2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pci-ats.h>
32 #include <asm/setup.h>
34 #include <linux/aer.h>
37 const char *pci_power_names
[] = {
38 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
40 EXPORT_SYMBOL_GPL(pci_power_names
);
42 int isa_dma_bridge_buggy
;
43 EXPORT_SYMBOL(isa_dma_bridge_buggy
);
46 EXPORT_SYMBOL(pci_pci_problems
);
48 unsigned int pci_pm_d3_delay
;
50 static void pci_pme_list_scan(struct work_struct
*work
);
52 static LIST_HEAD(pci_pme_list
);
53 static DEFINE_MUTEX(pci_pme_list_mutex
);
54 static DECLARE_DELAYED_WORK(pci_pme_work
, pci_pme_list_scan
);
56 struct pci_pme_device
{
57 struct list_head list
;
61 #define PME_TIMEOUT 1000 /* How long between PME checks */
63 static void pci_dev_d3_sleep(struct pci_dev
*dev
)
65 unsigned int delay
= dev
->d3_delay
;
67 if (delay
< pci_pm_d3_delay
)
68 delay
= pci_pm_d3_delay
;
74 #ifdef CONFIG_PCI_DOMAINS
75 int pci_domains_supported
= 1;
78 #define DEFAULT_CARDBUS_IO_SIZE (256)
79 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
80 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
81 unsigned long pci_cardbus_io_size
= DEFAULT_CARDBUS_IO_SIZE
;
82 unsigned long pci_cardbus_mem_size
= DEFAULT_CARDBUS_MEM_SIZE
;
84 #define DEFAULT_HOTPLUG_IO_SIZE (256)
85 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
86 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
87 unsigned long pci_hotplug_io_size
= DEFAULT_HOTPLUG_IO_SIZE
;
88 unsigned long pci_hotplug_mem_size
= DEFAULT_HOTPLUG_MEM_SIZE
;
90 #define DEFAULT_HOTPLUG_BUS_SIZE 1
91 unsigned long pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
93 enum pcie_bus_config_types pcie_bus_config
= PCIE_BUS_DEFAULT
;
96 * The default CLS is used if arch didn't set CLS explicitly and not
97 * all pci devices agree on the same value. Arch can override either
98 * the dfl or actual value as it sees fit. Don't forget this is
99 * measured in 32-bit words, not bytes.
101 u8 pci_dfl_cache_line_size
= L1_CACHE_BYTES
>> 2;
102 u8 pci_cache_line_size
;
105 * If we set up a device for bus mastering, we need to check the latency
106 * timer as certain BIOSes forget to set it properly.
108 unsigned int pcibios_max_latency
= 255;
110 /* If set, the PCIe ARI capability will not be used. */
111 static bool pcie_ari_disabled
;
113 /* Disable bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_disable
;
115 /* Force bridge_d3 for all PCIe ports */
116 static bool pci_bridge_d3_force
;
118 static int __init
pcie_port_pm_setup(char *str
)
120 if (!strcmp(str
, "off"))
121 pci_bridge_d3_disable
= true;
122 else if (!strcmp(str
, "force"))
123 pci_bridge_d3_force
= true;
126 __setup("pcie_port_pm=", pcie_port_pm_setup
);
129 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
130 * @bus: pointer to PCI bus structure to search
132 * Given a PCI bus, returns the highest PCI bus number present in the set
133 * including the given PCI bus and its list of child PCI buses.
135 unsigned char pci_bus_max_busnr(struct pci_bus
*bus
)
138 unsigned char max
, n
;
140 max
= bus
->busn_res
.end
;
141 list_for_each_entry(tmp
, &bus
->children
, node
) {
142 n
= pci_bus_max_busnr(tmp
);
148 EXPORT_SYMBOL_GPL(pci_bus_max_busnr
);
150 #ifdef CONFIG_HAS_IOMEM
151 void __iomem
*pci_ioremap_bar(struct pci_dev
*pdev
, int bar
)
153 struct resource
*res
= &pdev
->resource
[bar
];
156 * Make sure the BAR is actually a memory resource, not an IO resource
158 if (res
->flags
& IORESOURCE_UNSET
|| !(res
->flags
& IORESOURCE_MEM
)) {
159 dev_warn(&pdev
->dev
, "can't ioremap BAR %d: %pR\n", bar
, res
);
162 return ioremap_nocache(res
->start
, resource_size(res
));
164 EXPORT_SYMBOL_GPL(pci_ioremap_bar
);
166 void __iomem
*pci_ioremap_wc_bar(struct pci_dev
*pdev
, int bar
)
169 * Make sure the BAR is actually a memory resource, not an IO resource
171 if (!(pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)) {
175 return ioremap_wc(pci_resource_start(pdev
, bar
),
176 pci_resource_len(pdev
, bar
));
178 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar
);
182 static int __pci_find_next_cap_ttl(struct pci_bus
*bus
, unsigned int devfn
,
183 u8 pos
, int cap
, int *ttl
)
188 pci_bus_read_config_byte(bus
, devfn
, pos
, &pos
);
194 pci_bus_read_config_word(bus
, devfn
, pos
, &ent
);
206 static int __pci_find_next_cap(struct pci_bus
*bus
, unsigned int devfn
,
209 int ttl
= PCI_FIND_CAP_TTL
;
211 return __pci_find_next_cap_ttl(bus
, devfn
, pos
, cap
, &ttl
);
214 int pci_find_next_capability(struct pci_dev
*dev
, u8 pos
, int cap
)
216 return __pci_find_next_cap(dev
->bus
, dev
->devfn
,
217 pos
+ PCI_CAP_LIST_NEXT
, cap
);
219 EXPORT_SYMBOL_GPL(pci_find_next_capability
);
221 static int __pci_bus_find_cap_start(struct pci_bus
*bus
,
222 unsigned int devfn
, u8 hdr_type
)
226 pci_bus_read_config_word(bus
, devfn
, PCI_STATUS
, &status
);
227 if (!(status
& PCI_STATUS_CAP_LIST
))
231 case PCI_HEADER_TYPE_NORMAL
:
232 case PCI_HEADER_TYPE_BRIDGE
:
233 return PCI_CAPABILITY_LIST
;
234 case PCI_HEADER_TYPE_CARDBUS
:
235 return PCI_CB_CAPABILITY_LIST
;
242 * pci_find_capability - query for devices' capabilities
243 * @dev: PCI device to query
244 * @cap: capability code
246 * Tell if a device supports a given PCI capability.
247 * Returns the address of the requested capability structure within the
248 * device's PCI configuration space or 0 in case the device does not
249 * support it. Possible values for @cap:
251 * %PCI_CAP_ID_PM Power Management
252 * %PCI_CAP_ID_AGP Accelerated Graphics Port
253 * %PCI_CAP_ID_VPD Vital Product Data
254 * %PCI_CAP_ID_SLOTID Slot Identification
255 * %PCI_CAP_ID_MSI Message Signalled Interrupts
256 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
257 * %PCI_CAP_ID_PCIX PCI-X
258 * %PCI_CAP_ID_EXP PCI Express
260 int pci_find_capability(struct pci_dev
*dev
, int cap
)
264 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
266 pos
= __pci_find_next_cap(dev
->bus
, dev
->devfn
, pos
, cap
);
270 EXPORT_SYMBOL(pci_find_capability
);
273 * pci_bus_find_capability - query for devices' capabilities
274 * @bus: the PCI bus to query
275 * @devfn: PCI device to query
276 * @cap: capability code
278 * Like pci_find_capability() but works for pci devices that do not have a
279 * pci_dev structure set up yet.
281 * Returns the address of the requested capability structure within the
282 * device's PCI configuration space or 0 in case the device does not
285 int pci_bus_find_capability(struct pci_bus
*bus
, unsigned int devfn
, int cap
)
290 pci_bus_read_config_byte(bus
, devfn
, PCI_HEADER_TYPE
, &hdr_type
);
292 pos
= __pci_bus_find_cap_start(bus
, devfn
, hdr_type
& 0x7f);
294 pos
= __pci_find_next_cap(bus
, devfn
, pos
, cap
);
298 EXPORT_SYMBOL(pci_bus_find_capability
);
301 * pci_find_next_ext_capability - Find an extended capability
302 * @dev: PCI device to query
303 * @start: address at which to start looking (0 to start at beginning of list)
304 * @cap: capability code
306 * Returns the address of the next matching extended capability structure
307 * within the device's PCI configuration space or 0 if the device does
308 * not support it. Some capabilities can occur several times, e.g., the
309 * vendor-specific capability, and this provides a way to find them all.
311 int pci_find_next_ext_capability(struct pci_dev
*dev
, int start
, int cap
)
315 int pos
= PCI_CFG_SPACE_SIZE
;
317 /* minimum 8 bytes per capability */
318 ttl
= (PCI_CFG_SPACE_EXP_SIZE
- PCI_CFG_SPACE_SIZE
) / 8;
320 if (dev
->cfg_size
<= PCI_CFG_SPACE_SIZE
)
326 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
330 * If we have no capabilities, this is indicated by cap ID,
331 * cap version and next pointer all being 0.
337 if (PCI_EXT_CAP_ID(header
) == cap
&& pos
!= start
)
340 pos
= PCI_EXT_CAP_NEXT(header
);
341 if (pos
< PCI_CFG_SPACE_SIZE
)
344 if (pci_read_config_dword(dev
, pos
, &header
) != PCIBIOS_SUCCESSFUL
)
350 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability
);
353 * pci_find_ext_capability - Find an extended capability
354 * @dev: PCI device to query
355 * @cap: capability code
357 * Returns the address of the requested extended capability structure
358 * within the device's PCI configuration space or 0 if the device does
359 * not support it. Possible values for @cap:
361 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
362 * %PCI_EXT_CAP_ID_VC Virtual Channel
363 * %PCI_EXT_CAP_ID_DSN Device Serial Number
364 * %PCI_EXT_CAP_ID_PWR Power Budgeting
366 int pci_find_ext_capability(struct pci_dev
*dev
, int cap
)
368 return pci_find_next_ext_capability(dev
, 0, cap
);
370 EXPORT_SYMBOL_GPL(pci_find_ext_capability
);
372 static int __pci_find_next_ht_cap(struct pci_dev
*dev
, int pos
, int ht_cap
)
374 int rc
, ttl
= PCI_FIND_CAP_TTL
;
377 if (ht_cap
== HT_CAPTYPE_SLAVE
|| ht_cap
== HT_CAPTYPE_HOST
)
378 mask
= HT_3BIT_CAP_MASK
;
380 mask
= HT_5BIT_CAP_MASK
;
382 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
, pos
,
383 PCI_CAP_ID_HT
, &ttl
);
385 rc
= pci_read_config_byte(dev
, pos
+ 3, &cap
);
386 if (rc
!= PCIBIOS_SUCCESSFUL
)
389 if ((cap
& mask
) == ht_cap
)
392 pos
= __pci_find_next_cap_ttl(dev
->bus
, dev
->devfn
,
393 pos
+ PCI_CAP_LIST_NEXT
,
394 PCI_CAP_ID_HT
, &ttl
);
400 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
401 * @dev: PCI device to query
402 * @pos: Position from which to continue searching
403 * @ht_cap: Hypertransport capability code
405 * To be used in conjunction with pci_find_ht_capability() to search for
406 * all capabilities matching @ht_cap. @pos should always be a value returned
407 * from pci_find_ht_capability().
409 * NB. To be 100% safe against broken PCI devices, the caller should take
410 * steps to avoid an infinite loop.
412 int pci_find_next_ht_capability(struct pci_dev
*dev
, int pos
, int ht_cap
)
414 return __pci_find_next_ht_cap(dev
, pos
+ PCI_CAP_LIST_NEXT
, ht_cap
);
416 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability
);
419 * pci_find_ht_capability - query a device's Hypertransport capabilities
420 * @dev: PCI device to query
421 * @ht_cap: Hypertransport capability code
423 * Tell if a device supports a given Hypertransport capability.
424 * Returns an address within the device's PCI configuration space
425 * or 0 in case the device does not support the request capability.
426 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
427 * which has a Hypertransport capability matching @ht_cap.
429 int pci_find_ht_capability(struct pci_dev
*dev
, int ht_cap
)
433 pos
= __pci_bus_find_cap_start(dev
->bus
, dev
->devfn
, dev
->hdr_type
);
435 pos
= __pci_find_next_ht_cap(dev
, pos
, ht_cap
);
439 EXPORT_SYMBOL_GPL(pci_find_ht_capability
);
442 * pci_find_parent_resource - return resource region of parent bus of given region
443 * @dev: PCI device structure contains resources to be searched
444 * @res: child resource record for which parent is sought
446 * For given resource region of given device, return the resource
447 * region of parent bus the given region is contained in.
449 struct resource
*pci_find_parent_resource(const struct pci_dev
*dev
,
450 struct resource
*res
)
452 const struct pci_bus
*bus
= dev
->bus
;
456 pci_bus_for_each_resource(bus
, r
, i
) {
459 if (resource_contains(r
, res
)) {
462 * If the window is prefetchable but the BAR is
463 * not, the allocator made a mistake.
465 if (r
->flags
& IORESOURCE_PREFETCH
&&
466 !(res
->flags
& IORESOURCE_PREFETCH
))
470 * If we're below a transparent bridge, there may
471 * be both a positively-decoded aperture and a
472 * subtractively-decoded region that contain the BAR.
473 * We want the positively-decoded one, so this depends
474 * on pci_bus_for_each_resource() giving us those
482 EXPORT_SYMBOL(pci_find_parent_resource
);
485 * pci_find_resource - Return matching PCI device resource
486 * @dev: PCI device to query
487 * @res: Resource to look for
489 * Goes over standard PCI resources (BARs) and checks if the given resource
490 * is partially or fully contained in any of them. In that case the
491 * matching resource is returned, %NULL otherwise.
493 struct resource
*pci_find_resource(struct pci_dev
*dev
, struct resource
*res
)
497 for (i
= 0; i
< PCI_ROM_RESOURCE
; i
++) {
498 struct resource
*r
= &dev
->resource
[i
];
500 if (r
->start
&& resource_contains(r
, res
))
506 EXPORT_SYMBOL(pci_find_resource
);
509 * pci_find_pcie_root_port - return PCIe Root Port
510 * @dev: PCI device to query
512 * Traverse up the parent chain and return the PCIe Root Port PCI Device
513 * for a given PCI Device.
515 struct pci_dev
*pci_find_pcie_root_port(struct pci_dev
*dev
)
517 struct pci_dev
*bridge
, *highest_pcie_bridge
= dev
;
519 bridge
= pci_upstream_bridge(dev
);
520 while (bridge
&& pci_is_pcie(bridge
)) {
521 highest_pcie_bridge
= bridge
;
522 bridge
= pci_upstream_bridge(bridge
);
525 if (pci_pcie_type(highest_pcie_bridge
) != PCI_EXP_TYPE_ROOT_PORT
)
528 return highest_pcie_bridge
;
530 EXPORT_SYMBOL(pci_find_pcie_root_port
);
533 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
534 * @dev: the PCI device to operate on
535 * @pos: config space offset of status word
536 * @mask: mask of bit(s) to care about in status word
538 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
540 int pci_wait_for_pending(struct pci_dev
*dev
, int pos
, u16 mask
)
544 /* Wait for Transaction Pending bit clean */
545 for (i
= 0; i
< 4; i
++) {
548 msleep((1 << (i
- 1)) * 100);
550 pci_read_config_word(dev
, pos
, &status
);
551 if (!(status
& mask
))
559 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
560 * @dev: PCI device to have its BARs restored
562 * Restore the BAR values for a given device, so as to make it
563 * accessible by its driver.
565 static void pci_restore_bars(struct pci_dev
*dev
)
569 for (i
= 0; i
< PCI_BRIDGE_RESOURCES
; i
++)
570 pci_update_resource(dev
, i
);
573 static const struct pci_platform_pm_ops
*pci_platform_pm
;
575 int pci_set_platform_pm(const struct pci_platform_pm_ops
*ops
)
577 if (!ops
->is_manageable
|| !ops
->set_state
|| !ops
->get_state
||
578 !ops
->choose_state
|| !ops
->set_wakeup
|| !ops
->need_resume
)
580 pci_platform_pm
= ops
;
584 static inline bool platform_pci_power_manageable(struct pci_dev
*dev
)
586 return pci_platform_pm
? pci_platform_pm
->is_manageable(dev
) : false;
589 static inline int platform_pci_set_power_state(struct pci_dev
*dev
,
592 return pci_platform_pm
? pci_platform_pm
->set_state(dev
, t
) : -ENOSYS
;
595 static inline pci_power_t
platform_pci_get_power_state(struct pci_dev
*dev
)
597 return pci_platform_pm
? pci_platform_pm
->get_state(dev
) : PCI_UNKNOWN
;
600 static inline pci_power_t
platform_pci_choose_state(struct pci_dev
*dev
)
602 return pci_platform_pm
?
603 pci_platform_pm
->choose_state(dev
) : PCI_POWER_ERROR
;
606 static inline int platform_pci_set_wakeup(struct pci_dev
*dev
, bool enable
)
608 return pci_platform_pm
?
609 pci_platform_pm
->set_wakeup(dev
, enable
) : -ENODEV
;
612 static inline bool platform_pci_need_resume(struct pci_dev
*dev
)
614 return pci_platform_pm
? pci_platform_pm
->need_resume(dev
) : false;
618 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
620 * @dev: PCI device to handle.
621 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
624 * -EINVAL if the requested state is invalid.
625 * -EIO if device does not support PCI PM or its PM capabilities register has a
626 * wrong version, or device doesn't support the requested state.
627 * 0 if device already is in the requested state.
628 * 0 if device's power state has been successfully changed.
630 static int pci_raw_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
633 bool need_restore
= false;
635 /* Check if we're already there */
636 if (dev
->current_state
== state
)
642 if (state
< PCI_D0
|| state
> PCI_D3hot
)
645 /* Validate current state:
646 * Can enter D0 from any state, but if we can only go deeper
647 * to sleep if we're already in a low power state
649 if (state
!= PCI_D0
&& dev
->current_state
<= PCI_D3cold
650 && dev
->current_state
> state
) {
651 dev_err(&dev
->dev
, "invalid power transition (from state %d to %d)\n",
652 dev
->current_state
, state
);
656 /* check if this device supports the desired state */
657 if ((state
== PCI_D1
&& !dev
->d1_support
)
658 || (state
== PCI_D2
&& !dev
->d2_support
))
661 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
663 /* If we're (effectively) in D3, force entire word to 0.
664 * This doesn't affect PME_Status, disables PME_En, and
665 * sets PowerState to 0.
667 switch (dev
->current_state
) {
671 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
676 case PCI_UNKNOWN
: /* Boot-up */
677 if ((pmcsr
& PCI_PM_CTRL_STATE_MASK
) == PCI_D3hot
678 && !(pmcsr
& PCI_PM_CTRL_NO_SOFT_RESET
))
680 /* Fall-through: force to D0 */
686 /* enter specified state */
687 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
689 /* Mandatory power management transition delays */
690 /* see PCI PM 1.1 5.6.1 table 18 */
691 if (state
== PCI_D3hot
|| dev
->current_state
== PCI_D3hot
)
692 pci_dev_d3_sleep(dev
);
693 else if (state
== PCI_D2
|| dev
->current_state
== PCI_D2
)
694 udelay(PCI_PM_D2_DELAY
);
696 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
697 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
698 if (dev
->current_state
!= state
&& printk_ratelimit())
699 dev_info(&dev
->dev
, "Refused to change power state, currently in D%d\n",
703 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
704 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
705 * from D3hot to D0 _may_ perform an internal reset, thereby
706 * going to "D0 Uninitialized" rather than "D0 Initialized".
707 * For example, at least some versions of the 3c905B and the
708 * 3c556B exhibit this behaviour.
710 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
711 * devices in a D3hot state at boot. Consequently, we need to
712 * restore at least the BARs so that the device will be
713 * accessible to its driver.
716 pci_restore_bars(dev
);
719 pcie_aspm_pm_state_change(dev
->bus
->self
);
725 * pci_update_current_state - Read power state of given device and cache it
726 * @dev: PCI device to handle.
727 * @state: State to cache in case the device doesn't have the PM capability
729 * The power state is read from the PMCSR register, which however is
730 * inaccessible in D3cold. The platform firmware is therefore queried first
731 * to detect accessibility of the register. In case the platform firmware
732 * reports an incorrect state or the device isn't power manageable by the
733 * platform at all, we try to detect D3cold by testing accessibility of the
734 * vendor ID in config space.
736 void pci_update_current_state(struct pci_dev
*dev
, pci_power_t state
)
738 if (platform_pci_get_power_state(dev
) == PCI_D3cold
||
739 !pci_device_is_present(dev
)) {
740 dev
->current_state
= PCI_D3cold
;
741 } else if (dev
->pm_cap
) {
744 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
745 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
747 dev
->current_state
= state
;
752 * pci_power_up - Put the given device into D0 forcibly
753 * @dev: PCI device to power up
755 void pci_power_up(struct pci_dev
*dev
)
757 if (platform_pci_power_manageable(dev
))
758 platform_pci_set_power_state(dev
, PCI_D0
);
760 pci_raw_set_power_state(dev
, PCI_D0
);
761 pci_update_current_state(dev
, PCI_D0
);
765 * pci_platform_power_transition - Use platform to change device power state
766 * @dev: PCI device to handle.
767 * @state: State to put the device into.
769 static int pci_platform_power_transition(struct pci_dev
*dev
, pci_power_t state
)
773 if (platform_pci_power_manageable(dev
)) {
774 error
= platform_pci_set_power_state(dev
, state
);
776 pci_update_current_state(dev
, state
);
780 if (error
&& !dev
->pm_cap
) /* Fall back to PCI_D0 */
781 dev
->current_state
= PCI_D0
;
787 * pci_wakeup - Wake up a PCI device
788 * @pci_dev: Device to handle.
789 * @ign: ignored parameter
791 static int pci_wakeup(struct pci_dev
*pci_dev
, void *ign
)
793 pci_wakeup_event(pci_dev
);
794 pm_request_resume(&pci_dev
->dev
);
799 * pci_wakeup_bus - Walk given bus and wake up devices on it
800 * @bus: Top bus of the subtree to walk.
802 static void pci_wakeup_bus(struct pci_bus
*bus
)
805 pci_walk_bus(bus
, pci_wakeup
, NULL
);
809 * __pci_start_power_transition - Start power transition of a PCI device
810 * @dev: PCI device to handle.
811 * @state: State to put the device into.
813 static void __pci_start_power_transition(struct pci_dev
*dev
, pci_power_t state
)
815 if (state
== PCI_D0
) {
816 pci_platform_power_transition(dev
, PCI_D0
);
818 * Mandatory power management transition delays, see
819 * PCI Express Base Specification Revision 2.0 Section
820 * 6.6.1: Conventional Reset. Do not delay for
821 * devices powered on/off by corresponding bridge,
822 * because have already delayed for the bridge.
824 if (dev
->runtime_d3cold
) {
825 if (dev
->d3cold_delay
)
826 msleep(dev
->d3cold_delay
);
828 * When powering on a bridge from D3cold, the
829 * whole hierarchy may be powered on into
830 * D0uninitialized state, resume them to give
831 * them a chance to suspend again
833 pci_wakeup_bus(dev
->subordinate
);
839 * __pci_dev_set_current_state - Set current state of a PCI device
840 * @dev: Device to handle
841 * @data: pointer to state to be set
843 static int __pci_dev_set_current_state(struct pci_dev
*dev
, void *data
)
845 pci_power_t state
= *(pci_power_t
*)data
;
847 dev
->current_state
= state
;
852 * __pci_bus_set_current_state - Walk given bus and set current state of devices
853 * @bus: Top bus of the subtree to walk.
854 * @state: state to be set
856 static void __pci_bus_set_current_state(struct pci_bus
*bus
, pci_power_t state
)
859 pci_walk_bus(bus
, __pci_dev_set_current_state
, &state
);
863 * __pci_complete_power_transition - Complete power transition of a PCI device
864 * @dev: PCI device to handle.
865 * @state: State to put the device into.
867 * This function should not be called directly by device drivers.
869 int __pci_complete_power_transition(struct pci_dev
*dev
, pci_power_t state
)
875 ret
= pci_platform_power_transition(dev
, state
);
876 /* Power off the bridge may power off the whole hierarchy */
877 if (!ret
&& state
== PCI_D3cold
)
878 __pci_bus_set_current_state(dev
->subordinate
, PCI_D3cold
);
881 EXPORT_SYMBOL_GPL(__pci_complete_power_transition
);
884 * pci_set_power_state - Set the power state of a PCI device
885 * @dev: PCI device to handle.
886 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
888 * Transition a device to a new power state, using the platform firmware and/or
889 * the device's PCI PM registers.
892 * -EINVAL if the requested state is invalid.
893 * -EIO if device does not support PCI PM or its PM capabilities register has a
894 * wrong version, or device doesn't support the requested state.
895 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
896 * 0 if device already is in the requested state.
897 * 0 if the transition is to D3 but D3 is not supported.
898 * 0 if device's power state has been successfully changed.
900 int pci_set_power_state(struct pci_dev
*dev
, pci_power_t state
)
904 /* bound the state we're entering */
905 if (state
> PCI_D3cold
)
907 else if (state
< PCI_D0
)
909 else if ((state
== PCI_D1
|| state
== PCI_D2
) && pci_no_d1d2(dev
))
911 * If the device or the parent bridge do not support PCI PM,
912 * ignore the request if we're doing anything other than putting
913 * it into D0 (which would only happen on boot).
917 /* Check if we're already there */
918 if (dev
->current_state
== state
)
921 __pci_start_power_transition(dev
, state
);
923 /* This device is quirked not to be put into D3, so
924 don't put it in D3 */
925 if (state
>= PCI_D3hot
&& (dev
->dev_flags
& PCI_DEV_FLAGS_NO_D3
))
929 * To put device in D3cold, we put device into D3hot in native
930 * way, then put device into D3cold with platform ops
932 error
= pci_raw_set_power_state(dev
, state
> PCI_D3hot
?
935 if (!__pci_complete_power_transition(dev
, state
))
940 EXPORT_SYMBOL(pci_set_power_state
);
943 * pci_choose_state - Choose the power state of a PCI device
944 * @dev: PCI device to be suspended
945 * @state: target sleep state for the whole system. This is the value
946 * that is passed to suspend() function.
948 * Returns PCI power state suitable for given device and given system
952 pci_power_t
pci_choose_state(struct pci_dev
*dev
, pm_message_t state
)
959 ret
= platform_pci_choose_state(dev
);
960 if (ret
!= PCI_POWER_ERROR
)
963 switch (state
.event
) {
966 case PM_EVENT_FREEZE
:
967 case PM_EVENT_PRETHAW
:
968 /* REVISIT both freeze and pre-thaw "should" use D0 */
969 case PM_EVENT_SUSPEND
:
970 case PM_EVENT_HIBERNATE
:
973 dev_info(&dev
->dev
, "unrecognized suspend event %d\n",
979 EXPORT_SYMBOL(pci_choose_state
);
981 #define PCI_EXP_SAVE_REGS 7
983 static struct pci_cap_saved_state
*_pci_find_saved_cap(struct pci_dev
*pci_dev
,
984 u16 cap
, bool extended
)
986 struct pci_cap_saved_state
*tmp
;
988 hlist_for_each_entry(tmp
, &pci_dev
->saved_cap_space
, next
) {
989 if (tmp
->cap
.cap_extended
== extended
&& tmp
->cap
.cap_nr
== cap
)
995 struct pci_cap_saved_state
*pci_find_saved_cap(struct pci_dev
*dev
, char cap
)
997 return _pci_find_saved_cap(dev
, cap
, false);
1000 struct pci_cap_saved_state
*pci_find_saved_ext_cap(struct pci_dev
*dev
, u16 cap
)
1002 return _pci_find_saved_cap(dev
, cap
, true);
1005 static int pci_save_pcie_state(struct pci_dev
*dev
)
1008 struct pci_cap_saved_state
*save_state
;
1011 if (!pci_is_pcie(dev
))
1014 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1016 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
1020 cap
= (u16
*)&save_state
->cap
.data
[0];
1021 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &cap
[i
++]);
1022 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL
, &cap
[i
++]);
1023 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL
, &cap
[i
++]);
1024 pcie_capability_read_word(dev
, PCI_EXP_RTCTL
, &cap
[i
++]);
1025 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL2
, &cap
[i
++]);
1026 pcie_capability_read_word(dev
, PCI_EXP_LNKCTL2
, &cap
[i
++]);
1027 pcie_capability_read_word(dev
, PCI_EXP_SLTCTL2
, &cap
[i
++]);
1032 static void pci_restore_pcie_state(struct pci_dev
*dev
)
1035 struct pci_cap_saved_state
*save_state
;
1038 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_EXP
);
1042 cap
= (u16
*)&save_state
->cap
.data
[0];
1043 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL
, cap
[i
++]);
1044 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL
, cap
[i
++]);
1045 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL
, cap
[i
++]);
1046 pcie_capability_write_word(dev
, PCI_EXP_RTCTL
, cap
[i
++]);
1047 pcie_capability_write_word(dev
, PCI_EXP_DEVCTL2
, cap
[i
++]);
1048 pcie_capability_write_word(dev
, PCI_EXP_LNKCTL2
, cap
[i
++]);
1049 pcie_capability_write_word(dev
, PCI_EXP_SLTCTL2
, cap
[i
++]);
1053 static int pci_save_pcix_state(struct pci_dev
*dev
)
1056 struct pci_cap_saved_state
*save_state
;
1058 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1062 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1064 dev_err(&dev
->dev
, "buffer not found in %s\n", __func__
);
1068 pci_read_config_word(dev
, pos
+ PCI_X_CMD
,
1069 (u16
*)save_state
->cap
.data
);
1074 static void pci_restore_pcix_state(struct pci_dev
*dev
)
1077 struct pci_cap_saved_state
*save_state
;
1080 save_state
= pci_find_saved_cap(dev
, PCI_CAP_ID_PCIX
);
1081 pos
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
1082 if (!save_state
|| !pos
)
1084 cap
= (u16
*)&save_state
->cap
.data
[0];
1086 pci_write_config_word(dev
, pos
+ PCI_X_CMD
, cap
[i
++]);
1091 * pci_save_state - save the PCI configuration space of a device before suspending
1092 * @dev: - PCI device that we're dealing with
1094 int pci_save_state(struct pci_dev
*dev
)
1097 /* XXX: 100% dword access ok here? */
1098 for (i
= 0; i
< 16; i
++)
1099 pci_read_config_dword(dev
, i
* 4, &dev
->saved_config_space
[i
]);
1100 dev
->state_saved
= true;
1102 i
= pci_save_pcie_state(dev
);
1106 i
= pci_save_pcix_state(dev
);
1110 return pci_save_vc_state(dev
);
1112 EXPORT_SYMBOL(pci_save_state
);
1114 static void pci_restore_config_dword(struct pci_dev
*pdev
, int offset
,
1115 u32 saved_val
, int retry
)
1119 pci_read_config_dword(pdev
, offset
, &val
);
1120 if (val
== saved_val
)
1124 dev_dbg(&pdev
->dev
, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1125 offset
, val
, saved_val
);
1126 pci_write_config_dword(pdev
, offset
, saved_val
);
1130 pci_read_config_dword(pdev
, offset
, &val
);
1131 if (val
== saved_val
)
1138 static void pci_restore_config_space_range(struct pci_dev
*pdev
,
1139 int start
, int end
, int retry
)
1143 for (index
= end
; index
>= start
; index
--)
1144 pci_restore_config_dword(pdev
, 4 * index
,
1145 pdev
->saved_config_space
[index
],
1149 static void pci_restore_config_space(struct pci_dev
*pdev
)
1151 if (pdev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
) {
1152 pci_restore_config_space_range(pdev
, 10, 15, 0);
1153 /* Restore BARs before the command register. */
1154 pci_restore_config_space_range(pdev
, 4, 9, 10);
1155 pci_restore_config_space_range(pdev
, 0, 3, 0);
1157 pci_restore_config_space_range(pdev
, 0, 15, 0);
1162 * pci_restore_state - Restore the saved state of a PCI device
1163 * @dev: - PCI device that we're dealing with
1165 void pci_restore_state(struct pci_dev
*dev
)
1167 if (!dev
->state_saved
)
1170 /* PCI Express register must be restored first */
1171 pci_restore_pcie_state(dev
);
1172 pci_restore_pasid_state(dev
);
1173 pci_restore_pri_state(dev
);
1174 pci_restore_ats_state(dev
);
1175 pci_restore_vc_state(dev
);
1177 pci_cleanup_aer_error_status_regs(dev
);
1179 pci_restore_config_space(dev
);
1181 pci_restore_pcix_state(dev
);
1182 pci_restore_msi_state(dev
);
1184 /* Restore ACS and IOV configuration state */
1185 pci_enable_acs(dev
);
1186 pci_restore_iov_state(dev
);
1188 dev
->state_saved
= false;
1190 EXPORT_SYMBOL(pci_restore_state
);
1192 struct pci_saved_state
{
1193 u32 config_space
[16];
1194 struct pci_cap_saved_data cap
[0];
1198 * pci_store_saved_state - Allocate and return an opaque struct containing
1199 * the device saved state.
1200 * @dev: PCI device that we're dealing with
1202 * Return NULL if no state or error.
1204 struct pci_saved_state
*pci_store_saved_state(struct pci_dev
*dev
)
1206 struct pci_saved_state
*state
;
1207 struct pci_cap_saved_state
*tmp
;
1208 struct pci_cap_saved_data
*cap
;
1211 if (!dev
->state_saved
)
1214 size
= sizeof(*state
) + sizeof(struct pci_cap_saved_data
);
1216 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
)
1217 size
+= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1219 state
= kzalloc(size
, GFP_KERNEL
);
1223 memcpy(state
->config_space
, dev
->saved_config_space
,
1224 sizeof(state
->config_space
));
1227 hlist_for_each_entry(tmp
, &dev
->saved_cap_space
, next
) {
1228 size_t len
= sizeof(struct pci_cap_saved_data
) + tmp
->cap
.size
;
1229 memcpy(cap
, &tmp
->cap
, len
);
1230 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+ len
);
1232 /* Empty cap_save terminates list */
1236 EXPORT_SYMBOL_GPL(pci_store_saved_state
);
1239 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1240 * @dev: PCI device that we're dealing with
1241 * @state: Saved state returned from pci_store_saved_state()
1243 int pci_load_saved_state(struct pci_dev
*dev
,
1244 struct pci_saved_state
*state
)
1246 struct pci_cap_saved_data
*cap
;
1248 dev
->state_saved
= false;
1253 memcpy(dev
->saved_config_space
, state
->config_space
,
1254 sizeof(state
->config_space
));
1258 struct pci_cap_saved_state
*tmp
;
1260 tmp
= _pci_find_saved_cap(dev
, cap
->cap_nr
, cap
->cap_extended
);
1261 if (!tmp
|| tmp
->cap
.size
!= cap
->size
)
1264 memcpy(tmp
->cap
.data
, cap
->data
, tmp
->cap
.size
);
1265 cap
= (struct pci_cap_saved_data
*)((u8
*)cap
+
1266 sizeof(struct pci_cap_saved_data
) + cap
->size
);
1269 dev
->state_saved
= true;
1272 EXPORT_SYMBOL_GPL(pci_load_saved_state
);
1275 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1276 * and free the memory allocated for it.
1277 * @dev: PCI device that we're dealing with
1278 * @state: Pointer to saved state returned from pci_store_saved_state()
1280 int pci_load_and_free_saved_state(struct pci_dev
*dev
,
1281 struct pci_saved_state
**state
)
1283 int ret
= pci_load_saved_state(dev
, *state
);
1288 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state
);
1290 int __weak
pcibios_enable_device(struct pci_dev
*dev
, int bars
)
1292 return pci_enable_resources(dev
, bars
);
1295 static int do_pci_enable_device(struct pci_dev
*dev
, int bars
)
1298 struct pci_dev
*bridge
;
1302 err
= pci_set_power_state(dev
, PCI_D0
);
1303 if (err
< 0 && err
!= -EIO
)
1306 bridge
= pci_upstream_bridge(dev
);
1308 pcie_aspm_powersave_config_link(bridge
);
1310 err
= pcibios_enable_device(dev
, bars
);
1313 pci_fixup_device(pci_fixup_enable
, dev
);
1315 if (dev
->msi_enabled
|| dev
->msix_enabled
)
1318 pci_read_config_byte(dev
, PCI_INTERRUPT_PIN
, &pin
);
1320 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
1321 if (cmd
& PCI_COMMAND_INTX_DISABLE
)
1322 pci_write_config_word(dev
, PCI_COMMAND
,
1323 cmd
& ~PCI_COMMAND_INTX_DISABLE
);
1330 * pci_reenable_device - Resume abandoned device
1331 * @dev: PCI device to be resumed
1333 * Note this function is a backend of pci_default_resume and is not supposed
1334 * to be called by normal code, write proper resume handler and use it instead.
1336 int pci_reenable_device(struct pci_dev
*dev
)
1338 if (pci_is_enabled(dev
))
1339 return do_pci_enable_device(dev
, (1 << PCI_NUM_RESOURCES
) - 1);
1342 EXPORT_SYMBOL(pci_reenable_device
);
1344 static void pci_enable_bridge(struct pci_dev
*dev
)
1346 struct pci_dev
*bridge
;
1349 bridge
= pci_upstream_bridge(dev
);
1351 pci_enable_bridge(bridge
);
1353 if (pci_is_enabled(dev
)) {
1354 if (!dev
->is_busmaster
)
1355 pci_set_master(dev
);
1359 retval
= pci_enable_device(dev
);
1361 dev_err(&dev
->dev
, "Error enabling bridge (%d), continuing\n",
1363 pci_set_master(dev
);
1366 static int pci_enable_device_flags(struct pci_dev
*dev
, unsigned long flags
)
1368 struct pci_dev
*bridge
;
1373 * Power state could be unknown at this point, either due to a fresh
1374 * boot or a device removal call. So get the current power state
1375 * so that things like MSI message writing will behave as expected
1376 * (e.g. if the device really is in D0 at enable time).
1380 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1381 dev
->current_state
= (pmcsr
& PCI_PM_CTRL_STATE_MASK
);
1384 if (atomic_inc_return(&dev
->enable_cnt
) > 1)
1385 return 0; /* already enabled */
1387 bridge
= pci_upstream_bridge(dev
);
1389 pci_enable_bridge(bridge
);
1391 /* only skip sriov related */
1392 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
1393 if (dev
->resource
[i
].flags
& flags
)
1395 for (i
= PCI_BRIDGE_RESOURCES
; i
< DEVICE_COUNT_RESOURCE
; i
++)
1396 if (dev
->resource
[i
].flags
& flags
)
1399 err
= do_pci_enable_device(dev
, bars
);
1401 atomic_dec(&dev
->enable_cnt
);
1406 * pci_enable_device_io - Initialize a device for use with IO space
1407 * @dev: PCI device to be initialized
1409 * Initialize device before it's used by a driver. Ask low-level code
1410 * to enable I/O resources. Wake up the device if it was suspended.
1411 * Beware, this function can fail.
1413 int pci_enable_device_io(struct pci_dev
*dev
)
1415 return pci_enable_device_flags(dev
, IORESOURCE_IO
);
1417 EXPORT_SYMBOL(pci_enable_device_io
);
1420 * pci_enable_device_mem - Initialize a device for use with Memory space
1421 * @dev: PCI device to be initialized
1423 * Initialize device before it's used by a driver. Ask low-level code
1424 * to enable Memory resources. Wake up the device if it was suspended.
1425 * Beware, this function can fail.
1427 int pci_enable_device_mem(struct pci_dev
*dev
)
1429 return pci_enable_device_flags(dev
, IORESOURCE_MEM
);
1431 EXPORT_SYMBOL(pci_enable_device_mem
);
1434 * pci_enable_device - Initialize device before it's used by a driver.
1435 * @dev: PCI device to be initialized
1437 * Initialize device before it's used by a driver. Ask low-level code
1438 * to enable I/O and memory. Wake up the device if it was suspended.
1439 * Beware, this function can fail.
1441 * Note we don't actually enable the device many times if we call
1442 * this function repeatedly (we just increment the count).
1444 int pci_enable_device(struct pci_dev
*dev
)
1446 return pci_enable_device_flags(dev
, IORESOURCE_MEM
| IORESOURCE_IO
);
1448 EXPORT_SYMBOL(pci_enable_device
);
1451 * Managed PCI resources. This manages device on/off, intx/msi/msix
1452 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1453 * there's no need to track it separately. pci_devres is initialized
1454 * when a device is enabled using managed PCI device enable interface.
1457 unsigned int enabled
:1;
1458 unsigned int pinned
:1;
1459 unsigned int orig_intx
:1;
1460 unsigned int restore_intx
:1;
1464 static void pcim_release(struct device
*gendev
, void *res
)
1466 struct pci_dev
*dev
= to_pci_dev(gendev
);
1467 struct pci_devres
*this = res
;
1470 if (dev
->msi_enabled
)
1471 pci_disable_msi(dev
);
1472 if (dev
->msix_enabled
)
1473 pci_disable_msix(dev
);
1475 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
1476 if (this->region_mask
& (1 << i
))
1477 pci_release_region(dev
, i
);
1479 if (this->restore_intx
)
1480 pci_intx(dev
, this->orig_intx
);
1482 if (this->enabled
&& !this->pinned
)
1483 pci_disable_device(dev
);
1486 static struct pci_devres
*get_pci_dr(struct pci_dev
*pdev
)
1488 struct pci_devres
*dr
, *new_dr
;
1490 dr
= devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1494 new_dr
= devres_alloc(pcim_release
, sizeof(*new_dr
), GFP_KERNEL
);
1497 return devres_get(&pdev
->dev
, new_dr
, NULL
, NULL
);
1500 static struct pci_devres
*find_pci_dr(struct pci_dev
*pdev
)
1502 if (pci_is_managed(pdev
))
1503 return devres_find(&pdev
->dev
, pcim_release
, NULL
, NULL
);
1508 * pcim_enable_device - Managed pci_enable_device()
1509 * @pdev: PCI device to be initialized
1511 * Managed pci_enable_device().
1513 int pcim_enable_device(struct pci_dev
*pdev
)
1515 struct pci_devres
*dr
;
1518 dr
= get_pci_dr(pdev
);
1524 rc
= pci_enable_device(pdev
);
1526 pdev
->is_managed
= 1;
1531 EXPORT_SYMBOL(pcim_enable_device
);
1534 * pcim_pin_device - Pin managed PCI device
1535 * @pdev: PCI device to pin
1537 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1538 * driver detach. @pdev must have been enabled with
1539 * pcim_enable_device().
1541 void pcim_pin_device(struct pci_dev
*pdev
)
1543 struct pci_devres
*dr
;
1545 dr
= find_pci_dr(pdev
);
1546 WARN_ON(!dr
|| !dr
->enabled
);
1550 EXPORT_SYMBOL(pcim_pin_device
);
1553 * pcibios_add_device - provide arch specific hooks when adding device dev
1554 * @dev: the PCI device being added
1556 * Permits the platform to provide architecture specific functionality when
1557 * devices are added. This is the default implementation. Architecture
1558 * implementations can override this.
1560 int __weak
pcibios_add_device(struct pci_dev
*dev
)
1566 * pcibios_release_device - provide arch specific hooks when releasing device dev
1567 * @dev: the PCI device being released
1569 * Permits the platform to provide architecture specific functionality when
1570 * devices are released. This is the default implementation. Architecture
1571 * implementations can override this.
1573 void __weak
pcibios_release_device(struct pci_dev
*dev
) {}
1576 * pcibios_disable_device - disable arch specific PCI resources for device dev
1577 * @dev: the PCI device to disable
1579 * Disables architecture specific PCI resources for the device. This
1580 * is the default implementation. Architecture implementations can
1583 void __weak
pcibios_disable_device(struct pci_dev
*dev
) {}
1586 * pcibios_penalize_isa_irq - penalize an ISA IRQ
1587 * @irq: ISA IRQ to penalize
1588 * @active: IRQ active or not
1590 * Permits the platform to provide architecture-specific functionality when
1591 * penalizing ISA IRQs. This is the default implementation. Architecture
1592 * implementations can override this.
1594 void __weak
pcibios_penalize_isa_irq(int irq
, int active
) {}
1596 static void do_pci_disable_device(struct pci_dev
*dev
)
1600 pci_read_config_word(dev
, PCI_COMMAND
, &pci_command
);
1601 if (pci_command
& PCI_COMMAND_MASTER
) {
1602 pci_command
&= ~PCI_COMMAND_MASTER
;
1603 pci_write_config_word(dev
, PCI_COMMAND
, pci_command
);
1606 pcibios_disable_device(dev
);
1610 * pci_disable_enabled_device - Disable device without updating enable_cnt
1611 * @dev: PCI device to disable
1613 * NOTE: This function is a backend of PCI power management routines and is
1614 * not supposed to be called drivers.
1616 void pci_disable_enabled_device(struct pci_dev
*dev
)
1618 if (pci_is_enabled(dev
))
1619 do_pci_disable_device(dev
);
1623 * pci_disable_device - Disable PCI device after use
1624 * @dev: PCI device to be disabled
1626 * Signal to the system that the PCI device is not in use by the system
1627 * anymore. This only involves disabling PCI bus-mastering, if active.
1629 * Note we don't actually disable the device until all callers of
1630 * pci_enable_device() have called pci_disable_device().
1632 void pci_disable_device(struct pci_dev
*dev
)
1634 struct pci_devres
*dr
;
1636 dr
= find_pci_dr(dev
);
1640 dev_WARN_ONCE(&dev
->dev
, atomic_read(&dev
->enable_cnt
) <= 0,
1641 "disabling already-disabled device");
1643 if (atomic_dec_return(&dev
->enable_cnt
) != 0)
1646 do_pci_disable_device(dev
);
1648 dev
->is_busmaster
= 0;
1650 EXPORT_SYMBOL(pci_disable_device
);
1653 * pcibios_set_pcie_reset_state - set reset state for device dev
1654 * @dev: the PCIe device reset
1655 * @state: Reset state to enter into
1658 * Sets the PCIe reset state for the device. This is the default
1659 * implementation. Architecture implementations can override this.
1661 int __weak
pcibios_set_pcie_reset_state(struct pci_dev
*dev
,
1662 enum pcie_reset_state state
)
1668 * pci_set_pcie_reset_state - set reset state for device dev
1669 * @dev: the PCIe device reset
1670 * @state: Reset state to enter into
1673 * Sets the PCI reset state for the device.
1675 int pci_set_pcie_reset_state(struct pci_dev
*dev
, enum pcie_reset_state state
)
1677 return pcibios_set_pcie_reset_state(dev
, state
);
1679 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state
);
1682 * pci_check_pme_status - Check if given device has generated PME.
1683 * @dev: Device to check.
1685 * Check the PME status of the device and if set, clear it and clear PME enable
1686 * (if set). Return 'true' if PME status and PME enable were both set or
1687 * 'false' otherwise.
1689 bool pci_check_pme_status(struct pci_dev
*dev
)
1698 pmcsr_pos
= dev
->pm_cap
+ PCI_PM_CTRL
;
1699 pci_read_config_word(dev
, pmcsr_pos
, &pmcsr
);
1700 if (!(pmcsr
& PCI_PM_CTRL_PME_STATUS
))
1703 /* Clear PME status. */
1704 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1705 if (pmcsr
& PCI_PM_CTRL_PME_ENABLE
) {
1706 /* Disable PME to avoid interrupt flood. */
1707 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1711 pci_write_config_word(dev
, pmcsr_pos
, pmcsr
);
1717 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1718 * @dev: Device to handle.
1719 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1721 * Check if @dev has generated PME and queue a resume request for it in that
1724 static int pci_pme_wakeup(struct pci_dev
*dev
, void *pme_poll_reset
)
1726 if (pme_poll_reset
&& dev
->pme_poll
)
1727 dev
->pme_poll
= false;
1729 if (pci_check_pme_status(dev
)) {
1730 pci_wakeup_event(dev
);
1731 pm_request_resume(&dev
->dev
);
1737 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1738 * @bus: Top bus of the subtree to walk.
1740 void pci_pme_wakeup_bus(struct pci_bus
*bus
)
1743 pci_walk_bus(bus
, pci_pme_wakeup
, (void *)true);
1748 * pci_pme_capable - check the capability of PCI device to generate PME#
1749 * @dev: PCI device to handle.
1750 * @state: PCI state from which device will issue PME#.
1752 bool pci_pme_capable(struct pci_dev
*dev
, pci_power_t state
)
1757 return !!(dev
->pme_support
& (1 << state
));
1759 EXPORT_SYMBOL(pci_pme_capable
);
1761 static void pci_pme_list_scan(struct work_struct
*work
)
1763 struct pci_pme_device
*pme_dev
, *n
;
1765 mutex_lock(&pci_pme_list_mutex
);
1766 list_for_each_entry_safe(pme_dev
, n
, &pci_pme_list
, list
) {
1767 if (pme_dev
->dev
->pme_poll
) {
1768 struct pci_dev
*bridge
;
1770 bridge
= pme_dev
->dev
->bus
->self
;
1772 * If bridge is in low power state, the
1773 * configuration space of subordinate devices
1774 * may be not accessible
1776 if (bridge
&& bridge
->current_state
!= PCI_D0
)
1778 pci_pme_wakeup(pme_dev
->dev
, NULL
);
1780 list_del(&pme_dev
->list
);
1784 if (!list_empty(&pci_pme_list
))
1785 queue_delayed_work(system_freezable_wq
, &pci_pme_work
,
1786 msecs_to_jiffies(PME_TIMEOUT
));
1787 mutex_unlock(&pci_pme_list_mutex
);
1790 static void __pci_pme_active(struct pci_dev
*dev
, bool enable
)
1794 if (!dev
->pme_support
)
1797 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1798 /* Clear PME_Status by writing 1 to it and enable PME# */
1799 pmcsr
|= PCI_PM_CTRL_PME_STATUS
| PCI_PM_CTRL_PME_ENABLE
;
1801 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1803 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1807 * pci_pme_restore - Restore PME configuration after config space restore.
1808 * @dev: PCI device to update.
1810 void pci_pme_restore(struct pci_dev
*dev
)
1814 if (!dev
->pme_support
)
1817 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
1818 if (dev
->wakeup_prepared
) {
1819 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
1820 pmcsr
&= ~PCI_PM_CTRL_PME_STATUS
;
1822 pmcsr
&= ~PCI_PM_CTRL_PME_ENABLE
;
1823 pmcsr
|= PCI_PM_CTRL_PME_STATUS
;
1825 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, pmcsr
);
1829 * pci_pme_active - enable or disable PCI device's PME# function
1830 * @dev: PCI device to handle.
1831 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1833 * The caller must verify that the device is capable of generating PME# before
1834 * calling this function with @enable equal to 'true'.
1836 void pci_pme_active(struct pci_dev
*dev
, bool enable
)
1838 __pci_pme_active(dev
, enable
);
1841 * PCI (as opposed to PCIe) PME requires that the device have
1842 * its PME# line hooked up correctly. Not all hardware vendors
1843 * do this, so the PME never gets delivered and the device
1844 * remains asleep. The easiest way around this is to
1845 * periodically walk the list of suspended devices and check
1846 * whether any have their PME flag set. The assumption is that
1847 * we'll wake up often enough anyway that this won't be a huge
1848 * hit, and the power savings from the devices will still be a
1851 * Although PCIe uses in-band PME message instead of PME# line
1852 * to report PME, PME does not work for some PCIe devices in
1853 * reality. For example, there are devices that set their PME
1854 * status bits, but don't really bother to send a PME message;
1855 * there are PCI Express Root Ports that don't bother to
1856 * trigger interrupts when they receive PME messages from the
1857 * devices below. So PME poll is used for PCIe devices too.
1860 if (dev
->pme_poll
) {
1861 struct pci_pme_device
*pme_dev
;
1863 pme_dev
= kmalloc(sizeof(struct pci_pme_device
),
1866 dev_warn(&dev
->dev
, "can't enable PME#\n");
1870 mutex_lock(&pci_pme_list_mutex
);
1871 list_add(&pme_dev
->list
, &pci_pme_list
);
1872 if (list_is_singular(&pci_pme_list
))
1873 queue_delayed_work(system_freezable_wq
,
1875 msecs_to_jiffies(PME_TIMEOUT
));
1876 mutex_unlock(&pci_pme_list_mutex
);
1878 mutex_lock(&pci_pme_list_mutex
);
1879 list_for_each_entry(pme_dev
, &pci_pme_list
, list
) {
1880 if (pme_dev
->dev
== dev
) {
1881 list_del(&pme_dev
->list
);
1886 mutex_unlock(&pci_pme_list_mutex
);
1890 dev_dbg(&dev
->dev
, "PME# %s\n", enable
? "enabled" : "disabled");
1892 EXPORT_SYMBOL(pci_pme_active
);
1895 * pci_enable_wake - enable PCI device as wakeup event source
1896 * @dev: PCI device affected
1897 * @state: PCI state from which device will issue wakeup events
1898 * @enable: True to enable event generation; false to disable
1900 * This enables the device as a wakeup event source, or disables it.
1901 * When such events involves platform-specific hooks, those hooks are
1902 * called automatically by this routine.
1904 * Devices with legacy power management (no standard PCI PM capabilities)
1905 * always require such platform hooks.
1908 * 0 is returned on success
1909 * -EINVAL is returned if device is not supposed to wake up the system
1910 * Error code depending on the platform is returned if both the platform and
1911 * the native mechanism fail to enable the generation of wake-up events
1913 int pci_enable_wake(struct pci_dev
*dev
, pci_power_t state
, bool enable
)
1918 * Bridges can only signal wakeup on behalf of subordinate devices,
1919 * but that is set up elsewhere, so skip them.
1921 if (pci_has_subordinate(dev
))
1924 /* Don't do the same thing twice in a row for one device. */
1925 if (!!enable
== !!dev
->wakeup_prepared
)
1929 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1930 * Anderson we should be doing PME# wake enable followed by ACPI wake
1931 * enable. To disable wake-up we call the platform first, for symmetry.
1937 if (pci_pme_capable(dev
, state
))
1938 pci_pme_active(dev
, true);
1941 error
= platform_pci_set_wakeup(dev
, true);
1945 dev
->wakeup_prepared
= true;
1947 platform_pci_set_wakeup(dev
, false);
1948 pci_pme_active(dev
, false);
1949 dev
->wakeup_prepared
= false;
1954 EXPORT_SYMBOL(pci_enable_wake
);
1957 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1958 * @dev: PCI device to prepare
1959 * @enable: True to enable wake-up event generation; false to disable
1961 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1962 * and this function allows them to set that up cleanly - pci_enable_wake()
1963 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1964 * ordering constraints.
1966 * This function only returns error code if the device is not capable of
1967 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1968 * enable wake-up power for it.
1970 int pci_wake_from_d3(struct pci_dev
*dev
, bool enable
)
1972 return pci_pme_capable(dev
, PCI_D3cold
) ?
1973 pci_enable_wake(dev
, PCI_D3cold
, enable
) :
1974 pci_enable_wake(dev
, PCI_D3hot
, enable
);
1976 EXPORT_SYMBOL(pci_wake_from_d3
);
1979 * pci_target_state - find an appropriate low power state for a given PCI dev
1981 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
1983 * Use underlying platform code to find a supported low power state for @dev.
1984 * If the platform can't manage @dev, return the deepest state from which it
1985 * can generate wake events, based on any available PME info.
1987 static pci_power_t
pci_target_state(struct pci_dev
*dev
, bool wakeup
)
1989 pci_power_t target_state
= PCI_D3hot
;
1991 if (platform_pci_power_manageable(dev
)) {
1993 * Call the platform to choose the target state of the device
1994 * and enable wake-up from this state if supported.
1996 pci_power_t state
= platform_pci_choose_state(dev
);
1999 case PCI_POWER_ERROR
:
2004 if (pci_no_d1d2(dev
))
2007 target_state
= state
;
2010 return target_state
;
2014 target_state
= PCI_D0
;
2017 * If the device is in D3cold even though it's not power-manageable by
2018 * the platform, it may have been powered down by non-standard means.
2019 * Best to let it slumber.
2021 if (dev
->current_state
== PCI_D3cold
)
2022 target_state
= PCI_D3cold
;
2026 * Find the deepest state from which the device can generate
2027 * wake-up events, make it the target state and enable device
2030 if (dev
->pme_support
) {
2032 && !(dev
->pme_support
& (1 << target_state
)))
2037 return target_state
;
2041 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
2042 * @dev: Device to handle.
2044 * Choose the power state appropriate for the device depending on whether
2045 * it can wake up the system and/or is power manageable by the platform
2046 * (PCI_D3hot is the default) and put the device into that state.
2048 int pci_prepare_to_sleep(struct pci_dev
*dev
)
2050 bool wakeup
= device_may_wakeup(&dev
->dev
);
2051 pci_power_t target_state
= pci_target_state(dev
, wakeup
);
2054 if (target_state
== PCI_POWER_ERROR
)
2057 pci_enable_wake(dev
, target_state
, wakeup
);
2059 error
= pci_set_power_state(dev
, target_state
);
2062 pci_enable_wake(dev
, target_state
, false);
2066 EXPORT_SYMBOL(pci_prepare_to_sleep
);
2069 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2070 * @dev: Device to handle.
2072 * Disable device's system wake-up capability and put it into D0.
2074 int pci_back_from_sleep(struct pci_dev
*dev
)
2076 pci_enable_wake(dev
, PCI_D0
, false);
2077 return pci_set_power_state(dev
, PCI_D0
);
2079 EXPORT_SYMBOL(pci_back_from_sleep
);
2082 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2083 * @dev: PCI device being suspended.
2085 * Prepare @dev to generate wake-up events at run time and put it into a low
2088 int pci_finish_runtime_suspend(struct pci_dev
*dev
)
2090 pci_power_t target_state
;
2093 target_state
= pci_target_state(dev
, device_can_wakeup(&dev
->dev
));
2094 if (target_state
== PCI_POWER_ERROR
)
2097 dev
->runtime_d3cold
= target_state
== PCI_D3cold
;
2099 pci_enable_wake(dev
, target_state
, pci_dev_run_wake(dev
));
2101 error
= pci_set_power_state(dev
, target_state
);
2104 pci_enable_wake(dev
, target_state
, false);
2105 dev
->runtime_d3cold
= false;
2112 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2113 * @dev: Device to check.
2115 * Return true if the device itself is capable of generating wake-up events
2116 * (through the platform or using the native PCIe PME) or if the device supports
2117 * PME and one of its upstream bridges can generate wake-up events.
2119 bool pci_dev_run_wake(struct pci_dev
*dev
)
2121 struct pci_bus
*bus
= dev
->bus
;
2123 if (device_can_wakeup(&dev
->dev
))
2126 if (!dev
->pme_support
)
2129 /* PME-capable in principle, but not from the target power state */
2130 if (!pci_pme_capable(dev
, pci_target_state(dev
, false)))
2133 while (bus
->parent
) {
2134 struct pci_dev
*bridge
= bus
->self
;
2136 if (device_can_wakeup(&bridge
->dev
))
2142 /* We have reached the root bus. */
2144 return device_can_wakeup(bus
->bridge
);
2148 EXPORT_SYMBOL_GPL(pci_dev_run_wake
);
2151 * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2152 * @pci_dev: Device to check.
2154 * Return 'true' if the device is runtime-suspended, it doesn't have to be
2155 * reconfigured due to wakeup settings difference between system and runtime
2156 * suspend and the current power state of it is suitable for the upcoming
2157 * (system) transition.
2159 * If the device is not configured for system wakeup, disable PME for it before
2160 * returning 'true' to prevent it from waking up the system unnecessarily.
2162 bool pci_dev_keep_suspended(struct pci_dev
*pci_dev
)
2164 struct device
*dev
= &pci_dev
->dev
;
2165 bool wakeup
= device_may_wakeup(dev
);
2167 if (!pm_runtime_suspended(dev
)
2168 || pci_target_state(pci_dev
, wakeup
) != pci_dev
->current_state
2169 || platform_pci_need_resume(pci_dev
)
2170 || (pci_dev
->dev_flags
& PCI_DEV_FLAGS_NEEDS_RESUME
))
2174 * At this point the device is good to go unless it's been configured
2175 * to generate PME at the runtime suspend time, but it is not supposed
2176 * to wake up the system. In that case, simply disable PME for it
2177 * (it will have to be re-enabled on exit from system resume).
2179 * If the device's power state is D3cold and the platform check above
2180 * hasn't triggered, the device's configuration is suitable and we don't
2181 * need to manipulate it at all.
2183 spin_lock_irq(&dev
->power
.lock
);
2185 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
&&
2187 __pci_pme_active(pci_dev
, false);
2189 spin_unlock_irq(&dev
->power
.lock
);
2194 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2195 * @pci_dev: Device to handle.
2197 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2198 * it might have been disabled during the prepare phase of system suspend if
2199 * the device was not configured for system wakeup.
2201 void pci_dev_complete_resume(struct pci_dev
*pci_dev
)
2203 struct device
*dev
= &pci_dev
->dev
;
2205 if (!pci_dev_run_wake(pci_dev
))
2208 spin_lock_irq(&dev
->power
.lock
);
2210 if (pm_runtime_suspended(dev
) && pci_dev
->current_state
< PCI_D3cold
)
2211 __pci_pme_active(pci_dev
, true);
2213 spin_unlock_irq(&dev
->power
.lock
);
2216 void pci_config_pm_runtime_get(struct pci_dev
*pdev
)
2218 struct device
*dev
= &pdev
->dev
;
2219 struct device
*parent
= dev
->parent
;
2222 pm_runtime_get_sync(parent
);
2223 pm_runtime_get_noresume(dev
);
2225 * pdev->current_state is set to PCI_D3cold during suspending,
2226 * so wait until suspending completes
2228 pm_runtime_barrier(dev
);
2230 * Only need to resume devices in D3cold, because config
2231 * registers are still accessible for devices suspended but
2234 if (pdev
->current_state
== PCI_D3cold
)
2235 pm_runtime_resume(dev
);
2238 void pci_config_pm_runtime_put(struct pci_dev
*pdev
)
2240 struct device
*dev
= &pdev
->dev
;
2241 struct device
*parent
= dev
->parent
;
2243 pm_runtime_put(dev
);
2245 pm_runtime_put_sync(parent
);
2249 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2250 * @bridge: Bridge to check
2252 * This function checks if it is possible to move the bridge to D3.
2253 * Currently we only allow D3 for recent enough PCIe ports.
2255 bool pci_bridge_d3_possible(struct pci_dev
*bridge
)
2259 if (!pci_is_pcie(bridge
))
2262 switch (pci_pcie_type(bridge
)) {
2263 case PCI_EXP_TYPE_ROOT_PORT
:
2264 case PCI_EXP_TYPE_UPSTREAM
:
2265 case PCI_EXP_TYPE_DOWNSTREAM
:
2266 if (pci_bridge_d3_disable
)
2270 * Hotplug interrupts cannot be delivered if the link is down,
2271 * so parents of a hotplug port must stay awake. In addition,
2272 * hotplug ports handled by firmware in System Management Mode
2273 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2274 * For simplicity, disallow in general for now.
2276 if (bridge
->is_hotplug_bridge
)
2279 if (pci_bridge_d3_force
)
2283 * It should be safe to put PCIe ports from 2015 or newer
2286 if (dmi_get_date(DMI_BIOS_DATE
, &year
, NULL
, NULL
) &&
2296 static int pci_dev_check_d3cold(struct pci_dev
*dev
, void *data
)
2298 bool *d3cold_ok
= data
;
2300 if (/* The device needs to be allowed to go D3cold ... */
2301 dev
->no_d3cold
|| !dev
->d3cold_allowed
||
2303 /* ... and if it is wakeup capable to do so from D3cold. */
2304 (device_may_wakeup(&dev
->dev
) &&
2305 !pci_pme_capable(dev
, PCI_D3cold
)) ||
2307 /* If it is a bridge it must be allowed to go to D3. */
2308 !pci_power_manageable(dev
))
2316 * pci_bridge_d3_update - Update bridge D3 capabilities
2317 * @dev: PCI device which is changed
2319 * Update upstream bridge PM capabilities accordingly depending on if the
2320 * device PM configuration was changed or the device is being removed. The
2321 * change is also propagated upstream.
2323 void pci_bridge_d3_update(struct pci_dev
*dev
)
2325 bool remove
= !device_is_registered(&dev
->dev
);
2326 struct pci_dev
*bridge
;
2327 bool d3cold_ok
= true;
2329 bridge
= pci_upstream_bridge(dev
);
2330 if (!bridge
|| !pci_bridge_d3_possible(bridge
))
2334 * If D3 is currently allowed for the bridge, removing one of its
2335 * children won't change that.
2337 if (remove
&& bridge
->bridge_d3
)
2341 * If D3 is currently allowed for the bridge and a child is added or
2342 * changed, disallowance of D3 can only be caused by that child, so
2343 * we only need to check that single device, not any of its siblings.
2345 * If D3 is currently not allowed for the bridge, checking the device
2346 * first may allow us to skip checking its siblings.
2349 pci_dev_check_d3cold(dev
, &d3cold_ok
);
2352 * If D3 is currently not allowed for the bridge, this may be caused
2353 * either by the device being changed/removed or any of its siblings,
2354 * so we need to go through all children to find out if one of them
2355 * continues to block D3.
2357 if (d3cold_ok
&& !bridge
->bridge_d3
)
2358 pci_walk_bus(bridge
->subordinate
, pci_dev_check_d3cold
,
2361 if (bridge
->bridge_d3
!= d3cold_ok
) {
2362 bridge
->bridge_d3
= d3cold_ok
;
2363 /* Propagate change to upstream bridges */
2364 pci_bridge_d3_update(bridge
);
2369 * pci_d3cold_enable - Enable D3cold for device
2370 * @dev: PCI device to handle
2372 * This function can be used in drivers to enable D3cold from the device
2373 * they handle. It also updates upstream PCI bridge PM capabilities
2376 void pci_d3cold_enable(struct pci_dev
*dev
)
2378 if (dev
->no_d3cold
) {
2379 dev
->no_d3cold
= false;
2380 pci_bridge_d3_update(dev
);
2383 EXPORT_SYMBOL_GPL(pci_d3cold_enable
);
2386 * pci_d3cold_disable - Disable D3cold for device
2387 * @dev: PCI device to handle
2389 * This function can be used in drivers to disable D3cold from the device
2390 * they handle. It also updates upstream PCI bridge PM capabilities
2393 void pci_d3cold_disable(struct pci_dev
*dev
)
2395 if (!dev
->no_d3cold
) {
2396 dev
->no_d3cold
= true;
2397 pci_bridge_d3_update(dev
);
2400 EXPORT_SYMBOL_GPL(pci_d3cold_disable
);
2403 * pci_pm_init - Initialize PM functions of given PCI device
2404 * @dev: PCI device to handle.
2406 void pci_pm_init(struct pci_dev
*dev
)
2411 pm_runtime_forbid(&dev
->dev
);
2412 pm_runtime_set_active(&dev
->dev
);
2413 pm_runtime_enable(&dev
->dev
);
2414 device_enable_async_suspend(&dev
->dev
);
2415 dev
->wakeup_prepared
= false;
2418 dev
->pme_support
= 0;
2420 /* find PCI PM capability in list */
2421 pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
2424 /* Check device's ability to generate PME# */
2425 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &pmc
);
2427 if ((pmc
& PCI_PM_CAP_VER_MASK
) > 3) {
2428 dev_err(&dev
->dev
, "unsupported PM cap regs version (%u)\n",
2429 pmc
& PCI_PM_CAP_VER_MASK
);
2434 dev
->d3_delay
= PCI_PM_D3_WAIT
;
2435 dev
->d3cold_delay
= PCI_PM_D3COLD_WAIT
;
2436 dev
->bridge_d3
= pci_bridge_d3_possible(dev
);
2437 dev
->d3cold_allowed
= true;
2439 dev
->d1_support
= false;
2440 dev
->d2_support
= false;
2441 if (!pci_no_d1d2(dev
)) {
2442 if (pmc
& PCI_PM_CAP_D1
)
2443 dev
->d1_support
= true;
2444 if (pmc
& PCI_PM_CAP_D2
)
2445 dev
->d2_support
= true;
2447 if (dev
->d1_support
|| dev
->d2_support
)
2448 dev_printk(KERN_DEBUG
, &dev
->dev
, "supports%s%s\n",
2449 dev
->d1_support
? " D1" : "",
2450 dev
->d2_support
? " D2" : "");
2453 pmc
&= PCI_PM_CAP_PME_MASK
;
2455 dev_printk(KERN_DEBUG
, &dev
->dev
,
2456 "PME# supported from%s%s%s%s%s\n",
2457 (pmc
& PCI_PM_CAP_PME_D0
) ? " D0" : "",
2458 (pmc
& PCI_PM_CAP_PME_D1
) ? " D1" : "",
2459 (pmc
& PCI_PM_CAP_PME_D2
) ? " D2" : "",
2460 (pmc
& PCI_PM_CAP_PME_D3
) ? " D3hot" : "",
2461 (pmc
& PCI_PM_CAP_PME_D3cold
) ? " D3cold" : "");
2462 dev
->pme_support
= pmc
>> PCI_PM_CAP_PME_SHIFT
;
2463 dev
->pme_poll
= true;
2465 * Make device's PM flags reflect the wake-up capability, but
2466 * let the user space enable it to wake up the system as needed.
2468 device_set_wakeup_capable(&dev
->dev
, true);
2469 /* Disable the PME# generation functionality */
2470 pci_pme_active(dev
, false);
2474 static unsigned long pci_ea_flags(struct pci_dev
*dev
, u8 prop
)
2476 unsigned long flags
= IORESOURCE_PCI_FIXED
| IORESOURCE_PCI_EA_BEI
;
2480 case PCI_EA_P_VF_MEM
:
2481 flags
|= IORESOURCE_MEM
;
2483 case PCI_EA_P_MEM_PREFETCH
:
2484 case PCI_EA_P_VF_MEM_PREFETCH
:
2485 flags
|= IORESOURCE_MEM
| IORESOURCE_PREFETCH
;
2488 flags
|= IORESOURCE_IO
;
2497 static struct resource
*pci_ea_get_resource(struct pci_dev
*dev
, u8 bei
,
2500 if (bei
<= PCI_EA_BEI_BAR5
&& prop
<= PCI_EA_P_IO
)
2501 return &dev
->resource
[bei
];
2502 #ifdef CONFIG_PCI_IOV
2503 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
&&
2504 (prop
== PCI_EA_P_VF_MEM
|| prop
== PCI_EA_P_VF_MEM_PREFETCH
))
2505 return &dev
->resource
[PCI_IOV_RESOURCES
+
2506 bei
- PCI_EA_BEI_VF_BAR0
];
2508 else if (bei
== PCI_EA_BEI_ROM
)
2509 return &dev
->resource
[PCI_ROM_RESOURCE
];
2514 /* Read an Enhanced Allocation (EA) entry */
2515 static int pci_ea_read(struct pci_dev
*dev
, int offset
)
2517 struct resource
*res
;
2518 int ent_size
, ent_offset
= offset
;
2519 resource_size_t start
, end
;
2520 unsigned long flags
;
2521 u32 dw0
, bei
, base
, max_offset
;
2523 bool support_64
= (sizeof(resource_size_t
) >= 8);
2525 pci_read_config_dword(dev
, ent_offset
, &dw0
);
2528 /* Entry size field indicates DWORDs after 1st */
2529 ent_size
= ((dw0
& PCI_EA_ES
) + 1) << 2;
2531 if (!(dw0
& PCI_EA_ENABLE
)) /* Entry not enabled */
2534 bei
= (dw0
& PCI_EA_BEI
) >> 4;
2535 prop
= (dw0
& PCI_EA_PP
) >> 8;
2538 * If the Property is in the reserved range, try the Secondary
2541 if (prop
> PCI_EA_P_BRIDGE_IO
&& prop
< PCI_EA_P_MEM_RESERVED
)
2542 prop
= (dw0
& PCI_EA_SP
) >> 16;
2543 if (prop
> PCI_EA_P_BRIDGE_IO
)
2546 res
= pci_ea_get_resource(dev
, bei
, prop
);
2548 dev_err(&dev
->dev
, "Unsupported EA entry BEI: %u\n", bei
);
2552 flags
= pci_ea_flags(dev
, prop
);
2554 dev_err(&dev
->dev
, "Unsupported EA properties: %#x\n", prop
);
2559 pci_read_config_dword(dev
, ent_offset
, &base
);
2560 start
= (base
& PCI_EA_FIELD_MASK
);
2563 /* Read MaxOffset */
2564 pci_read_config_dword(dev
, ent_offset
, &max_offset
);
2567 /* Read Base MSBs (if 64-bit entry) */
2568 if (base
& PCI_EA_IS_64
) {
2571 pci_read_config_dword(dev
, ent_offset
, &base_upper
);
2574 flags
|= IORESOURCE_MEM_64
;
2576 /* entry starts above 32-bit boundary, can't use */
2577 if (!support_64
&& base_upper
)
2581 start
|= ((u64
)base_upper
<< 32);
2584 end
= start
+ (max_offset
| 0x03);
2586 /* Read MaxOffset MSBs (if 64-bit entry) */
2587 if (max_offset
& PCI_EA_IS_64
) {
2588 u32 max_offset_upper
;
2590 pci_read_config_dword(dev
, ent_offset
, &max_offset_upper
);
2593 flags
|= IORESOURCE_MEM_64
;
2595 /* entry too big, can't use */
2596 if (!support_64
&& max_offset_upper
)
2600 end
+= ((u64
)max_offset_upper
<< 32);
2604 dev_err(&dev
->dev
, "EA Entry crosses address boundary\n");
2608 if (ent_size
!= ent_offset
- offset
) {
2610 "EA Entry Size (%d) does not match length read (%d)\n",
2611 ent_size
, ent_offset
- offset
);
2615 res
->name
= pci_name(dev
);
2620 if (bei
<= PCI_EA_BEI_BAR5
)
2621 dev_printk(KERN_DEBUG
, &dev
->dev
, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2623 else if (bei
== PCI_EA_BEI_ROM
)
2624 dev_printk(KERN_DEBUG
, &dev
->dev
, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2626 else if (bei
>= PCI_EA_BEI_VF_BAR0
&& bei
<= PCI_EA_BEI_VF_BAR5
)
2627 dev_printk(KERN_DEBUG
, &dev
->dev
, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2628 bei
- PCI_EA_BEI_VF_BAR0
, res
, prop
);
2630 dev_printk(KERN_DEBUG
, &dev
->dev
, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2634 return offset
+ ent_size
;
2637 /* Enhanced Allocation Initialization */
2638 void pci_ea_init(struct pci_dev
*dev
)
2645 /* find PCI EA capability in list */
2646 ea
= pci_find_capability(dev
, PCI_CAP_ID_EA
);
2650 /* determine the number of entries */
2651 pci_bus_read_config_byte(dev
->bus
, dev
->devfn
, ea
+ PCI_EA_NUM_ENT
,
2653 num_ent
&= PCI_EA_NUM_ENT_MASK
;
2655 offset
= ea
+ PCI_EA_FIRST_ENT
;
2657 /* Skip DWORD 2 for type 1 functions */
2658 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
)
2661 /* parse each EA entry */
2662 for (i
= 0; i
< num_ent
; ++i
)
2663 offset
= pci_ea_read(dev
, offset
);
2666 static void pci_add_saved_cap(struct pci_dev
*pci_dev
,
2667 struct pci_cap_saved_state
*new_cap
)
2669 hlist_add_head(&new_cap
->next
, &pci_dev
->saved_cap_space
);
2673 * _pci_add_cap_save_buffer - allocate buffer for saving given
2674 * capability registers
2675 * @dev: the PCI device
2676 * @cap: the capability to allocate the buffer for
2677 * @extended: Standard or Extended capability ID
2678 * @size: requested size of the buffer
2680 static int _pci_add_cap_save_buffer(struct pci_dev
*dev
, u16 cap
,
2681 bool extended
, unsigned int size
)
2684 struct pci_cap_saved_state
*save_state
;
2687 pos
= pci_find_ext_capability(dev
, cap
);
2689 pos
= pci_find_capability(dev
, cap
);
2694 save_state
= kzalloc(sizeof(*save_state
) + size
, GFP_KERNEL
);
2698 save_state
->cap
.cap_nr
= cap
;
2699 save_state
->cap
.cap_extended
= extended
;
2700 save_state
->cap
.size
= size
;
2701 pci_add_saved_cap(dev
, save_state
);
2706 int pci_add_cap_save_buffer(struct pci_dev
*dev
, char cap
, unsigned int size
)
2708 return _pci_add_cap_save_buffer(dev
, cap
, false, size
);
2711 int pci_add_ext_cap_save_buffer(struct pci_dev
*dev
, u16 cap
, unsigned int size
)
2713 return _pci_add_cap_save_buffer(dev
, cap
, true, size
);
2717 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2718 * @dev: the PCI device
2720 void pci_allocate_cap_save_buffers(struct pci_dev
*dev
)
2724 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_EXP
,
2725 PCI_EXP_SAVE_REGS
* sizeof(u16
));
2728 "unable to preallocate PCI Express save buffer\n");
2730 error
= pci_add_cap_save_buffer(dev
, PCI_CAP_ID_PCIX
, sizeof(u16
));
2733 "unable to preallocate PCI-X save buffer\n");
2735 pci_allocate_vc_save_buffers(dev
);
2738 void pci_free_cap_save_buffers(struct pci_dev
*dev
)
2740 struct pci_cap_saved_state
*tmp
;
2741 struct hlist_node
*n
;
2743 hlist_for_each_entry_safe(tmp
, n
, &dev
->saved_cap_space
, next
)
2748 * pci_configure_ari - enable or disable ARI forwarding
2749 * @dev: the PCI device
2751 * If @dev and its upstream bridge both support ARI, enable ARI in the
2752 * bridge. Otherwise, disable ARI in the bridge.
2754 void pci_configure_ari(struct pci_dev
*dev
)
2757 struct pci_dev
*bridge
;
2759 if (pcie_ari_disabled
|| !pci_is_pcie(dev
) || dev
->devfn
)
2762 bridge
= dev
->bus
->self
;
2766 pcie_capability_read_dword(bridge
, PCI_EXP_DEVCAP2
, &cap
);
2767 if (!(cap
& PCI_EXP_DEVCAP2_ARI
))
2770 if (pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ARI
)) {
2771 pcie_capability_set_word(bridge
, PCI_EXP_DEVCTL2
,
2772 PCI_EXP_DEVCTL2_ARI
);
2773 bridge
->ari_enabled
= 1;
2775 pcie_capability_clear_word(bridge
, PCI_EXP_DEVCTL2
,
2776 PCI_EXP_DEVCTL2_ARI
);
2777 bridge
->ari_enabled
= 0;
2781 static int pci_acs_enable
;
2784 * pci_request_acs - ask for ACS to be enabled if supported
2786 void pci_request_acs(void)
2792 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2793 * @dev: the PCI device
2795 static void pci_std_enable_acs(struct pci_dev
*dev
)
2801 pos
= pci_find_ext_capability(dev
, PCI_EXT_CAP_ID_ACS
);
2805 pci_read_config_word(dev
, pos
+ PCI_ACS_CAP
, &cap
);
2806 pci_read_config_word(dev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2808 /* Source Validation */
2809 ctrl
|= (cap
& PCI_ACS_SV
);
2811 /* P2P Request Redirect */
2812 ctrl
|= (cap
& PCI_ACS_RR
);
2814 /* P2P Completion Redirect */
2815 ctrl
|= (cap
& PCI_ACS_CR
);
2817 /* Upstream Forwarding */
2818 ctrl
|= (cap
& PCI_ACS_UF
);
2820 pci_write_config_word(dev
, pos
+ PCI_ACS_CTRL
, ctrl
);
2824 * pci_enable_acs - enable ACS if hardware support it
2825 * @dev: the PCI device
2827 void pci_enable_acs(struct pci_dev
*dev
)
2829 if (!pci_acs_enable
)
2832 if (!pci_dev_specific_enable_acs(dev
))
2835 pci_std_enable_acs(dev
);
2838 static bool pci_acs_flags_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2843 pos
= pci_find_ext_capability(pdev
, PCI_EXT_CAP_ID_ACS
);
2848 * Except for egress control, capabilities are either required
2849 * or only required if controllable. Features missing from the
2850 * capability field can therefore be assumed as hard-wired enabled.
2852 pci_read_config_word(pdev
, pos
+ PCI_ACS_CAP
, &cap
);
2853 acs_flags
&= (cap
| PCI_ACS_EC
);
2855 pci_read_config_word(pdev
, pos
+ PCI_ACS_CTRL
, &ctrl
);
2856 return (ctrl
& acs_flags
) == acs_flags
;
2860 * pci_acs_enabled - test ACS against required flags for a given device
2861 * @pdev: device to test
2862 * @acs_flags: required PCI ACS flags
2864 * Return true if the device supports the provided flags. Automatically
2865 * filters out flags that are not implemented on multifunction devices.
2867 * Note that this interface checks the effective ACS capabilities of the
2868 * device rather than the actual capabilities. For instance, most single
2869 * function endpoints are not required to support ACS because they have no
2870 * opportunity for peer-to-peer access. We therefore return 'true'
2871 * regardless of whether the device exposes an ACS capability. This makes
2872 * it much easier for callers of this function to ignore the actual type
2873 * or topology of the device when testing ACS support.
2875 bool pci_acs_enabled(struct pci_dev
*pdev
, u16 acs_flags
)
2879 ret
= pci_dev_specific_acs_enabled(pdev
, acs_flags
);
2884 * Conventional PCI and PCI-X devices never support ACS, either
2885 * effectively or actually. The shared bus topology implies that
2886 * any device on the bus can receive or snoop DMA.
2888 if (!pci_is_pcie(pdev
))
2891 switch (pci_pcie_type(pdev
)) {
2893 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2894 * but since their primary interface is PCI/X, we conservatively
2895 * handle them as we would a non-PCIe device.
2897 case PCI_EXP_TYPE_PCIE_BRIDGE
:
2899 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never
2900 * applicable... must never implement an ACS Extended Capability...".
2901 * This seems arbitrary, but we take a conservative interpretation
2902 * of this statement.
2904 case PCI_EXP_TYPE_PCI_BRIDGE
:
2905 case PCI_EXP_TYPE_RC_EC
:
2908 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2909 * implement ACS in order to indicate their peer-to-peer capabilities,
2910 * regardless of whether they are single- or multi-function devices.
2912 case PCI_EXP_TYPE_DOWNSTREAM
:
2913 case PCI_EXP_TYPE_ROOT_PORT
:
2914 return pci_acs_flags_enabled(pdev
, acs_flags
);
2916 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2917 * implemented by the remaining PCIe types to indicate peer-to-peer
2918 * capabilities, but only when they are part of a multifunction
2919 * device. The footnote for section 6.12 indicates the specific
2920 * PCIe types included here.
2922 case PCI_EXP_TYPE_ENDPOINT
:
2923 case PCI_EXP_TYPE_UPSTREAM
:
2924 case PCI_EXP_TYPE_LEG_END
:
2925 case PCI_EXP_TYPE_RC_END
:
2926 if (!pdev
->multifunction
)
2929 return pci_acs_flags_enabled(pdev
, acs_flags
);
2933 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2934 * to single function devices with the exception of downstream ports.
2940 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2941 * @start: starting downstream device
2942 * @end: ending upstream device or NULL to search to the root bus
2943 * @acs_flags: required flags
2945 * Walk up a device tree from start to end testing PCI ACS support. If
2946 * any step along the way does not support the required flags, return false.
2948 bool pci_acs_path_enabled(struct pci_dev
*start
,
2949 struct pci_dev
*end
, u16 acs_flags
)
2951 struct pci_dev
*pdev
, *parent
= start
;
2956 if (!pci_acs_enabled(pdev
, acs_flags
))
2959 if (pci_is_root_bus(pdev
->bus
))
2960 return (end
== NULL
);
2962 parent
= pdev
->bus
->self
;
2963 } while (pdev
!= end
);
2969 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2970 * @dev: the PCI device
2971 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2973 * Perform INTx swizzling for a device behind one level of bridge. This is
2974 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2975 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2976 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2977 * the PCI Express Base Specification, Revision 2.1)
2979 u8
pci_swizzle_interrupt_pin(const struct pci_dev
*dev
, u8 pin
)
2983 if (pci_ari_enabled(dev
->bus
))
2986 slot
= PCI_SLOT(dev
->devfn
);
2988 return (((pin
- 1) + slot
) % 4) + 1;
2991 int pci_get_interrupt_pin(struct pci_dev
*dev
, struct pci_dev
**bridge
)
2999 while (!pci_is_root_bus(dev
->bus
)) {
3000 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3001 dev
= dev
->bus
->self
;
3008 * pci_common_swizzle - swizzle INTx all the way to root bridge
3009 * @dev: the PCI device
3010 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3012 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
3013 * bridges all the way up to a PCI root bus.
3015 u8
pci_common_swizzle(struct pci_dev
*dev
, u8
*pinp
)
3019 while (!pci_is_root_bus(dev
->bus
)) {
3020 pin
= pci_swizzle_interrupt_pin(dev
, pin
);
3021 dev
= dev
->bus
->self
;
3024 return PCI_SLOT(dev
->devfn
);
3026 EXPORT_SYMBOL_GPL(pci_common_swizzle
);
3029 * pci_release_region - Release a PCI bar
3030 * @pdev: PCI device whose resources were previously reserved by pci_request_region
3031 * @bar: BAR to release
3033 * Releases the PCI I/O and memory resources previously reserved by a
3034 * successful call to pci_request_region. Call this function only
3035 * after all use of the PCI regions has ceased.
3037 void pci_release_region(struct pci_dev
*pdev
, int bar
)
3039 struct pci_devres
*dr
;
3041 if (pci_resource_len(pdev
, bar
) == 0)
3043 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
)
3044 release_region(pci_resource_start(pdev
, bar
),
3045 pci_resource_len(pdev
, bar
));
3046 else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
)
3047 release_mem_region(pci_resource_start(pdev
, bar
),
3048 pci_resource_len(pdev
, bar
));
3050 dr
= find_pci_dr(pdev
);
3052 dr
->region_mask
&= ~(1 << bar
);
3054 EXPORT_SYMBOL(pci_release_region
);
3057 * __pci_request_region - Reserved PCI I/O and memory resource
3058 * @pdev: PCI device whose resources are to be reserved
3059 * @bar: BAR to be reserved
3060 * @res_name: Name to be associated with resource.
3061 * @exclusive: whether the region access is exclusive or not
3063 * Mark the PCI region associated with PCI device @pdev BR @bar as
3064 * being reserved by owner @res_name. Do not access any
3065 * address inside the PCI regions unless this call returns
3068 * If @exclusive is set, then the region is marked so that userspace
3069 * is explicitly not allowed to map the resource via /dev/mem or
3070 * sysfs MMIO access.
3072 * Returns 0 on success, or %EBUSY on error. A warning
3073 * message is also printed on failure.
3075 static int __pci_request_region(struct pci_dev
*pdev
, int bar
,
3076 const char *res_name
, int exclusive
)
3078 struct pci_devres
*dr
;
3080 if (pci_resource_len(pdev
, bar
) == 0)
3083 if (pci_resource_flags(pdev
, bar
) & IORESOURCE_IO
) {
3084 if (!request_region(pci_resource_start(pdev
, bar
),
3085 pci_resource_len(pdev
, bar
), res_name
))
3087 } else if (pci_resource_flags(pdev
, bar
) & IORESOURCE_MEM
) {
3088 if (!__request_mem_region(pci_resource_start(pdev
, bar
),
3089 pci_resource_len(pdev
, bar
), res_name
,
3094 dr
= find_pci_dr(pdev
);
3096 dr
->region_mask
|= 1 << bar
;
3101 dev_warn(&pdev
->dev
, "BAR %d: can't reserve %pR\n", bar
,
3102 &pdev
->resource
[bar
]);
3107 * pci_request_region - Reserve PCI I/O and memory resource
3108 * @pdev: PCI device whose resources are to be reserved
3109 * @bar: BAR to be reserved
3110 * @res_name: Name to be associated with resource
3112 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3113 * being reserved by owner @res_name. Do not access any
3114 * address inside the PCI regions unless this call returns
3117 * Returns 0 on success, or %EBUSY on error. A warning
3118 * message is also printed on failure.
3120 int pci_request_region(struct pci_dev
*pdev
, int bar
, const char *res_name
)
3122 return __pci_request_region(pdev
, bar
, res_name
, 0);
3124 EXPORT_SYMBOL(pci_request_region
);
3127 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
3128 * @pdev: PCI device whose resources are to be reserved
3129 * @bar: BAR to be reserved
3130 * @res_name: Name to be associated with resource.
3132 * Mark the PCI region associated with PCI device @pdev BR @bar as
3133 * being reserved by owner @res_name. Do not access any
3134 * address inside the PCI regions unless this call returns
3137 * Returns 0 on success, or %EBUSY on error. A warning
3138 * message is also printed on failure.
3140 * The key difference that _exclusive makes it that userspace is
3141 * explicitly not allowed to map the resource via /dev/mem or
3144 int pci_request_region_exclusive(struct pci_dev
*pdev
, int bar
,
3145 const char *res_name
)
3147 return __pci_request_region(pdev
, bar
, res_name
, IORESOURCE_EXCLUSIVE
);
3149 EXPORT_SYMBOL(pci_request_region_exclusive
);
3152 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3153 * @pdev: PCI device whose resources were previously reserved
3154 * @bars: Bitmask of BARs to be released
3156 * Release selected PCI I/O and memory resources previously reserved.
3157 * Call this function only after all use of the PCI regions has ceased.
3159 void pci_release_selected_regions(struct pci_dev
*pdev
, int bars
)
3163 for (i
= 0; i
< 6; i
++)
3164 if (bars
& (1 << i
))
3165 pci_release_region(pdev
, i
);
3167 EXPORT_SYMBOL(pci_release_selected_regions
);
3169 static int __pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3170 const char *res_name
, int excl
)
3174 for (i
= 0; i
< 6; i
++)
3175 if (bars
& (1 << i
))
3176 if (__pci_request_region(pdev
, i
, res_name
, excl
))
3182 if (bars
& (1 << i
))
3183 pci_release_region(pdev
, i
);
3190 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3191 * @pdev: PCI device whose resources are to be reserved
3192 * @bars: Bitmask of BARs to be requested
3193 * @res_name: Name to be associated with resource
3195 int pci_request_selected_regions(struct pci_dev
*pdev
, int bars
,
3196 const char *res_name
)
3198 return __pci_request_selected_regions(pdev
, bars
, res_name
, 0);
3200 EXPORT_SYMBOL(pci_request_selected_regions
);
3202 int pci_request_selected_regions_exclusive(struct pci_dev
*pdev
, int bars
,
3203 const char *res_name
)
3205 return __pci_request_selected_regions(pdev
, bars
, res_name
,
3206 IORESOURCE_EXCLUSIVE
);
3208 EXPORT_SYMBOL(pci_request_selected_regions_exclusive
);
3211 * pci_release_regions - Release reserved PCI I/O and memory resources
3212 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
3214 * Releases all PCI I/O and memory resources previously reserved by a
3215 * successful call to pci_request_regions. Call this function only
3216 * after all use of the PCI regions has ceased.
3219 void pci_release_regions(struct pci_dev
*pdev
)
3221 pci_release_selected_regions(pdev
, (1 << 6) - 1);
3223 EXPORT_SYMBOL(pci_release_regions
);
3226 * pci_request_regions - Reserved PCI I/O and memory resources
3227 * @pdev: PCI device whose resources are to be reserved
3228 * @res_name: Name to be associated with resource.
3230 * Mark all PCI regions associated with PCI device @pdev as
3231 * being reserved by owner @res_name. Do not access any
3232 * address inside the PCI regions unless this call returns
3235 * Returns 0 on success, or %EBUSY on error. A warning
3236 * message is also printed on failure.
3238 int pci_request_regions(struct pci_dev
*pdev
, const char *res_name
)
3240 return pci_request_selected_regions(pdev
, ((1 << 6) - 1), res_name
);
3242 EXPORT_SYMBOL(pci_request_regions
);
3245 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3246 * @pdev: PCI device whose resources are to be reserved
3247 * @res_name: Name to be associated with resource.
3249 * Mark all PCI regions associated with PCI device @pdev as
3250 * being reserved by owner @res_name. Do not access any
3251 * address inside the PCI regions unless this call returns
3254 * pci_request_regions_exclusive() will mark the region so that
3255 * /dev/mem and the sysfs MMIO access will not be allowed.
3257 * Returns 0 on success, or %EBUSY on error. A warning
3258 * message is also printed on failure.
3260 int pci_request_regions_exclusive(struct pci_dev
*pdev
, const char *res_name
)
3262 return pci_request_selected_regions_exclusive(pdev
,
3263 ((1 << 6) - 1), res_name
);
3265 EXPORT_SYMBOL(pci_request_regions_exclusive
);
3269 struct list_head list
;
3271 resource_size_t size
;
3274 static LIST_HEAD(io_range_list
);
3275 static DEFINE_SPINLOCK(io_range_lock
);
3279 * Record the PCI IO range (expressed as CPU physical address + size).
3280 * Return a negative value if an error has occured, zero otherwise
3282 int __weak
pci_register_io_range(phys_addr_t addr
, resource_size_t size
)
3287 struct io_range
*range
;
3288 resource_size_t allocated_size
= 0;
3290 /* check if the range hasn't been previously recorded */
3291 spin_lock(&io_range_lock
);
3292 list_for_each_entry(range
, &io_range_list
, list
) {
3293 if (addr
>= range
->start
&& addr
+ size
<= range
->start
+ size
) {
3294 /* range already registered, bail out */
3297 allocated_size
+= range
->size
;
3300 /* range not registed yet, check for available space */
3301 if (allocated_size
+ size
- 1 > IO_SPACE_LIMIT
) {
3302 /* if it's too big check if 64K space can be reserved */
3303 if (allocated_size
+ SZ_64K
- 1 > IO_SPACE_LIMIT
) {
3309 pr_warn("Requested IO range too big, new size set to 64K\n");
3312 /* add the range to the list */
3313 range
= kzalloc(sizeof(*range
), GFP_ATOMIC
);
3319 range
->start
= addr
;
3322 list_add_tail(&range
->list
, &io_range_list
);
3325 spin_unlock(&io_range_lock
);
3331 phys_addr_t
pci_pio_to_address(unsigned long pio
)
3333 phys_addr_t address
= (phys_addr_t
)OF_BAD_ADDR
;
3336 struct io_range
*range
;
3337 resource_size_t allocated_size
= 0;
3339 if (pio
> IO_SPACE_LIMIT
)
3342 spin_lock(&io_range_lock
);
3343 list_for_each_entry(range
, &io_range_list
, list
) {
3344 if (pio
>= allocated_size
&& pio
< allocated_size
+ range
->size
) {
3345 address
= range
->start
+ pio
- allocated_size
;
3348 allocated_size
+= range
->size
;
3350 spin_unlock(&io_range_lock
);
3356 unsigned long __weak
pci_address_to_pio(phys_addr_t address
)
3359 struct io_range
*res
;
3360 resource_size_t offset
= 0;
3361 unsigned long addr
= -1;
3363 spin_lock(&io_range_lock
);
3364 list_for_each_entry(res
, &io_range_list
, list
) {
3365 if (address
>= res
->start
&& address
< res
->start
+ res
->size
) {
3366 addr
= address
- res
->start
+ offset
;
3369 offset
+= res
->size
;
3371 spin_unlock(&io_range_lock
);
3375 if (address
> IO_SPACE_LIMIT
)
3376 return (unsigned long)-1;
3378 return (unsigned long) address
;
3383 * pci_remap_iospace - Remap the memory mapped I/O space
3384 * @res: Resource describing the I/O space
3385 * @phys_addr: physical address of range to be mapped
3387 * Remap the memory mapped I/O space described by the @res
3388 * and the CPU physical address @phys_addr into virtual address space.
3389 * Only architectures that have memory mapped IO functions defined
3390 * (and the PCI_IOBASE value defined) should call this function.
3392 int pci_remap_iospace(const struct resource
*res
, phys_addr_t phys_addr
)
3394 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3395 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3397 if (!(res
->flags
& IORESOURCE_IO
))
3400 if (res
->end
> IO_SPACE_LIMIT
)
3403 return ioremap_page_range(vaddr
, vaddr
+ resource_size(res
), phys_addr
,
3404 pgprot_device(PAGE_KERNEL
));
3406 /* this architecture does not have memory mapped I/O space,
3407 so this function should never be called */
3408 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3412 EXPORT_SYMBOL(pci_remap_iospace
);
3415 * pci_unmap_iospace - Unmap the memory mapped I/O space
3416 * @res: resource to be unmapped
3418 * Unmap the CPU virtual address @res from virtual address space.
3419 * Only architectures that have memory mapped IO functions defined
3420 * (and the PCI_IOBASE value defined) should call this function.
3422 void pci_unmap_iospace(struct resource
*res
)
3424 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3425 unsigned long vaddr
= (unsigned long)PCI_IOBASE
+ res
->start
;
3427 unmap_kernel_range(vaddr
, resource_size(res
));
3430 EXPORT_SYMBOL(pci_unmap_iospace
);
3433 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
3434 * @dev: Generic device to remap IO address for
3435 * @offset: Resource address to map
3436 * @size: Size of map
3438 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver
3441 void __iomem
*devm_pci_remap_cfgspace(struct device
*dev
,
3442 resource_size_t offset
,
3443 resource_size_t size
)
3445 void __iomem
**ptr
, *addr
;
3447 ptr
= devres_alloc(devm_ioremap_release
, sizeof(*ptr
), GFP_KERNEL
);
3451 addr
= pci_remap_cfgspace(offset
, size
);
3454 devres_add(dev
, ptr
);
3460 EXPORT_SYMBOL(devm_pci_remap_cfgspace
);
3463 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
3464 * @dev: generic device to handle the resource for
3465 * @res: configuration space resource to be handled
3467 * Checks that a resource is a valid memory region, requests the memory
3468 * region and ioremaps with pci_remap_cfgspace() API that ensures the
3469 * proper PCI configuration space memory attributes are guaranteed.
3471 * All operations are managed and will be undone on driver detach.
3473 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
3474 * on failure. Usage example:
3476 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3477 * base = devm_pci_remap_cfg_resource(&pdev->dev, res);
3479 * return PTR_ERR(base);
3481 void __iomem
*devm_pci_remap_cfg_resource(struct device
*dev
,
3482 struct resource
*res
)
3484 resource_size_t size
;
3486 void __iomem
*dest_ptr
;
3490 if (!res
|| resource_type(res
) != IORESOURCE_MEM
) {
3491 dev_err(dev
, "invalid resource\n");
3492 return IOMEM_ERR_PTR(-EINVAL
);
3495 size
= resource_size(res
);
3496 name
= res
->name
?: dev_name(dev
);
3498 if (!devm_request_mem_region(dev
, res
->start
, size
, name
)) {
3499 dev_err(dev
, "can't request region for resource %pR\n", res
);
3500 return IOMEM_ERR_PTR(-EBUSY
);
3503 dest_ptr
= devm_pci_remap_cfgspace(dev
, res
->start
, size
);
3505 dev_err(dev
, "ioremap failed for resource %pR\n", res
);
3506 devm_release_mem_region(dev
, res
->start
, size
);
3507 dest_ptr
= IOMEM_ERR_PTR(-ENOMEM
);
3512 EXPORT_SYMBOL(devm_pci_remap_cfg_resource
);
3514 static void __pci_set_master(struct pci_dev
*dev
, bool enable
)
3518 pci_read_config_word(dev
, PCI_COMMAND
, &old_cmd
);
3520 cmd
= old_cmd
| PCI_COMMAND_MASTER
;
3522 cmd
= old_cmd
& ~PCI_COMMAND_MASTER
;
3523 if (cmd
!= old_cmd
) {
3524 dev_dbg(&dev
->dev
, "%s bus mastering\n",
3525 enable
? "enabling" : "disabling");
3526 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3528 dev
->is_busmaster
= enable
;
3532 * pcibios_setup - process "pci=" kernel boot arguments
3533 * @str: string used to pass in "pci=" kernel boot arguments
3535 * Process kernel boot arguments. This is the default implementation.
3536 * Architecture specific implementations can override this as necessary.
3538 char * __weak __init
pcibios_setup(char *str
)
3544 * pcibios_set_master - enable PCI bus-mastering for device dev
3545 * @dev: the PCI device to enable
3547 * Enables PCI bus-mastering for the device. This is the default
3548 * implementation. Architecture specific implementations can override
3549 * this if necessary.
3551 void __weak
pcibios_set_master(struct pci_dev
*dev
)
3555 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3556 if (pci_is_pcie(dev
))
3559 pci_read_config_byte(dev
, PCI_LATENCY_TIMER
, &lat
);
3561 lat
= (64 <= pcibios_max_latency
) ? 64 : pcibios_max_latency
;
3562 else if (lat
> pcibios_max_latency
)
3563 lat
= pcibios_max_latency
;
3567 pci_write_config_byte(dev
, PCI_LATENCY_TIMER
, lat
);
3571 * pci_set_master - enables bus-mastering for device dev
3572 * @dev: the PCI device to enable
3574 * Enables bus-mastering on the device and calls pcibios_set_master()
3575 * to do the needed arch specific settings.
3577 void pci_set_master(struct pci_dev
*dev
)
3579 __pci_set_master(dev
, true);
3580 pcibios_set_master(dev
);
3582 EXPORT_SYMBOL(pci_set_master
);
3585 * pci_clear_master - disables bus-mastering for device dev
3586 * @dev: the PCI device to disable
3588 void pci_clear_master(struct pci_dev
*dev
)
3590 __pci_set_master(dev
, false);
3592 EXPORT_SYMBOL(pci_clear_master
);
3595 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3596 * @dev: the PCI device for which MWI is to be enabled
3598 * Helper function for pci_set_mwi.
3599 * Originally copied from drivers/net/acenic.c.
3600 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3602 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3604 int pci_set_cacheline_size(struct pci_dev
*dev
)
3608 if (!pci_cache_line_size
)
3611 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3612 equal to or multiple of the right value. */
3613 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3614 if (cacheline_size
>= pci_cache_line_size
&&
3615 (cacheline_size
% pci_cache_line_size
) == 0)
3618 /* Write the correct value. */
3619 pci_write_config_byte(dev
, PCI_CACHE_LINE_SIZE
, pci_cache_line_size
);
3621 pci_read_config_byte(dev
, PCI_CACHE_LINE_SIZE
, &cacheline_size
);
3622 if (cacheline_size
== pci_cache_line_size
)
3625 dev_printk(KERN_DEBUG
, &dev
->dev
, "cache line size of %d is not supported\n",
3626 pci_cache_line_size
<< 2);
3630 EXPORT_SYMBOL_GPL(pci_set_cacheline_size
);
3633 * pci_set_mwi - enables memory-write-invalidate PCI transaction
3634 * @dev: the PCI device for which MWI is enabled
3636 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3638 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3640 int pci_set_mwi(struct pci_dev
*dev
)
3642 #ifdef PCI_DISABLE_MWI
3648 rc
= pci_set_cacheline_size(dev
);
3652 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3653 if (!(cmd
& PCI_COMMAND_INVALIDATE
)) {
3654 dev_dbg(&dev
->dev
, "enabling Mem-Wr-Inval\n");
3655 cmd
|= PCI_COMMAND_INVALIDATE
;
3656 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3661 EXPORT_SYMBOL(pci_set_mwi
);
3664 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3665 * @dev: the PCI device for which MWI is enabled
3667 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3668 * Callers are not required to check the return value.
3670 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3672 int pci_try_set_mwi(struct pci_dev
*dev
)
3674 #ifdef PCI_DISABLE_MWI
3677 return pci_set_mwi(dev
);
3680 EXPORT_SYMBOL(pci_try_set_mwi
);
3683 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3684 * @dev: the PCI device to disable
3686 * Disables PCI Memory-Write-Invalidate transaction on the device
3688 void pci_clear_mwi(struct pci_dev
*dev
)
3690 #ifndef PCI_DISABLE_MWI
3693 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
3694 if (cmd
& PCI_COMMAND_INVALIDATE
) {
3695 cmd
&= ~PCI_COMMAND_INVALIDATE
;
3696 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
3700 EXPORT_SYMBOL(pci_clear_mwi
);
3703 * pci_intx - enables/disables PCI INTx for device dev
3704 * @pdev: the PCI device to operate on
3705 * @enable: boolean: whether to enable or disable PCI INTx
3707 * Enables/disables PCI INTx for device dev
3709 void pci_intx(struct pci_dev
*pdev
, int enable
)
3711 u16 pci_command
, new;
3713 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_command
);
3716 new = pci_command
& ~PCI_COMMAND_INTX_DISABLE
;
3718 new = pci_command
| PCI_COMMAND_INTX_DISABLE
;
3720 if (new != pci_command
) {
3721 struct pci_devres
*dr
;
3723 pci_write_config_word(pdev
, PCI_COMMAND
, new);
3725 dr
= find_pci_dr(pdev
);
3726 if (dr
&& !dr
->restore_intx
) {
3727 dr
->restore_intx
= 1;
3728 dr
->orig_intx
= !enable
;
3732 EXPORT_SYMBOL_GPL(pci_intx
);
3734 static bool pci_check_and_set_intx_mask(struct pci_dev
*dev
, bool mask
)
3736 struct pci_bus
*bus
= dev
->bus
;
3737 bool mask_updated
= true;
3738 u32 cmd_status_dword
;
3739 u16 origcmd
, newcmd
;
3740 unsigned long flags
;
3744 * We do a single dword read to retrieve both command and status.
3745 * Document assumptions that make this possible.
3747 BUILD_BUG_ON(PCI_COMMAND
% 4);
3748 BUILD_BUG_ON(PCI_COMMAND
+ 2 != PCI_STATUS
);
3750 raw_spin_lock_irqsave(&pci_lock
, flags
);
3752 bus
->ops
->read(bus
, dev
->devfn
, PCI_COMMAND
, 4, &cmd_status_dword
);
3754 irq_pending
= (cmd_status_dword
>> 16) & PCI_STATUS_INTERRUPT
;
3757 * Check interrupt status register to see whether our device
3758 * triggered the interrupt (when masking) or the next IRQ is
3759 * already pending (when unmasking).
3761 if (mask
!= irq_pending
) {
3762 mask_updated
= false;
3766 origcmd
= cmd_status_dword
;
3767 newcmd
= origcmd
& ~PCI_COMMAND_INTX_DISABLE
;
3769 newcmd
|= PCI_COMMAND_INTX_DISABLE
;
3770 if (newcmd
!= origcmd
)
3771 bus
->ops
->write(bus
, dev
->devfn
, PCI_COMMAND
, 2, newcmd
);
3774 raw_spin_unlock_irqrestore(&pci_lock
, flags
);
3776 return mask_updated
;
3780 * pci_check_and_mask_intx - mask INTx on pending interrupt
3781 * @dev: the PCI device to operate on
3783 * Check if the device dev has its INTx line asserted, mask it and
3784 * return true in that case. False is returned if no interrupt was
3787 bool pci_check_and_mask_intx(struct pci_dev
*dev
)
3789 return pci_check_and_set_intx_mask(dev
, true);
3791 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx
);
3794 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3795 * @dev: the PCI device to operate on
3797 * Check if the device dev has its INTx line asserted, unmask it if not
3798 * and return true. False is returned and the mask remains active if
3799 * there was still an interrupt pending.
3801 bool pci_check_and_unmask_intx(struct pci_dev
*dev
)
3803 return pci_check_and_set_intx_mask(dev
, false);
3805 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx
);
3808 * pci_wait_for_pending_transaction - waits for pending transaction
3809 * @dev: the PCI device to operate on
3811 * Return 0 if transaction is pending 1 otherwise.
3813 int pci_wait_for_pending_transaction(struct pci_dev
*dev
)
3815 if (!pci_is_pcie(dev
))
3818 return pci_wait_for_pending(dev
, pci_pcie_cap(dev
) + PCI_EXP_DEVSTA
,
3819 PCI_EXP_DEVSTA_TRPND
);
3821 EXPORT_SYMBOL(pci_wait_for_pending_transaction
);
3823 static void pci_flr_wait(struct pci_dev
*dev
)
3825 int delay
= 1, timeout
= 60000;
3829 * Per PCIe r3.1, sec 6.6.2, a device must complete an FLR within
3830 * 100ms, but may silently discard requests while the FLR is in
3831 * progress. Wait 100ms before trying to access the device.
3836 * After 100ms, the device should not silently discard config
3837 * requests, but it may still indicate that it needs more time by
3838 * responding to them with CRS completions. The Root Port will
3839 * generally synthesize ~0 data to complete the read (except when
3840 * CRS SV is enabled and the read was for the Vendor ID; in that
3841 * case it synthesizes 0x0001 data).
3843 * Wait for the device to return a non-CRS completion. Read the
3844 * Command register instead of Vendor ID so we don't have to
3845 * contend with the CRS SV value.
3847 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
3849 if (delay
> timeout
) {
3850 dev_warn(&dev
->dev
, "not ready %dms after FLR; giving up\n",
3856 dev_info(&dev
->dev
, "not ready %dms after FLR; waiting\n",
3861 pci_read_config_dword(dev
, PCI_COMMAND
, &id
);
3865 dev_info(&dev
->dev
, "ready %dms after FLR\n", 100 + delay
- 1);
3869 * pcie_has_flr - check if a device supports function level resets
3870 * @dev: device to check
3872 * Returns true if the device advertises support for PCIe function level
3875 static bool pcie_has_flr(struct pci_dev
*dev
)
3879 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
3882 pcie_capability_read_dword(dev
, PCI_EXP_DEVCAP
, &cap
);
3883 return cap
& PCI_EXP_DEVCAP_FLR
;
3887 * pcie_flr - initiate a PCIe function level reset
3888 * @dev: device to reset
3890 * Initiate a function level reset on @dev. The caller should ensure the
3891 * device supports FLR before calling this function, e.g. by using the
3892 * pcie_has_flr() helper.
3894 void pcie_flr(struct pci_dev
*dev
)
3896 if (!pci_wait_for_pending_transaction(dev
))
3897 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing function level reset anyway\n");
3899 pcie_capability_set_word(dev
, PCI_EXP_DEVCTL
, PCI_EXP_DEVCTL_BCR_FLR
);
3902 EXPORT_SYMBOL_GPL(pcie_flr
);
3904 static int pci_af_flr(struct pci_dev
*dev
, int probe
)
3909 pos
= pci_find_capability(dev
, PCI_CAP_ID_AF
);
3913 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_FLR_RESET
)
3916 pci_read_config_byte(dev
, pos
+ PCI_AF_CAP
, &cap
);
3917 if (!(cap
& PCI_AF_CAP_TP
) || !(cap
& PCI_AF_CAP_FLR
))
3924 * Wait for Transaction Pending bit to clear. A word-aligned test
3925 * is used, so we use the conrol offset rather than status and shift
3926 * the test bit to match.
3928 if (!pci_wait_for_pending(dev
, pos
+ PCI_AF_CTRL
,
3929 PCI_AF_STATUS_TP
<< 8))
3930 dev_err(&dev
->dev
, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3932 pci_write_config_byte(dev
, pos
+ PCI_AF_CTRL
, PCI_AF_CTRL_FLR
);
3938 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3939 * @dev: Device to reset.
3940 * @probe: If set, only check if the device can be reset this way.
3942 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3943 * unset, it will be reinitialized internally when going from PCI_D3hot to
3944 * PCI_D0. If that's the case and the device is not in a low-power state
3945 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3947 * NOTE: This causes the caller to sleep for twice the device power transition
3948 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3949 * by default (i.e. unless the @dev's d3_delay field has a different value).
3950 * Moreover, only devices in D0 can be reset by this function.
3952 static int pci_pm_reset(struct pci_dev
*dev
, int probe
)
3956 if (!dev
->pm_cap
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_PM_RESET
)
3959 pci_read_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, &csr
);
3960 if (csr
& PCI_PM_CTRL_NO_SOFT_RESET
)
3966 if (dev
->current_state
!= PCI_D0
)
3969 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3971 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3972 pci_dev_d3_sleep(dev
);
3974 csr
&= ~PCI_PM_CTRL_STATE_MASK
;
3976 pci_write_config_word(dev
, dev
->pm_cap
+ PCI_PM_CTRL
, csr
);
3977 pci_dev_d3_sleep(dev
);
3982 void pci_reset_secondary_bus(struct pci_dev
*dev
)
3986 pci_read_config_word(dev
, PCI_BRIDGE_CONTROL
, &ctrl
);
3987 ctrl
|= PCI_BRIDGE_CTL_BUS_RESET
;
3988 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3990 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double
3991 * this to 2ms to ensure that we meet the minimum requirement.
3995 ctrl
&= ~PCI_BRIDGE_CTL_BUS_RESET
;
3996 pci_write_config_word(dev
, PCI_BRIDGE_CONTROL
, ctrl
);
3999 * Trhfa for conventional PCI is 2^25 clock cycles.
4000 * Assuming a minimum 33MHz clock this results in a 1s
4001 * delay before we can consider subordinate devices to
4002 * be re-initialized. PCIe has some ways to shorten this,
4003 * but we don't make use of them yet.
4008 void __weak
pcibios_reset_secondary_bus(struct pci_dev
*dev
)
4010 pci_reset_secondary_bus(dev
);
4014 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
4015 * @dev: Bridge device
4017 * Use the bridge control register to assert reset on the secondary bus.
4018 * Devices on the secondary bus are left in power-on state.
4020 void pci_reset_bridge_secondary_bus(struct pci_dev
*dev
)
4022 pcibios_reset_secondary_bus(dev
);
4024 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus
);
4026 static int pci_parent_bus_reset(struct pci_dev
*dev
, int probe
)
4028 struct pci_dev
*pdev
;
4030 if (pci_is_root_bus(dev
->bus
) || dev
->subordinate
||
4031 !dev
->bus
->self
|| dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4034 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4041 pci_reset_bridge_secondary_bus(dev
->bus
->self
);
4046 static int pci_reset_hotplug_slot(struct hotplug_slot
*hotplug
, int probe
)
4050 if (!hotplug
|| !try_module_get(hotplug
->ops
->owner
))
4053 if (hotplug
->ops
->reset_slot
)
4054 rc
= hotplug
->ops
->reset_slot(hotplug
, probe
);
4056 module_put(hotplug
->ops
->owner
);
4061 static int pci_dev_reset_slot_function(struct pci_dev
*dev
, int probe
)
4063 struct pci_dev
*pdev
;
4065 if (dev
->subordinate
|| !dev
->slot
||
4066 dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
)
4069 list_for_each_entry(pdev
, &dev
->bus
->devices
, bus_list
)
4070 if (pdev
!= dev
&& pdev
->slot
== dev
->slot
)
4073 return pci_reset_hotplug_slot(dev
->slot
->hotplug
, probe
);
4076 static void pci_dev_lock(struct pci_dev
*dev
)
4078 pci_cfg_access_lock(dev
);
4079 /* block PM suspend, driver probe, etc. */
4080 device_lock(&dev
->dev
);
4083 /* Return 1 on successful lock, 0 on contention */
4084 static int pci_dev_trylock(struct pci_dev
*dev
)
4086 if (pci_cfg_access_trylock(dev
)) {
4087 if (device_trylock(&dev
->dev
))
4089 pci_cfg_access_unlock(dev
);
4095 static void pci_dev_unlock(struct pci_dev
*dev
)
4097 device_unlock(&dev
->dev
);
4098 pci_cfg_access_unlock(dev
);
4101 static void pci_dev_save_and_disable(struct pci_dev
*dev
)
4103 const struct pci_error_handlers
*err_handler
=
4104 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4107 * dev->driver->err_handler->reset_prepare() is protected against
4108 * races with ->remove() by the device lock, which must be held by
4111 if (err_handler
&& err_handler
->reset_prepare
)
4112 err_handler
->reset_prepare(dev
);
4115 * Wake-up device prior to save. PM registers default to D0 after
4116 * reset and a simple register restore doesn't reliably return
4117 * to a non-D0 state anyway.
4119 pci_set_power_state(dev
, PCI_D0
);
4121 pci_save_state(dev
);
4123 * Disable the device by clearing the Command register, except for
4124 * INTx-disable which is set. This not only disables MMIO and I/O port
4125 * BARs, but also prevents the device from being Bus Master, preventing
4126 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3
4127 * compliant devices, INTx-disable prevents legacy interrupts.
4129 pci_write_config_word(dev
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
);
4132 static void pci_dev_restore(struct pci_dev
*dev
)
4134 const struct pci_error_handlers
*err_handler
=
4135 dev
->driver
? dev
->driver
->err_handler
: NULL
;
4137 pci_restore_state(dev
);
4140 * dev->driver->err_handler->reset_done() is protected against
4141 * races with ->remove() by the device lock, which must be held by
4144 if (err_handler
&& err_handler
->reset_done
)
4145 err_handler
->reset_done(dev
);
4149 * __pci_reset_function - reset a PCI device function
4150 * @dev: PCI device to reset
4152 * Some devices allow an individual function to be reset without affecting
4153 * other functions in the same device. The PCI device must be responsive
4154 * to PCI config space in order to use this function.
4156 * The device function is presumed to be unused when this function is called.
4157 * Resetting the device will make the contents of PCI configuration space
4158 * random, so any caller of this must be prepared to reinitialise the
4159 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4162 * Returns 0 if the device function was successfully reset or negative if the
4163 * device doesn't support resetting a single function.
4165 int __pci_reset_function(struct pci_dev
*dev
)
4170 ret
= __pci_reset_function_locked(dev
);
4171 pci_dev_unlock(dev
);
4175 EXPORT_SYMBOL_GPL(__pci_reset_function
);
4178 * __pci_reset_function_locked - reset a PCI device function while holding
4179 * the @dev mutex lock.
4180 * @dev: PCI device to reset
4182 * Some devices allow an individual function to be reset without affecting
4183 * other functions in the same device. The PCI device must be responsive
4184 * to PCI config space in order to use this function.
4186 * The device function is presumed to be unused and the caller is holding
4187 * the device mutex lock when this function is called.
4188 * Resetting the device will make the contents of PCI configuration space
4189 * random, so any caller of this must be prepared to reinitialise the
4190 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4193 * Returns 0 if the device function was successfully reset or negative if the
4194 * device doesn't support resetting a single function.
4196 int __pci_reset_function_locked(struct pci_dev
*dev
)
4202 rc
= pci_dev_specific_reset(dev
, 0);
4205 if (pcie_has_flr(dev
)) {
4209 rc
= pci_af_flr(dev
, 0);
4212 rc
= pci_pm_reset(dev
, 0);
4215 rc
= pci_dev_reset_slot_function(dev
, 0);
4218 return pci_parent_bus_reset(dev
, 0);
4220 EXPORT_SYMBOL_GPL(__pci_reset_function_locked
);
4223 * pci_probe_reset_function - check whether the device can be safely reset
4224 * @dev: PCI device to reset
4226 * Some devices allow an individual function to be reset without affecting
4227 * other functions in the same device. The PCI device must be responsive
4228 * to PCI config space in order to use this function.
4230 * Returns 0 if the device function can be reset or negative if the
4231 * device doesn't support resetting a single function.
4233 int pci_probe_reset_function(struct pci_dev
*dev
)
4239 rc
= pci_dev_specific_reset(dev
, 1);
4242 if (pcie_has_flr(dev
))
4244 rc
= pci_af_flr(dev
, 1);
4247 rc
= pci_pm_reset(dev
, 1);
4250 rc
= pci_dev_reset_slot_function(dev
, 1);
4254 return pci_parent_bus_reset(dev
, 1);
4258 * pci_reset_function - quiesce and reset a PCI device function
4259 * @dev: PCI device to reset
4261 * Some devices allow an individual function to be reset without affecting
4262 * other functions in the same device. The PCI device must be responsive
4263 * to PCI config space in order to use this function.
4265 * This function does not just reset the PCI portion of a device, but
4266 * clears all the state associated with the device. This function differs
4267 * from __pci_reset_function in that it saves and restores device state
4270 * Returns 0 if the device function was successfully reset or negative if the
4271 * device doesn't support resetting a single function.
4273 int pci_reset_function(struct pci_dev
*dev
)
4277 rc
= pci_probe_reset_function(dev
);
4282 pci_dev_save_and_disable(dev
);
4284 rc
= __pci_reset_function_locked(dev
);
4286 pci_dev_restore(dev
);
4287 pci_dev_unlock(dev
);
4291 EXPORT_SYMBOL_GPL(pci_reset_function
);
4294 * pci_reset_function_locked - quiesce and reset a PCI device function
4295 * @dev: PCI device to reset
4297 * Some devices allow an individual function to be reset without affecting
4298 * other functions in the same device. The PCI device must be responsive
4299 * to PCI config space in order to use this function.
4301 * This function does not just reset the PCI portion of a device, but
4302 * clears all the state associated with the device. This function differs
4303 * from __pci_reset_function() in that it saves and restores device state
4304 * over the reset. It also differs from pci_reset_function() in that it
4305 * requires the PCI device lock to be held.
4307 * Returns 0 if the device function was successfully reset or negative if the
4308 * device doesn't support resetting a single function.
4310 int pci_reset_function_locked(struct pci_dev
*dev
)
4314 rc
= pci_probe_reset_function(dev
);
4318 pci_dev_save_and_disable(dev
);
4320 rc
= __pci_reset_function_locked(dev
);
4322 pci_dev_restore(dev
);
4326 EXPORT_SYMBOL_GPL(pci_reset_function_locked
);
4329 * pci_try_reset_function - quiesce and reset a PCI device function
4330 * @dev: PCI device to reset
4332 * Same as above, except return -EAGAIN if unable to lock device.
4334 int pci_try_reset_function(struct pci_dev
*dev
)
4338 rc
= pci_probe_reset_function(dev
);
4342 if (!pci_dev_trylock(dev
))
4345 pci_dev_save_and_disable(dev
);
4346 rc
= __pci_reset_function_locked(dev
);
4347 pci_dev_unlock(dev
);
4349 pci_dev_restore(dev
);
4352 EXPORT_SYMBOL_GPL(pci_try_reset_function
);
4354 /* Do any devices on or below this bus prevent a bus reset? */
4355 static bool pci_bus_resetable(struct pci_bus
*bus
)
4357 struct pci_dev
*dev
;
4359 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4360 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4361 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
4368 /* Lock devices from the top of the tree down */
4369 static void pci_bus_lock(struct pci_bus
*bus
)
4371 struct pci_dev
*dev
;
4373 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4375 if (dev
->subordinate
)
4376 pci_bus_lock(dev
->subordinate
);
4380 /* Unlock devices from the bottom of the tree up */
4381 static void pci_bus_unlock(struct pci_bus
*bus
)
4383 struct pci_dev
*dev
;
4385 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4386 if (dev
->subordinate
)
4387 pci_bus_unlock(dev
->subordinate
);
4388 pci_dev_unlock(dev
);
4392 /* Return 1 on successful lock, 0 on contention */
4393 static int pci_bus_trylock(struct pci_bus
*bus
)
4395 struct pci_dev
*dev
;
4397 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4398 if (!pci_dev_trylock(dev
))
4400 if (dev
->subordinate
) {
4401 if (!pci_bus_trylock(dev
->subordinate
)) {
4402 pci_dev_unlock(dev
);
4410 list_for_each_entry_continue_reverse(dev
, &bus
->devices
, bus_list
) {
4411 if (dev
->subordinate
)
4412 pci_bus_unlock(dev
->subordinate
);
4413 pci_dev_unlock(dev
);
4418 /* Do any devices on or below this slot prevent a bus reset? */
4419 static bool pci_slot_resetable(struct pci_slot
*slot
)
4421 struct pci_dev
*dev
;
4423 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4424 if (!dev
->slot
|| dev
->slot
!= slot
)
4426 if (dev
->dev_flags
& PCI_DEV_FLAGS_NO_BUS_RESET
||
4427 (dev
->subordinate
&& !pci_bus_resetable(dev
->subordinate
)))
4434 /* Lock devices from the top of the tree down */
4435 static void pci_slot_lock(struct pci_slot
*slot
)
4437 struct pci_dev
*dev
;
4439 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4440 if (!dev
->slot
|| dev
->slot
!= slot
)
4443 if (dev
->subordinate
)
4444 pci_bus_lock(dev
->subordinate
);
4448 /* Unlock devices from the bottom of the tree up */
4449 static void pci_slot_unlock(struct pci_slot
*slot
)
4451 struct pci_dev
*dev
;
4453 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4454 if (!dev
->slot
|| dev
->slot
!= slot
)
4456 if (dev
->subordinate
)
4457 pci_bus_unlock(dev
->subordinate
);
4458 pci_dev_unlock(dev
);
4462 /* Return 1 on successful lock, 0 on contention */
4463 static int pci_slot_trylock(struct pci_slot
*slot
)
4465 struct pci_dev
*dev
;
4467 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4468 if (!dev
->slot
|| dev
->slot
!= slot
)
4470 if (!pci_dev_trylock(dev
))
4472 if (dev
->subordinate
) {
4473 if (!pci_bus_trylock(dev
->subordinate
)) {
4474 pci_dev_unlock(dev
);
4482 list_for_each_entry_continue_reverse(dev
,
4483 &slot
->bus
->devices
, bus_list
) {
4484 if (!dev
->slot
|| dev
->slot
!= slot
)
4486 if (dev
->subordinate
)
4487 pci_bus_unlock(dev
->subordinate
);
4488 pci_dev_unlock(dev
);
4493 /* Save and disable devices from the top of the tree down */
4494 static void pci_bus_save_and_disable(struct pci_bus
*bus
)
4496 struct pci_dev
*dev
;
4498 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4500 pci_dev_save_and_disable(dev
);
4501 pci_dev_unlock(dev
);
4502 if (dev
->subordinate
)
4503 pci_bus_save_and_disable(dev
->subordinate
);
4508 * Restore devices from top of the tree down - parent bridges need to be
4509 * restored before we can get to subordinate devices.
4511 static void pci_bus_restore(struct pci_bus
*bus
)
4513 struct pci_dev
*dev
;
4515 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
4517 pci_dev_restore(dev
);
4518 pci_dev_unlock(dev
);
4519 if (dev
->subordinate
)
4520 pci_bus_restore(dev
->subordinate
);
4524 /* Save and disable devices from the top of the tree down */
4525 static void pci_slot_save_and_disable(struct pci_slot
*slot
)
4527 struct pci_dev
*dev
;
4529 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4530 if (!dev
->slot
|| dev
->slot
!= slot
)
4532 pci_dev_save_and_disable(dev
);
4533 if (dev
->subordinate
)
4534 pci_bus_save_and_disable(dev
->subordinate
);
4539 * Restore devices from top of the tree down - parent bridges need to be
4540 * restored before we can get to subordinate devices.
4542 static void pci_slot_restore(struct pci_slot
*slot
)
4544 struct pci_dev
*dev
;
4546 list_for_each_entry(dev
, &slot
->bus
->devices
, bus_list
) {
4547 if (!dev
->slot
|| dev
->slot
!= slot
)
4549 pci_dev_restore(dev
);
4550 if (dev
->subordinate
)
4551 pci_bus_restore(dev
->subordinate
);
4555 static int pci_slot_reset(struct pci_slot
*slot
, int probe
)
4559 if (!slot
|| !pci_slot_resetable(slot
))
4563 pci_slot_lock(slot
);
4567 rc
= pci_reset_hotplug_slot(slot
->hotplug
, probe
);
4570 pci_slot_unlock(slot
);
4576 * pci_probe_reset_slot - probe whether a PCI slot can be reset
4577 * @slot: PCI slot to probe
4579 * Return 0 if slot can be reset, negative if a slot reset is not supported.
4581 int pci_probe_reset_slot(struct pci_slot
*slot
)
4583 return pci_slot_reset(slot
, 1);
4585 EXPORT_SYMBOL_GPL(pci_probe_reset_slot
);
4588 * pci_reset_slot - reset a PCI slot
4589 * @slot: PCI slot to reset
4591 * A PCI bus may host multiple slots, each slot may support a reset mechanism
4592 * independent of other slots. For instance, some slots may support slot power
4593 * control. In the case of a 1:1 bus to slot architecture, this function may
4594 * wrap the bus reset to avoid spurious slot related events such as hotplug.
4595 * Generally a slot reset should be attempted before a bus reset. All of the
4596 * function of the slot and any subordinate buses behind the slot are reset
4597 * through this function. PCI config space of all devices in the slot and
4598 * behind the slot is saved before and restored after reset.
4600 * Return 0 on success, non-zero on error.
4602 int pci_reset_slot(struct pci_slot
*slot
)
4606 rc
= pci_slot_reset(slot
, 1);
4610 pci_slot_save_and_disable(slot
);
4612 rc
= pci_slot_reset(slot
, 0);
4614 pci_slot_restore(slot
);
4618 EXPORT_SYMBOL_GPL(pci_reset_slot
);
4621 * pci_try_reset_slot - Try to reset a PCI slot
4622 * @slot: PCI slot to reset
4624 * Same as above except return -EAGAIN if the slot cannot be locked
4626 int pci_try_reset_slot(struct pci_slot
*slot
)
4630 rc
= pci_slot_reset(slot
, 1);
4634 pci_slot_save_and_disable(slot
);
4636 if (pci_slot_trylock(slot
)) {
4638 rc
= pci_reset_hotplug_slot(slot
->hotplug
, 0);
4639 pci_slot_unlock(slot
);
4643 pci_slot_restore(slot
);
4647 EXPORT_SYMBOL_GPL(pci_try_reset_slot
);
4649 static int pci_bus_reset(struct pci_bus
*bus
, int probe
)
4651 if (!bus
->self
|| !pci_bus_resetable(bus
))
4661 pci_reset_bridge_secondary_bus(bus
->self
);
4663 pci_bus_unlock(bus
);
4669 * pci_probe_reset_bus - probe whether a PCI bus can be reset
4670 * @bus: PCI bus to probe
4672 * Return 0 if bus can be reset, negative if a bus reset is not supported.
4674 int pci_probe_reset_bus(struct pci_bus
*bus
)
4676 return pci_bus_reset(bus
, 1);
4678 EXPORT_SYMBOL_GPL(pci_probe_reset_bus
);
4681 * pci_reset_bus - reset a PCI bus
4682 * @bus: top level PCI bus to reset
4684 * Do a bus reset on the given bus and any subordinate buses, saving
4685 * and restoring state of all devices.
4687 * Return 0 on success, non-zero on error.
4689 int pci_reset_bus(struct pci_bus
*bus
)
4693 rc
= pci_bus_reset(bus
, 1);
4697 pci_bus_save_and_disable(bus
);
4699 rc
= pci_bus_reset(bus
, 0);
4701 pci_bus_restore(bus
);
4705 EXPORT_SYMBOL_GPL(pci_reset_bus
);
4708 * pci_try_reset_bus - Try to reset a PCI bus
4709 * @bus: top level PCI bus to reset
4711 * Same as above except return -EAGAIN if the bus cannot be locked
4713 int pci_try_reset_bus(struct pci_bus
*bus
)
4717 rc
= pci_bus_reset(bus
, 1);
4721 pci_bus_save_and_disable(bus
);
4723 if (pci_bus_trylock(bus
)) {
4725 pci_reset_bridge_secondary_bus(bus
->self
);
4726 pci_bus_unlock(bus
);
4730 pci_bus_restore(bus
);
4734 EXPORT_SYMBOL_GPL(pci_try_reset_bus
);
4737 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4738 * @dev: PCI device to query
4740 * Returns mmrbc: maximum designed memory read count in bytes
4741 * or appropriate error value.
4743 int pcix_get_max_mmrbc(struct pci_dev
*dev
)
4748 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4752 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4755 return 512 << ((stat
& PCI_X_STATUS_MAX_READ
) >> 21);
4757 EXPORT_SYMBOL(pcix_get_max_mmrbc
);
4760 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4761 * @dev: PCI device to query
4763 * Returns mmrbc: maximum memory read count in bytes
4764 * or appropriate error value.
4766 int pcix_get_mmrbc(struct pci_dev
*dev
)
4771 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4775 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4778 return 512 << ((cmd
& PCI_X_CMD_MAX_READ
) >> 2);
4780 EXPORT_SYMBOL(pcix_get_mmrbc
);
4783 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4784 * @dev: PCI device to query
4785 * @mmrbc: maximum memory read count in bytes
4786 * valid values are 512, 1024, 2048, 4096
4788 * If possible sets maximum memory read byte count, some bridges have erratas
4789 * that prevent this.
4791 int pcix_set_mmrbc(struct pci_dev
*dev
, int mmrbc
)
4797 if (mmrbc
< 512 || mmrbc
> 4096 || !is_power_of_2(mmrbc
))
4800 v
= ffs(mmrbc
) - 10;
4802 cap
= pci_find_capability(dev
, PCI_CAP_ID_PCIX
);
4806 if (pci_read_config_dword(dev
, cap
+ PCI_X_STATUS
, &stat
))
4809 if (v
> (stat
& PCI_X_STATUS_MAX_READ
) >> 21)
4812 if (pci_read_config_word(dev
, cap
+ PCI_X_CMD
, &cmd
))
4815 o
= (cmd
& PCI_X_CMD_MAX_READ
) >> 2;
4817 if (v
> o
&& (dev
->bus
->bus_flags
& PCI_BUS_FLAGS_NO_MMRBC
))
4820 cmd
&= ~PCI_X_CMD_MAX_READ
;
4822 if (pci_write_config_word(dev
, cap
+ PCI_X_CMD
, cmd
))
4827 EXPORT_SYMBOL(pcix_set_mmrbc
);
4830 * pcie_get_readrq - get PCI Express read request size
4831 * @dev: PCI device to query
4833 * Returns maximum memory read request in bytes
4834 * or appropriate error value.
4836 int pcie_get_readrq(struct pci_dev
*dev
)
4840 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4842 return 128 << ((ctl
& PCI_EXP_DEVCTL_READRQ
) >> 12);
4844 EXPORT_SYMBOL(pcie_get_readrq
);
4847 * pcie_set_readrq - set PCI Express maximum memory read request
4848 * @dev: PCI device to query
4849 * @rq: maximum memory read count in bytes
4850 * valid values are 128, 256, 512, 1024, 2048, 4096
4852 * If possible sets maximum memory read request in bytes
4854 int pcie_set_readrq(struct pci_dev
*dev
, int rq
)
4858 if (rq
< 128 || rq
> 4096 || !is_power_of_2(rq
))
4862 * If using the "performance" PCIe config, we clamp the
4863 * read rq size to the max packet size to prevent the
4864 * host bridge generating requests larger than we can
4867 if (pcie_bus_config
== PCIE_BUS_PERFORMANCE
) {
4868 int mps
= pcie_get_mps(dev
);
4874 v
= (ffs(rq
) - 8) << 12;
4876 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4877 PCI_EXP_DEVCTL_READRQ
, v
);
4879 EXPORT_SYMBOL(pcie_set_readrq
);
4882 * pcie_get_mps - get PCI Express maximum payload size
4883 * @dev: PCI device to query
4885 * Returns maximum payload size in bytes
4887 int pcie_get_mps(struct pci_dev
*dev
)
4891 pcie_capability_read_word(dev
, PCI_EXP_DEVCTL
, &ctl
);
4893 return 128 << ((ctl
& PCI_EXP_DEVCTL_PAYLOAD
) >> 5);
4895 EXPORT_SYMBOL(pcie_get_mps
);
4898 * pcie_set_mps - set PCI Express maximum payload size
4899 * @dev: PCI device to query
4900 * @mps: maximum payload size in bytes
4901 * valid values are 128, 256, 512, 1024, 2048, 4096
4903 * If possible sets maximum payload size
4905 int pcie_set_mps(struct pci_dev
*dev
, int mps
)
4909 if (mps
< 128 || mps
> 4096 || !is_power_of_2(mps
))
4913 if (v
> dev
->pcie_mpss
)
4917 return pcie_capability_clear_and_set_word(dev
, PCI_EXP_DEVCTL
,
4918 PCI_EXP_DEVCTL_PAYLOAD
, v
);
4920 EXPORT_SYMBOL(pcie_set_mps
);
4923 * pcie_get_minimum_link - determine minimum link settings of a PCI device
4924 * @dev: PCI device to query
4925 * @speed: storage for minimum speed
4926 * @width: storage for minimum width
4928 * This function will walk up the PCI device chain and determine the minimum
4929 * link width and speed of the device.
4931 int pcie_get_minimum_link(struct pci_dev
*dev
, enum pci_bus_speed
*speed
,
4932 enum pcie_link_width
*width
)
4936 *speed
= PCI_SPEED_UNKNOWN
;
4937 *width
= PCIE_LNK_WIDTH_UNKNOWN
;
4941 enum pci_bus_speed next_speed
;
4942 enum pcie_link_width next_width
;
4944 ret
= pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnksta
);
4948 next_speed
= pcie_link_speed
[lnksta
& PCI_EXP_LNKSTA_CLS
];
4949 next_width
= (lnksta
& PCI_EXP_LNKSTA_NLW
) >>
4950 PCI_EXP_LNKSTA_NLW_SHIFT
;
4952 if (next_speed
< *speed
)
4953 *speed
= next_speed
;
4955 if (next_width
< *width
)
4956 *width
= next_width
;
4958 dev
= dev
->bus
->self
;
4963 EXPORT_SYMBOL(pcie_get_minimum_link
);
4966 * pci_select_bars - Make BAR mask from the type of resource
4967 * @dev: the PCI device for which BAR mask is made
4968 * @flags: resource type mask to be selected
4970 * This helper routine makes bar mask from the type of resource.
4972 int pci_select_bars(struct pci_dev
*dev
, unsigned long flags
)
4975 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++)
4976 if (pci_resource_flags(dev
, i
) & flags
)
4980 EXPORT_SYMBOL(pci_select_bars
);
4982 /* Some architectures require additional programming to enable VGA */
4983 static arch_set_vga_state_t arch_set_vga_state
;
4985 void __init
pci_register_set_vga_state(arch_set_vga_state_t func
)
4987 arch_set_vga_state
= func
; /* NULL disables */
4990 static int pci_set_vga_state_arch(struct pci_dev
*dev
, bool decode
,
4991 unsigned int command_bits
, u32 flags
)
4993 if (arch_set_vga_state
)
4994 return arch_set_vga_state(dev
, decode
, command_bits
,
5000 * pci_set_vga_state - set VGA decode state on device and parents if requested
5001 * @dev: the PCI device
5002 * @decode: true = enable decoding, false = disable decoding
5003 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
5004 * @flags: traverse ancestors and change bridges
5005 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
5007 int pci_set_vga_state(struct pci_dev
*dev
, bool decode
,
5008 unsigned int command_bits
, u32 flags
)
5010 struct pci_bus
*bus
;
5011 struct pci_dev
*bridge
;
5015 WARN_ON((flags
& PCI_VGA_STATE_CHANGE_DECODES
) && (command_bits
& ~(PCI_COMMAND_IO
|PCI_COMMAND_MEMORY
)));
5017 /* ARCH specific VGA enables */
5018 rc
= pci_set_vga_state_arch(dev
, decode
, command_bits
, flags
);
5022 if (flags
& PCI_VGA_STATE_CHANGE_DECODES
) {
5023 pci_read_config_word(dev
, PCI_COMMAND
, &cmd
);
5025 cmd
|= command_bits
;
5027 cmd
&= ~command_bits
;
5028 pci_write_config_word(dev
, PCI_COMMAND
, cmd
);
5031 if (!(flags
& PCI_VGA_STATE_CHANGE_BRIDGE
))
5038 pci_read_config_word(bridge
, PCI_BRIDGE_CONTROL
,
5041 cmd
|= PCI_BRIDGE_CTL_VGA
;
5043 cmd
&= ~PCI_BRIDGE_CTL_VGA
;
5044 pci_write_config_word(bridge
, PCI_BRIDGE_CONTROL
,
5053 * pci_add_dma_alias - Add a DMA devfn alias for a device
5054 * @dev: the PCI device for which alias is added
5055 * @devfn: alias slot and function
5057 * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
5058 * It should be called early, preferably as PCI fixup header quirk.
5060 void pci_add_dma_alias(struct pci_dev
*dev
, u8 devfn
)
5062 if (!dev
->dma_alias_mask
)
5063 dev
->dma_alias_mask
= kcalloc(BITS_TO_LONGS(U8_MAX
),
5064 sizeof(long), GFP_KERNEL
);
5065 if (!dev
->dma_alias_mask
) {
5066 dev_warn(&dev
->dev
, "Unable to allocate DMA alias mask\n");
5070 set_bit(devfn
, dev
->dma_alias_mask
);
5071 dev_info(&dev
->dev
, "Enabling fixed DMA alias to %02x.%d\n",
5072 PCI_SLOT(devfn
), PCI_FUNC(devfn
));
5075 bool pci_devs_are_dma_aliases(struct pci_dev
*dev1
, struct pci_dev
*dev2
)
5077 return (dev1
->dma_alias_mask
&&
5078 test_bit(dev2
->devfn
, dev1
->dma_alias_mask
)) ||
5079 (dev2
->dma_alias_mask
&&
5080 test_bit(dev1
->devfn
, dev2
->dma_alias_mask
));
5083 bool pci_device_is_present(struct pci_dev
*pdev
)
5087 if (pci_dev_is_disconnected(pdev
))
5089 return pci_bus_read_dev_vendor_id(pdev
->bus
, pdev
->devfn
, &v
, 0);
5091 EXPORT_SYMBOL_GPL(pci_device_is_present
);
5093 void pci_ignore_hotplug(struct pci_dev
*dev
)
5095 struct pci_dev
*bridge
= dev
->bus
->self
;
5097 dev
->ignore_hotplug
= 1;
5098 /* Propagate the "ignore hotplug" setting to the parent bridge. */
5100 bridge
->ignore_hotplug
= 1;
5102 EXPORT_SYMBOL_GPL(pci_ignore_hotplug
);
5104 resource_size_t __weak
pcibios_default_alignment(void)
5109 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
5110 static char resource_alignment_param
[RESOURCE_ALIGNMENT_PARAM_SIZE
] = {0};
5111 static DEFINE_SPINLOCK(resource_alignment_lock
);
5114 * pci_specified_resource_alignment - get resource alignment specified by user.
5115 * @dev: the PCI device to get
5116 * @resize: whether or not to change resources' size when reassigning alignment
5118 * RETURNS: Resource alignment if it is specified.
5119 * Zero if it is not specified.
5121 static resource_size_t
pci_specified_resource_alignment(struct pci_dev
*dev
,
5124 int seg
, bus
, slot
, func
, align_order
, count
;
5125 unsigned short vendor
, device
, subsystem_vendor
, subsystem_device
;
5126 resource_size_t align
= pcibios_default_alignment();
5129 spin_lock(&resource_alignment_lock
);
5130 p
= resource_alignment_param
;
5133 if (pci_has_flag(PCI_PROBE_ONLY
)) {
5135 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
5141 if (sscanf(p
, "%d%n", &align_order
, &count
) == 1 &&
5147 if (strncmp(p
, "pci:", 4) == 0) {
5148 /* PCI vendor/device (subvendor/subdevice) ids are specified */
5150 if (sscanf(p
, "%hx:%hx:%hx:%hx%n",
5151 &vendor
, &device
, &subsystem_vendor
, &subsystem_device
, &count
) != 4) {
5152 if (sscanf(p
, "%hx:%hx%n", &vendor
, &device
, &count
) != 2) {
5153 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: pci:%s\n",
5157 subsystem_vendor
= subsystem_device
= 0;
5160 if ((!vendor
|| (vendor
== dev
->vendor
)) &&
5161 (!device
|| (device
== dev
->device
)) &&
5162 (!subsystem_vendor
|| (subsystem_vendor
== dev
->subsystem_vendor
)) &&
5163 (!subsystem_device
|| (subsystem_device
== dev
->subsystem_device
))) {
5165 if (align_order
== -1)
5168 align
= 1 << align_order
;
5174 if (sscanf(p
, "%x:%x:%x.%x%n",
5175 &seg
, &bus
, &slot
, &func
, &count
) != 4) {
5177 if (sscanf(p
, "%x:%x.%x%n",
5178 &bus
, &slot
, &func
, &count
) != 3) {
5179 /* Invalid format */
5180 printk(KERN_ERR
"PCI: Can't parse resource_alignment parameter: %s\n",
5186 if (seg
== pci_domain_nr(dev
->bus
) &&
5187 bus
== dev
->bus
->number
&&
5188 slot
== PCI_SLOT(dev
->devfn
) &&
5189 func
== PCI_FUNC(dev
->devfn
)) {
5191 if (align_order
== -1)
5194 align
= 1 << align_order
;
5199 if (*p
!= ';' && *p
!= ',') {
5200 /* End of param or invalid format */
5206 spin_unlock(&resource_alignment_lock
);
5210 static void pci_request_resource_alignment(struct pci_dev
*dev
, int bar
,
5211 resource_size_t align
, bool resize
)
5213 struct resource
*r
= &dev
->resource
[bar
];
5214 resource_size_t size
;
5216 if (!(r
->flags
& IORESOURCE_MEM
))
5219 if (r
->flags
& IORESOURCE_PCI_FIXED
) {
5220 dev_info(&dev
->dev
, "BAR%d %pR: ignoring requested alignment %#llx\n",
5221 bar
, r
, (unsigned long long)align
);
5225 size
= resource_size(r
);
5230 * Increase the alignment of the resource. There are two ways we
5233 * 1) Increase the size of the resource. BARs are aligned on their
5234 * size, so when we reallocate space for this resource, we'll
5235 * allocate it with the larger alignment. This also prevents
5236 * assignment of any other BARs inside the alignment region, so
5237 * if we're requesting page alignment, this means no other BARs
5238 * will share the page.
5240 * The disadvantage is that this makes the resource larger than
5241 * the hardware BAR, which may break drivers that compute things
5242 * based on the resource size, e.g., to find registers at a
5243 * fixed offset before the end of the BAR.
5245 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
5246 * set r->start to the desired alignment. By itself this
5247 * doesn't prevent other BARs being put inside the alignment
5248 * region, but if we realign *every* resource of every device in
5249 * the system, none of them will share an alignment region.
5251 * When the user has requested alignment for only some devices via
5252 * the "pci=resource_alignment" argument, "resize" is true and we
5253 * use the first method. Otherwise we assume we're aligning all
5254 * devices and we use the second.
5257 dev_info(&dev
->dev
, "BAR%d %pR: requesting alignment to %#llx\n",
5258 bar
, r
, (unsigned long long)align
);
5264 r
->flags
&= ~IORESOURCE_SIZEALIGN
;
5265 r
->flags
|= IORESOURCE_STARTALIGN
;
5267 r
->end
= r
->start
+ size
- 1;
5269 r
->flags
|= IORESOURCE_UNSET
;
5273 * This function disables memory decoding and releases memory resources
5274 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5275 * It also rounds up size to specified alignment.
5276 * Later on, the kernel will assign page-aligned memory resource back
5279 void pci_reassigndev_resource_alignment(struct pci_dev
*dev
)
5283 resource_size_t align
;
5285 bool resize
= false;
5288 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
5289 * 3.4.1.11. Their resources are allocated from the space
5290 * described by the VF BARx register in the PF's SR-IOV capability.
5291 * We can't influence their alignment here.
5296 /* check if specified PCI is target device to reassign */
5297 align
= pci_specified_resource_alignment(dev
, &resize
);
5301 if (dev
->hdr_type
== PCI_HEADER_TYPE_NORMAL
&&
5302 (dev
->class >> 8) == PCI_CLASS_BRIDGE_HOST
) {
5304 "Can't reassign resources to host bridge.\n");
5309 "Disabling memory decoding and releasing memory resources.\n");
5310 pci_read_config_word(dev
, PCI_COMMAND
, &command
);
5311 command
&= ~PCI_COMMAND_MEMORY
;
5312 pci_write_config_word(dev
, PCI_COMMAND
, command
);
5314 for (i
= 0; i
<= PCI_ROM_RESOURCE
; i
++)
5315 pci_request_resource_alignment(dev
, i
, align
, resize
);
5318 * Need to disable bridge's resource window,
5319 * to enable the kernel to reassign new resource
5322 if (dev
->hdr_type
== PCI_HEADER_TYPE_BRIDGE
&&
5323 (dev
->class >> 8) == PCI_CLASS_BRIDGE_PCI
) {
5324 for (i
= PCI_BRIDGE_RESOURCES
; i
< PCI_NUM_RESOURCES
; i
++) {
5325 r
= &dev
->resource
[i
];
5326 if (!(r
->flags
& IORESOURCE_MEM
))
5328 r
->flags
|= IORESOURCE_UNSET
;
5329 r
->end
= resource_size(r
) - 1;
5332 pci_disable_bridge_window(dev
);
5336 static ssize_t
pci_set_resource_alignment_param(const char *buf
, size_t count
)
5338 if (count
> RESOURCE_ALIGNMENT_PARAM_SIZE
- 1)
5339 count
= RESOURCE_ALIGNMENT_PARAM_SIZE
- 1;
5340 spin_lock(&resource_alignment_lock
);
5341 strncpy(resource_alignment_param
, buf
, count
);
5342 resource_alignment_param
[count
] = '\0';
5343 spin_unlock(&resource_alignment_lock
);
5347 static ssize_t
pci_get_resource_alignment_param(char *buf
, size_t size
)
5350 spin_lock(&resource_alignment_lock
);
5351 count
= snprintf(buf
, size
, "%s", resource_alignment_param
);
5352 spin_unlock(&resource_alignment_lock
);
5356 static ssize_t
pci_resource_alignment_show(struct bus_type
*bus
, char *buf
)
5358 return pci_get_resource_alignment_param(buf
, PAGE_SIZE
);
5361 static ssize_t
pci_resource_alignment_store(struct bus_type
*bus
,
5362 const char *buf
, size_t count
)
5364 return pci_set_resource_alignment_param(buf
, count
);
5367 static BUS_ATTR(resource_alignment
, 0644, pci_resource_alignment_show
,
5368 pci_resource_alignment_store
);
5370 static int __init
pci_resource_alignment_sysfs_init(void)
5372 return bus_create_file(&pci_bus_type
,
5373 &bus_attr_resource_alignment
);
5375 late_initcall(pci_resource_alignment_sysfs_init
);
5377 static void pci_no_domains(void)
5379 #ifdef CONFIG_PCI_DOMAINS
5380 pci_domains_supported
= 0;
5384 #ifdef CONFIG_PCI_DOMAINS
5385 static atomic_t __domain_nr
= ATOMIC_INIT(-1);
5387 int pci_get_new_domain_nr(void)
5389 return atomic_inc_return(&__domain_nr
);
5392 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5393 static int of_pci_bus_find_domain_nr(struct device
*parent
)
5395 static int use_dt_domains
= -1;
5399 domain
= of_get_pci_domain_nr(parent
->of_node
);
5401 * Check DT domain and use_dt_domains values.
5403 * If DT domain property is valid (domain >= 0) and
5404 * use_dt_domains != 0, the DT assignment is valid since this means
5405 * we have not previously allocated a domain number by using
5406 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5407 * 1, to indicate that we have just assigned a domain number from
5410 * If DT domain property value is not valid (ie domain < 0), and we
5411 * have not previously assigned a domain number from DT
5412 * (use_dt_domains != 1) we should assign a domain number by
5415 * pci_get_new_domain_nr()
5417 * API and update the use_dt_domains value to keep track of method we
5418 * are using to assign domain numbers (use_dt_domains = 0).
5420 * All other combinations imply we have a platform that is trying
5421 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5422 * which is a recipe for domain mishandling and it is prevented by
5423 * invalidating the domain value (domain = -1) and printing a
5424 * corresponding error.
5426 if (domain
>= 0 && use_dt_domains
) {
5428 } else if (domain
< 0 && use_dt_domains
!= 1) {
5430 domain
= pci_get_new_domain_nr();
5432 dev_err(parent
, "Node %pOF has inconsistent \"linux,pci-domain\" property in DT\n",
5440 int pci_bus_find_domain_nr(struct pci_bus
*bus
, struct device
*parent
)
5442 return acpi_disabled
? of_pci_bus_find_domain_nr(parent
) :
5443 acpi_pci_bus_find_domain_nr(bus
);
5449 * pci_ext_cfg_avail - can we access extended PCI config space?
5451 * Returns 1 if we can access PCI extended config space (offsets
5452 * greater than 0xff). This is the default implementation. Architecture
5453 * implementations can override this.
5455 int __weak
pci_ext_cfg_avail(void)
5460 void __weak
pci_fixup_cardbus(struct pci_bus
*bus
)
5463 EXPORT_SYMBOL(pci_fixup_cardbus
);
5465 static int __init
pci_setup(char *str
)
5468 char *k
= strchr(str
, ',');
5471 if (*str
&& (str
= pcibios_setup(str
)) && *str
) {
5472 if (!strcmp(str
, "nomsi")) {
5474 } else if (!strcmp(str
, "noaer")) {
5476 } else if (!strncmp(str
, "realloc=", 8)) {
5477 pci_realloc_get_opt(str
+ 8);
5478 } else if (!strncmp(str
, "realloc", 7)) {
5479 pci_realloc_get_opt("on");
5480 } else if (!strcmp(str
, "nodomains")) {
5482 } else if (!strncmp(str
, "noari", 5)) {
5483 pcie_ari_disabled
= true;
5484 } else if (!strncmp(str
, "cbiosize=", 9)) {
5485 pci_cardbus_io_size
= memparse(str
+ 9, &str
);
5486 } else if (!strncmp(str
, "cbmemsize=", 10)) {
5487 pci_cardbus_mem_size
= memparse(str
+ 10, &str
);
5488 } else if (!strncmp(str
, "resource_alignment=", 19)) {
5489 pci_set_resource_alignment_param(str
+ 19,
5491 } else if (!strncmp(str
, "ecrc=", 5)) {
5492 pcie_ecrc_get_policy(str
+ 5);
5493 } else if (!strncmp(str
, "hpiosize=", 9)) {
5494 pci_hotplug_io_size
= memparse(str
+ 9, &str
);
5495 } else if (!strncmp(str
, "hpmemsize=", 10)) {
5496 pci_hotplug_mem_size
= memparse(str
+ 10, &str
);
5497 } else if (!strncmp(str
, "hpbussize=", 10)) {
5498 pci_hotplug_bus_size
=
5499 simple_strtoul(str
+ 10, &str
, 0);
5500 if (pci_hotplug_bus_size
> 0xff)
5501 pci_hotplug_bus_size
= DEFAULT_HOTPLUG_BUS_SIZE
;
5502 } else if (!strncmp(str
, "pcie_bus_tune_off", 17)) {
5503 pcie_bus_config
= PCIE_BUS_TUNE_OFF
;
5504 } else if (!strncmp(str
, "pcie_bus_safe", 13)) {
5505 pcie_bus_config
= PCIE_BUS_SAFE
;
5506 } else if (!strncmp(str
, "pcie_bus_perf", 13)) {
5507 pcie_bus_config
= PCIE_BUS_PERFORMANCE
;
5508 } else if (!strncmp(str
, "pcie_bus_peer2peer", 18)) {
5509 pcie_bus_config
= PCIE_BUS_PEER2PEER
;
5510 } else if (!strncmp(str
, "pcie_scan_all", 13)) {
5511 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS
);
5513 printk(KERN_ERR
"PCI: Unknown option `%s'\n",
5521 early_param("pci", pci_setup
);