2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
59 #define ZSPAGE_MAGIC 0x58
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
82 * Note that object index <obj_idx> starts from 0.
84 * This is made more complicated by various memory models and PAE.
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
108 #define HANDLE_PIN_BIT 0
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122 #define FULLNESS_BITS 2
124 #define ISOLATED_BITS 3
125 #define MAGIC_VAL_BITS 8
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135 * On systems with 4K page size, this gives 255 size classes! There is a
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
151 enum fullness_group
{
169 struct zs_size_stat
{
170 unsigned long objs
[NR_ZS_STAT_TYPE
];
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry
*zs_stat_root
;
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount
*zsmalloc_mnt
;
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
186 * f = fullness_threshold_frac
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
193 * (see: fix_fullness_group())
195 static const int fullness_threshold_frac
= 4;
196 static size_t huge_class_size
;
200 struct list_head fullness_list
[NR_ZS_FULLNESS
];
202 * Size of objects stored in this class. Must be multiple
207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 int pages_per_zspage
;
211 struct zs_size_stat stats
;
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page
*page
)
217 SetPageOwnerPriv1(page
);
220 static void ClearPageHugeObject(struct page
*page
)
222 ClearPageOwnerPriv1(page
);
225 static int PageHugeObject(struct page
*page
)
227 return PageOwnerPriv1(page
);
231 * Placed within free objects to form a singly linked list.
232 * For every zspage, zspage->freeobj gives head of this list.
234 * This must be power of 2 and less than or equal to ZS_ALIGN
240 * It's valid for non-allocated object
244 * Handle of allocated object.
246 unsigned long handle
;
253 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
254 struct kmem_cache
*handle_cachep
;
255 struct kmem_cache
*zspage_cachep
;
257 atomic_long_t pages_allocated
;
259 struct zs_pool_stats stats
;
261 /* Compact classes */
262 struct shrinker shrinker
;
264 #ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry
*stat_dentry
;
267 #ifdef CONFIG_COMPACTION
269 struct work_struct free_work
;
275 unsigned int fullness
:FULLNESS_BITS
;
276 unsigned int class:CLASS_BITS
+ 1;
277 unsigned int isolated
:ISOLATED_BITS
;
278 unsigned int magic
:MAGIC_VAL_BITS
;
281 unsigned int freeobj
;
282 struct page
*first_page
;
283 struct list_head list
; /* fullness list */
284 #ifdef CONFIG_COMPACTION
289 struct mapping_area
{
290 #ifdef CONFIG_PGTABLE_MAPPING
291 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
293 char *vm_buf
; /* copy buffer for objects that span pages */
295 char *vm_addr
; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm
; /* mapping mode */
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool
*pool
);
301 static void zs_unregister_migration(struct zs_pool
*pool
);
302 static void migrate_lock_init(struct zspage
*zspage
);
303 static void migrate_read_lock(struct zspage
*zspage
);
304 static void migrate_read_unlock(struct zspage
*zspage
);
305 static void kick_deferred_free(struct zs_pool
*pool
);
306 static void init_deferred_free(struct zs_pool
*pool
);
307 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
312 static void zs_unregister_migration(struct zs_pool
*pool
) {}
313 static void migrate_lock_init(struct zspage
*zspage
) {}
314 static void migrate_read_lock(struct zspage
*zspage
) {}
315 static void migrate_read_unlock(struct zspage
*zspage
) {}
316 static void kick_deferred_free(struct zs_pool
*pool
) {}
317 static void init_deferred_free(struct zs_pool
*pool
) {}
318 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
321 static int create_cache(struct zs_pool
*pool
)
323 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
325 if (!pool
->handle_cachep
)
328 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
330 if (!pool
->zspage_cachep
) {
331 kmem_cache_destroy(pool
->handle_cachep
);
332 pool
->handle_cachep
= NULL
;
339 static void destroy_cache(struct zs_pool
*pool
)
341 kmem_cache_destroy(pool
->handle_cachep
);
342 kmem_cache_destroy(pool
->zspage_cachep
);
345 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
347 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
348 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
351 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
353 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
356 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
358 return kmem_cache_alloc(pool
->zspage_cachep
,
359 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
362 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
364 kmem_cache_free(pool
->zspage_cachep
, zspage
);
367 static void record_obj(unsigned long handle
, unsigned long obj
)
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
374 WRITE_ONCE(*(unsigned long *)handle
, obj
);
381 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
382 const struct zpool_ops
*zpool_ops
,
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
390 return zs_create_pool(name
);
393 static void zs_zpool_destroy(void *pool
)
395 zs_destroy_pool(pool
);
398 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
399 unsigned long *handle
)
401 *handle
= zs_malloc(pool
, size
, gfp
);
402 return *handle
? 0 : -1;
404 static void zs_zpool_free(void *pool
, unsigned long handle
)
406 zs_free(pool
, handle
);
409 static void *zs_zpool_map(void *pool
, unsigned long handle
,
410 enum zpool_mapmode mm
)
412 enum zs_mapmode zs_mm
;
421 case ZPOOL_MM_RW
: /* fall through */
427 return zs_map_object(pool
, handle
, zs_mm
);
429 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
431 zs_unmap_object(pool
, handle
);
434 static u64
zs_zpool_total_size(void *pool
)
436 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
439 static struct zpool_driver zs_zpool_driver
= {
441 .owner
= THIS_MODULE
,
442 .create
= zs_zpool_create
,
443 .destroy
= zs_zpool_destroy
,
444 .malloc
= zs_zpool_malloc
,
445 .free
= zs_zpool_free
,
447 .unmap
= zs_zpool_unmap
,
448 .total_size
= zs_zpool_total_size
,
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
457 static bool is_zspage_isolated(struct zspage
*zspage
)
459 return zspage
->isolated
;
462 static __maybe_unused
int is_first_page(struct page
*page
)
464 return PagePrivate(page
);
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage
*zspage
)
470 return zspage
->inuse
;
473 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
478 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
480 zspage
->inuse
+= val
;
483 static inline struct page
*get_first_page(struct zspage
*zspage
)
485 struct page
*first_page
= zspage
->first_page
;
487 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
491 static inline int get_first_obj_offset(struct page
*page
)
496 static inline void set_first_obj_offset(struct page
*page
, int offset
)
498 page
->units
= offset
;
501 static inline unsigned int get_freeobj(struct zspage
*zspage
)
503 return zspage
->freeobj
;
506 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
508 zspage
->freeobj
= obj
;
511 static void get_zspage_mapping(struct zspage
*zspage
,
512 unsigned int *class_idx
,
513 enum fullness_group
*fullness
)
515 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
517 *fullness
= zspage
->fullness
;
518 *class_idx
= zspage
->class;
521 static void set_zspage_mapping(struct zspage
*zspage
,
522 unsigned int class_idx
,
523 enum fullness_group fullness
)
525 zspage
->class = class_idx
;
526 zspage
->fullness
= fullness
;
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the give size.
536 static int get_size_class_index(int size
)
540 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
541 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
542 ZS_SIZE_CLASS_DELTA
);
544 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class
*class,
549 int type
, unsigned long cnt
)
551 class->stats
.objs
[type
] += cnt
;
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class
*class,
556 int type
, unsigned long cnt
)
558 class->stats
.objs
[type
] -= cnt
;
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class
*class,
565 return class->stats
.objs
[type
];
568 #ifdef CONFIG_ZSMALLOC_STAT
570 static void __init
zs_stat_init(void)
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
577 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
582 static void __exit
zs_stat_exit(void)
584 debugfs_remove_recursive(zs_stat_root
);
587 static unsigned long zs_can_compact(struct size_class
*class);
589 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
592 struct zs_pool
*pool
= s
->private;
593 struct size_class
*class;
595 unsigned long class_almost_full
, class_almost_empty
;
596 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
597 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
598 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
599 unsigned long total_freeable
= 0;
601 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
602 "class", "size", "almost_full", "almost_empty",
603 "obj_allocated", "obj_used", "pages_used",
604 "pages_per_zspage", "freeable");
606 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
607 class = pool
->size_class
[i
];
609 if (class->index
!= i
)
612 spin_lock(&class->lock
);
613 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
614 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
615 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
616 obj_used
= zs_stat_get(class, OBJ_USED
);
617 freeable
= zs_can_compact(class);
618 spin_unlock(&class->lock
);
620 objs_per_zspage
= class->objs_per_zspage
;
621 pages_used
= obj_allocated
/ objs_per_zspage
*
622 class->pages_per_zspage
;
624 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
625 " %10lu %10lu %16d %8lu\n",
626 i
, class->size
, class_almost_full
, class_almost_empty
,
627 obj_allocated
, obj_used
, pages_used
,
628 class->pages_per_zspage
, freeable
);
630 total_class_almost_full
+= class_almost_full
;
631 total_class_almost_empty
+= class_almost_empty
;
632 total_objs
+= obj_allocated
;
633 total_used_objs
+= obj_used
;
634 total_pages
+= pages_used
;
635 total_freeable
+= freeable
;
639 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
640 "Total", "", total_class_almost_full
,
641 total_class_almost_empty
, total_objs
,
642 total_used_objs
, total_pages
, "", total_freeable
);
646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size
);
648 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
650 struct dentry
*entry
;
653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
657 entry
= debugfs_create_dir(name
, zs_stat_root
);
659 pr_warn("debugfs dir <%s> creation failed\n", name
);
662 pool
->stat_dentry
= entry
;
664 entry
= debugfs_create_file("classes", S_IFREG
| 0444,
665 pool
->stat_dentry
, pool
,
666 &zs_stats_size_fops
);
668 pr_warn("%s: debugfs file entry <%s> creation failed\n",
670 debugfs_remove_recursive(pool
->stat_dentry
);
671 pool
->stat_dentry
= NULL
;
675 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
677 debugfs_remove_recursive(pool
->stat_dentry
);
680 #else /* CONFIG_ZSMALLOC_STAT */
681 static void __init
zs_stat_init(void)
685 static void __exit
zs_stat_exit(void)
689 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
693 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
700 * For each size class, zspages are divided into different groups
701 * depending on how "full" they are. This was done so that we could
702 * easily find empty or nearly empty zspages when we try to shrink
703 * the pool (not yet implemented). This function returns fullness
704 * status of the given page.
706 static enum fullness_group
get_fullness_group(struct size_class
*class,
707 struct zspage
*zspage
)
709 int inuse
, objs_per_zspage
;
710 enum fullness_group fg
;
712 inuse
= get_zspage_inuse(zspage
);
713 objs_per_zspage
= class->objs_per_zspage
;
717 else if (inuse
== objs_per_zspage
)
719 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
720 fg
= ZS_ALMOST_EMPTY
;
728 * Each size class maintains various freelists and zspages are assigned
729 * to one of these freelists based on the number of live objects they
730 * have. This functions inserts the given zspage into the freelist
731 * identified by <class, fullness_group>.
733 static void insert_zspage(struct size_class
*class,
734 struct zspage
*zspage
,
735 enum fullness_group fullness
)
739 zs_stat_inc(class, fullness
, 1);
740 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
741 struct zspage
, list
);
743 * We want to see more ZS_FULL pages and less almost empty/full.
744 * Put pages with higher ->inuse first.
747 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
748 list_add(&zspage
->list
, &head
->list
);
752 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
756 * This function removes the given zspage from the freelist identified
757 * by <class, fullness_group>.
759 static void remove_zspage(struct size_class
*class,
760 struct zspage
*zspage
,
761 enum fullness_group fullness
)
763 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
764 VM_BUG_ON(is_zspage_isolated(zspage
));
766 list_del_init(&zspage
->list
);
767 zs_stat_dec(class, fullness
, 1);
771 * Each size class maintains zspages in different fullness groups depending
772 * on the number of live objects they contain. When allocating or freeing
773 * objects, the fullness status of the page can change, say, from ALMOST_FULL
774 * to ALMOST_EMPTY when freeing an object. This function checks if such
775 * a status change has occurred for the given page and accordingly moves the
776 * page from the freelist of the old fullness group to that of the new
779 static enum fullness_group
fix_fullness_group(struct size_class
*class,
780 struct zspage
*zspage
)
783 enum fullness_group currfg
, newfg
;
785 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
786 newfg
= get_fullness_group(class, zspage
);
790 if (!is_zspage_isolated(zspage
)) {
791 remove_zspage(class, zspage
, currfg
);
792 insert_zspage(class, zspage
, newfg
);
795 set_zspage_mapping(zspage
, class_idx
, newfg
);
802 * We have to decide on how many pages to link together
803 * to form a zspage for each size class. This is important
804 * to reduce wastage due to unusable space left at end of
805 * each zspage which is given as:
806 * wastage = Zp % class_size
807 * usage = Zp - wastage
808 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
810 * For example, for size class of 3/8 * PAGE_SIZE, we should
811 * link together 3 PAGE_SIZE sized pages to form a zspage
812 * since then we can perfectly fit in 8 such objects.
814 static int get_pages_per_zspage(int class_size
)
816 int i
, max_usedpc
= 0;
817 /* zspage order which gives maximum used size per KB */
818 int max_usedpc_order
= 1;
820 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
824 zspage_size
= i
* PAGE_SIZE
;
825 waste
= zspage_size
% class_size
;
826 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
828 if (usedpc
> max_usedpc
) {
830 max_usedpc_order
= i
;
834 return max_usedpc_order
;
837 static struct zspage
*get_zspage(struct page
*page
)
839 struct zspage
*zspage
= (struct zspage
*)page
->private;
841 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
845 static struct page
*get_next_page(struct page
*page
)
847 if (unlikely(PageHugeObject(page
)))
850 return page
->freelist
;
854 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
855 * @obj: the encoded object value
856 * @page: page object resides in zspage
857 * @obj_idx: object index
859 static void obj_to_location(unsigned long obj
, struct page
**page
,
860 unsigned int *obj_idx
)
862 obj
>>= OBJ_TAG_BITS
;
863 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
864 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
868 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
869 * @page: page object resides in zspage
870 * @obj_idx: object index
872 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
876 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
877 obj
|= obj_idx
& OBJ_INDEX_MASK
;
878 obj
<<= OBJ_TAG_BITS
;
883 static unsigned long handle_to_obj(unsigned long handle
)
885 return *(unsigned long *)handle
;
888 static unsigned long obj_to_head(struct page
*page
, void *obj
)
890 if (unlikely(PageHugeObject(page
))) {
891 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
894 return *(unsigned long *)obj
;
897 static inline int testpin_tag(unsigned long handle
)
899 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
902 static inline int trypin_tag(unsigned long handle
)
904 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
907 static void pin_tag(unsigned long handle
)
909 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
912 static void unpin_tag(unsigned long handle
)
914 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
917 static void reset_page(struct page
*page
)
919 __ClearPageMovable(page
);
920 ClearPagePrivate(page
);
921 set_page_private(page
, 0);
922 page_mapcount_reset(page
);
923 ClearPageHugeObject(page
);
924 page
->freelist
= NULL
;
927 static int trylock_zspage(struct zspage
*zspage
)
929 struct page
*cursor
, *fail
;
931 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
932 get_next_page(cursor
)) {
933 if (!trylock_page(cursor
)) {
941 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
942 get_next_page(cursor
))
948 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
949 struct zspage
*zspage
)
951 struct page
*page
, *next
;
952 enum fullness_group fg
;
953 unsigned int class_idx
;
955 get_zspage_mapping(zspage
, &class_idx
, &fg
);
957 assert_spin_locked(&class->lock
);
959 VM_BUG_ON(get_zspage_inuse(zspage
));
960 VM_BUG_ON(fg
!= ZS_EMPTY
);
962 next
= page
= get_first_page(zspage
);
964 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
965 next
= get_next_page(page
);
968 dec_zone_page_state(page
, NR_ZSPAGES
);
971 } while (page
!= NULL
);
973 cache_free_zspage(pool
, zspage
);
975 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
976 atomic_long_sub(class->pages_per_zspage
,
977 &pool
->pages_allocated
);
980 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
981 struct zspage
*zspage
)
983 VM_BUG_ON(get_zspage_inuse(zspage
));
984 VM_BUG_ON(list_empty(&zspage
->list
));
986 if (!trylock_zspage(zspage
)) {
987 kick_deferred_free(pool
);
991 remove_zspage(class, zspage
, ZS_EMPTY
);
992 __free_zspage(pool
, class, zspage
);
995 /* Initialize a newly allocated zspage */
996 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
998 unsigned int freeobj
= 1;
999 unsigned long off
= 0;
1000 struct page
*page
= get_first_page(zspage
);
1003 struct page
*next_page
;
1004 struct link_free
*link
;
1007 set_first_obj_offset(page
, off
);
1009 vaddr
= kmap_atomic(page
);
1010 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1012 while ((off
+= class->size
) < PAGE_SIZE
) {
1013 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1014 link
+= class->size
/ sizeof(*link
);
1018 * We now come to the last (full or partial) object on this
1019 * page, which must point to the first object on the next
1022 next_page
= get_next_page(page
);
1024 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1027 * Reset OBJ_TAG_BITS bit to last link to tell
1028 * whether it's allocated object or not.
1030 link
->next
= -1UL << OBJ_TAG_BITS
;
1032 kunmap_atomic(vaddr
);
1037 set_freeobj(zspage
, 0);
1040 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1041 struct page
*pages
[])
1045 struct page
*prev_page
= NULL
;
1046 int nr_pages
= class->pages_per_zspage
;
1049 * Allocate individual pages and link them together as:
1050 * 1. all pages are linked together using page->freelist
1051 * 2. each sub-page point to zspage using page->private
1053 * we set PG_private to identify the first page (i.e. no other sub-page
1054 * has this flag set).
1056 for (i
= 0; i
< nr_pages
; i
++) {
1058 set_page_private(page
, (unsigned long)zspage
);
1059 page
->freelist
= NULL
;
1061 zspage
->first_page
= page
;
1062 SetPagePrivate(page
);
1063 if (unlikely(class->objs_per_zspage
== 1 &&
1064 class->pages_per_zspage
== 1))
1065 SetPageHugeObject(page
);
1067 prev_page
->freelist
= page
;
1074 * Allocate a zspage for the given size class
1076 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1077 struct size_class
*class,
1081 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1082 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1087 memset(zspage
, 0, sizeof(struct zspage
));
1088 zspage
->magic
= ZSPAGE_MAGIC
;
1089 migrate_lock_init(zspage
);
1091 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1094 page
= alloc_page(gfp
);
1097 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1098 __free_page(pages
[i
]);
1100 cache_free_zspage(pool
, zspage
);
1104 inc_zone_page_state(page
, NR_ZSPAGES
);
1108 create_page_chain(class, zspage
, pages
);
1109 init_zspage(class, zspage
);
1114 static struct zspage
*find_get_zspage(struct size_class
*class)
1117 struct zspage
*zspage
;
1119 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1120 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1121 struct zspage
, list
);
1129 #ifdef CONFIG_PGTABLE_MAPPING
1130 static inline int __zs_cpu_up(struct mapping_area
*area
)
1133 * Make sure we don't leak memory if a cpu UP notification
1134 * and zs_init() race and both call zs_cpu_up() on the same cpu
1138 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1144 static inline void __zs_cpu_down(struct mapping_area
*area
)
1147 free_vm_area(area
->vm
);
1151 static inline void *__zs_map_object(struct mapping_area
*area
,
1152 struct page
*pages
[2], int off
, int size
)
1154 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1155 area
->vm_addr
= area
->vm
->addr
;
1156 return area
->vm_addr
+ off
;
1159 static inline void __zs_unmap_object(struct mapping_area
*area
,
1160 struct page
*pages
[2], int off
, int size
)
1162 unsigned long addr
= (unsigned long)area
->vm_addr
;
1164 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1167 #else /* CONFIG_PGTABLE_MAPPING */
1169 static inline int __zs_cpu_up(struct mapping_area
*area
)
1172 * Make sure we don't leak memory if a cpu UP notification
1173 * and zs_init() race and both call zs_cpu_up() on the same cpu
1177 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1183 static inline void __zs_cpu_down(struct mapping_area
*area
)
1185 kfree(area
->vm_buf
);
1186 area
->vm_buf
= NULL
;
1189 static void *__zs_map_object(struct mapping_area
*area
,
1190 struct page
*pages
[2], int off
, int size
)
1194 char *buf
= area
->vm_buf
;
1196 /* disable page faults to match kmap_atomic() return conditions */
1197 pagefault_disable();
1199 /* no read fastpath */
1200 if (area
->vm_mm
== ZS_MM_WO
)
1203 sizes
[0] = PAGE_SIZE
- off
;
1204 sizes
[1] = size
- sizes
[0];
1206 /* copy object to per-cpu buffer */
1207 addr
= kmap_atomic(pages
[0]);
1208 memcpy(buf
, addr
+ off
, sizes
[0]);
1209 kunmap_atomic(addr
);
1210 addr
= kmap_atomic(pages
[1]);
1211 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1212 kunmap_atomic(addr
);
1214 return area
->vm_buf
;
1217 static void __zs_unmap_object(struct mapping_area
*area
,
1218 struct page
*pages
[2], int off
, int size
)
1224 /* no write fastpath */
1225 if (area
->vm_mm
== ZS_MM_RO
)
1229 buf
= buf
+ ZS_HANDLE_SIZE
;
1230 size
-= ZS_HANDLE_SIZE
;
1231 off
+= ZS_HANDLE_SIZE
;
1233 sizes
[0] = PAGE_SIZE
- off
;
1234 sizes
[1] = size
- sizes
[0];
1236 /* copy per-cpu buffer to object */
1237 addr
= kmap_atomic(pages
[0]);
1238 memcpy(addr
+ off
, buf
, sizes
[0]);
1239 kunmap_atomic(addr
);
1240 addr
= kmap_atomic(pages
[1]);
1241 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1242 kunmap_atomic(addr
);
1245 /* enable page faults to match kunmap_atomic() return conditions */
1249 #endif /* CONFIG_PGTABLE_MAPPING */
1251 static int zs_cpu_prepare(unsigned int cpu
)
1253 struct mapping_area
*area
;
1255 area
= &per_cpu(zs_map_area
, cpu
);
1256 return __zs_cpu_up(area
);
1259 static int zs_cpu_dead(unsigned int cpu
)
1261 struct mapping_area
*area
;
1263 area
= &per_cpu(zs_map_area
, cpu
);
1264 __zs_cpu_down(area
);
1268 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1269 int objs_per_zspage
)
1271 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1272 prev
->objs_per_zspage
== objs_per_zspage
)
1278 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1280 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1283 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1285 return atomic_long_read(&pool
->pages_allocated
);
1287 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1290 * zs_map_object - get address of allocated object from handle.
1291 * @pool: pool from which the object was allocated
1292 * @handle: handle returned from zs_malloc
1293 * @mm: maping mode to use
1295 * Before using an object allocated from zs_malloc, it must be mapped using
1296 * this function. When done with the object, it must be unmapped using
1299 * Only one object can be mapped per cpu at a time. There is no protection
1300 * against nested mappings.
1302 * This function returns with preemption and page faults disabled.
1304 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1307 struct zspage
*zspage
;
1309 unsigned long obj
, off
;
1310 unsigned int obj_idx
;
1312 unsigned int class_idx
;
1313 enum fullness_group fg
;
1314 struct size_class
*class;
1315 struct mapping_area
*area
;
1316 struct page
*pages
[2];
1320 * Because we use per-cpu mapping areas shared among the
1321 * pools/users, we can't allow mapping in interrupt context
1322 * because it can corrupt another users mappings.
1324 BUG_ON(in_interrupt());
1326 /* From now on, migration cannot move the object */
1329 obj
= handle_to_obj(handle
);
1330 obj_to_location(obj
, &page
, &obj_idx
);
1331 zspage
= get_zspage(page
);
1333 /* migration cannot move any subpage in this zspage */
1334 migrate_read_lock(zspage
);
1336 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1337 class = pool
->size_class
[class_idx
];
1338 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1340 area
= &get_cpu_var(zs_map_area
);
1342 if (off
+ class->size
<= PAGE_SIZE
) {
1343 /* this object is contained entirely within a page */
1344 area
->vm_addr
= kmap_atomic(page
);
1345 ret
= area
->vm_addr
+ off
;
1349 /* this object spans two pages */
1351 pages
[1] = get_next_page(page
);
1354 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1356 if (likely(!PageHugeObject(page
)))
1357 ret
+= ZS_HANDLE_SIZE
;
1361 EXPORT_SYMBOL_GPL(zs_map_object
);
1363 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1365 struct zspage
*zspage
;
1367 unsigned long obj
, off
;
1368 unsigned int obj_idx
;
1370 unsigned int class_idx
;
1371 enum fullness_group fg
;
1372 struct size_class
*class;
1373 struct mapping_area
*area
;
1375 obj
= handle_to_obj(handle
);
1376 obj_to_location(obj
, &page
, &obj_idx
);
1377 zspage
= get_zspage(page
);
1378 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1379 class = pool
->size_class
[class_idx
];
1380 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1382 area
= this_cpu_ptr(&zs_map_area
);
1383 if (off
+ class->size
<= PAGE_SIZE
)
1384 kunmap_atomic(area
->vm_addr
);
1386 struct page
*pages
[2];
1389 pages
[1] = get_next_page(page
);
1392 __zs_unmap_object(area
, pages
, off
, class->size
);
1394 put_cpu_var(zs_map_area
);
1396 migrate_read_unlock(zspage
);
1399 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1402 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1403 * zsmalloc &size_class.
1404 * @pool: zsmalloc pool to use
1406 * The function returns the size of the first huge class - any object of equal
1407 * or bigger size will be stored in zspage consisting of a single physical
1410 * Context: Any context.
1412 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1414 size_t zs_huge_class_size(struct zs_pool
*pool
)
1416 return huge_class_size
;
1418 EXPORT_SYMBOL_GPL(zs_huge_class_size
);
1420 static unsigned long obj_malloc(struct size_class
*class,
1421 struct zspage
*zspage
, unsigned long handle
)
1423 int i
, nr_page
, offset
;
1425 struct link_free
*link
;
1427 struct page
*m_page
;
1428 unsigned long m_offset
;
1431 handle
|= OBJ_ALLOCATED_TAG
;
1432 obj
= get_freeobj(zspage
);
1434 offset
= obj
* class->size
;
1435 nr_page
= offset
>> PAGE_SHIFT
;
1436 m_offset
= offset
& ~PAGE_MASK
;
1437 m_page
= get_first_page(zspage
);
1439 for (i
= 0; i
< nr_page
; i
++)
1440 m_page
= get_next_page(m_page
);
1442 vaddr
= kmap_atomic(m_page
);
1443 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1444 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1445 if (likely(!PageHugeObject(m_page
)))
1446 /* record handle in the header of allocated chunk */
1447 link
->handle
= handle
;
1449 /* record handle to page->index */
1450 zspage
->first_page
->index
= handle
;
1452 kunmap_atomic(vaddr
);
1453 mod_zspage_inuse(zspage
, 1);
1454 zs_stat_inc(class, OBJ_USED
, 1);
1456 obj
= location_to_obj(m_page
, obj
);
1463 * zs_malloc - Allocate block of given size from pool.
1464 * @pool: pool to allocate from
1465 * @size: size of block to allocate
1466 * @gfp: gfp flags when allocating object
1468 * On success, handle to the allocated object is returned,
1470 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1472 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1474 unsigned long handle
, obj
;
1475 struct size_class
*class;
1476 enum fullness_group newfg
;
1477 struct zspage
*zspage
;
1479 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1482 handle
= cache_alloc_handle(pool
, gfp
);
1486 /* extra space in chunk to keep the handle */
1487 size
+= ZS_HANDLE_SIZE
;
1488 class = pool
->size_class
[get_size_class_index(size
)];
1490 spin_lock(&class->lock
);
1491 zspage
= find_get_zspage(class);
1492 if (likely(zspage
)) {
1493 obj
= obj_malloc(class, zspage
, handle
);
1494 /* Now move the zspage to another fullness group, if required */
1495 fix_fullness_group(class, zspage
);
1496 record_obj(handle
, obj
);
1497 spin_unlock(&class->lock
);
1502 spin_unlock(&class->lock
);
1504 zspage
= alloc_zspage(pool
, class, gfp
);
1506 cache_free_handle(pool
, handle
);
1510 spin_lock(&class->lock
);
1511 obj
= obj_malloc(class, zspage
, handle
);
1512 newfg
= get_fullness_group(class, zspage
);
1513 insert_zspage(class, zspage
, newfg
);
1514 set_zspage_mapping(zspage
, class->index
, newfg
);
1515 record_obj(handle
, obj
);
1516 atomic_long_add(class->pages_per_zspage
,
1517 &pool
->pages_allocated
);
1518 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1520 /* We completely set up zspage so mark them as movable */
1521 SetZsPageMovable(pool
, zspage
);
1522 spin_unlock(&class->lock
);
1526 EXPORT_SYMBOL_GPL(zs_malloc
);
1528 static void obj_free(struct size_class
*class, unsigned long obj
)
1530 struct link_free
*link
;
1531 struct zspage
*zspage
;
1532 struct page
*f_page
;
1533 unsigned long f_offset
;
1534 unsigned int f_objidx
;
1537 obj
&= ~OBJ_ALLOCATED_TAG
;
1538 obj_to_location(obj
, &f_page
, &f_objidx
);
1539 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1540 zspage
= get_zspage(f_page
);
1542 vaddr
= kmap_atomic(f_page
);
1544 /* Insert this object in containing zspage's freelist */
1545 link
= (struct link_free
*)(vaddr
+ f_offset
);
1546 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1547 kunmap_atomic(vaddr
);
1548 set_freeobj(zspage
, f_objidx
);
1549 mod_zspage_inuse(zspage
, -1);
1550 zs_stat_dec(class, OBJ_USED
, 1);
1553 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1555 struct zspage
*zspage
;
1556 struct page
*f_page
;
1558 unsigned int f_objidx
;
1560 struct size_class
*class;
1561 enum fullness_group fullness
;
1564 if (unlikely(!handle
))
1568 obj
= handle_to_obj(handle
);
1569 obj_to_location(obj
, &f_page
, &f_objidx
);
1570 zspage
= get_zspage(f_page
);
1572 migrate_read_lock(zspage
);
1574 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1575 class = pool
->size_class
[class_idx
];
1577 spin_lock(&class->lock
);
1578 obj_free(class, obj
);
1579 fullness
= fix_fullness_group(class, zspage
);
1580 if (fullness
!= ZS_EMPTY
) {
1581 migrate_read_unlock(zspage
);
1585 isolated
= is_zspage_isolated(zspage
);
1586 migrate_read_unlock(zspage
);
1587 /* If zspage is isolated, zs_page_putback will free the zspage */
1588 if (likely(!isolated
))
1589 free_zspage(pool
, class, zspage
);
1592 spin_unlock(&class->lock
);
1594 cache_free_handle(pool
, handle
);
1596 EXPORT_SYMBOL_GPL(zs_free
);
1598 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1601 struct page
*s_page
, *d_page
;
1602 unsigned int s_objidx
, d_objidx
;
1603 unsigned long s_off
, d_off
;
1604 void *s_addr
, *d_addr
;
1605 int s_size
, d_size
, size
;
1608 s_size
= d_size
= class->size
;
1610 obj_to_location(src
, &s_page
, &s_objidx
);
1611 obj_to_location(dst
, &d_page
, &d_objidx
);
1613 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1614 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1616 if (s_off
+ class->size
> PAGE_SIZE
)
1617 s_size
= PAGE_SIZE
- s_off
;
1619 if (d_off
+ class->size
> PAGE_SIZE
)
1620 d_size
= PAGE_SIZE
- d_off
;
1622 s_addr
= kmap_atomic(s_page
);
1623 d_addr
= kmap_atomic(d_page
);
1626 size
= min(s_size
, d_size
);
1627 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1630 if (written
== class->size
)
1638 if (s_off
>= PAGE_SIZE
) {
1639 kunmap_atomic(d_addr
);
1640 kunmap_atomic(s_addr
);
1641 s_page
= get_next_page(s_page
);
1642 s_addr
= kmap_atomic(s_page
);
1643 d_addr
= kmap_atomic(d_page
);
1644 s_size
= class->size
- written
;
1648 if (d_off
>= PAGE_SIZE
) {
1649 kunmap_atomic(d_addr
);
1650 d_page
= get_next_page(d_page
);
1651 d_addr
= kmap_atomic(d_page
);
1652 d_size
= class->size
- written
;
1657 kunmap_atomic(d_addr
);
1658 kunmap_atomic(s_addr
);
1662 * Find alloced object in zspage from index object and
1665 static unsigned long find_alloced_obj(struct size_class
*class,
1666 struct page
*page
, int *obj_idx
)
1670 int index
= *obj_idx
;
1671 unsigned long handle
= 0;
1672 void *addr
= kmap_atomic(page
);
1674 offset
= get_first_obj_offset(page
);
1675 offset
+= class->size
* index
;
1677 while (offset
< PAGE_SIZE
) {
1678 head
= obj_to_head(page
, addr
+ offset
);
1679 if (head
& OBJ_ALLOCATED_TAG
) {
1680 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1681 if (trypin_tag(handle
))
1686 offset
+= class->size
;
1690 kunmap_atomic(addr
);
1697 struct zs_compact_control
{
1698 /* Source spage for migration which could be a subpage of zspage */
1699 struct page
*s_page
;
1700 /* Destination page for migration which should be a first page
1702 struct page
*d_page
;
1703 /* Starting object index within @s_page which used for live object
1704 * in the subpage. */
1708 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1709 struct zs_compact_control
*cc
)
1711 unsigned long used_obj
, free_obj
;
1712 unsigned long handle
;
1713 struct page
*s_page
= cc
->s_page
;
1714 struct page
*d_page
= cc
->d_page
;
1715 int obj_idx
= cc
->obj_idx
;
1719 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1721 s_page
= get_next_page(s_page
);
1728 /* Stop if there is no more space */
1729 if (zspage_full(class, get_zspage(d_page
))) {
1735 used_obj
= handle_to_obj(handle
);
1736 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1737 zs_object_copy(class, free_obj
, used_obj
);
1740 * record_obj updates handle's value to free_obj and it will
1741 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1742 * breaks synchronization using pin_tag(e,g, zs_free) so
1743 * let's keep the lock bit.
1745 free_obj
|= BIT(HANDLE_PIN_BIT
);
1746 record_obj(handle
, free_obj
);
1748 obj_free(class, used_obj
);
1751 /* Remember last position in this iteration */
1752 cc
->s_page
= s_page
;
1753 cc
->obj_idx
= obj_idx
;
1758 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1761 struct zspage
*zspage
;
1762 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1765 fg
[0] = ZS_ALMOST_FULL
;
1766 fg
[1] = ZS_ALMOST_EMPTY
;
1769 for (i
= 0; i
< 2; i
++) {
1770 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1771 struct zspage
, list
);
1773 VM_BUG_ON(is_zspage_isolated(zspage
));
1774 remove_zspage(class, zspage
, fg
[i
]);
1783 * putback_zspage - add @zspage into right class's fullness list
1784 * @class: destination class
1785 * @zspage: target page
1787 * Return @zspage's fullness_group
1789 static enum fullness_group
putback_zspage(struct size_class
*class,
1790 struct zspage
*zspage
)
1792 enum fullness_group fullness
;
1794 VM_BUG_ON(is_zspage_isolated(zspage
));
1796 fullness
= get_fullness_group(class, zspage
);
1797 insert_zspage(class, zspage
, fullness
);
1798 set_zspage_mapping(zspage
, class->index
, fullness
);
1803 #ifdef CONFIG_COMPACTION
1805 * To prevent zspage destroy during migration, zspage freeing should
1806 * hold locks of all pages in the zspage.
1808 static void lock_zspage(struct zspage
*zspage
)
1810 struct page
*page
= get_first_page(zspage
);
1814 } while ((page
= get_next_page(page
)) != NULL
);
1817 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1818 int flags
, const char *dev_name
, void *data
)
1820 static const struct dentry_operations ops
= {
1821 .d_dname
= simple_dname
,
1824 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1827 static struct file_system_type zsmalloc_fs
= {
1830 .kill_sb
= kill_anon_super
,
1833 static int zsmalloc_mount(void)
1837 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1838 if (IS_ERR(zsmalloc_mnt
))
1839 ret
= PTR_ERR(zsmalloc_mnt
);
1844 static void zsmalloc_unmount(void)
1846 kern_unmount(zsmalloc_mnt
);
1849 static void migrate_lock_init(struct zspage
*zspage
)
1851 rwlock_init(&zspage
->lock
);
1854 static void migrate_read_lock(struct zspage
*zspage
)
1856 read_lock(&zspage
->lock
);
1859 static void migrate_read_unlock(struct zspage
*zspage
)
1861 read_unlock(&zspage
->lock
);
1864 static void migrate_write_lock(struct zspage
*zspage
)
1866 write_lock(&zspage
->lock
);
1869 static void migrate_write_unlock(struct zspage
*zspage
)
1871 write_unlock(&zspage
->lock
);
1874 /* Number of isolated subpage for *page migration* in this zspage */
1875 static void inc_zspage_isolation(struct zspage
*zspage
)
1880 static void dec_zspage_isolation(struct zspage
*zspage
)
1885 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1886 struct page
*newpage
, struct page
*oldpage
)
1889 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1892 page
= get_first_page(zspage
);
1894 if (page
== oldpage
)
1895 pages
[idx
] = newpage
;
1899 } while ((page
= get_next_page(page
)) != NULL
);
1901 create_page_chain(class, zspage
, pages
);
1902 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1903 if (unlikely(PageHugeObject(oldpage
)))
1904 newpage
->index
= oldpage
->index
;
1905 __SetPageMovable(newpage
, page_mapping(oldpage
));
1908 static bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1910 struct zs_pool
*pool
;
1911 struct size_class
*class;
1913 enum fullness_group fullness
;
1914 struct zspage
*zspage
;
1915 struct address_space
*mapping
;
1918 * Page is locked so zspage couldn't be destroyed. For detail, look at
1919 * lock_zspage in free_zspage.
1921 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1922 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1924 zspage
= get_zspage(page
);
1927 * Without class lock, fullness could be stale while class_idx is okay
1928 * because class_idx is constant unless page is freed so we should get
1929 * fullness again under class lock.
1931 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1932 mapping
= page_mapping(page
);
1933 pool
= mapping
->private_data
;
1934 class = pool
->size_class
[class_idx
];
1936 spin_lock(&class->lock
);
1937 if (get_zspage_inuse(zspage
) == 0) {
1938 spin_unlock(&class->lock
);
1942 /* zspage is isolated for object migration */
1943 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1944 spin_unlock(&class->lock
);
1949 * If this is first time isolation for the zspage, isolate zspage from
1950 * size_class to prevent further object allocation from the zspage.
1952 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1953 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1954 remove_zspage(class, zspage
, fullness
);
1957 inc_zspage_isolation(zspage
);
1958 spin_unlock(&class->lock
);
1963 static int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1964 struct page
*page
, enum migrate_mode mode
)
1966 struct zs_pool
*pool
;
1967 struct size_class
*class;
1969 enum fullness_group fullness
;
1970 struct zspage
*zspage
;
1972 void *s_addr
, *d_addr
, *addr
;
1974 unsigned long handle
, head
;
1975 unsigned long old_obj
, new_obj
;
1976 unsigned int obj_idx
;
1980 * We cannot support the _NO_COPY case here, because copy needs to
1981 * happen under the zs lock, which does not work with
1982 * MIGRATE_SYNC_NO_COPY workflow.
1984 if (mode
== MIGRATE_SYNC_NO_COPY
)
1987 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1988 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1990 zspage
= get_zspage(page
);
1992 /* Concurrent compactor cannot migrate any subpage in zspage */
1993 migrate_write_lock(zspage
);
1994 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1995 pool
= mapping
->private_data
;
1996 class = pool
->size_class
[class_idx
];
1997 offset
= get_first_obj_offset(page
);
1999 spin_lock(&class->lock
);
2000 if (!get_zspage_inuse(zspage
)) {
2002 * Set "offset" to end of the page so that every loops
2003 * skips unnecessary object scanning.
2009 s_addr
= kmap_atomic(page
);
2010 while (pos
< PAGE_SIZE
) {
2011 head
= obj_to_head(page
, s_addr
+ pos
);
2012 if (head
& OBJ_ALLOCATED_TAG
) {
2013 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2014 if (!trypin_tag(handle
))
2021 * Here, any user cannot access all objects in the zspage so let's move.
2023 d_addr
= kmap_atomic(newpage
);
2024 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2025 kunmap_atomic(d_addr
);
2027 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2028 addr
+= class->size
) {
2029 head
= obj_to_head(page
, addr
);
2030 if (head
& OBJ_ALLOCATED_TAG
) {
2031 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2032 if (!testpin_tag(handle
))
2035 old_obj
= handle_to_obj(handle
);
2036 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2037 new_obj
= (unsigned long)location_to_obj(newpage
,
2039 new_obj
|= BIT(HANDLE_PIN_BIT
);
2040 record_obj(handle
, new_obj
);
2044 replace_sub_page(class, zspage
, newpage
, page
);
2047 dec_zspage_isolation(zspage
);
2050 * Page migration is done so let's putback isolated zspage to
2051 * the list if @page is final isolated subpage in the zspage.
2053 if (!is_zspage_isolated(zspage
))
2054 putback_zspage(class, zspage
);
2060 ret
= MIGRATEPAGE_SUCCESS
;
2062 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2063 addr
+= class->size
) {
2064 head
= obj_to_head(page
, addr
);
2065 if (head
& OBJ_ALLOCATED_TAG
) {
2066 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2067 if (!testpin_tag(handle
))
2072 kunmap_atomic(s_addr
);
2073 spin_unlock(&class->lock
);
2074 migrate_write_unlock(zspage
);
2079 static void zs_page_putback(struct page
*page
)
2081 struct zs_pool
*pool
;
2082 struct size_class
*class;
2084 enum fullness_group fg
;
2085 struct address_space
*mapping
;
2086 struct zspage
*zspage
;
2088 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2089 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2091 zspage
= get_zspage(page
);
2092 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2093 mapping
= page_mapping(page
);
2094 pool
= mapping
->private_data
;
2095 class = pool
->size_class
[class_idx
];
2097 spin_lock(&class->lock
);
2098 dec_zspage_isolation(zspage
);
2099 if (!is_zspage_isolated(zspage
)) {
2100 fg
= putback_zspage(class, zspage
);
2102 * Due to page_lock, we cannot free zspage immediately
2106 schedule_work(&pool
->free_work
);
2108 spin_unlock(&class->lock
);
2111 static const struct address_space_operations zsmalloc_aops
= {
2112 .isolate_page
= zs_page_isolate
,
2113 .migratepage
= zs_page_migrate
,
2114 .putback_page
= zs_page_putback
,
2117 static int zs_register_migration(struct zs_pool
*pool
)
2119 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2120 if (IS_ERR(pool
->inode
)) {
2125 pool
->inode
->i_mapping
->private_data
= pool
;
2126 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2130 static void zs_unregister_migration(struct zs_pool
*pool
)
2132 flush_work(&pool
->free_work
);
2137 * Caller should hold page_lock of all pages in the zspage
2138 * In here, we cannot use zspage meta data.
2140 static void async_free_zspage(struct work_struct
*work
)
2143 struct size_class
*class;
2144 unsigned int class_idx
;
2145 enum fullness_group fullness
;
2146 struct zspage
*zspage
, *tmp
;
2147 LIST_HEAD(free_pages
);
2148 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2151 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2152 class = pool
->size_class
[i
];
2153 if (class->index
!= i
)
2156 spin_lock(&class->lock
);
2157 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2158 spin_unlock(&class->lock
);
2162 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2163 list_del(&zspage
->list
);
2164 lock_zspage(zspage
);
2166 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2167 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2168 class = pool
->size_class
[class_idx
];
2169 spin_lock(&class->lock
);
2170 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2171 spin_unlock(&class->lock
);
2175 static void kick_deferred_free(struct zs_pool
*pool
)
2177 schedule_work(&pool
->free_work
);
2180 static void init_deferred_free(struct zs_pool
*pool
)
2182 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2185 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2187 struct page
*page
= get_first_page(zspage
);
2190 WARN_ON(!trylock_page(page
));
2191 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2193 } while ((page
= get_next_page(page
)) != NULL
);
2199 * Based on the number of unused allocated objects calculate
2200 * and return the number of pages that we can free.
2202 static unsigned long zs_can_compact(struct size_class
*class)
2204 unsigned long obj_wasted
;
2205 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2206 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2208 if (obj_allocated
<= obj_used
)
2211 obj_wasted
= obj_allocated
- obj_used
;
2212 obj_wasted
/= class->objs_per_zspage
;
2214 return obj_wasted
* class->pages_per_zspage
;
2217 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2219 struct zs_compact_control cc
;
2220 struct zspage
*src_zspage
;
2221 struct zspage
*dst_zspage
= NULL
;
2223 spin_lock(&class->lock
);
2224 while ((src_zspage
= isolate_zspage(class, true))) {
2226 if (!zs_can_compact(class))
2230 cc
.s_page
= get_first_page(src_zspage
);
2232 while ((dst_zspage
= isolate_zspage(class, false))) {
2233 cc
.d_page
= get_first_page(dst_zspage
);
2235 * If there is no more space in dst_page, resched
2236 * and see if anyone had allocated another zspage.
2238 if (!migrate_zspage(pool
, class, &cc
))
2241 putback_zspage(class, dst_zspage
);
2244 /* Stop if we couldn't find slot */
2245 if (dst_zspage
== NULL
)
2248 putback_zspage(class, dst_zspage
);
2249 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2250 free_zspage(pool
, class, src_zspage
);
2251 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2253 spin_unlock(&class->lock
);
2255 spin_lock(&class->lock
);
2259 putback_zspage(class, src_zspage
);
2261 spin_unlock(&class->lock
);
2264 unsigned long zs_compact(struct zs_pool
*pool
)
2267 struct size_class
*class;
2269 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2270 class = pool
->size_class
[i
];
2273 if (class->index
!= i
)
2275 __zs_compact(pool
, class);
2278 return pool
->stats
.pages_compacted
;
2280 EXPORT_SYMBOL_GPL(zs_compact
);
2282 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2284 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2286 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2288 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2289 struct shrink_control
*sc
)
2291 unsigned long pages_freed
;
2292 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2295 pages_freed
= pool
->stats
.pages_compacted
;
2297 * Compact classes and calculate compaction delta.
2298 * Can run concurrently with a manually triggered
2299 * (by user) compaction.
2301 pages_freed
= zs_compact(pool
) - pages_freed
;
2303 return pages_freed
? pages_freed
: SHRINK_STOP
;
2306 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2307 struct shrink_control
*sc
)
2310 struct size_class
*class;
2311 unsigned long pages_to_free
= 0;
2312 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2315 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2316 class = pool
->size_class
[i
];
2319 if (class->index
!= i
)
2322 pages_to_free
+= zs_can_compact(class);
2325 return pages_to_free
;
2328 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2330 unregister_shrinker(&pool
->shrinker
);
2333 static int zs_register_shrinker(struct zs_pool
*pool
)
2335 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2336 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2337 pool
->shrinker
.batch
= 0;
2338 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2340 return register_shrinker(&pool
->shrinker
);
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2350 * On success, a pointer to the newly created pool is returned,
2353 struct zs_pool
*zs_create_pool(const char *name
)
2356 struct zs_pool
*pool
;
2357 struct size_class
*prev_class
= NULL
;
2359 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2363 init_deferred_free(pool
);
2365 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2369 if (create_cache(pool
))
2373 * Iterate reversely, because, size of size_class that we want to use
2374 * for merging should be larger or equal to current size.
2376 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2378 int pages_per_zspage
;
2379 int objs_per_zspage
;
2380 struct size_class
*class;
2383 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2384 if (size
> ZS_MAX_ALLOC_SIZE
)
2385 size
= ZS_MAX_ALLOC_SIZE
;
2386 pages_per_zspage
= get_pages_per_zspage(size
);
2387 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2390 * We iterate from biggest down to smallest classes,
2391 * so huge_class_size holds the size of the first huge
2392 * class. Any object bigger than or equal to that will
2393 * endup in the huge class.
2395 if (pages_per_zspage
!= 1 && objs_per_zspage
!= 1 &&
2397 huge_class_size
= size
;
2399 * The object uses ZS_HANDLE_SIZE bytes to store the
2400 * handle. We need to subtract it, because zs_malloc()
2401 * unconditionally adds handle size before it performs
2402 * size class search - so object may be smaller than
2403 * huge class size, yet it still can end up in the huge
2404 * class because it grows by ZS_HANDLE_SIZE extra bytes
2405 * right before class lookup.
2407 huge_class_size
-= (ZS_HANDLE_SIZE
- 1);
2411 * size_class is used for normal zsmalloc operation such
2412 * as alloc/free for that size. Although it is natural that we
2413 * have one size_class for each size, there is a chance that we
2414 * can get more memory utilization if we use one size_class for
2415 * many different sizes whose size_class have same
2416 * characteristics. So, we makes size_class point to
2417 * previous size_class if possible.
2420 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2421 pool
->size_class
[i
] = prev_class
;
2426 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2432 class->pages_per_zspage
= pages_per_zspage
;
2433 class->objs_per_zspage
= objs_per_zspage
;
2434 spin_lock_init(&class->lock
);
2435 pool
->size_class
[i
] = class;
2436 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2438 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2443 /* debug only, don't abort if it fails */
2444 zs_pool_stat_create(pool
, name
);
2446 if (zs_register_migration(pool
))
2450 * Not critical since shrinker is only used to trigger internal
2451 * defragmentation of the pool which is pretty optional thing. If
2452 * registration fails we still can use the pool normally and user can
2453 * trigger compaction manually. Thus, ignore return code.
2455 zs_register_shrinker(pool
);
2460 zs_destroy_pool(pool
);
2463 EXPORT_SYMBOL_GPL(zs_create_pool
);
2465 void zs_destroy_pool(struct zs_pool
*pool
)
2469 zs_unregister_shrinker(pool
);
2470 zs_unregister_migration(pool
);
2471 zs_pool_stat_destroy(pool
);
2473 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2475 struct size_class
*class = pool
->size_class
[i
];
2480 if (class->index
!= i
)
2483 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2484 if (!list_empty(&class->fullness_list
[fg
])) {
2485 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2492 destroy_cache(pool
);
2496 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2498 static int __init
zs_init(void)
2502 ret
= zsmalloc_mount();
2506 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2507 zs_cpu_prepare
, zs_cpu_dead
);
2512 zpool_register_driver(&zs_zpool_driver
);
2525 static void __exit
zs_exit(void)
2528 zpool_unregister_driver(&zs_zpool_driver
);
2531 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2536 module_init(zs_init
);
2537 module_exit(zs_exit
);
2539 MODULE_LICENSE("Dual BSD/GPL");
2540 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");