mddev *mddev, int state)
3866 struct r10conf *conf = mddev->private;
3868 switch(state) {
3869 case 1:
3870 raise_barrier(conf, 0);
3871 break;
3872 case 0:
3873 lower_barrier(conf);
3874 break;
3878 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3880 /* Resize of 'far' arrays is not supported.
3881 * For 'near' and 'offset' arrays we can set the
3882 * number of sectors used to be an appropriate multiple
3883 * of the chunk size.
3884 * For 'offset', this is far_copies*chunksize.
3885 * For 'near' the multiplier is the LCM of
3886 * near_copies and raid_disks.
3887 * So if far_copies > 1 && !far_offset, fail.
3888 * Else find LCM(raid_disks, near_copy)*far_copies and
3889 * multiply by chunk_size. Then round to this number.
3890 * This is mostly done by raid10_size()
3892 struct r10conf *conf = mddev->private;
3893 sector_t oldsize, size;
3895 if (mddev->reshape_position != MaxSector)
3896 return -EBUSY;
3898 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3899 return -EINVAL;
3901 oldsize = raid10_size(mddev, 0, 0);
3902 size = raid10_size(mddev, sectors, 0);
3903 if (mddev->external_size &&
3904 mddev->array_sectors > size)
3905 return -EINVAL;
3906 if (mddev->bitmap) {
3907 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3908 if (ret)
3909 return ret;
3911 md_set_array_sectors(mddev, size);
3912 if (mddev->queue) {
3913 set_capacity(mddev->gendisk, mddev->array_sectors);
3914 revalidate_disk(mddev->gendisk);
3916 if (sectors > mddev->dev_sectors &&
3917 mddev->recovery_cp > oldsize) {
3918 mddev->recovery_cp = oldsize;
3919 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3921 calc_sectors(conf, sectors);
3922 mddev->dev_sectors = conf->dev_sectors;
3923 mddev->resync_max_sectors = size;
3924 return 0;
3927 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3929 struct md_rdev *rdev;
3930 struct r10conf *conf;
3932 if (mddev->degraded > 0) {
3933 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3934 mdname(mddev));
3935 return ERR_PTR(-EINVAL);
3937 sector_div(size, devs);
3939 /* Set new parameters */
3940 mddev->new_level = 10;
3941 /* new layout: far_copies = 1, near_copies = 2 */
3942 mddev->new_layout = (1<<8) + 2;
3943 mddev->new_chunk_sectors = mddev->chunk_sectors;
3944 mddev->delta_disks = mddev->raid_disks;
3945 mddev->raid_disks *= 2;
3946 /* make sure it will be not marked as dirty */
3947 mddev->recovery_cp = MaxSector;
3948 mddev->dev_sectors = size;
3950 conf = setup_conf(mddev);
3951 if (!IS_ERR(conf)) {
3952 rdev_for_each(rdev, mddev)
3953 if (rdev->raid_disk >= 0) {
3954 rdev->new_raid_disk = rdev->raid_disk * 2;
3955 rdev->sectors = size;
3957 conf->barrier = 1;
3960 return conf;
3963 static void *raid10_takeover(struct mddev *mddev)
3965 struct r0conf *raid0_conf;
3967 /* raid10 can take over:
3968 * raid0 - providing it has only two drives
3970 if (mddev->level == 0) {
3971 /* for raid0 takeover only one zone is supported */
3972 raid0_conf = mddev->private;
3973 if (raid0_conf->nr_strip_zones > 1) {
3974 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3975 mdname(mddev));
3976 return ERR_PTR(-EINVAL);
3978 return raid10_takeover_raid0(mddev,
3979 raid0_conf->strip_zone->zone_end,
3980 raid0_conf->strip_zone->nb_dev);
3982 return ERR_PTR(-EINVAL);
3985 static int raid10_check_reshape(struct mddev *mddev)
3987 /* Called when there is a request to change
3988 * - layout (to ->new_layout)
3989 * - chunk size (to ->new_chunk_sectors)
3990 * - raid_disks (by delta_disks)
3991 * or when trying to restart a reshape that was ongoing.
3993 * We need to validate the request and possibly allocate
3994 * space if that might be an issue later.
3996 * Currently we reject any reshape of a 'far' mode array,
3997 * allow chunk size to change if new is generally acceptable,
3998 * allow raid_disks to increase, and allow
3999 * a switch between 'near' mode and 'offset' mode.
4001 struct r10conf *conf = mddev->private;
4002 struct geom geo;
4004 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4005 return -EINVAL;
4007 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4008 /* mustn't change number of copies */
4009 return -EINVAL;
4010 if (geo.far_copies > 1 && !geo.far_offset)
4011 /* Cannot switch to 'far' mode */
4012 return -EINVAL;
4014 if (mddev->array_sectors & geo.chunk_mask)
4015 /* not factor of array size */
4016 return -EINVAL;
4018 if (!enough(conf, -1))
4019 return -EINVAL;
4021 kfree(conf->mirrors_new);
4022 conf->mirrors_new = NULL;
4023 if (mddev->delta_disks > 0) {
4024 /* allocate new 'mirrors' list */
4025 conf->mirrors_new = kzalloc(
4026 sizeof(struct raid10_info)
4027 *(mddev->raid_disks +
4028 mddev->delta_disks),
4029 GFP_KERNEL);
4030 if (!conf->mirrors_new)
4031 return -ENOMEM;
4033 return 0;
4037 * Need to check if array has failed when deciding whether to:
4038 * - start an array
4039 * - remove non-faulty devices
4040 * - add a spare
4041 * - allow a reshape
4042 * This determination is simple when no reshape is happening.
4043 * However if there is a reshape, we need to carefully check
4044 * both the before and after sections.
4045 * This is because some failed devices may only affect one
4046 * of the two sections, and some non-in_sync devices may
4047 * be insync in the section most affected by failed devices.
4049 static int calc_degraded(struct r10conf *conf)
4051 int degraded, degraded2;
4052 int i;
4054 rcu_read_lock();
4055 degraded = 0;
4056 /* 'prev' section first */
4057 for (i = 0; i < conf->prev.raid_disks; i++) {
4058 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4059 if (!rdev || test_bit(Faulty, &rdev->flags))
4060 degraded++;
4061 else if (!test_bit(In_sync, &rdev->flags))
4062 /* When we can reduce the number of devices in
4063 * an array, this might not contribute to
4064 * 'degraded'. It does now.
4066 degraded++;
4068 rcu_read_unlock();
4069 if (conf->geo.raid_disks == conf->prev.raid_disks)
4070 return degraded;
4071 rcu_read_lock();
4072 degraded2 = 0;
4073 for (i = 0; i < conf->geo.raid_disks; i++) {
4074 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4075 if (!rdev || test_bit(Faulty, &rdev->flags))
4076 degraded2++;
4077 else if (!test_bit(In_sync, &rdev->flags)) {
4078 /* If reshape is increasing the number of devices,
4079 * this section has already been recovered, so
4080 * it doesn't contribute to degraded.
4081 * else it does.
4083 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4084 degraded2++;
4087 rcu_read_unlock();
4088 if (degraded2 > degraded)
4089 return degraded2;
4090 return degraded;
4093 static int raid10_start_reshape(struct mddev *mddev)
4095 /* A 'reshape' has been requested. This commits
4096 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4097 * This also checks if there are enough spares and adds them
4098 * to the array.
4099 * We currently require enough spares to make the final
4100 * array non-degraded. We also require that the difference
4101 * between old and new data_offset - on each device - is
4102 * enough that we never risk over-writing.
4105 unsigned long before_length, after_length;
4106 sector_t min_offset_diff = 0;
4107 int first = 1;
4108 struct geom new;
4109 struct r10conf *conf = mddev->private;
4110 struct md_rdev *rdev;
4111 int spares = 0;
4112 int ret;
4114 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4115 return -EBUSY;
4117 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4118 return -EINVAL;
4120 before_length = ((1 << conf->prev.chunk_shift) *
4121 conf->prev.far_copies);
4122 after_length = ((1 << conf->geo.chunk_shift) *
4123 conf->geo.far_copies);
4125 rdev_for_each(rdev, mddev) {
4126 if (!test_bit(In_sync, &rdev->flags)
4127 && !test_bit(Faulty, &rdev->flags))
4128 spares++;
4129 if (rdev->raid_disk >= 0) {
4130 long long diff = (rdev->new_data_offset
4131 - rdev->data_offset);
4132 if (!mddev->reshape_backwards)
4133 diff = -diff;
4134 if (diff < 0)
4135 diff = 0;
4136 if (first || diff < min_offset_diff)
4137 min_offset_diff = diff;
4141 if (max(before_length, after_length) > min_offset_diff)
4142 return -EINVAL;
4144 if (spares < mddev->delta_disks)
4145 return -EINVAL;
4147 conf->offset_diff = min_offset_diff;
4148 spin_lock_irq(&conf->device_lock);
4149 if (conf->mirrors_new) {
4150 memcpy(conf->mirrors_new, conf->mirrors,
4151 sizeof(struct raid10_info)*conf->prev.raid_disks);
4152 smp_mb();
4153 kfree(conf->mirrors_old);
4154 conf->mirrors_old = conf->mirrors;
4155 conf->mirrors = conf->mirrors_new;
4156 conf->mirrors_new = NULL;
4158 setup_geo(&conf->geo, mddev, geo_start);
4159 smp_mb();
4160 if (mddev->reshape_backwards) {
4161 sector_t size = raid10_size(mddev, 0, 0);
4162 if (size < mddev->array_sectors) {
4163 spin_unlock_irq(&conf->device_lock);
4164 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4165 mdname(mddev));
4166 return -EINVAL;
4168 mddev->resync_max_sectors = size;
4169 conf->reshape_progress = size;
4170 } else
4171 conf->reshape_progress = 0;
4172 conf->reshape_safe = conf->reshape_progress;
4173 spin_unlock_irq(&conf->device_lock);
4175 if (mddev->delta_disks && mddev->bitmap) {
4176 ret = bitmap_resize(mddev->bitmap,
4177 raid10_size(mddev, 0,
4178 conf->geo.raid_disks),
4179 0, 0);
4180 if (ret)
4181 goto abort;
4183 if (mddev->delta_disks > 0) {
4184 rdev_for_each(rdev, mddev)
4185 if (rdev->raid_disk < 0 &&
4186 !test_bit(Faulty, &rdev->flags)) {
4187 if (raid10_add_disk(mddev, rdev) == 0) {
4188 if (rdev->raid_disk >=
4189 conf->prev.raid_disks)
4190 set_bit(In_sync, &rdev->flags);
4191 else
4192 rdev->recovery_offset = 0;
4194 if (sysfs_link_rdev(mddev, rdev))
4195 /* Failure here is OK */;
4197 } else if (rdev->raid_disk >= conf->prev.raid_disks
4198 && !test_bit(Faulty, &rdev->flags)) {
4199 /* This is a spare that was manually added */
4200 set_bit(In_sync, &rdev->flags);
4203 /* When a reshape changes the number of devices,
4204 * ->degraded is measured against the larger of the
4205 * pre and post numbers.
4207 spin_lock_irq(&conf->device_lock);
4208 mddev->degraded = calc_degraded(conf);
4209 spin_unlock_irq(&conf->device_lock);
4210 mddev->raid_disks = conf->geo.raid_disks;
4211 mddev->reshape_position = conf->reshape_progress;
4212 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4214 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4215 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4216 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4217 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4218 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4220 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4221 "reshape");
4222 if (!mddev->sync_thread) {
4223 ret = -EAGAIN;
4224 goto abort;
4226 conf->reshape_checkpoint = jiffies;
4227 md_wakeup_thread(mddev->sync_thread);
4228 md_new_event(mddev);
4229 return 0;
4231 abort:
4232 mddev->recovery = 0;
4233 spin_lock_irq(&conf->device_lock);
4234 conf->geo = conf->prev;
4235 mddev->raid_disks = conf->geo.raid_disks;
4236 rdev_for_each(rdev, mddev)
4237 rdev->new_data_offset = rdev->data_offset;
4238 smp_wmb();
4239 conf->reshape_progress = MaxSector;
4240 conf->reshape_safe = MaxSector;
4241 mddev->reshape_position = MaxSector;
4242 spin_unlock_irq(&conf->device_lock);
4243 return ret;
4246 /* Calculate the last device-address that could contain
4247 * any block from the chunk that includes the array-address 's'
4248 * and report the next address.
4249 * i.e. the address returned will be chunk-aligned and after
4250 * any data that is in the chunk containing 's'.
4252 static sector_t last_dev_address(sector_t s, struct geom *geo)
4254 s = (s | geo->chunk_mask) + 1;
4255 s >>= geo->chunk_shift;
4256 s *= geo->near_copies;
4257 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4258 s *= geo->far_copies;
4259 s <<= geo->chunk_shift;
4260 return s;
4263 /* Calculate the first device-address that could contain
4264 * any block from the chunk that includes the array-address 's'.
4265 * This too will be the start of a chunk
4267 static sector_t first_dev_address(sector_t s, struct geom *geo)
4269 s >>= geo->chunk_shift;
4270 s *= geo->near_copies;
4271 sector_div(s, geo->raid_disks);
4272 s *= geo->far_copies;
4273 s <<= geo->chunk_shift;
4274 return s;
4277 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4278 int *skipped)
4280 /* We simply copy at most one chunk (smallest of old and new)
4281 * at a time, possibly less if that exceeds RESYNC_PAGES,
4282 * or we hit a bad block or something.
4283 * This might mean we pause for normal IO in the middle of
4284 * a chunk, but that is not a problem as mddev->reshape_position
4285 * can record any location.
4287 * If we will want to write to a location that isn't
4288 * yet recorded as 'safe' (i.e. in metadata on disk) then
4289 * we need to flush all reshape requests and update the metadata.
4291 * When reshaping forwards (e.g. to more devices), we interpret
4292 * 'safe' as the earliest block which might not have been copied
4293 * down yet. We divide this by previous stripe size and multiply
4294 * by previous stripe length to get lowest device offset that we
4295 * cannot write to yet.
4296 * We interpret 'sector_nr' as an address that we want to write to.
4297 * From this we use last_device_address() to find where we might
4298 * write to, and first_device_address on the 'safe' position.
4299 * If this 'next' write position is after the 'safe' position,
4300 * we must update the metadata to increase the 'safe' position.
4302 * When reshaping backwards, we round in the opposite direction
4303 * and perform the reverse test: next write position must not be
4304 * less than current safe position.
4306 * In all this the minimum difference in data offsets
4307 * (conf->offset_diff - always positive) allows a bit of slack,
4308 * so next can be after 'safe', but not by more than offset_diff
4310 * We need to prepare all the bios here before we start any IO
4311 * to ensure the size we choose is acceptable to all devices.
4312 * The means one for each copy for write-out and an extra one for
4313 * read-in.
4314 * We store the read-in bio in ->master_bio and the others in
4315 * ->devs[x].bio and ->devs[x].repl_bio.
4317 struct r10conf *conf = mddev->private;
4318 struct r10bio *r10_bio;
4319 sector_t next, safe, last;
4320 int max_sectors;
4321 int nr_sectors;
4322 int s;
4323 struct md_rdev *rdev;
4324 int need_flush = 0;
4325 struct bio *blist;
4326 struct bio *bio, *read_bio;
4327 int sectors_done = 0;
4329 if (sector_nr == 0) {
4330 /* If restarting in the middle, skip the initial sectors */
4331 if (mddev->reshape_backwards &&
4332 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4333 sector_nr = (raid10_size(mddev, 0, 0)
4334 - conf->reshape_progress);
4335 } else if (!mddev->reshape_backwards &&
4336 conf->reshape_progress > 0)
4337 sector_nr = conf->reshape_progress;
4338 if (sector_nr) {
4339 mddev->curr_resync_completed = sector_nr;
4340 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4341 *skipped = 1;
4342 return sector_nr;
4346 /* We don't use sector_nr to track where we are up to
4347 * as that doesn't work well for ->reshape_backwards.
4348 * So just use ->reshape_progress.
4350 if (mddev->reshape_backwards) {
4351 /* 'next' is the earliest device address that we might
4352 * write to for this chunk in the new layout
4354 next = first_dev_address(conf->reshape_progress - 1,
4355 &conf->geo);
4357 /* 'safe' is the last device address that we might read from
4358 * in the old layout after a restart
4360 safe = last_dev_address(conf->reshape_safe - 1,
4361 &conf->prev);
4363 if (next + conf->offset_diff < safe)
4364 need_flush = 1;
4366 last = conf->reshape_progress - 1;
4367 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4368 & conf->prev.chunk_mask);
4369 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4370 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4371 } else {
4372 /* 'next' is after the last device address that we
4373 * might write to for this chunk in the new layout
4375 next = last_dev_address(conf->reshape_progress, &conf->geo);
4377 /* 'safe' is the earliest device address that we might
4378 * read from in the old layout after a restart
4380 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4382 /* Need to update metadata if 'next' might be beyond 'safe'
4383 * as that would possibly corrupt data
4385 if (next > safe + conf->offset_diff)
4386 need_flush = 1;
4388 sector_nr = conf->reshape_progress;
4389 last = sector_nr | (conf->geo.chunk_mask
4390 & conf->prev.chunk_mask);
4392 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4393 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4396 if (need_flush ||
4397 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4398 /* Need to update reshape_position in metadata */
4399 wait_barrier(conf);
4400 mddev->reshape_position = conf->reshape_progress;
4401 if (mddev->reshape_backwards)
4402 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4403 - conf->reshape_progress;
4404 else
4405 mddev->curr_resync_completed = conf->reshape_progress;
4406 conf->reshape_checkpoint = jiffies;
4407 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4408 md_wakeup_thread(mddev->thread);
4409 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4410 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4411 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4412 allow_barrier(conf);
4413 return sectors_done;
4415 conf->reshape_safe = mddev->reshape_position;
4416 allow_barrier(conf);
4419 read_more:
4420 /* Now schedule reads for blocks from sector_nr to last */
4421 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4422 r10_bio->state = 0;
4423 raise_barrier(conf, sectors_done != 0);
4424 atomic_set(&r10_bio->remaining, 0);
4425 r10_bio->mddev = mddev;
4426 r10_bio->sector = sector_nr;
4427 set_bit(R10BIO_IsReshape, &r10_bio->state);
4428 r10_bio->sectors = last - sector_nr + 1;
4429 rdev = read_balance(conf, r10_bio, &max_sectors);
4430 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4432 if (!rdev) {
4433 /* Cannot read from here, so need to record bad blocks
4434 * on all the target devices.
4436 // FIXME
4437 mempool_free(r10_bio, conf->r10buf_pool);
4438 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4439 return sectors_done;
4442 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4444 read_bio->bi_bdev = rdev->bdev;
4445 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4446 + rdev->data_offset);
4447 read_bio->bi_private = r10_bio;
4448 read_bio->bi_end_io = end_sync_read;
4449 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4450 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4451 read_bio->bi_error = 0;
4452 read_bio->bi_vcnt = 0;
4453 read_bio->bi_iter.bi_size = 0;
4454 r10_bio->master_bio = read_bio;
4455 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4457 /* Now find the locations in the new layout */
4458 __raid10_find_phys(&conf->geo, r10_bio);
4460 blist = read_bio;
4461 read_bio->bi_next = NULL;
4463 rcu_read_lock();
4464 for (s = 0; s < conf->copies*2; s++) {
4465 struct bio *b;
4466 int d = r10_bio->devs[s/2].devnum;
4467 struct md_rdev *rdev2;
4468 if (s&1) {
4469 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4470 b = r10_bio->devs[s/2].repl_bio;
4471 } else {
4472 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4473 b = r10_bio->devs[s/2].bio;
4475 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4476 continue;
4478 bio_reset(b);
4479 b->bi_bdev = rdev2->bdev;
4480 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4481 rdev2->new_data_offset;
4482 b->bi_private = r10_bio;
4483 b->bi_end_io = end_reshape_write;
4484 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4485 b->bi_next = blist;
4486 blist = b;
4489 /* Now add as many pages as possible to all of these bios. */
4491 nr_sectors = 0;
4492 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4493 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4494 int len = (max_sectors - s) << 9;
4495 if (len > PAGE_SIZE)
4496 len = PAGE_SIZE;
4497 for (bio = blist; bio ; bio = bio->bi_next) {
4498 struct bio *bio2;
4499 if (bio_add_page(bio, page, len, 0))
4500 continue;
4502 /* Didn't fit, must stop */
4503 for (bio2 = blist;
4504 bio2 && bio2 != bio;
4505 bio2 = bio2->bi_next) {
4506 /* Remove last page from this bio */
4507 bio2->bi_vcnt--;
4508 bio2->bi_iter.bi_size -= len;
4509 bio_clear_flag(bio2, BIO_SEG_VALID);
4511 goto bio_full;
4513 sector_nr += len >> 9;
4514 nr_sectors += len >> 9;
4516 bio_full:
4517 rcu_read_unlock();
4518 r10_bio->sectors = nr_sectors;
4520 /* Now submit the read */
4521 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4522 atomic_inc(&r10_bio->remaining);
4523 read_bio->bi_next = NULL;
4524 generic_make_request(read_bio);
4525 sector_nr += nr_sectors;
4526 sectors_done += nr_sectors;
4527 if (sector_nr <= last)
4528 goto read_more;
4530 /* Now that we have done the whole section we can
4531 * update reshape_progress
4533 if (mddev->reshape_backwards)
4534 conf->reshape_progress -= sectors_done;
4535 else
4536 conf->reshape_progress += sectors_done;
4538 return sectors_done;
4541 static void end_reshape_request(struct r10bio *r10_bio);
4542 static int handle_reshape_read_error(struct mddev *mddev,
4543 struct r10bio *r10_bio);
4544 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4546 /* Reshape read completed. Hopefully we have a block
4547 * to write out.
4548 * If we got a read error then we do sync 1-page reads from
4549 * elsewhere until we find the data - or give up.
4551 struct r10conf *conf = mddev->private;
4552 int s;
4554 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4555 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4556 /* Reshape has been aborted */
4557 md_done_sync(mddev, r10_bio->sectors, 0);
4558 return;
4561 /* We definitely have the data in the pages, schedule the
4562 * writes.
4564 atomic_set(&r10_bio->remaining, 1);
4565 for (s = 0; s < conf->copies*2; s++) {
4566 struct bio *b;
4567 int d = r10_bio->devs[s/2].devnum;
4568 struct md_rdev *rdev;
4569 rcu_read_lock();
4570 if (s&1) {
4571 rdev = rcu_dereference(conf->mirrors[d].replacement);
4572 b = r10_bio->devs[s/2].repl_bio;
4573 } else {
4574 rdev = rcu_dereference(conf->mirrors[d].rdev);
4575 b = r10_bio->devs[s/2].bio;
4577 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4578 rcu_read_unlock();
4579 continue;
4581 atomic_inc(&rdev->nr_pending);
4582 rcu_read_unlock();
4583 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4584 atomic_inc(&r10_bio->remaining);
4585 b->bi_next = NULL;
4586 generic_make_request(b);
4588 end_reshape_request(r10_bio);
4591 static void end_reshape(struct r10conf *conf)
4593 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4594 return;
4596 spin_lock_irq(&conf->device_lock);
4597 conf->prev = conf->geo;
4598 md_finish_reshape(conf->mddev);
4599 smp_wmb();
4600 conf->reshape_progress = MaxSector;
4601 conf->reshape_safe = MaxSector;
4602 spin_unlock_irq(&conf->device_lock);
4604 /* read-ahead size must cover two whole stripes, which is
4605 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4607 if (conf->mddev->queue) {
4608 int stripe = conf->geo.raid_disks *
4609 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4610 stripe /= conf->geo.near_copies;
4611 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4612 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4614 conf->fullsync = 0;
4617 static int handle_reshape_read_error(struct mddev *mddev,
4618 struct r10bio *r10_bio)
4620 /* Use sync reads to get the blocks from somewhere else */
4621 int sectors = r10_bio->sectors;
4622 struct r10conf *conf = mddev->private;
4623 struct {
4624 struct r10bio r10_bio;
4625 struct r10dev devs[conf->copies];
4626 } on_stack;
4627 struct r10bio *r10b = &on_stack.r10_bio;
4628 int slot = 0;
4629 int idx = 0;
4630 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4632 r10b->sector = r10_bio->sector;
4633 __raid10_find_phys(&conf->prev, r10b);
4635 while (sectors) {
4636 int s = sectors;
4637 int success = 0;
4638 int first_slot = slot;
4640 if (s > (PAGE_SIZE >> 9))
4641 s = PAGE_SIZE >> 9;
4643 rcu_read_lock();
4644 while (!success) {
4645 int d = r10b->devs[slot].devnum;
4646 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4647 sector_t addr;
4648 if (rdev == NULL ||
4649 test_bit(Faulty, &rdev->flags) ||
4650 !test_bit(In_sync, &rdev->flags))
4651 goto failed;
4653 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4654 atomic_inc(&rdev->nr_pending);
4655 rcu_read_unlock();
4656 success = sync_page_io(rdev,
4657 addr,
4658 s << 9,
4659 bvec[idx].bv_page,
4660 REQ_OP_READ, 0, false);
4661 rdev_dec_pending(rdev, mddev);
4662 rcu_read_lock();
4663 if (success)
4664 break;
4665 failed:
4666 slot++;
4667 if (slot >= conf->copies)
4668 slot = 0;
4669 if (slot == first_slot)
4670 break;
4672 rcu_read_unlock();
4673 if (!success) {
4674 /* couldn't read this block, must give up */
4675 set_bit(MD_RECOVERY_INTR,
4676 &mddev->recovery);
4677 return -EIO;
4679 sectors -= s;
4680 idx++;
4682 return 0;
4685 static void end_reshape_write(struct bio *bio)
4687 struct r10bio *r10_bio = bio->bi_private;
4688 struct mddev *mddev = r10_bio->mddev;
4689 struct r10conf *conf = mddev->private;
4690 int d;
4691 int slot;
4692 int repl;
4693 struct md_rdev *rdev = NULL;
4695 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4696 if (repl)
4697 rdev = conf->mirrors[d].replacement;
4698 if (!rdev) {
4699 smp_mb();
4700 rdev = conf->mirrors[d].rdev;
4703 if (bio->bi_error) {
4704 /* FIXME should record badblock */
4705 md_error(mddev, rdev);
4708 rdev_dec_pending(rdev, mddev);
4709 end_reshape_request(r10_bio);
4712 static void end_reshape_request(struct r10bio *r10_bio)
4714 if (!atomic_dec_and_test(&r10_bio->remaining))
4715 return;
4716 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4717 bio_put(r10_bio->master_bio);
4718 put_buf(r10_bio);
4721 static void raid10_finish_reshape(struct mddev *mddev)
4723 struct r10conf *conf = mddev->private;
4725 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4726 return;
4728 if (mddev->delta_disks > 0) {
4729 sector_t size = raid10_size(mddev, 0, 0);
4730 md_set_array_sectors(mddev, size);
4731 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4732 mddev->recovery_cp = mddev->resync_max_sectors;
4733 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4735 mddev->resync_max_sectors = size;
4736 if (mddev->queue) {
4737 set_capacity(mddev->gendisk, mddev->array_sectors);
4738 revalidate_disk(mddev->gendisk);
4740 } else {
4741 int d;
4742 rcu_read_lock();
4743 for (d = conf->geo.raid_disks ;
4744 d < conf->geo.raid_disks - mddev->delta_disks;
4745 d++) {
4746 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4747 if (rdev)
4748 clear_bit(In_sync, &rdev->flags);
4749 rdev = rcu_dereference(conf->mirrors[d].replacement);
4750 if (rdev)
4751 clear_bit(In_sync, &rdev->flags);
4753 rcu_read_unlock();
4755 mddev->layout = mddev->new_layout;
4756 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4757 mddev->reshape_position = MaxSector;
4758 mddev->delta_disks = 0;
4759 mddev->reshape_backwards = 0;
4762 static struct md_personality raid10_personality =
4764 .name = "raid10",
4765 .level = 10,
4766 .owner = THIS_MODULE,
4767 .make_request = raid10_make_request,
4768 .run = raid10_run,
4769 .free = raid10_free,
4770 .status = raid10_status,
4771 .error_handler = raid10_error,
4772 .hot_add_disk = raid10_add_disk,
4773 .hot_remove_disk= raid10_remove_disk,
4774 .spare_active = raid10_spare_active,
4775 .sync_request = raid10_sync_request,
4776 .quiesce = raid10_quiesce,
4777 .size = raid10_size,
4778 .resize = raid10_resize,
4779 .takeover = raid10_takeover,
4780 .check_reshape = raid10_check_reshape,
4781 .start_reshape = raid10_start_reshape,
4782 .finish_reshape = raid10_finish_reshape,
4783 .congested = raid10_congested,
4786 static int __init raid_init(void)
4788 return register_md_personality(&raid10_personality);
4791 static void raid_exit(void)
4793 unregister_md_personality(&raid10_personality);
4796 module_init(raid_init);
4797 module_exit(raid_exit);
4798 MODULE_LICENSE("GPL");
4799 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4800 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4801 MODULE_ALIAS("md-raid10");
4802 MODULE_ALIAS("md-level-10");
4804 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);