KVM: arm/arm64: GICv4: Handle INVALL applied to a vPE
[linux/fpc-iii.git] / drivers / edac / edac_mc_sysfs.c
blobe4fcfa84fbd3503246d144bcbcbb36747ed9171c
1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
10 * (c) 2012-2013 - Mauro Carvalho Chehab
11 * The entire API were re-written, and ported to use struct device
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
22 #include "edac_mc.h"
23 #include "edac_module.h"
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
34 return edac_mc_log_ue;
37 int edac_mc_get_log_ce(void)
39 return edac_mc_log_ce;
42 int edac_mc_get_panic_on_ue(void)
44 return edac_mc_panic_on_ue;
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
50 return edac_mc_poll_msec;
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
55 unsigned long l;
56 int ret;
58 if (!val)
59 return -EINVAL;
61 ret = kstrtoul(val, 0, &l);
62 if (ret)
63 return ret;
65 if (l < 1000)
66 return -EINVAL;
68 *((unsigned long *)kp->arg) = l;
70 /* notify edac_mc engine to reset the poll period */
71 edac_mc_reset_delay_period(l);
73 return 0;
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81 "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84 "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86 &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
89 static struct device *mci_pdev;
92 * various constants for Memory Controllers
94 static const char * const mem_types[] = {
95 [MEM_EMPTY] = "Empty",
96 [MEM_RESERVED] = "Reserved",
97 [MEM_UNKNOWN] = "Unknown",
98 [MEM_FPM] = "FPM",
99 [MEM_EDO] = "EDO",
100 [MEM_BEDO] = "BEDO",
101 [MEM_SDR] = "Unbuffered-SDR",
102 [MEM_RDR] = "Registered-SDR",
103 [MEM_DDR] = "Unbuffered-DDR",
104 [MEM_RDDR] = "Registered-DDR",
105 [MEM_RMBS] = "RMBS",
106 [MEM_DDR2] = "Unbuffered-DDR2",
107 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108 [MEM_RDDR2] = "Registered-DDR2",
109 [MEM_XDR] = "XDR",
110 [MEM_DDR3] = "Unbuffered-DDR3",
111 [MEM_RDDR3] = "Registered-DDR3",
112 [MEM_DDR4] = "Unbuffered-DDR4",
113 [MEM_RDDR4] = "Registered-DDR4"
116 static const char * const dev_types[] = {
117 [DEV_UNKNOWN] = "Unknown",
118 [DEV_X1] = "x1",
119 [DEV_X2] = "x2",
120 [DEV_X4] = "x4",
121 [DEV_X8] = "x8",
122 [DEV_X16] = "x16",
123 [DEV_X32] = "x32",
124 [DEV_X64] = "x64"
127 static const char * const edac_caps[] = {
128 [EDAC_UNKNOWN] = "Unknown",
129 [EDAC_NONE] = "None",
130 [EDAC_RESERVED] = "Reserved",
131 [EDAC_PARITY] = "PARITY",
132 [EDAC_EC] = "EC",
133 [EDAC_SECDED] = "SECDED",
134 [EDAC_S2ECD2ED] = "S2ECD2ED",
135 [EDAC_S4ECD4ED] = "S4ECD4ED",
136 [EDAC_S8ECD8ED] = "S8ECD8ED",
137 [EDAC_S16ECD16ED] = "S16ECD16ED"
140 #ifdef CONFIG_EDAC_LEGACY_SYSFS
142 * EDAC sysfs CSROW data structures and methods
145 #define to_csrow(k) container_of(k, struct csrow_info, dev)
148 * We need it to avoid namespace conflicts between the legacy API
149 * and the per-dimm/per-rank one
151 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
152 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
154 struct dev_ch_attribute {
155 struct device_attribute attr;
156 int channel;
159 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
160 static struct dev_ch_attribute dev_attr_legacy_##_name = \
161 { __ATTR(_name, _mode, _show, _store), (_var) }
163 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
165 /* Set of more default csrow<id> attribute show/store functions */
166 static ssize_t csrow_ue_count_show(struct device *dev,
167 struct device_attribute *mattr, char *data)
169 struct csrow_info *csrow = to_csrow(dev);
171 return sprintf(data, "%u\n", csrow->ue_count);
174 static ssize_t csrow_ce_count_show(struct device *dev,
175 struct device_attribute *mattr, char *data)
177 struct csrow_info *csrow = to_csrow(dev);
179 return sprintf(data, "%u\n", csrow->ce_count);
182 static ssize_t csrow_size_show(struct device *dev,
183 struct device_attribute *mattr, char *data)
185 struct csrow_info *csrow = to_csrow(dev);
186 int i;
187 u32 nr_pages = 0;
189 for (i = 0; i < csrow->nr_channels; i++)
190 nr_pages += csrow->channels[i]->dimm->nr_pages;
191 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
194 static ssize_t csrow_mem_type_show(struct device *dev,
195 struct device_attribute *mattr, char *data)
197 struct csrow_info *csrow = to_csrow(dev);
199 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
202 static ssize_t csrow_dev_type_show(struct device *dev,
203 struct device_attribute *mattr, char *data)
205 struct csrow_info *csrow = to_csrow(dev);
207 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
210 static ssize_t csrow_edac_mode_show(struct device *dev,
211 struct device_attribute *mattr,
212 char *data)
214 struct csrow_info *csrow = to_csrow(dev);
216 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
219 /* show/store functions for DIMM Label attributes */
220 static ssize_t channel_dimm_label_show(struct device *dev,
221 struct device_attribute *mattr,
222 char *data)
224 struct csrow_info *csrow = to_csrow(dev);
225 unsigned chan = to_channel(mattr);
226 struct rank_info *rank = csrow->channels[chan];
228 /* if field has not been initialized, there is nothing to send */
229 if (!rank->dimm->label[0])
230 return 0;
232 return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n",
233 rank->dimm->label);
236 static ssize_t channel_dimm_label_store(struct device *dev,
237 struct device_attribute *mattr,
238 const char *data, size_t count)
240 struct csrow_info *csrow = to_csrow(dev);
241 unsigned chan = to_channel(mattr);
242 struct rank_info *rank = csrow->channels[chan];
243 size_t copy_count = count;
245 if (count == 0)
246 return -EINVAL;
248 if (data[count - 1] == '\0' || data[count - 1] == '\n')
249 copy_count -= 1;
251 if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label))
252 return -EINVAL;
254 strncpy(rank->dimm->label, data, copy_count);
255 rank->dimm->label[copy_count] = '\0';
257 return count;
260 /* show function for dynamic chX_ce_count attribute */
261 static ssize_t channel_ce_count_show(struct device *dev,
262 struct device_attribute *mattr, char *data)
264 struct csrow_info *csrow = to_csrow(dev);
265 unsigned chan = to_channel(mattr);
266 struct rank_info *rank = csrow->channels[chan];
268 return sprintf(data, "%u\n", rank->ce_count);
271 /* cwrow<id>/attribute files */
272 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
273 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
274 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
275 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
276 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
277 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
279 /* default attributes of the CSROW<id> object */
280 static struct attribute *csrow_attrs[] = {
281 &dev_attr_legacy_dev_type.attr,
282 &dev_attr_legacy_mem_type.attr,
283 &dev_attr_legacy_edac_mode.attr,
284 &dev_attr_legacy_size_mb.attr,
285 &dev_attr_legacy_ue_count.attr,
286 &dev_attr_legacy_ce_count.attr,
287 NULL,
290 static const struct attribute_group csrow_attr_grp = {
291 .attrs = csrow_attrs,
294 static const struct attribute_group *csrow_attr_groups[] = {
295 &csrow_attr_grp,
296 NULL
299 static void csrow_attr_release(struct device *dev)
301 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
303 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
304 kfree(csrow);
307 static const struct device_type csrow_attr_type = {
308 .groups = csrow_attr_groups,
309 .release = csrow_attr_release,
313 * possible dynamic channel DIMM Label attribute files
316 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
317 channel_dimm_label_show, channel_dimm_label_store, 0);
318 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
319 channel_dimm_label_show, channel_dimm_label_store, 1);
320 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
321 channel_dimm_label_show, channel_dimm_label_store, 2);
322 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
323 channel_dimm_label_show, channel_dimm_label_store, 3);
324 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
325 channel_dimm_label_show, channel_dimm_label_store, 4);
326 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
327 channel_dimm_label_show, channel_dimm_label_store, 5);
328 DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR,
329 channel_dimm_label_show, channel_dimm_label_store, 6);
330 DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR,
331 channel_dimm_label_show, channel_dimm_label_store, 7);
333 /* Total possible dynamic DIMM Label attribute file table */
334 static struct attribute *dynamic_csrow_dimm_attr[] = {
335 &dev_attr_legacy_ch0_dimm_label.attr.attr,
336 &dev_attr_legacy_ch1_dimm_label.attr.attr,
337 &dev_attr_legacy_ch2_dimm_label.attr.attr,
338 &dev_attr_legacy_ch3_dimm_label.attr.attr,
339 &dev_attr_legacy_ch4_dimm_label.attr.attr,
340 &dev_attr_legacy_ch5_dimm_label.attr.attr,
341 &dev_attr_legacy_ch6_dimm_label.attr.attr,
342 &dev_attr_legacy_ch7_dimm_label.attr.attr,
343 NULL
346 /* possible dynamic channel ce_count attribute files */
347 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
348 channel_ce_count_show, NULL, 0);
349 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
350 channel_ce_count_show, NULL, 1);
351 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
352 channel_ce_count_show, NULL, 2);
353 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
354 channel_ce_count_show, NULL, 3);
355 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
356 channel_ce_count_show, NULL, 4);
357 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
358 channel_ce_count_show, NULL, 5);
359 DEVICE_CHANNEL(ch6_ce_count, S_IRUGO,
360 channel_ce_count_show, NULL, 6);
361 DEVICE_CHANNEL(ch7_ce_count, S_IRUGO,
362 channel_ce_count_show, NULL, 7);
364 /* Total possible dynamic ce_count attribute file table */
365 static struct attribute *dynamic_csrow_ce_count_attr[] = {
366 &dev_attr_legacy_ch0_ce_count.attr.attr,
367 &dev_attr_legacy_ch1_ce_count.attr.attr,
368 &dev_attr_legacy_ch2_ce_count.attr.attr,
369 &dev_attr_legacy_ch3_ce_count.attr.attr,
370 &dev_attr_legacy_ch4_ce_count.attr.attr,
371 &dev_attr_legacy_ch5_ce_count.attr.attr,
372 &dev_attr_legacy_ch6_ce_count.attr.attr,
373 &dev_attr_legacy_ch7_ce_count.attr.attr,
374 NULL
377 static umode_t csrow_dev_is_visible(struct kobject *kobj,
378 struct attribute *attr, int idx)
380 struct device *dev = kobj_to_dev(kobj);
381 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
383 if (idx >= csrow->nr_channels)
384 return 0;
386 if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) {
387 WARN_ONCE(1, "idx: %d\n", idx);
388 return 0;
391 /* Only expose populated DIMMs */
392 if (!csrow->channels[idx]->dimm->nr_pages)
393 return 0;
395 return attr->mode;
399 static const struct attribute_group csrow_dev_dimm_group = {
400 .attrs = dynamic_csrow_dimm_attr,
401 .is_visible = csrow_dev_is_visible,
404 static const struct attribute_group csrow_dev_ce_count_group = {
405 .attrs = dynamic_csrow_ce_count_attr,
406 .is_visible = csrow_dev_is_visible,
409 static const struct attribute_group *csrow_dev_groups[] = {
410 &csrow_dev_dimm_group,
411 &csrow_dev_ce_count_group,
412 NULL
415 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
417 int chan, nr_pages = 0;
419 for (chan = 0; chan < csrow->nr_channels; chan++)
420 nr_pages += csrow->channels[chan]->dimm->nr_pages;
422 return nr_pages;
425 /* Create a CSROW object under specifed edac_mc_device */
426 static int edac_create_csrow_object(struct mem_ctl_info *mci,
427 struct csrow_info *csrow, int index)
429 csrow->dev.type = &csrow_attr_type;
430 csrow->dev.bus = mci->bus;
431 csrow->dev.groups = csrow_dev_groups;
432 device_initialize(&csrow->dev);
433 csrow->dev.parent = &mci->dev;
434 csrow->mci = mci;
435 dev_set_name(&csrow->dev, "csrow%d", index);
436 dev_set_drvdata(&csrow->dev, csrow);
438 edac_dbg(0, "creating (virtual) csrow node %s\n",
439 dev_name(&csrow->dev));
441 return device_add(&csrow->dev);
444 /* Create a CSROW object under specifed edac_mc_device */
445 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
447 int err, i;
448 struct csrow_info *csrow;
450 for (i = 0; i < mci->nr_csrows; i++) {
451 csrow = mci->csrows[i];
452 if (!nr_pages_per_csrow(csrow))
453 continue;
454 err = edac_create_csrow_object(mci, mci->csrows[i], i);
455 if (err < 0) {
456 edac_dbg(1,
457 "failure: create csrow objects for csrow %d\n",
459 goto error;
462 return 0;
464 error:
465 for (--i; i >= 0; i--) {
466 csrow = mci->csrows[i];
467 if (!nr_pages_per_csrow(csrow))
468 continue;
469 put_device(&mci->csrows[i]->dev);
472 return err;
475 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
477 int i;
478 struct csrow_info *csrow;
480 for (i = mci->nr_csrows - 1; i >= 0; i--) {
481 csrow = mci->csrows[i];
482 if (!nr_pages_per_csrow(csrow))
483 continue;
484 device_unregister(&mci->csrows[i]->dev);
487 #endif
490 * Per-dimm (or per-rank) devices
493 #define to_dimm(k) container_of(k, struct dimm_info, dev)
495 /* show/store functions for DIMM Label attributes */
496 static ssize_t dimmdev_location_show(struct device *dev,
497 struct device_attribute *mattr, char *data)
499 struct dimm_info *dimm = to_dimm(dev);
501 return edac_dimm_info_location(dimm, data, PAGE_SIZE);
504 static ssize_t dimmdev_label_show(struct device *dev,
505 struct device_attribute *mattr, char *data)
507 struct dimm_info *dimm = to_dimm(dev);
509 /* if field has not been initialized, there is nothing to send */
510 if (!dimm->label[0])
511 return 0;
513 return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label);
516 static ssize_t dimmdev_label_store(struct device *dev,
517 struct device_attribute *mattr,
518 const char *data,
519 size_t count)
521 struct dimm_info *dimm = to_dimm(dev);
522 size_t copy_count = count;
524 if (count == 0)
525 return -EINVAL;
527 if (data[count - 1] == '\0' || data[count - 1] == '\n')
528 copy_count -= 1;
530 if (copy_count == 0 || copy_count >= sizeof(dimm->label))
531 return -EINVAL;
533 strncpy(dimm->label, data, copy_count);
534 dimm->label[copy_count] = '\0';
536 return count;
539 static ssize_t dimmdev_size_show(struct device *dev,
540 struct device_attribute *mattr, char *data)
542 struct dimm_info *dimm = to_dimm(dev);
544 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
547 static ssize_t dimmdev_mem_type_show(struct device *dev,
548 struct device_attribute *mattr, char *data)
550 struct dimm_info *dimm = to_dimm(dev);
552 return sprintf(data, "%s\n", mem_types[dimm->mtype]);
555 static ssize_t dimmdev_dev_type_show(struct device *dev,
556 struct device_attribute *mattr, char *data)
558 struct dimm_info *dimm = to_dimm(dev);
560 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
563 static ssize_t dimmdev_edac_mode_show(struct device *dev,
564 struct device_attribute *mattr,
565 char *data)
567 struct dimm_info *dimm = to_dimm(dev);
569 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
572 static ssize_t dimmdev_ce_count_show(struct device *dev,
573 struct device_attribute *mattr,
574 char *data)
576 struct dimm_info *dimm = to_dimm(dev);
577 u32 count;
578 int off;
580 off = EDAC_DIMM_OFF(dimm->mci->layers,
581 dimm->mci->n_layers,
582 dimm->location[0],
583 dimm->location[1],
584 dimm->location[2]);
585 count = dimm->mci->ce_per_layer[dimm->mci->n_layers-1][off];
586 return sprintf(data, "%u\n", count);
589 static ssize_t dimmdev_ue_count_show(struct device *dev,
590 struct device_attribute *mattr,
591 char *data)
593 struct dimm_info *dimm = to_dimm(dev);
594 u32 count;
595 int off;
597 off = EDAC_DIMM_OFF(dimm->mci->layers,
598 dimm->mci->n_layers,
599 dimm->location[0],
600 dimm->location[1],
601 dimm->location[2]);
602 count = dimm->mci->ue_per_layer[dimm->mci->n_layers-1][off];
603 return sprintf(data, "%u\n", count);
606 /* dimm/rank attribute files */
607 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
608 dimmdev_label_show, dimmdev_label_store);
609 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
610 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
611 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
612 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
613 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
614 static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL);
615 static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL);
617 /* attributes of the dimm<id>/rank<id> object */
618 static struct attribute *dimm_attrs[] = {
619 &dev_attr_dimm_label.attr,
620 &dev_attr_dimm_location.attr,
621 &dev_attr_size.attr,
622 &dev_attr_dimm_mem_type.attr,
623 &dev_attr_dimm_dev_type.attr,
624 &dev_attr_dimm_edac_mode.attr,
625 &dev_attr_dimm_ce_count.attr,
626 &dev_attr_dimm_ue_count.attr,
627 NULL,
630 static const struct attribute_group dimm_attr_grp = {
631 .attrs = dimm_attrs,
634 static const struct attribute_group *dimm_attr_groups[] = {
635 &dimm_attr_grp,
636 NULL
639 static void dimm_attr_release(struct device *dev)
641 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
643 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
644 kfree(dimm);
647 static const struct device_type dimm_attr_type = {
648 .groups = dimm_attr_groups,
649 .release = dimm_attr_release,
652 /* Create a DIMM object under specifed memory controller device */
653 static int edac_create_dimm_object(struct mem_ctl_info *mci,
654 struct dimm_info *dimm,
655 int index)
657 int err;
658 dimm->mci = mci;
660 dimm->dev.type = &dimm_attr_type;
661 dimm->dev.bus = mci->bus;
662 device_initialize(&dimm->dev);
664 dimm->dev.parent = &mci->dev;
665 if (mci->csbased)
666 dev_set_name(&dimm->dev, "rank%d", index);
667 else
668 dev_set_name(&dimm->dev, "dimm%d", index);
669 dev_set_drvdata(&dimm->dev, dimm);
670 pm_runtime_forbid(&mci->dev);
672 err = device_add(&dimm->dev);
674 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
676 return err;
680 * Memory controller device
683 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
685 static ssize_t mci_reset_counters_store(struct device *dev,
686 struct device_attribute *mattr,
687 const char *data, size_t count)
689 struct mem_ctl_info *mci = to_mci(dev);
690 int cnt, row, chan, i;
691 mci->ue_mc = 0;
692 mci->ce_mc = 0;
693 mci->ue_noinfo_count = 0;
694 mci->ce_noinfo_count = 0;
696 for (row = 0; row < mci->nr_csrows; row++) {
697 struct csrow_info *ri = mci->csrows[row];
699 ri->ue_count = 0;
700 ri->ce_count = 0;
702 for (chan = 0; chan < ri->nr_channels; chan++)
703 ri->channels[chan]->ce_count = 0;
706 cnt = 1;
707 for (i = 0; i < mci->n_layers; i++) {
708 cnt *= mci->layers[i].size;
709 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
710 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
713 mci->start_time = jiffies;
714 return count;
717 /* Memory scrubbing interface:
719 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
720 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
721 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
723 * Negative value still means that an error has occurred while setting
724 * the scrub rate.
726 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
727 struct device_attribute *mattr,
728 const char *data, size_t count)
730 struct mem_ctl_info *mci = to_mci(dev);
731 unsigned long bandwidth = 0;
732 int new_bw = 0;
734 if (kstrtoul(data, 10, &bandwidth) < 0)
735 return -EINVAL;
737 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
738 if (new_bw < 0) {
739 edac_printk(KERN_WARNING, EDAC_MC,
740 "Error setting scrub rate to: %lu\n", bandwidth);
741 return -EINVAL;
744 return count;
748 * ->get_sdram_scrub_rate() return value semantics same as above.
750 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
751 struct device_attribute *mattr,
752 char *data)
754 struct mem_ctl_info *mci = to_mci(dev);
755 int bandwidth = 0;
757 bandwidth = mci->get_sdram_scrub_rate(mci);
758 if (bandwidth < 0) {
759 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
760 return bandwidth;
763 return sprintf(data, "%d\n", bandwidth);
766 /* default attribute files for the MCI object */
767 static ssize_t mci_ue_count_show(struct device *dev,
768 struct device_attribute *mattr,
769 char *data)
771 struct mem_ctl_info *mci = to_mci(dev);
773 return sprintf(data, "%d\n", mci->ue_mc);
776 static ssize_t mci_ce_count_show(struct device *dev,
777 struct device_attribute *mattr,
778 char *data)
780 struct mem_ctl_info *mci = to_mci(dev);
782 return sprintf(data, "%d\n", mci->ce_mc);
785 static ssize_t mci_ce_noinfo_show(struct device *dev,
786 struct device_attribute *mattr,
787 char *data)
789 struct mem_ctl_info *mci = to_mci(dev);
791 return sprintf(data, "%d\n", mci->ce_noinfo_count);
794 static ssize_t mci_ue_noinfo_show(struct device *dev,
795 struct device_attribute *mattr,
796 char *data)
798 struct mem_ctl_info *mci = to_mci(dev);
800 return sprintf(data, "%d\n", mci->ue_noinfo_count);
803 static ssize_t mci_seconds_show(struct device *dev,
804 struct device_attribute *mattr,
805 char *data)
807 struct mem_ctl_info *mci = to_mci(dev);
809 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
812 static ssize_t mci_ctl_name_show(struct device *dev,
813 struct device_attribute *mattr,
814 char *data)
816 struct mem_ctl_info *mci = to_mci(dev);
818 return sprintf(data, "%s\n", mci->ctl_name);
821 static ssize_t mci_size_mb_show(struct device *dev,
822 struct device_attribute *mattr,
823 char *data)
825 struct mem_ctl_info *mci = to_mci(dev);
826 int total_pages = 0, csrow_idx, j;
828 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
829 struct csrow_info *csrow = mci->csrows[csrow_idx];
831 for (j = 0; j < csrow->nr_channels; j++) {
832 struct dimm_info *dimm = csrow->channels[j]->dimm;
834 total_pages += dimm->nr_pages;
838 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
841 static ssize_t mci_max_location_show(struct device *dev,
842 struct device_attribute *mattr,
843 char *data)
845 struct mem_ctl_info *mci = to_mci(dev);
846 int i;
847 char *p = data;
849 for (i = 0; i < mci->n_layers; i++) {
850 p += sprintf(p, "%s %d ",
851 edac_layer_name[mci->layers[i].type],
852 mci->layers[i].size - 1);
855 return p - data;
858 /* default Control file */
859 static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
861 /* default Attribute files */
862 static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
863 static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
864 static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
865 static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
866 static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
867 static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
868 static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
869 static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
871 /* memory scrubber attribute file */
872 static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show,
873 mci_sdram_scrub_rate_store); /* umode set later in is_visible */
875 static struct attribute *mci_attrs[] = {
876 &dev_attr_reset_counters.attr,
877 &dev_attr_mc_name.attr,
878 &dev_attr_size_mb.attr,
879 &dev_attr_seconds_since_reset.attr,
880 &dev_attr_ue_noinfo_count.attr,
881 &dev_attr_ce_noinfo_count.attr,
882 &dev_attr_ue_count.attr,
883 &dev_attr_ce_count.attr,
884 &dev_attr_max_location.attr,
885 &dev_attr_sdram_scrub_rate.attr,
886 NULL
889 static umode_t mci_attr_is_visible(struct kobject *kobj,
890 struct attribute *attr, int idx)
892 struct device *dev = kobj_to_dev(kobj);
893 struct mem_ctl_info *mci = to_mci(dev);
894 umode_t mode = 0;
896 if (attr != &dev_attr_sdram_scrub_rate.attr)
897 return attr->mode;
898 if (mci->get_sdram_scrub_rate)
899 mode |= S_IRUGO;
900 if (mci->set_sdram_scrub_rate)
901 mode |= S_IWUSR;
902 return mode;
905 static const struct attribute_group mci_attr_grp = {
906 .attrs = mci_attrs,
907 .is_visible = mci_attr_is_visible,
910 static const struct attribute_group *mci_attr_groups[] = {
911 &mci_attr_grp,
912 NULL
915 static void mci_attr_release(struct device *dev)
917 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
919 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
920 kfree(mci);
923 static const struct device_type mci_attr_type = {
924 .groups = mci_attr_groups,
925 .release = mci_attr_release,
929 * Create a new Memory Controller kobject instance,
930 * mc<id> under the 'mc' directory
932 * Return:
933 * 0 Success
934 * !0 Failure
936 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci,
937 const struct attribute_group **groups)
939 char *name;
940 int i, err;
943 * The memory controller needs its own bus, in order to avoid
944 * namespace conflicts at /sys/bus/edac.
946 name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
947 if (!name)
948 return -ENOMEM;
950 mci->bus->name = name;
952 edac_dbg(0, "creating bus %s\n", mci->bus->name);
954 err = bus_register(mci->bus);
955 if (err < 0) {
956 kfree(name);
957 return err;
960 /* get the /sys/devices/system/edac subsys reference */
961 mci->dev.type = &mci_attr_type;
962 device_initialize(&mci->dev);
964 mci->dev.parent = mci_pdev;
965 mci->dev.bus = mci->bus;
966 mci->dev.groups = groups;
967 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
968 dev_set_drvdata(&mci->dev, mci);
969 pm_runtime_forbid(&mci->dev);
971 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
972 err = device_add(&mci->dev);
973 if (err < 0) {
974 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
975 goto fail_unregister_bus;
979 * Create the dimm/rank devices
981 for (i = 0; i < mci->tot_dimms; i++) {
982 struct dimm_info *dimm = mci->dimms[i];
983 /* Only expose populated DIMMs */
984 if (!dimm->nr_pages)
985 continue;
987 #ifdef CONFIG_EDAC_DEBUG
988 edac_dbg(1, "creating dimm%d, located at ", i);
989 if (edac_debug_level >= 1) {
990 int lay;
991 for (lay = 0; lay < mci->n_layers; lay++)
992 printk(KERN_CONT "%s %d ",
993 edac_layer_name[mci->layers[lay].type],
994 dimm->location[lay]);
995 printk(KERN_CONT "\n");
997 #endif
998 err = edac_create_dimm_object(mci, dimm, i);
999 if (err) {
1000 edac_dbg(1, "failure: create dimm %d obj\n", i);
1001 goto fail_unregister_dimm;
1005 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1006 err = edac_create_csrow_objects(mci);
1007 if (err < 0)
1008 goto fail_unregister_dimm;
1009 #endif
1011 edac_create_debugfs_nodes(mci);
1012 return 0;
1014 fail_unregister_dimm:
1015 for (i--; i >= 0; i--) {
1016 struct dimm_info *dimm = mci->dimms[i];
1017 if (!dimm->nr_pages)
1018 continue;
1020 device_unregister(&dimm->dev);
1022 device_unregister(&mci->dev);
1023 fail_unregister_bus:
1024 bus_unregister(mci->bus);
1025 kfree(name);
1027 return err;
1031 * remove a Memory Controller instance
1033 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1035 int i;
1037 edac_dbg(0, "\n");
1039 #ifdef CONFIG_EDAC_DEBUG
1040 edac_debugfs_remove_recursive(mci->debugfs);
1041 #endif
1042 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1043 edac_delete_csrow_objects(mci);
1044 #endif
1046 for (i = 0; i < mci->tot_dimms; i++) {
1047 struct dimm_info *dimm = mci->dimms[i];
1048 if (dimm->nr_pages == 0)
1049 continue;
1050 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1051 device_unregister(&dimm->dev);
1055 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1057 struct bus_type *bus = mci->bus;
1058 const char *name = mci->bus->name;
1060 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1061 device_unregister(&mci->dev);
1062 bus_unregister(bus);
1063 kfree(name);
1066 static void mc_attr_release(struct device *dev)
1069 * There's no container structure here, as this is just the mci
1070 * parent device, used to create the /sys/devices/mc sysfs node.
1071 * So, there are no attributes on it.
1073 edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1074 kfree(dev);
1077 static const struct device_type mc_attr_type = {
1078 .release = mc_attr_release,
1081 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1083 int __init edac_mc_sysfs_init(void)
1085 int err;
1087 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1088 if (!mci_pdev) {
1089 err = -ENOMEM;
1090 goto out;
1093 mci_pdev->bus = edac_get_sysfs_subsys();
1094 mci_pdev->type = &mc_attr_type;
1095 device_initialize(mci_pdev);
1096 dev_set_name(mci_pdev, "mc");
1098 err = device_add(mci_pdev);
1099 if (err < 0)
1100 goto out_dev_free;
1102 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1104 return 0;
1106 out_dev_free:
1107 kfree(mci_pdev);
1108 out:
1109 return err;
1112 void edac_mc_sysfs_exit(void)
1114 device_unregister(mci_pdev);