2 * st_spi_fsm.c - ST Fast Sequence Mode (FSM) Serial Flash Controller
4 * Author: Angus Clark <angus.clark@st.com>
6 * Copyright (C) 2010-2014 STMicroelectronics Limited
8 * JEDEC probe based on drivers/mtd/devices/m25p80.c
10 * This code is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/regmap.h>
18 #include <linux/platform_device.h>
19 #include <linux/mfd/syscon.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/mtd/spi-nor.h>
23 #include <linux/sched.h>
24 #include <linux/delay.h>
28 #include "serial_flash_cmds.h"
31 * FSM SPI Controller Registers
33 #define SPI_CLOCKDIV 0x0010
34 #define SPI_MODESELECT 0x0018
35 #define SPI_CONFIGDATA 0x0020
36 #define SPI_STA_MODE_CHANGE 0x0028
37 #define SPI_FAST_SEQ_TRANSFER_SIZE 0x0100
38 #define SPI_FAST_SEQ_ADD1 0x0104
39 #define SPI_FAST_SEQ_ADD2 0x0108
40 #define SPI_FAST_SEQ_ADD_CFG 0x010c
41 #define SPI_FAST_SEQ_OPC1 0x0110
42 #define SPI_FAST_SEQ_OPC2 0x0114
43 #define SPI_FAST_SEQ_OPC3 0x0118
44 #define SPI_FAST_SEQ_OPC4 0x011c
45 #define SPI_FAST_SEQ_OPC5 0x0120
46 #define SPI_MODE_BITS 0x0124
47 #define SPI_DUMMY_BITS 0x0128
48 #define SPI_FAST_SEQ_FLASH_STA_DATA 0x012c
49 #define SPI_FAST_SEQ_1 0x0130
50 #define SPI_FAST_SEQ_2 0x0134
51 #define SPI_FAST_SEQ_3 0x0138
52 #define SPI_FAST_SEQ_4 0x013c
53 #define SPI_FAST_SEQ_CFG 0x0140
54 #define SPI_FAST_SEQ_STA 0x0144
55 #define SPI_QUAD_BOOT_SEQ_INIT_1 0x0148
56 #define SPI_QUAD_BOOT_SEQ_INIT_2 0x014c
57 #define SPI_QUAD_BOOT_READ_SEQ_1 0x0150
58 #define SPI_QUAD_BOOT_READ_SEQ_2 0x0154
59 #define SPI_PROGRAM_ERASE_TIME 0x0158
60 #define SPI_MULT_PAGE_REPEAT_SEQ_1 0x015c
61 #define SPI_MULT_PAGE_REPEAT_SEQ_2 0x0160
62 #define SPI_STATUS_WR_TIME_REG 0x0164
63 #define SPI_FAST_SEQ_DATA_REG 0x0300
66 * Register: SPI_MODESELECT
68 #define SPI_MODESELECT_CONTIG 0x01
69 #define SPI_MODESELECT_FASTREAD 0x02
70 #define SPI_MODESELECT_DUALIO 0x04
71 #define SPI_MODESELECT_FSM 0x08
72 #define SPI_MODESELECT_QUADBOOT 0x10
75 * Register: SPI_CONFIGDATA
77 #define SPI_CFG_DEVICE_ST 0x1
78 #define SPI_CFG_DEVICE_ATMEL 0x4
79 #define SPI_CFG_MIN_CS_HIGH(x) (((x) & 0xfff) << 4)
80 #define SPI_CFG_CS_SETUPHOLD(x) (((x) & 0xff) << 16)
81 #define SPI_CFG_DATA_HOLD(x) (((x) & 0xff) << 24)
83 #define SPI_CFG_DEFAULT_MIN_CS_HIGH SPI_CFG_MIN_CS_HIGH(0x0AA)
84 #define SPI_CFG_DEFAULT_CS_SETUPHOLD SPI_CFG_CS_SETUPHOLD(0xA0)
85 #define SPI_CFG_DEFAULT_DATA_HOLD SPI_CFG_DATA_HOLD(0x00)
88 * Register: SPI_FAST_SEQ_TRANSFER_SIZE
90 #define TRANSFER_SIZE(x) ((x) * 8)
93 * Register: SPI_FAST_SEQ_ADD_CFG
95 #define ADR_CFG_CYCLES_ADD1(x) ((x) << 0)
96 #define ADR_CFG_PADS_1_ADD1 (0x0 << 6)
97 #define ADR_CFG_PADS_2_ADD1 (0x1 << 6)
98 #define ADR_CFG_PADS_4_ADD1 (0x3 << 6)
99 #define ADR_CFG_CSDEASSERT_ADD1 (1 << 8)
100 #define ADR_CFG_CYCLES_ADD2(x) ((x) << (0+16))
101 #define ADR_CFG_PADS_1_ADD2 (0x0 << (6+16))
102 #define ADR_CFG_PADS_2_ADD2 (0x1 << (6+16))
103 #define ADR_CFG_PADS_4_ADD2 (0x3 << (6+16))
104 #define ADR_CFG_CSDEASSERT_ADD2 (1 << (8+16))
107 * Register: SPI_FAST_SEQ_n
109 #define SEQ_OPC_OPCODE(x) ((x) << 0)
110 #define SEQ_OPC_CYCLES(x) ((x) << 8)
111 #define SEQ_OPC_PADS_1 (0x0 << 14)
112 #define SEQ_OPC_PADS_2 (0x1 << 14)
113 #define SEQ_OPC_PADS_4 (0x3 << 14)
114 #define SEQ_OPC_CSDEASSERT (1 << 16)
117 * Register: SPI_FAST_SEQ_CFG
119 #define SEQ_CFG_STARTSEQ (1 << 0)
120 #define SEQ_CFG_SWRESET (1 << 5)
121 #define SEQ_CFG_CSDEASSERT (1 << 6)
122 #define SEQ_CFG_READNOTWRITE (1 << 7)
123 #define SEQ_CFG_ERASE (1 << 8)
124 #define SEQ_CFG_PADS_1 (0x0 << 16)
125 #define SEQ_CFG_PADS_2 (0x1 << 16)
126 #define SEQ_CFG_PADS_4 (0x3 << 16)
129 * Register: SPI_MODE_BITS
131 #define MODE_DATA(x) (x & 0xff)
132 #define MODE_CYCLES(x) ((x & 0x3f) << 16)
133 #define MODE_PADS_1 (0x0 << 22)
134 #define MODE_PADS_2 (0x1 << 22)
135 #define MODE_PADS_4 (0x3 << 22)
136 #define DUMMY_CSDEASSERT (1 << 24)
139 * Register: SPI_DUMMY_BITS
141 #define DUMMY_CYCLES(x) ((x & 0x3f) << 16)
142 #define DUMMY_PADS_1 (0x0 << 22)
143 #define DUMMY_PADS_2 (0x1 << 22)
144 #define DUMMY_PADS_4 (0x3 << 22)
145 #define DUMMY_CSDEASSERT (1 << 24)
148 * Register: SPI_FAST_SEQ_FLASH_STA_DATA
150 #define STA_DATA_BYTE1(x) ((x & 0xff) << 0)
151 #define STA_DATA_BYTE2(x) ((x & 0xff) << 8)
152 #define STA_PADS_1 (0x0 << 16)
153 #define STA_PADS_2 (0x1 << 16)
154 #define STA_PADS_4 (0x3 << 16)
155 #define STA_CSDEASSERT (0x1 << 20)
156 #define STA_RDNOTWR (0x1 << 21)
159 * FSM SPI Instruction Opcodes
161 #define STFSM_OPC_CMD 0x1
162 #define STFSM_OPC_ADD 0x2
163 #define STFSM_OPC_STA 0x3
164 #define STFSM_OPC_MODE 0x4
165 #define STFSM_OPC_DUMMY 0x5
166 #define STFSM_OPC_DATA 0x6
167 #define STFSM_OPC_WAIT 0x7
168 #define STFSM_OPC_JUMP 0x8
169 #define STFSM_OPC_GOTO 0x9
170 #define STFSM_OPC_STOP 0xF
173 * FSM SPI Instructions (== opcode + operand).
175 #define STFSM_INSTR(cmd, op) ((cmd) | ((op) << 4))
177 #define STFSM_INST_CMD1 STFSM_INSTR(STFSM_OPC_CMD, 1)
178 #define STFSM_INST_CMD2 STFSM_INSTR(STFSM_OPC_CMD, 2)
179 #define STFSM_INST_CMD3 STFSM_INSTR(STFSM_OPC_CMD, 3)
180 #define STFSM_INST_CMD4 STFSM_INSTR(STFSM_OPC_CMD, 4)
181 #define STFSM_INST_CMD5 STFSM_INSTR(STFSM_OPC_CMD, 5)
182 #define STFSM_INST_ADD1 STFSM_INSTR(STFSM_OPC_ADD, 1)
183 #define STFSM_INST_ADD2 STFSM_INSTR(STFSM_OPC_ADD, 2)
185 #define STFSM_INST_DATA_WRITE STFSM_INSTR(STFSM_OPC_DATA, 1)
186 #define STFSM_INST_DATA_READ STFSM_INSTR(STFSM_OPC_DATA, 2)
188 #define STFSM_INST_STA_RD1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
189 #define STFSM_INST_STA_WR1 STFSM_INSTR(STFSM_OPC_STA, 0x1)
190 #define STFSM_INST_STA_RD2 STFSM_INSTR(STFSM_OPC_STA, 0x2)
191 #define STFSM_INST_STA_WR1_2 STFSM_INSTR(STFSM_OPC_STA, 0x3)
193 #define STFSM_INST_MODE STFSM_INSTR(STFSM_OPC_MODE, 0)
194 #define STFSM_INST_DUMMY STFSM_INSTR(STFSM_OPC_DUMMY, 0)
195 #define STFSM_INST_WAIT STFSM_INSTR(STFSM_OPC_WAIT, 0)
196 #define STFSM_INST_STOP STFSM_INSTR(STFSM_OPC_STOP, 0)
198 #define STFSM_DEFAULT_EMI_FREQ 100000000UL /* 100 MHz */
199 #define STFSM_DEFAULT_WR_TIME (STFSM_DEFAULT_EMI_FREQ * (15/1000)) /* 15ms */
201 #define STFSM_FLASH_SAFE_FREQ 10000000UL /* 10 MHz */
203 #define STFSM_MAX_WAIT_SEQ_MS 1000 /* FSM execution time */
205 /* S25FLxxxS commands */
206 #define S25FL_CMD_WRITE4_1_1_4 0x34
207 #define S25FL_CMD_SE4 0xdc
208 #define S25FL_CMD_CLSR 0x30
209 #define S25FL_CMD_DYBWR 0xe1
210 #define S25FL_CMD_DYBRD 0xe0
211 #define S25FL_CMD_WRITE4 0x12 /* Note, opcode clashes with
212 * 'SPINOR_OP_WRITE_1_4_4'
213 * as found on N25Qxxx devices! */
215 /* Status register */
216 #define FLASH_STATUS_BUSY 0x01
217 #define FLASH_STATUS_WEL 0x02
218 #define FLASH_STATUS_BP0 0x04
219 #define FLASH_STATUS_BP1 0x08
220 #define FLASH_STATUS_BP2 0x10
221 #define FLASH_STATUS_SRWP0 0x80
222 #define FLASH_STATUS_TIMEOUT 0xff
223 /* S25FL Error Flags */
224 #define S25FL_STATUS_E_ERR 0x20
225 #define S25FL_STATUS_P_ERR 0x40
227 #define N25Q_CMD_WRVCR 0x81
228 #define N25Q_CMD_RDVCR 0x85
229 #define N25Q_CMD_RDVECR 0x65
230 #define N25Q_CMD_RDNVCR 0xb5
231 #define N25Q_CMD_WRNVCR 0xb1
233 #define FLASH_PAGESIZE 256 /* In Bytes */
234 #define FLASH_PAGESIZE_32 (FLASH_PAGESIZE / 4) /* In uint32_t */
235 #define FLASH_MAX_BUSY_WAIT (300 * HZ) /* Maximum 'CHIPERASE' time */
238 * Flags to tweak operation of default read/write/erase routines
240 #define CFG_READ_TOGGLE_32BIT_ADDR 0x00000001
241 #define CFG_WRITE_TOGGLE_32BIT_ADDR 0x00000002
242 #define CFG_ERASESEC_TOGGLE_32BIT_ADDR 0x00000008
243 #define CFG_S25FL_CHECK_ERROR_FLAGS 0x00000010
256 } __packed
__aligned(4);
261 struct resource
*region
;
264 struct flash_info
*info
;
266 uint32_t configuration
;
267 uint32_t fifo_dir_delay
;
268 bool booted_from_spi
;
272 struct stfsm_seq stfsm_seq_read
;
273 struct stfsm_seq stfsm_seq_write
;
274 struct stfsm_seq stfsm_seq_en_32bit_addr
;
277 /* Parameters to configure a READ or WRITE FSM sequence */
278 struct seq_rw_config
{
279 uint32_t flags
; /* flags to support config */
280 uint8_t cmd
; /* FLASH command */
281 int write
; /* Write Sequence */
282 uint8_t addr_pads
; /* No. of addr pads (MODE & DUMMY) */
283 uint8_t data_pads
; /* No. of data pads */
284 uint8_t mode_data
; /* MODE data */
285 uint8_t mode_cycles
; /* No. of MODE cycles */
286 uint8_t dummy_cycles
; /* No. of DUMMY cycles */
289 /* SPI Flash Device Table */
293 * JEDEC id zero means "no ID" (most older chips); otherwise it has
294 * a high byte of zero plus three data bytes: the manufacturer id,
295 * then a two byte device id.
300 * The size listed here is what works with SPINOR_OP_SE, which isn't
301 * necessarily called a "sector" by the vendor.
303 unsigned sector_size
;
307 * Note, where FAST_READ is supported, freq_max specifies the
308 * FAST_READ frequency, not the READ frequency.
311 int (*config
)(struct stfsm
*);
314 static int stfsm_n25q_config(struct stfsm
*fsm
);
315 static int stfsm_mx25_config(struct stfsm
*fsm
);
316 static int stfsm_s25fl_config(struct stfsm
*fsm
);
317 static int stfsm_w25q_config(struct stfsm
*fsm
);
319 static struct flash_info flash_types
[] = {
321 * ST Microelectronics/Numonyx --
322 * (newer production versions may have feature updates
323 * (eg faster operating frequency)
325 #define M25P_FLAG (FLASH_FLAG_READ_WRITE | FLASH_FLAG_READ_FAST)
326 { "m25p40", 0x202013, 0, 64 * 1024, 8, M25P_FLAG
, 25, NULL
},
327 { "m25p80", 0x202014, 0, 64 * 1024, 16, M25P_FLAG
, 25, NULL
},
328 { "m25p16", 0x202015, 0, 64 * 1024, 32, M25P_FLAG
, 25, NULL
},
329 { "m25p32", 0x202016, 0, 64 * 1024, 64, M25P_FLAG
, 50, NULL
},
330 { "m25p64", 0x202017, 0, 64 * 1024, 128, M25P_FLAG
, 50, NULL
},
331 { "m25p128", 0x202018, 0, 256 * 1024, 64, M25P_FLAG
, 50, NULL
},
333 #define M25PX_FLAG (FLASH_FLAG_READ_WRITE | \
334 FLASH_FLAG_READ_FAST | \
335 FLASH_FLAG_READ_1_1_2 | \
336 FLASH_FLAG_WRITE_1_1_2)
337 { "m25px32", 0x207116, 0, 64 * 1024, 64, M25PX_FLAG
, 75, NULL
},
338 { "m25px64", 0x207117, 0, 64 * 1024, 128, M25PX_FLAG
, 75, NULL
},
341 * - Support for 'FLASH_FLAG_WRITE_1_4_4' is omitted for devices
342 * where operating frequency must be reduced.
344 #define MX25_FLAG (FLASH_FLAG_READ_WRITE | \
345 FLASH_FLAG_READ_FAST | \
346 FLASH_FLAG_READ_1_1_2 | \
347 FLASH_FLAG_READ_1_2_2 | \
348 FLASH_FLAG_READ_1_1_4 | \
351 { "mx25l3255e", 0xc29e16, 0, 64 * 1024, 64,
352 (MX25_FLAG
| FLASH_FLAG_WRITE_1_4_4
), 86,
354 { "mx25l25635e", 0xc22019, 0, 64*1024, 512,
355 (MX25_FLAG
| FLASH_FLAG_32BIT_ADDR
| FLASH_FLAG_RESET
), 70,
357 { "mx25l25655e", 0xc22619, 0, 64*1024, 512,
358 (MX25_FLAG
| FLASH_FLAG_32BIT_ADDR
| FLASH_FLAG_RESET
), 70,
361 #define N25Q_FLAG (FLASH_FLAG_READ_WRITE | \
362 FLASH_FLAG_READ_FAST | \
363 FLASH_FLAG_READ_1_1_2 | \
364 FLASH_FLAG_READ_1_2_2 | \
365 FLASH_FLAG_READ_1_1_4 | \
366 FLASH_FLAG_READ_1_4_4 | \
367 FLASH_FLAG_WRITE_1_1_2 | \
368 FLASH_FLAG_WRITE_1_2_2 | \
369 FLASH_FLAG_WRITE_1_1_4 | \
370 FLASH_FLAG_WRITE_1_4_4)
371 { "n25q128", 0x20ba18, 0, 64 * 1024, 256, N25Q_FLAG
, 108,
373 { "n25q256", 0x20ba19, 0, 64 * 1024, 512,
374 N25Q_FLAG
| FLASH_FLAG_32BIT_ADDR
, 108, stfsm_n25q_config
},
378 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
380 #define S25FLXXXP_FLAG (FLASH_FLAG_READ_WRITE | \
381 FLASH_FLAG_READ_1_1_2 | \
382 FLASH_FLAG_READ_1_2_2 | \
383 FLASH_FLAG_READ_1_1_4 | \
384 FLASH_FLAG_READ_1_4_4 | \
385 FLASH_FLAG_WRITE_1_1_4 | \
386 FLASH_FLAG_READ_FAST)
387 { "s25fl032p", 0x010215, 0x4d00, 64 * 1024, 64, S25FLXXXP_FLAG
, 80,
389 { "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, S25FLXXXP_FLAG
, 80,
390 stfsm_s25fl_config
},
391 { "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, S25FLXXXP_FLAG
, 80,
392 stfsm_s25fl_config
},
396 * - 256KiB and 64KiB sector variants (identified by ext. JEDEC)
397 * - RESET# signal supported by die but not bristled out on all
398 * package types. The package type is a function of board design,
399 * so this information is captured in the board's flags.
400 * - Supports 'DYB' sector protection. Depending on variant, sectors
401 * may default to locked state on power-on.
403 #define S25FLXXXS_FLAG (S25FLXXXP_FLAG | \
405 FLASH_FLAG_DYB_LOCKING)
406 { "s25fl128s0", 0x012018, 0x0300, 256 * 1024, 64, S25FLXXXS_FLAG
, 80,
407 stfsm_s25fl_config
},
408 { "s25fl128s1", 0x012018, 0x0301, 64 * 1024, 256, S25FLXXXS_FLAG
, 80,
409 stfsm_s25fl_config
},
410 { "s25fl256s0", 0x010219, 0x4d00, 256 * 1024, 128,
411 S25FLXXXS_FLAG
| FLASH_FLAG_32BIT_ADDR
, 80, stfsm_s25fl_config
},
412 { "s25fl256s1", 0x010219, 0x4d01, 64 * 1024, 512,
413 S25FLXXXS_FLAG
| FLASH_FLAG_32BIT_ADDR
, 80, stfsm_s25fl_config
},
415 /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
416 #define W25X_FLAG (FLASH_FLAG_READ_WRITE | \
417 FLASH_FLAG_READ_FAST | \
418 FLASH_FLAG_READ_1_1_2 | \
419 FLASH_FLAG_WRITE_1_1_2)
420 { "w25x40", 0xef3013, 0, 64 * 1024, 8, W25X_FLAG
, 75, NULL
},
421 { "w25x80", 0xef3014, 0, 64 * 1024, 16, W25X_FLAG
, 75, NULL
},
422 { "w25x16", 0xef3015, 0, 64 * 1024, 32, W25X_FLAG
, 75, NULL
},
423 { "w25x32", 0xef3016, 0, 64 * 1024, 64, W25X_FLAG
, 75, NULL
},
424 { "w25x64", 0xef3017, 0, 64 * 1024, 128, W25X_FLAG
, 75, NULL
},
426 /* Winbond -- w25q "blocks" are 64K, "sectors" are 4KiB */
427 #define W25Q_FLAG (FLASH_FLAG_READ_WRITE | \
428 FLASH_FLAG_READ_FAST | \
429 FLASH_FLAG_READ_1_1_2 | \
430 FLASH_FLAG_READ_1_2_2 | \
431 FLASH_FLAG_READ_1_1_4 | \
432 FLASH_FLAG_READ_1_4_4 | \
433 FLASH_FLAG_WRITE_1_1_4)
434 { "w25q80", 0xef4014, 0, 64 * 1024, 16, W25Q_FLAG
, 80,
436 { "w25q16", 0xef4015, 0, 64 * 1024, 32, W25Q_FLAG
, 80,
438 { "w25q32", 0xef4016, 0, 64 * 1024, 64, W25Q_FLAG
, 80,
440 { "w25q64", 0xef4017, 0, 64 * 1024, 128, W25Q_FLAG
, 80,
444 { NULL
, 0x000000, 0, 0, 0, 0, 0, NULL
},
448 * FSM message sequence configurations:
450 * All configs are presented in order of preference
453 /* Default READ configurations, in order of preference */
454 static struct seq_rw_config default_read_configs
[] = {
455 {FLASH_FLAG_READ_1_4_4
, SPINOR_OP_READ_1_4_4
, 0, 4, 4, 0x00, 2, 4},
456 {FLASH_FLAG_READ_1_1_4
, SPINOR_OP_READ_1_1_4
, 0, 1, 4, 0x00, 4, 0},
457 {FLASH_FLAG_READ_1_2_2
, SPINOR_OP_READ_1_2_2
, 0, 2, 2, 0x00, 4, 0},
458 {FLASH_FLAG_READ_1_1_2
, SPINOR_OP_READ_1_1_2
, 0, 1, 2, 0x00, 0, 8},
459 {FLASH_FLAG_READ_FAST
, SPINOR_OP_READ_FAST
, 0, 1, 1, 0x00, 0, 8},
460 {FLASH_FLAG_READ_WRITE
, SPINOR_OP_READ
, 0, 1, 1, 0x00, 0, 0},
461 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
464 /* Default WRITE configurations */
465 static struct seq_rw_config default_write_configs
[] = {
466 {FLASH_FLAG_WRITE_1_4_4
, SPINOR_OP_WRITE_1_4_4
, 1, 4, 4, 0x00, 0, 0},
467 {FLASH_FLAG_WRITE_1_1_4
, SPINOR_OP_WRITE_1_1_4
, 1, 1, 4, 0x00, 0, 0},
468 {FLASH_FLAG_WRITE_1_2_2
, SPINOR_OP_WRITE_1_2_2
, 1, 2, 2, 0x00, 0, 0},
469 {FLASH_FLAG_WRITE_1_1_2
, SPINOR_OP_WRITE_1_1_2
, 1, 1, 2, 0x00, 0, 0},
470 {FLASH_FLAG_READ_WRITE
, SPINOR_OP_WRITE
, 1, 1, 1, 0x00, 0, 0},
471 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
475 * [N25Qxxx] Configuration
477 #define N25Q_VCR_DUMMY_CYCLES(x) (((x) & 0xf) << 4)
478 #define N25Q_VCR_XIP_DISABLED ((uint8_t)0x1 << 3)
479 #define N25Q_VCR_WRAP_CONT 0x3
481 /* N25Q 3-byte Address READ configurations
482 * - 'FAST' variants configured for 8 dummy cycles.
484 * Note, the number of dummy cycles used for 'FAST' READ operations is
485 * configurable and would normally be tuned according to the READ command and
486 * operating frequency. However, this applies universally to all 'FAST' READ
487 * commands, including those used by the SPIBoot controller, and remains in
488 * force until the device is power-cycled. Since the SPIBoot controller is
489 * hard-wired to use 8 dummy cycles, we must configure the device to also use 8
492 static struct seq_rw_config n25q_read3_configs
[] = {
493 {FLASH_FLAG_READ_1_4_4
, SPINOR_OP_READ_1_4_4
, 0, 4, 4, 0x00, 0, 8},
494 {FLASH_FLAG_READ_1_1_4
, SPINOR_OP_READ_1_1_4
, 0, 1, 4, 0x00, 0, 8},
495 {FLASH_FLAG_READ_1_2_2
, SPINOR_OP_READ_1_2_2
, 0, 2, 2, 0x00, 0, 8},
496 {FLASH_FLAG_READ_1_1_2
, SPINOR_OP_READ_1_1_2
, 0, 1, 2, 0x00, 0, 8},
497 {FLASH_FLAG_READ_FAST
, SPINOR_OP_READ_FAST
, 0, 1, 1, 0x00, 0, 8},
498 {FLASH_FLAG_READ_WRITE
, SPINOR_OP_READ
, 0, 1, 1, 0x00, 0, 0},
499 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
502 /* N25Q 4-byte Address READ configurations
503 * - use special 4-byte address READ commands (reduces overheads, and
504 * reduces risk of hitting watchdog reset issues).
505 * - 'FAST' variants configured for 8 dummy cycles (see note above.)
507 static struct seq_rw_config n25q_read4_configs
[] = {
508 {FLASH_FLAG_READ_1_4_4
, SPINOR_OP_READ4_1_4_4
, 0, 4, 4, 0x00, 0, 8},
509 {FLASH_FLAG_READ_1_1_4
, SPINOR_OP_READ4_1_1_4
, 0, 1, 4, 0x00, 0, 8},
510 {FLASH_FLAG_READ_1_2_2
, SPINOR_OP_READ4_1_2_2
, 0, 2, 2, 0x00, 0, 8},
511 {FLASH_FLAG_READ_1_1_2
, SPINOR_OP_READ4_1_1_2
, 0, 1, 2, 0x00, 0, 8},
512 {FLASH_FLAG_READ_FAST
, SPINOR_OP_READ4_FAST
, 0, 1, 1, 0x00, 0, 8},
513 {FLASH_FLAG_READ_WRITE
, SPINOR_OP_READ4
, 0, 1, 1, 0x00, 0, 0},
514 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
518 * [MX25xxx] Configuration
520 #define MX25_STATUS_QE (0x1 << 6)
522 static int stfsm_mx25_en_32bit_addr_seq(struct stfsm_seq
*seq
)
524 seq
->seq_opc
[0] = (SEQ_OPC_PADS_1
|
526 SEQ_OPC_OPCODE(SPINOR_OP_EN4B
) |
529 seq
->seq
[0] = STFSM_INST_CMD1
;
530 seq
->seq
[1] = STFSM_INST_WAIT
;
531 seq
->seq
[2] = STFSM_INST_STOP
;
533 seq
->seq_cfg
= (SEQ_CFG_PADS_1
|
535 SEQ_CFG_READNOTWRITE
|
543 * [S25FLxxx] Configuration
545 #define STFSM_S25FL_CONFIG_QE (0x1 << 1)
548 * S25FLxxxS devices provide three ways of supporting 32-bit addressing: Bank
549 * Register, Extended Address Modes, and a 32-bit address command set. The
550 * 32-bit address command set is used here, since it avoids any problems with
551 * entering a state that is incompatible with the SPIBoot Controller.
553 static struct seq_rw_config stfsm_s25fl_read4_configs
[] = {
554 {FLASH_FLAG_READ_1_4_4
, SPINOR_OP_READ4_1_4_4
, 0, 4, 4, 0x00, 2, 4},
555 {FLASH_FLAG_READ_1_1_4
, SPINOR_OP_READ4_1_1_4
, 0, 1, 4, 0x00, 0, 8},
556 {FLASH_FLAG_READ_1_2_2
, SPINOR_OP_READ4_1_2_2
, 0, 2, 2, 0x00, 4, 0},
557 {FLASH_FLAG_READ_1_1_2
, SPINOR_OP_READ4_1_1_2
, 0, 1, 2, 0x00, 0, 8},
558 {FLASH_FLAG_READ_FAST
, SPINOR_OP_READ4_FAST
, 0, 1, 1, 0x00, 0, 8},
559 {FLASH_FLAG_READ_WRITE
, SPINOR_OP_READ4
, 0, 1, 1, 0x00, 0, 0},
560 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
563 static struct seq_rw_config stfsm_s25fl_write4_configs
[] = {
564 {FLASH_FLAG_WRITE_1_1_4
, S25FL_CMD_WRITE4_1_1_4
, 1, 1, 4, 0x00, 0, 0},
565 {FLASH_FLAG_READ_WRITE
, S25FL_CMD_WRITE4
, 1, 1, 1, 0x00, 0, 0},
566 {0x00, 0, 0, 0, 0, 0x00, 0, 0},
570 * [W25Qxxx] Configuration
572 #define W25Q_STATUS_QE (0x1 << 1)
574 static struct stfsm_seq stfsm_seq_read_jedec
= {
575 .data_size
= TRANSFER_SIZE(8),
576 .seq_opc
[0] = (SEQ_OPC_PADS_1
|
578 SEQ_OPC_OPCODE(SPINOR_OP_RDID
)),
581 STFSM_INST_DATA_READ
,
584 .seq_cfg
= (SEQ_CFG_PADS_1
|
585 SEQ_CFG_READNOTWRITE
|
590 static struct stfsm_seq stfsm_seq_read_status_fifo
= {
591 .data_size
= TRANSFER_SIZE(4),
592 .seq_opc
[0] = (SEQ_OPC_PADS_1
|
594 SEQ_OPC_OPCODE(SPINOR_OP_RDSR
)),
597 STFSM_INST_DATA_READ
,
600 .seq_cfg
= (SEQ_CFG_PADS_1
|
601 SEQ_CFG_READNOTWRITE
|
606 static struct stfsm_seq stfsm_seq_erase_sector
= {
607 /* 'addr_cfg' configured during initialisation */
609 (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
610 SEQ_OPC_OPCODE(SPINOR_OP_WREN
) | SEQ_OPC_CSDEASSERT
),
612 (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
613 SEQ_OPC_OPCODE(SPINOR_OP_SE
)),
622 .seq_cfg
= (SEQ_CFG_PADS_1
|
623 SEQ_CFG_READNOTWRITE
|
628 static struct stfsm_seq stfsm_seq_erase_chip
= {
630 (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
631 SEQ_OPC_OPCODE(SPINOR_OP_WREN
) | SEQ_OPC_CSDEASSERT
),
633 (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
634 SEQ_OPC_OPCODE(SPINOR_OP_CHIP_ERASE
) | SEQ_OPC_CSDEASSERT
),
642 .seq_cfg
= (SEQ_CFG_PADS_1
|
644 SEQ_CFG_READNOTWRITE
|
649 static struct stfsm_seq stfsm_seq_write_status
= {
650 .seq_opc
[0] = (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
651 SEQ_OPC_OPCODE(SPINOR_OP_WREN
) | SEQ_OPC_CSDEASSERT
),
652 .seq_opc
[1] = (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
653 SEQ_OPC_OPCODE(SPINOR_OP_WRSR
)),
660 .seq_cfg
= (SEQ_CFG_PADS_1
|
661 SEQ_CFG_READNOTWRITE
|
666 static int stfsm_n25q_en_32bit_addr_seq(struct stfsm_seq
*seq
)
668 seq
->seq_opc
[0] = (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
669 SEQ_OPC_OPCODE(SPINOR_OP_EN4B
));
670 seq
->seq_opc
[1] = (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
671 SEQ_OPC_OPCODE(SPINOR_OP_WREN
) |
674 seq
->seq
[0] = STFSM_INST_CMD2
;
675 seq
->seq
[1] = STFSM_INST_CMD1
;
676 seq
->seq
[2] = STFSM_INST_WAIT
;
677 seq
->seq
[3] = STFSM_INST_STOP
;
679 seq
->seq_cfg
= (SEQ_CFG_PADS_1
|
681 SEQ_CFG_READNOTWRITE
|
688 static inline int stfsm_is_idle(struct stfsm
*fsm
)
690 return readl(fsm
->base
+ SPI_FAST_SEQ_STA
) & 0x10;
693 static inline uint32_t stfsm_fifo_available(struct stfsm
*fsm
)
695 return (readl(fsm
->base
+ SPI_FAST_SEQ_STA
) >> 5) & 0x7f;
698 static void stfsm_clear_fifo(struct stfsm
*fsm
)
703 avail
= stfsm_fifo_available(fsm
);
708 readl(fsm
->base
+ SPI_FAST_SEQ_DATA_REG
);
714 static inline void stfsm_load_seq(struct stfsm
*fsm
,
715 const struct stfsm_seq
*seq
)
717 void __iomem
*dst
= fsm
->base
+ SPI_FAST_SEQ_TRANSFER_SIZE
;
718 const uint32_t *src
= (const uint32_t *)seq
;
719 int words
= sizeof(*seq
) / sizeof(*src
);
721 BUG_ON(!stfsm_is_idle(fsm
));
730 static void stfsm_wait_seq(struct stfsm
*fsm
)
732 unsigned long deadline
;
735 deadline
= jiffies
+ msecs_to_jiffies(STFSM_MAX_WAIT_SEQ_MS
);
738 if (time_after_eq(jiffies
, deadline
))
741 if (stfsm_is_idle(fsm
))
747 dev_err(fsm
->dev
, "timeout on sequence completion\n");
750 static void stfsm_read_fifo(struct stfsm
*fsm
, uint32_t *buf
, uint32_t size
)
752 uint32_t remaining
= size
>> 2;
756 dev_dbg(fsm
->dev
, "Reading %d bytes from FIFO\n", size
);
758 BUG_ON((((uint32_t)buf
) & 0x3) || (size
& 0x3));
762 avail
= stfsm_fifo_available(fsm
);
767 words
= min(avail
, remaining
);
770 readsl(fsm
->base
+ SPI_FAST_SEQ_DATA_REG
, buf
, words
);
775 static int stfsm_write_fifo(struct stfsm
*fsm
, const uint32_t *buf
,
778 uint32_t words
= size
>> 2;
780 dev_dbg(fsm
->dev
, "writing %d bytes to FIFO\n", size
);
782 BUG_ON((((uint32_t)buf
) & 0x3) || (size
& 0x3));
784 writesl(fsm
->base
+ SPI_FAST_SEQ_DATA_REG
, buf
, words
);
789 static int stfsm_enter_32bit_addr(struct stfsm
*fsm
, int enter
)
791 struct stfsm_seq
*seq
= &fsm
->stfsm_seq_en_32bit_addr
;
792 uint32_t cmd
= enter
? SPINOR_OP_EN4B
: SPINOR_OP_EX4B
;
794 seq
->seq_opc
[0] = (SEQ_OPC_PADS_1
|
796 SEQ_OPC_OPCODE(cmd
) |
799 stfsm_load_seq(fsm
, seq
);
806 static uint8_t stfsm_wait_busy(struct stfsm
*fsm
)
808 struct stfsm_seq
*seq
= &stfsm_seq_read_status_fifo
;
809 unsigned long deadline
;
814 seq
->seq_opc
[0] = (SEQ_OPC_PADS_1
|
816 SEQ_OPC_OPCODE(SPINOR_OP_RDSR
));
818 /* Load read_status sequence */
819 stfsm_load_seq(fsm
, seq
);
822 * Repeat until busy bit is deasserted, or timeout, or error (S25FLxxxS)
824 deadline
= jiffies
+ FLASH_MAX_BUSY_WAIT
;
826 if (time_after_eq(jiffies
, deadline
))
831 stfsm_read_fifo(fsm
, &status
, 4);
833 if ((status
& FLASH_STATUS_BUSY
) == 0)
836 if ((fsm
->configuration
& CFG_S25FL_CHECK_ERROR_FLAGS
) &&
837 ((status
& S25FL_STATUS_P_ERR
) ||
838 (status
& S25FL_STATUS_E_ERR
)))
839 return (uint8_t)(status
& 0xff);
843 writel(seq
->seq_cfg
, fsm
->base
+ SPI_FAST_SEQ_CFG
);
848 dev_err(fsm
->dev
, "timeout on wait_busy\n");
850 return FLASH_STATUS_TIMEOUT
;
853 static int stfsm_read_status(struct stfsm
*fsm
, uint8_t cmd
,
854 uint8_t *data
, int bytes
)
856 struct stfsm_seq
*seq
= &stfsm_seq_read_status_fifo
;
858 uint8_t *t
= (uint8_t *)&tmp
;
861 dev_dbg(fsm
->dev
, "read 'status' register [0x%02x], %d byte(s)\n",
864 BUG_ON(bytes
!= 1 && bytes
!= 2);
866 seq
->seq_opc
[0] = (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
867 SEQ_OPC_OPCODE(cmd
)),
869 stfsm_load_seq(fsm
, seq
);
871 stfsm_read_fifo(fsm
, &tmp
, 4);
873 for (i
= 0; i
< bytes
; i
++)
881 static int stfsm_write_status(struct stfsm
*fsm
, uint8_t cmd
,
882 uint16_t data
, int bytes
, int wait_busy
)
884 struct stfsm_seq
*seq
= &stfsm_seq_write_status
;
887 "write 'status' register [0x%02x], %d byte(s), 0x%04x\n"
888 " %s wait-busy\n", cmd
, bytes
, data
, wait_busy
? "with" : "no");
890 BUG_ON(bytes
!= 1 && bytes
!= 2);
892 seq
->seq_opc
[1] = (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
893 SEQ_OPC_OPCODE(cmd
));
895 seq
->status
= (uint32_t)data
| STA_PADS_1
| STA_CSDEASSERT
;
896 seq
->seq
[2] = (bytes
== 1) ? STFSM_INST_STA_WR1
: STFSM_INST_STA_WR1_2
;
898 stfsm_load_seq(fsm
, seq
);
903 stfsm_wait_busy(fsm
);
909 * SoC reset on 'boot-from-spi' systems
911 * Certain modes of operation cause the Flash device to enter a particular state
912 * for a period of time (e.g. 'Erase Sector', 'Quad Enable', and 'Enter 32-bit
913 * Addr' commands). On boot-from-spi systems, it is important to consider what
914 * happens if a warm reset occurs during this period. The SPIBoot controller
915 * assumes that Flash device is in its default reset state, 24-bit address mode,
916 * and ready to accept commands. This can be achieved using some form of
917 * on-board logic/controller to force a device POR in response to a SoC-level
918 * reset or by making use of the device reset signal if available (limited
919 * number of devices only).
921 * Failure to take such precautions can cause problems following a warm reset.
922 * For some operations (e.g. ERASE), there is little that can be done. For
923 * other modes of operation (e.g. 32-bit addressing), options are often
924 * available that can help minimise the window in which a reset could cause a
928 static bool stfsm_can_handle_soc_reset(struct stfsm
*fsm
)
930 /* Reset signal is available on the board and supported by the device */
931 if (fsm
->reset_signal
&& fsm
->info
->flags
& FLASH_FLAG_RESET
)
934 /* Board-level logic forces a power-on-reset */
938 /* Reset is not properly handled and may result in failure to reboot */
942 /* Configure 'addr_cfg' according to addressing mode */
943 static void stfsm_prepare_erasesec_seq(struct stfsm
*fsm
,
944 struct stfsm_seq
*seq
)
946 int addr1_cycles
= fsm
->info
->flags
& FLASH_FLAG_32BIT_ADDR
? 16 : 8;
948 seq
->addr_cfg
= (ADR_CFG_CYCLES_ADD1(addr1_cycles
) |
949 ADR_CFG_PADS_1_ADD1
|
950 ADR_CFG_CYCLES_ADD2(16) |
951 ADR_CFG_PADS_1_ADD2
|
952 ADR_CFG_CSDEASSERT_ADD2
);
955 /* Search for preferred configuration based on available flags */
956 static struct seq_rw_config
*
957 stfsm_search_seq_rw_configs(struct stfsm
*fsm
,
958 struct seq_rw_config cfgs
[])
960 struct seq_rw_config
*config
;
961 int flags
= fsm
->info
->flags
;
963 for (config
= cfgs
; config
->cmd
!= 0; config
++)
964 if ((config
->flags
& flags
) == config
->flags
)
970 /* Prepare a READ/WRITE sequence according to configuration parameters */
971 static void stfsm_prepare_rw_seq(struct stfsm
*fsm
,
972 struct stfsm_seq
*seq
,
973 struct seq_rw_config
*cfg
)
975 int addr1_cycles
, addr2_cycles
;
978 memset(seq
, 0, sizeof(*seq
));
980 /* Add READ/WRITE OPC */
981 seq
->seq_opc
[i
++] = (SEQ_OPC_PADS_1
|
983 SEQ_OPC_OPCODE(cfg
->cmd
));
985 /* Add WREN OPC for a WRITE sequence */
987 seq
->seq_opc
[i
++] = (SEQ_OPC_PADS_1
|
989 SEQ_OPC_OPCODE(SPINOR_OP_WREN
) |
992 /* Address configuration (24 or 32-bit addresses) */
993 addr1_cycles
= (fsm
->info
->flags
& FLASH_FLAG_32BIT_ADDR
) ? 16 : 8;
994 addr1_cycles
/= cfg
->addr_pads
;
995 addr2_cycles
= 16 / cfg
->addr_pads
;
996 seq
->addr_cfg
= ((addr1_cycles
& 0x3f) << 0 | /* ADD1 cycles */
997 (cfg
->addr_pads
- 1) << 6 | /* ADD1 pads */
998 (addr2_cycles
& 0x3f) << 16 | /* ADD2 cycles */
999 ((cfg
->addr_pads
- 1) << 22)); /* ADD2 pads */
1001 /* Data/Sequence configuration */
1002 seq
->seq_cfg
= ((cfg
->data_pads
- 1) << 16 |
1004 SEQ_CFG_CSDEASSERT
);
1006 seq
->seq_cfg
|= SEQ_CFG_READNOTWRITE
;
1008 /* Mode configuration (no. of pads taken from addr cfg) */
1009 seq
->mode
= ((cfg
->mode_data
& 0xff) << 0 | /* data */
1010 (cfg
->mode_cycles
& 0x3f) << 16 | /* cycles */
1011 (cfg
->addr_pads
- 1) << 22); /* pads */
1013 /* Dummy configuration (no. of pads taken from addr cfg) */
1014 seq
->dummy
= ((cfg
->dummy_cycles
& 0x3f) << 16 | /* cycles */
1015 (cfg
->addr_pads
- 1) << 22); /* pads */
1018 /* Instruction sequence */
1021 seq
->seq
[i
++] = STFSM_INST_CMD2
;
1023 seq
->seq
[i
++] = STFSM_INST_CMD1
;
1025 seq
->seq
[i
++] = STFSM_INST_ADD1
;
1026 seq
->seq
[i
++] = STFSM_INST_ADD2
;
1028 if (cfg
->mode_cycles
)
1029 seq
->seq
[i
++] = STFSM_INST_MODE
;
1031 if (cfg
->dummy_cycles
)
1032 seq
->seq
[i
++] = STFSM_INST_DUMMY
;
1035 cfg
->write
? STFSM_INST_DATA_WRITE
: STFSM_INST_DATA_READ
;
1036 seq
->seq
[i
++] = STFSM_INST_STOP
;
1039 static int stfsm_search_prepare_rw_seq(struct stfsm
*fsm
,
1040 struct stfsm_seq
*seq
,
1041 struct seq_rw_config
*cfgs
)
1043 struct seq_rw_config
*config
;
1045 config
= stfsm_search_seq_rw_configs(fsm
, cfgs
);
1047 dev_err(fsm
->dev
, "failed to find suitable config\n");
1051 stfsm_prepare_rw_seq(fsm
, seq
, config
);
1056 /* Prepare a READ/WRITE/ERASE 'default' sequences */
1057 static int stfsm_prepare_rwe_seqs_default(struct stfsm
*fsm
)
1059 uint32_t flags
= fsm
->info
->flags
;
1062 /* Configure 'READ' sequence */
1063 ret
= stfsm_search_prepare_rw_seq(fsm
, &fsm
->stfsm_seq_read
,
1064 default_read_configs
);
1067 "failed to prep READ sequence with flags [0x%08x]\n",
1072 /* Configure 'WRITE' sequence */
1073 ret
= stfsm_search_prepare_rw_seq(fsm
, &fsm
->stfsm_seq_write
,
1074 default_write_configs
);
1077 "failed to prep WRITE sequence with flags [0x%08x]\n",
1082 /* Configure 'ERASE_SECTOR' sequence */
1083 stfsm_prepare_erasesec_seq(fsm
, &stfsm_seq_erase_sector
);
1088 static int stfsm_mx25_config(struct stfsm
*fsm
)
1090 uint32_t flags
= fsm
->info
->flags
;
1097 * Use default READ/WRITE sequences
1099 ret
= stfsm_prepare_rwe_seqs_default(fsm
);
1104 * Configure 32-bit Address Support
1106 if (flags
& FLASH_FLAG_32BIT_ADDR
) {
1107 /* Configure 'enter_32bitaddr' FSM sequence */
1108 stfsm_mx25_en_32bit_addr_seq(&fsm
->stfsm_seq_en_32bit_addr
);
1110 soc_reset
= stfsm_can_handle_soc_reset(fsm
);
1111 if (soc_reset
|| !fsm
->booted_from_spi
)
1112 /* If we can handle SoC resets, we enable 32-bit address
1113 * mode pervasively */
1114 stfsm_enter_32bit_addr(fsm
, 1);
1117 /* Else, enable/disable 32-bit addressing before/after
1119 fsm
->configuration
= (CFG_READ_TOGGLE_32BIT_ADDR
|
1120 CFG_WRITE_TOGGLE_32BIT_ADDR
|
1121 CFG_ERASESEC_TOGGLE_32BIT_ADDR
);
1124 /* Check status of 'QE' bit, update if required. */
1125 stfsm_read_status(fsm
, SPINOR_OP_RDSR
, &sta
, 1);
1126 data_pads
= ((fsm
->stfsm_seq_read
.seq_cfg
>> 16) & 0x3) + 1;
1127 if (data_pads
== 4) {
1128 if (!(sta
& MX25_STATUS_QE
)) {
1130 sta
|= MX25_STATUS_QE
;
1132 stfsm_write_status(fsm
, SPINOR_OP_WRSR
, sta
, 1, 1);
1135 if (sta
& MX25_STATUS_QE
) {
1137 sta
&= ~MX25_STATUS_QE
;
1139 stfsm_write_status(fsm
, SPINOR_OP_WRSR
, sta
, 1, 1);
1146 static int stfsm_n25q_config(struct stfsm
*fsm
)
1148 uint32_t flags
= fsm
->info
->flags
;
1153 /* Configure 'READ' sequence */
1154 if (flags
& FLASH_FLAG_32BIT_ADDR
)
1155 ret
= stfsm_search_prepare_rw_seq(fsm
, &fsm
->stfsm_seq_read
,
1156 n25q_read4_configs
);
1158 ret
= stfsm_search_prepare_rw_seq(fsm
, &fsm
->stfsm_seq_read
,
1159 n25q_read3_configs
);
1162 "failed to prepare READ sequence with flags [0x%08x]\n",
1167 /* Configure 'WRITE' sequence (default configs) */
1168 ret
= stfsm_search_prepare_rw_seq(fsm
, &fsm
->stfsm_seq_write
,
1169 default_write_configs
);
1172 "preparing WRITE sequence using flags [0x%08x] failed\n",
1177 /* * Configure 'ERASE_SECTOR' sequence */
1178 stfsm_prepare_erasesec_seq(fsm
, &stfsm_seq_erase_sector
);
1180 /* Configure 32-bit address support */
1181 if (flags
& FLASH_FLAG_32BIT_ADDR
) {
1182 stfsm_n25q_en_32bit_addr_seq(&fsm
->stfsm_seq_en_32bit_addr
);
1184 soc_reset
= stfsm_can_handle_soc_reset(fsm
);
1185 if (soc_reset
|| !fsm
->booted_from_spi
) {
1187 * If we can handle SoC resets, we enable 32-bit
1188 * address mode pervasively
1190 stfsm_enter_32bit_addr(fsm
, 1);
1193 * If not, enable/disable for WRITE and ERASE
1194 * operations (READ uses special commands)
1196 fsm
->configuration
= (CFG_WRITE_TOGGLE_32BIT_ADDR
|
1197 CFG_ERASESEC_TOGGLE_32BIT_ADDR
);
1202 * Configure device to use 8 dummy cycles
1204 vcr
= (N25Q_VCR_DUMMY_CYCLES(8) | N25Q_VCR_XIP_DISABLED
|
1205 N25Q_VCR_WRAP_CONT
);
1206 stfsm_write_status(fsm
, N25Q_CMD_WRVCR
, vcr
, 1, 0);
1211 static void stfsm_s25fl_prepare_erasesec_seq_32(struct stfsm_seq
*seq
)
1213 seq
->seq_opc
[1] = (SEQ_OPC_PADS_1
|
1215 SEQ_OPC_OPCODE(S25FL_CMD_SE4
));
1217 seq
->addr_cfg
= (ADR_CFG_CYCLES_ADD1(16) |
1218 ADR_CFG_PADS_1_ADD1
|
1219 ADR_CFG_CYCLES_ADD2(16) |
1220 ADR_CFG_PADS_1_ADD2
|
1221 ADR_CFG_CSDEASSERT_ADD2
);
1224 static void stfsm_s25fl_read_dyb(struct stfsm
*fsm
, uint32_t offs
, uint8_t *dby
)
1227 struct stfsm_seq seq
= {
1228 .data_size
= TRANSFER_SIZE(4),
1229 .seq_opc
[0] = (SEQ_OPC_PADS_1
|
1231 SEQ_OPC_OPCODE(S25FL_CMD_DYBRD
)),
1232 .addr_cfg
= (ADR_CFG_CYCLES_ADD1(16) |
1233 ADR_CFG_PADS_1_ADD1
|
1234 ADR_CFG_CYCLES_ADD2(16) |
1235 ADR_CFG_PADS_1_ADD2
),
1236 .addr1
= (offs
>> 16) & 0xffff,
1237 .addr2
= offs
& 0xffff,
1242 STFSM_INST_DATA_READ
,
1245 .seq_cfg
= (SEQ_CFG_PADS_1
|
1246 SEQ_CFG_READNOTWRITE
|
1247 SEQ_CFG_CSDEASSERT
|
1251 stfsm_load_seq(fsm
, &seq
);
1253 stfsm_read_fifo(fsm
, &tmp
, 4);
1255 *dby
= (uint8_t)(tmp
>> 24);
1257 stfsm_wait_seq(fsm
);
1260 static void stfsm_s25fl_write_dyb(struct stfsm
*fsm
, uint32_t offs
, uint8_t dby
)
1262 struct stfsm_seq seq
= {
1263 .seq_opc
[0] = (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
1264 SEQ_OPC_OPCODE(SPINOR_OP_WREN
) |
1265 SEQ_OPC_CSDEASSERT
),
1266 .seq_opc
[1] = (SEQ_OPC_PADS_1
| SEQ_OPC_CYCLES(8) |
1267 SEQ_OPC_OPCODE(S25FL_CMD_DYBWR
)),
1268 .addr_cfg
= (ADR_CFG_CYCLES_ADD1(16) |
1269 ADR_CFG_PADS_1_ADD1
|
1270 ADR_CFG_CYCLES_ADD2(16) |
1271 ADR_CFG_PADS_1_ADD2
),
1272 .status
= (uint32_t)dby
| STA_PADS_1
| STA_CSDEASSERT
,
1273 .addr1
= (offs
>> 16) & 0xffff,
1274 .addr2
= offs
& 0xffff,
1283 .seq_cfg
= (SEQ_CFG_PADS_1
|
1284 SEQ_CFG_READNOTWRITE
|
1285 SEQ_CFG_CSDEASSERT
|
1289 stfsm_load_seq(fsm
, &seq
);
1290 stfsm_wait_seq(fsm
);
1292 stfsm_wait_busy(fsm
);
1295 static int stfsm_s25fl_clear_status_reg(struct stfsm
*fsm
)
1297 struct stfsm_seq seq
= {
1298 .seq_opc
[0] = (SEQ_OPC_PADS_1
|
1300 SEQ_OPC_OPCODE(S25FL_CMD_CLSR
) |
1301 SEQ_OPC_CSDEASSERT
),
1302 .seq_opc
[1] = (SEQ_OPC_PADS_1
|
1304 SEQ_OPC_OPCODE(SPINOR_OP_WRDI
) |
1305 SEQ_OPC_CSDEASSERT
),
1312 .seq_cfg
= (SEQ_CFG_PADS_1
|
1314 SEQ_CFG_READNOTWRITE
|
1315 SEQ_CFG_CSDEASSERT
|
1319 stfsm_load_seq(fsm
, &seq
);
1321 stfsm_wait_seq(fsm
);
1326 static int stfsm_s25fl_config(struct stfsm
*fsm
)
1328 struct flash_info
*info
= fsm
->info
;
1329 uint32_t flags
= info
->flags
;
1333 uint8_t sr1
, cr1
, dyb
;
1337 if (flags
& FLASH_FLAG_32BIT_ADDR
) {
1339 * Prepare Read/Write/Erase sequences according to S25FLxxx
1340 * 32-bit address command set
1342 ret
= stfsm_search_prepare_rw_seq(fsm
, &fsm
->stfsm_seq_read
,
1343 stfsm_s25fl_read4_configs
);
1347 ret
= stfsm_search_prepare_rw_seq(fsm
, &fsm
->stfsm_seq_write
,
1348 stfsm_s25fl_write4_configs
);
1352 stfsm_s25fl_prepare_erasesec_seq_32(&stfsm_seq_erase_sector
);
1355 /* Use default configurations for 24-bit addressing */
1356 ret
= stfsm_prepare_rwe_seqs_default(fsm
);
1362 * For devices that support 'DYB' sector locking, check lock status and
1363 * unlock sectors if necessary (some variants power-on with sectors
1364 * locked by default)
1366 if (flags
& FLASH_FLAG_DYB_LOCKING
) {
1368 for (offs
= 0; offs
< info
->sector_size
* info
->n_sectors
;) {
1369 stfsm_s25fl_read_dyb(fsm
, offs
, &dyb
);
1371 stfsm_s25fl_write_dyb(fsm
, offs
, 0xff);
1373 /* Handle bottom/top 4KiB parameter sectors */
1374 if ((offs
< info
->sector_size
* 2) ||
1375 (offs
>= (info
->sector_size
- info
->n_sectors
* 4)))
1382 /* Check status of 'QE' bit, update if required. */
1383 stfsm_read_status(fsm
, SPINOR_OP_RDSR2
, &cr1
, 1);
1384 data_pads
= ((fsm
->stfsm_seq_read
.seq_cfg
>> 16) & 0x3) + 1;
1385 if (data_pads
== 4) {
1386 if (!(cr1
& STFSM_S25FL_CONFIG_QE
)) {
1388 cr1
|= STFSM_S25FL_CONFIG_QE
;
1393 if (cr1
& STFSM_S25FL_CONFIG_QE
) {
1395 cr1
&= ~STFSM_S25FL_CONFIG_QE
;
1401 stfsm_read_status(fsm
, SPINOR_OP_RDSR
, &sr1
, 1);
1402 sta_wr
= ((uint16_t)cr1
<< 8) | sr1
;
1403 stfsm_write_status(fsm
, SPINOR_OP_WRSR
, sta_wr
, 2, 1);
1407 * S25FLxxx devices support Program and Error error flags.
1408 * Configure driver to check flags and clear if necessary.
1410 fsm
->configuration
|= CFG_S25FL_CHECK_ERROR_FLAGS
;
1415 static int stfsm_w25q_config(struct stfsm
*fsm
)
1423 ret
= stfsm_prepare_rwe_seqs_default(fsm
);
1427 /* Check status of 'QE' bit, update if required. */
1428 stfsm_read_status(fsm
, SPINOR_OP_RDSR2
, &sr2
, 1);
1429 data_pads
= ((fsm
->stfsm_seq_read
.seq_cfg
>> 16) & 0x3) + 1;
1430 if (data_pads
== 4) {
1431 if (!(sr2
& W25Q_STATUS_QE
)) {
1433 sr2
|= W25Q_STATUS_QE
;
1437 if (sr2
& W25Q_STATUS_QE
) {
1439 sr2
&= ~W25Q_STATUS_QE
;
1444 /* Write status register */
1445 stfsm_read_status(fsm
, SPINOR_OP_RDSR
, &sr1
, 1);
1446 sr_wr
= ((uint16_t)sr2
<< 8) | sr1
;
1447 stfsm_write_status(fsm
, SPINOR_OP_WRSR
, sr_wr
, 2, 1);
1453 static int stfsm_read(struct stfsm
*fsm
, uint8_t *buf
, uint32_t size
,
1456 struct stfsm_seq
*seq
= &fsm
->stfsm_seq_read
;
1463 uint32_t page_buf
[FLASH_PAGESIZE_32
];
1466 dev_dbg(fsm
->dev
, "reading %d bytes from 0x%08x\n", size
, offset
);
1468 /* Enter 32-bit address mode, if required */
1469 if (fsm
->configuration
& CFG_READ_TOGGLE_32BIT_ADDR
)
1470 stfsm_enter_32bit_addr(fsm
, 1);
1472 /* Must read in multiples of 32 cycles (or 32*pads/8 Bytes) */
1473 data_pads
= ((seq
->seq_cfg
>> 16) & 0x3) + 1;
1474 read_mask
= (data_pads
<< 2) - 1;
1476 /* Handle non-aligned buf */
1477 p
= ((uint32_t)buf
& 0x3) ? (uint8_t *)page_buf
: buf
;
1479 /* Handle non-aligned size */
1480 size_ub
= (size
+ read_mask
) & ~read_mask
;
1481 size_lb
= size
& ~read_mask
;
1482 size_mop
= size
& read_mask
;
1484 seq
->data_size
= TRANSFER_SIZE(size_ub
);
1485 seq
->addr1
= (offset
>> 16) & 0xffff;
1486 seq
->addr2
= offset
& 0xffff;
1488 stfsm_load_seq(fsm
, seq
);
1491 stfsm_read_fifo(fsm
, (uint32_t *)p
, size_lb
);
1494 stfsm_read_fifo(fsm
, tmp
, read_mask
+ 1);
1495 memcpy(p
+ size_lb
, &tmp
, size_mop
);
1498 /* Handle non-aligned buf */
1499 if ((uint32_t)buf
& 0x3)
1500 memcpy(buf
, page_buf
, size
);
1502 /* Wait for sequence to finish */
1503 stfsm_wait_seq(fsm
);
1505 stfsm_clear_fifo(fsm
);
1507 /* Exit 32-bit address mode, if required */
1508 if (fsm
->configuration
& CFG_READ_TOGGLE_32BIT_ADDR
)
1509 stfsm_enter_32bit_addr(fsm
, 0);
1514 static int stfsm_write(struct stfsm
*fsm
, const uint8_t *buf
,
1515 uint32_t size
, uint32_t offset
)
1517 struct stfsm_seq
*seq
= &fsm
->stfsm_seq_write
;
1519 uint32_t write_mask
;
1524 uint32_t page_buf
[FLASH_PAGESIZE_32
];
1525 uint8_t *t
= (uint8_t *)&tmp
;
1530 dev_dbg(fsm
->dev
, "writing %d bytes to 0x%08x\n", size
, offset
);
1532 /* Enter 32-bit address mode, if required */
1533 if (fsm
->configuration
& CFG_WRITE_TOGGLE_32BIT_ADDR
)
1534 stfsm_enter_32bit_addr(fsm
, 1);
1536 /* Must write in multiples of 32 cycles (or 32*pads/8 bytes) */
1537 data_pads
= ((seq
->seq_cfg
>> 16) & 0x3) + 1;
1538 write_mask
= (data_pads
<< 2) - 1;
1540 /* Handle non-aligned buf */
1541 if ((uint32_t)buf
& 0x3) {
1542 memcpy(page_buf
, buf
, size
);
1543 p
= (uint8_t *)page_buf
;
1548 /* Handle non-aligned size */
1549 size_ub
= (size
+ write_mask
) & ~write_mask
;
1550 size_lb
= size
& ~write_mask
;
1551 size_mop
= size
& write_mask
;
1553 seq
->data_size
= TRANSFER_SIZE(size_ub
);
1554 seq
->addr1
= (offset
>> 16) & 0xffff;
1555 seq
->addr2
= offset
& 0xffff;
1557 /* Need to set FIFO to write mode, before writing data to FIFO (see
1560 writel(0x00040000, fsm
->base
+ SPI_FAST_SEQ_CFG
);
1563 * Before writing data to the FIFO, apply a small delay to allow a
1564 * potential change of FIFO direction to complete.
1566 if (fsm
->fifo_dir_delay
== 0)
1567 readl(fsm
->base
+ SPI_FAST_SEQ_CFG
);
1569 udelay(fsm
->fifo_dir_delay
);
1572 /* Write data to FIFO, before starting sequence (see GNBvd79593) */
1574 stfsm_write_fifo(fsm
, (uint32_t *)p
, size_lb
);
1578 /* Handle non-aligned size */
1580 memset(t
, 0xff, write_mask
+ 1); /* fill with 0xff's */
1581 for (i
= 0; i
< size_mop
; i
++)
1584 stfsm_write_fifo(fsm
, tmp
, write_mask
+ 1);
1587 /* Start sequence */
1588 stfsm_load_seq(fsm
, seq
);
1590 /* Wait for sequence to finish */
1591 stfsm_wait_seq(fsm
);
1593 /* Wait for completion */
1594 ret
= stfsm_wait_busy(fsm
);
1595 if (ret
&& fsm
->configuration
& CFG_S25FL_CHECK_ERROR_FLAGS
)
1596 stfsm_s25fl_clear_status_reg(fsm
);
1598 /* Exit 32-bit address mode, if required */
1599 if (fsm
->configuration
& CFG_WRITE_TOGGLE_32BIT_ADDR
)
1600 stfsm_enter_32bit_addr(fsm
, 0);
1606 * Read an address range from the flash chip. The address range
1607 * may be any size provided it is within the physical boundaries.
1609 static int stfsm_mtd_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1610 size_t *retlen
, u_char
*buf
)
1612 struct stfsm
*fsm
= dev_get_drvdata(mtd
->dev
.parent
);
1615 dev_dbg(fsm
->dev
, "%s from 0x%08x, len %zd\n",
1616 __func__
, (u32
)from
, len
);
1618 mutex_lock(&fsm
->lock
);
1621 bytes
= min_t(size_t, len
, FLASH_PAGESIZE
);
1623 stfsm_read(fsm
, buf
, bytes
, from
);
1632 mutex_unlock(&fsm
->lock
);
1637 static int stfsm_erase_sector(struct stfsm
*fsm
, uint32_t offset
)
1639 struct stfsm_seq
*seq
= &stfsm_seq_erase_sector
;
1642 dev_dbg(fsm
->dev
, "erasing sector at 0x%08x\n", offset
);
1644 /* Enter 32-bit address mode, if required */
1645 if (fsm
->configuration
& CFG_ERASESEC_TOGGLE_32BIT_ADDR
)
1646 stfsm_enter_32bit_addr(fsm
, 1);
1648 seq
->addr1
= (offset
>> 16) & 0xffff;
1649 seq
->addr2
= offset
& 0xffff;
1651 stfsm_load_seq(fsm
, seq
);
1653 stfsm_wait_seq(fsm
);
1655 /* Wait for completion */
1656 ret
= stfsm_wait_busy(fsm
);
1657 if (ret
&& fsm
->configuration
& CFG_S25FL_CHECK_ERROR_FLAGS
)
1658 stfsm_s25fl_clear_status_reg(fsm
);
1660 /* Exit 32-bit address mode, if required */
1661 if (fsm
->configuration
& CFG_ERASESEC_TOGGLE_32BIT_ADDR
)
1662 stfsm_enter_32bit_addr(fsm
, 0);
1667 static int stfsm_erase_chip(struct stfsm
*fsm
)
1669 const struct stfsm_seq
*seq
= &stfsm_seq_erase_chip
;
1671 dev_dbg(fsm
->dev
, "erasing chip\n");
1673 stfsm_load_seq(fsm
, seq
);
1675 stfsm_wait_seq(fsm
);
1677 return stfsm_wait_busy(fsm
);
1681 * Write an address range to the flash chip. Data must be written in
1682 * FLASH_PAGESIZE chunks. The address range may be any size provided
1683 * it is within the physical boundaries.
1685 static int stfsm_mtd_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1686 size_t *retlen
, const u_char
*buf
)
1688 struct stfsm
*fsm
= dev_get_drvdata(mtd
->dev
.parent
);
1692 uint8_t *b
= (uint8_t *)buf
;
1695 dev_dbg(fsm
->dev
, "%s to 0x%08x, len %zd\n", __func__
, (u32
)to
, len
);
1697 /* Offset within page */
1698 page_offs
= to
% FLASH_PAGESIZE
;
1700 mutex_lock(&fsm
->lock
);
1703 /* Write up to page boundary */
1704 bytes
= min(FLASH_PAGESIZE
- page_offs
, len
);
1706 ret
= stfsm_write(fsm
, b
, bytes
, to
);
1714 /* We are now page-aligned */
1722 mutex_unlock(&fsm
->lock
);
1728 * Erase an address range on the flash chip. The address range may extend
1729 * one or more erase sectors. Return an error is there is a problem erasing.
1731 static int stfsm_mtd_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
1733 struct stfsm
*fsm
= dev_get_drvdata(mtd
->dev
.parent
);
1737 dev_dbg(fsm
->dev
, "%s at 0x%llx, len %lld\n", __func__
,
1738 (long long)instr
->addr
, (long long)instr
->len
);
1743 mutex_lock(&fsm
->lock
);
1745 /* Whole-chip erase? */
1746 if (len
== mtd
->size
) {
1747 ret
= stfsm_erase_chip(fsm
);
1752 ret
= stfsm_erase_sector(fsm
, addr
);
1756 addr
+= mtd
->erasesize
;
1757 len
-= mtd
->erasesize
;
1761 mutex_unlock(&fsm
->lock
);
1763 instr
->state
= MTD_ERASE_DONE
;
1764 mtd_erase_callback(instr
);
1769 instr
->state
= MTD_ERASE_FAILED
;
1770 mutex_unlock(&fsm
->lock
);
1775 static void stfsm_read_jedec(struct stfsm
*fsm
, uint8_t *jedec
)
1777 const struct stfsm_seq
*seq
= &stfsm_seq_read_jedec
;
1780 stfsm_load_seq(fsm
, seq
);
1782 stfsm_read_fifo(fsm
, tmp
, 8);
1784 memcpy(jedec
, tmp
, 5);
1786 stfsm_wait_seq(fsm
);
1789 static struct flash_info
*stfsm_jedec_probe(struct stfsm
*fsm
)
1791 struct flash_info
*info
;
1796 stfsm_read_jedec(fsm
, id
);
1798 jedec
= id
[0] << 16 | id
[1] << 8 | id
[2];
1800 * JEDEC also defines an optional "extended device information"
1801 * string for after vendor-specific data, after the three bytes
1802 * we use here. Supporting some chips might require using it.
1804 ext_jedec
= id
[3] << 8 | id
[4];
1806 dev_dbg(fsm
->dev
, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n",
1807 jedec
, id
[0], id
[1], id
[2], id
[3], id
[4]);
1809 for (info
= flash_types
; info
->name
; info
++) {
1810 if (info
->jedec_id
== jedec
) {
1811 if (info
->ext_id
&& info
->ext_id
!= ext_jedec
)
1816 dev_err(fsm
->dev
, "Unrecognized JEDEC id %06x\n", jedec
);
1821 static int stfsm_set_mode(struct stfsm
*fsm
, uint32_t mode
)
1823 int ret
, timeout
= 10;
1825 /* Wait for controller to accept mode change */
1827 ret
= readl(fsm
->base
+ SPI_STA_MODE_CHANGE
);
1836 writel(mode
, fsm
->base
+ SPI_MODESELECT
);
1841 static void stfsm_set_freq(struct stfsm
*fsm
, uint32_t spi_freq
)
1846 /* TODO: Make this dynamic */
1847 emi_freq
= STFSM_DEFAULT_EMI_FREQ
;
1850 * Calculate clk_div - values between 2 and 128
1851 * Multiple of 2, rounded up
1853 clk_div
= 2 * DIV_ROUND_UP(emi_freq
, 2 * spi_freq
);
1856 else if (clk_div
> 128)
1860 * Determine a suitable delay for the IP to complete a change of
1861 * direction of the FIFO. The required delay is related to the clock
1862 * divider used. The following heuristics are based on empirical tests,
1863 * using a 100MHz EMI clock.
1866 fsm
->fifo_dir_delay
= 0;
1867 else if (clk_div
<= 10)
1868 fsm
->fifo_dir_delay
= 1;
1870 fsm
->fifo_dir_delay
= DIV_ROUND_UP(clk_div
, 10);
1872 dev_dbg(fsm
->dev
, "emi_clk = %uHZ, spi_freq = %uHZ, clk_div = %u\n",
1873 emi_freq
, spi_freq
, clk_div
);
1875 writel(clk_div
, fsm
->base
+ SPI_CLOCKDIV
);
1878 static int stfsm_init(struct stfsm
*fsm
)
1882 /* Perform a soft reset of the FSM controller */
1883 writel(SEQ_CFG_SWRESET
, fsm
->base
+ SPI_FAST_SEQ_CFG
);
1885 writel(0, fsm
->base
+ SPI_FAST_SEQ_CFG
);
1887 /* Set clock to 'safe' frequency initially */
1888 stfsm_set_freq(fsm
, STFSM_FLASH_SAFE_FREQ
);
1891 ret
= stfsm_set_mode(fsm
, SPI_MODESELECT_FSM
);
1895 /* Set timing parameters */
1896 writel(SPI_CFG_DEVICE_ST
|
1897 SPI_CFG_DEFAULT_MIN_CS_HIGH
|
1898 SPI_CFG_DEFAULT_CS_SETUPHOLD
|
1899 SPI_CFG_DEFAULT_DATA_HOLD
,
1900 fsm
->base
+ SPI_CONFIGDATA
);
1901 writel(STFSM_DEFAULT_WR_TIME
, fsm
->base
+ SPI_STATUS_WR_TIME_REG
);
1904 * Set the FSM 'WAIT' delay to the minimum workable value. Note, for
1905 * our purposes, the WAIT instruction is used purely to achieve
1906 * "sequence validity" rather than actually implement a delay.
1908 writel(0x00000001, fsm
->base
+ SPI_PROGRAM_ERASE_TIME
);
1910 /* Clear FIFO, just in case */
1911 stfsm_clear_fifo(fsm
);
1916 static void stfsm_fetch_platform_configs(struct platform_device
*pdev
)
1918 struct stfsm
*fsm
= platform_get_drvdata(pdev
);
1919 struct device_node
*np
= pdev
->dev
.of_node
;
1920 struct regmap
*regmap
;
1921 uint32_t boot_device_reg
;
1922 uint32_t boot_device_spi
;
1923 uint32_t boot_device
; /* Value we read from *boot_device_reg */
1926 /* Booting from SPI NOR Flash is the default */
1927 fsm
->booted_from_spi
= true;
1929 regmap
= syscon_regmap_lookup_by_phandle(np
, "st,syscfg");
1931 goto boot_device_fail
;
1933 fsm
->reset_signal
= of_property_read_bool(np
, "st,reset-signal");
1935 fsm
->reset_por
= of_property_read_bool(np
, "st,reset-por");
1937 /* Where in the syscon the boot device information lives */
1938 ret
= of_property_read_u32(np
, "st,boot-device-reg", &boot_device_reg
);
1940 goto boot_device_fail
;
1942 /* Boot device value when booted from SPI NOR */
1943 ret
= of_property_read_u32(np
, "st,boot-device-spi", &boot_device_spi
);
1945 goto boot_device_fail
;
1947 ret
= regmap_read(regmap
, boot_device_reg
, &boot_device
);
1949 goto boot_device_fail
;
1951 if (boot_device
!= boot_device_spi
)
1952 fsm
->booted_from_spi
= false;
1957 dev_warn(&pdev
->dev
,
1958 "failed to fetch boot device, assuming boot from SPI\n");
1961 static int stfsm_probe(struct platform_device
*pdev
)
1963 struct device_node
*np
= pdev
->dev
.of_node
;
1964 struct mtd_part_parser_data ppdata
;
1965 struct flash_info
*info
;
1966 struct resource
*res
;
1971 dev_err(&pdev
->dev
, "No DT found\n");
1974 ppdata
.of_node
= np
;
1976 fsm
= devm_kzalloc(&pdev
->dev
, sizeof(*fsm
), GFP_KERNEL
);
1980 fsm
->dev
= &pdev
->dev
;
1982 platform_set_drvdata(pdev
, fsm
);
1984 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1986 dev_err(&pdev
->dev
, "Resource not found\n");
1990 fsm
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1991 if (IS_ERR(fsm
->base
)) {
1993 "Failed to reserve memory region %pR\n", res
);
1994 return PTR_ERR(fsm
->base
);
1997 mutex_init(&fsm
->lock
);
1999 ret
= stfsm_init(fsm
);
2001 dev_err(&pdev
->dev
, "Failed to initialise FSM Controller\n");
2005 stfsm_fetch_platform_configs(pdev
);
2007 /* Detect SPI FLASH device */
2008 info
= stfsm_jedec_probe(fsm
);
2013 /* Use device size to determine address width */
2014 if (info
->sector_size
* info
->n_sectors
> 0x1000000)
2015 info
->flags
|= FLASH_FLAG_32BIT_ADDR
;
2018 * Configure READ/WRITE/ERASE sequences according to platform and
2022 ret
= info
->config(fsm
);
2026 ret
= stfsm_prepare_rwe_seqs_default(fsm
);
2031 fsm
->mtd
.name
= info
->name
;
2032 fsm
->mtd
.dev
.parent
= &pdev
->dev
;
2033 fsm
->mtd
.type
= MTD_NORFLASH
;
2034 fsm
->mtd
.writesize
= 4;
2035 fsm
->mtd
.writebufsize
= fsm
->mtd
.writesize
;
2036 fsm
->mtd
.flags
= MTD_CAP_NORFLASH
;
2037 fsm
->mtd
.size
= info
->sector_size
* info
->n_sectors
;
2038 fsm
->mtd
.erasesize
= info
->sector_size
;
2040 fsm
->mtd
._read
= stfsm_mtd_read
;
2041 fsm
->mtd
._write
= stfsm_mtd_write
;
2042 fsm
->mtd
._erase
= stfsm_mtd_erase
;
2044 dev_info(&pdev
->dev
,
2045 "Found serial flash device: %s\n"
2046 " size = %llx (%lldMiB) erasesize = 0x%08x (%uKiB)\n",
2048 (long long)fsm
->mtd
.size
, (long long)(fsm
->mtd
.size
>> 20),
2049 fsm
->mtd
.erasesize
, (fsm
->mtd
.erasesize
>> 10));
2051 return mtd_device_parse_register(&fsm
->mtd
, NULL
, &ppdata
, NULL
, 0);
2054 static int stfsm_remove(struct platform_device
*pdev
)
2056 struct stfsm
*fsm
= platform_get_drvdata(pdev
);
2058 return mtd_device_unregister(&fsm
->mtd
);
2061 static struct of_device_id stfsm_match
[] = {
2062 { .compatible
= "st,spi-fsm", },
2065 MODULE_DEVICE_TABLE(of
, stfsm_match
);
2067 static struct platform_driver stfsm_driver
= {
2068 .probe
= stfsm_probe
,
2069 .remove
= stfsm_remove
,
2071 .name
= "st-spi-fsm",
2072 .owner
= THIS_MODULE
,
2073 .of_match_table
= stfsm_match
,
2076 module_platform_driver(stfsm_driver
);
2078 MODULE_AUTHOR("Angus Clark <angus.clark@st.com>");
2079 MODULE_DESCRIPTION("ST SPI FSM driver");
2080 MODULE_LICENSE("GPL");