4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_u.d_alias, d_inode of aliases
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
52 * dentry->d_sb->s_dentry_lru_lock protects:
53 * - the dcache lru lists and counters
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
62 * - d_u.d_alias, d_inode
65 * dentry->d_inode->i_lock
67 * dentry->d_sb->s_dentry_lru_lock
68 * dcache_hash_bucket lock
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
74 * dentry->d_parent->d_lock
77 * If no ancestor relationship:
78 * if (dentry1 < dentry2)
82 int sysctl_vfs_cache_pressure __read_mostly
= 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
87 EXPORT_SYMBOL(rename_lock
);
89 static struct kmem_cache
*dentry_cache __read_mostly
;
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
100 static unsigned int d_hash_mask __read_mostly
;
101 static unsigned int d_hash_shift __read_mostly
;
103 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
105 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
108 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
109 return dentry_hashtable
+ hash_32(hash
, d_hash_shift
);
112 /* Statistics gathering. */
113 struct dentry_stat_t dentry_stat
= {
117 static DEFINE_PER_CPU(long, nr_dentry
);
118 static DEFINE_PER_CPU(long, nr_dentry_unused
);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 * Here we resort to our own counters instead of using generic per-cpu counters
124 * for consistency with what the vfs inode code does. We are expected to harvest
125 * better code and performance by having our own specialized counters.
127 * Please note that the loop is done over all possible CPUs, not over all online
128 * CPUs. The reason for this is that we don't want to play games with CPUs going
129 * on and off. If one of them goes off, we will just keep their counters.
131 * glommer: See cffbc8a for details, and if you ever intend to change this,
132 * please update all vfs counters to match.
134 static long get_nr_dentry(void)
138 for_each_possible_cpu(i
)
139 sum
+= per_cpu(nr_dentry
, i
);
140 return sum
< 0 ? 0 : sum
;
143 static long get_nr_dentry_unused(void)
147 for_each_possible_cpu(i
)
148 sum
+= per_cpu(nr_dentry_unused
, i
);
149 return sum
< 0 ? 0 : sum
;
152 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
153 size_t *lenp
, loff_t
*ppos
)
155 dentry_stat
.nr_dentry
= get_nr_dentry();
156 dentry_stat
.nr_unused
= get_nr_dentry_unused();
157 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
162 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
163 * The strings are both count bytes long, and count is non-zero.
165 #ifdef CONFIG_DCACHE_WORD_ACCESS
167 #include <asm/word-at-a-time.h>
169 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
170 * aligned allocation for this particular component. We don't
171 * strictly need the load_unaligned_zeropad() safety, but it
172 * doesn't hurt either.
174 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
175 * need the careful unaligned handling.
177 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
179 unsigned long a
,b
,mask
;
182 a
= *(unsigned long *)cs
;
183 b
= load_unaligned_zeropad(ct
);
184 if (tcount
< sizeof(unsigned long))
186 if (unlikely(a
!= b
))
188 cs
+= sizeof(unsigned long);
189 ct
+= sizeof(unsigned long);
190 tcount
-= sizeof(unsigned long);
194 mask
= bytemask_from_count(tcount
);
195 return unlikely(!!((a
^ b
) & mask
));
200 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
214 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
216 const unsigned char *cs
;
218 * Be careful about RCU walk racing with rename:
219 * use ACCESS_ONCE to fetch the name pointer.
221 * NOTE! Even if a rename will mean that the length
222 * was not loaded atomically, we don't care. The
223 * RCU walk will check the sequence count eventually,
224 * and catch it. And we won't overrun the buffer,
225 * because we're reading the name pointer atomically,
226 * and a dentry name is guaranteed to be properly
227 * terminated with a NUL byte.
229 * End result: even if 'len' is wrong, we'll exit
230 * early because the data cannot match (there can
231 * be no NUL in the ct/tcount data)
233 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
234 smp_read_barrier_depends();
235 return dentry_string_cmp(cs
, ct
, tcount
);
238 struct external_name
{
241 struct rcu_head head
;
243 unsigned char name
[];
246 static inline struct external_name
*external_name(struct dentry
*dentry
)
248 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
251 static void __d_free(struct rcu_head
*head
)
253 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
255 kmem_cache_free(dentry_cache
, dentry
);
258 static void __d_free_external(struct rcu_head
*head
)
260 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
261 kfree(external_name(dentry
));
262 kmem_cache_free(dentry_cache
, dentry
);
265 static inline int dname_external(const struct dentry
*dentry
)
267 return dentry
->d_name
.name
!= dentry
->d_iname
;
270 static void dentry_free(struct dentry
*dentry
)
272 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
273 if (unlikely(dname_external(dentry
))) {
274 struct external_name
*p
= external_name(dentry
);
275 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
276 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
280 /* if dentry was never visible to RCU, immediate free is OK */
281 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
282 __d_free(&dentry
->d_u
.d_rcu
);
284 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
288 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
289 * @dentry: the target dentry
290 * After this call, in-progress rcu-walk path lookup will fail. This
291 * should be called after unhashing, and after changing d_inode (if
292 * the dentry has not already been unhashed).
294 static inline void dentry_rcuwalk_barrier(struct dentry
*dentry
)
296 assert_spin_locked(&dentry
->d_lock
);
297 /* Go through a barrier */
298 write_seqcount_barrier(&dentry
->d_seq
);
302 * Release the dentry's inode, using the filesystem
303 * d_iput() operation if defined. Dentry has no refcount
306 static void dentry_iput(struct dentry
* dentry
)
307 __releases(dentry
->d_lock
)
308 __releases(dentry
->d_inode
->i_lock
)
310 struct inode
*inode
= dentry
->d_inode
;
312 dentry
->d_inode
= NULL
;
313 hlist_del_init(&dentry
->d_u
.d_alias
);
314 spin_unlock(&dentry
->d_lock
);
315 spin_unlock(&inode
->i_lock
);
317 fsnotify_inoderemove(inode
);
318 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
319 dentry
->d_op
->d_iput(dentry
, inode
);
323 spin_unlock(&dentry
->d_lock
);
328 * Release the dentry's inode, using the filesystem
329 * d_iput() operation if defined. dentry remains in-use.
331 static void dentry_unlink_inode(struct dentry
* dentry
)
332 __releases(dentry
->d_lock
)
333 __releases(dentry
->d_inode
->i_lock
)
335 struct inode
*inode
= dentry
->d_inode
;
336 __d_clear_type(dentry
);
337 dentry
->d_inode
= NULL
;
338 hlist_del_init(&dentry
->d_u
.d_alias
);
339 dentry_rcuwalk_barrier(dentry
);
340 spin_unlock(&dentry
->d_lock
);
341 spin_unlock(&inode
->i_lock
);
343 fsnotify_inoderemove(inode
);
344 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
345 dentry
->d_op
->d_iput(dentry
, inode
);
351 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
352 * is in use - which includes both the "real" per-superblock
353 * LRU list _and_ the DCACHE_SHRINK_LIST use.
355 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
356 * on the shrink list (ie not on the superblock LRU list).
358 * The per-cpu "nr_dentry_unused" counters are updated with
359 * the DCACHE_LRU_LIST bit.
361 * These helper functions make sure we always follow the
362 * rules. d_lock must be held by the caller.
364 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
365 static void d_lru_add(struct dentry
*dentry
)
367 D_FLAG_VERIFY(dentry
, 0);
368 dentry
->d_flags
|= DCACHE_LRU_LIST
;
369 this_cpu_inc(nr_dentry_unused
);
370 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
373 static void d_lru_del(struct dentry
*dentry
)
375 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
376 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
377 this_cpu_dec(nr_dentry_unused
);
378 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
381 static void d_shrink_del(struct dentry
*dentry
)
383 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
384 list_del_init(&dentry
->d_lru
);
385 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
386 this_cpu_dec(nr_dentry_unused
);
389 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
391 D_FLAG_VERIFY(dentry
, 0);
392 list_add(&dentry
->d_lru
, list
);
393 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
394 this_cpu_inc(nr_dentry_unused
);
398 * These can only be called under the global LRU lock, ie during the
399 * callback for freeing the LRU list. "isolate" removes it from the
400 * LRU lists entirely, while shrink_move moves it to the indicated
403 static void d_lru_isolate(struct dentry
*dentry
)
405 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
406 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
407 this_cpu_dec(nr_dentry_unused
);
408 list_del_init(&dentry
->d_lru
);
411 static void d_lru_shrink_move(struct dentry
*dentry
, struct list_head
*list
)
413 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
414 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
415 list_move_tail(&dentry
->d_lru
, list
);
419 * dentry_lru_(add|del)_list) must be called with d_lock held.
421 static void dentry_lru_add(struct dentry
*dentry
)
423 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
428 * d_drop - drop a dentry
429 * @dentry: dentry to drop
431 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
432 * be found through a VFS lookup any more. Note that this is different from
433 * deleting the dentry - d_delete will try to mark the dentry negative if
434 * possible, giving a successful _negative_ lookup, while d_drop will
435 * just make the cache lookup fail.
437 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
438 * reason (NFS timeouts or autofs deletes).
440 * __d_drop requires dentry->d_lock.
442 void __d_drop(struct dentry
*dentry
)
444 if (!d_unhashed(dentry
)) {
445 struct hlist_bl_head
*b
;
447 * Hashed dentries are normally on the dentry hashtable,
448 * with the exception of those newly allocated by
449 * d_obtain_alias, which are always IS_ROOT:
451 if (unlikely(IS_ROOT(dentry
)))
452 b
= &dentry
->d_sb
->s_anon
;
454 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
457 __hlist_bl_del(&dentry
->d_hash
);
458 dentry
->d_hash
.pprev
= NULL
;
460 dentry_rcuwalk_barrier(dentry
);
463 EXPORT_SYMBOL(__d_drop
);
465 void d_drop(struct dentry
*dentry
)
467 spin_lock(&dentry
->d_lock
);
469 spin_unlock(&dentry
->d_lock
);
471 EXPORT_SYMBOL(d_drop
);
473 static void __dentry_kill(struct dentry
*dentry
)
475 struct dentry
*parent
= NULL
;
476 bool can_free
= true;
477 if (!IS_ROOT(dentry
))
478 parent
= dentry
->d_parent
;
481 * The dentry is now unrecoverably dead to the world.
483 lockref_mark_dead(&dentry
->d_lockref
);
486 * inform the fs via d_prune that this dentry is about to be
487 * unhashed and destroyed.
489 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
490 dentry
->d_op
->d_prune(dentry
);
492 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
493 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
496 /* if it was on the hash then remove it */
498 __list_del_entry(&dentry
->d_child
);
500 * Inform d_walk() that we are no longer attached to the
503 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
505 spin_unlock(&parent
->d_lock
);
508 * dentry_iput drops the locks, at which point nobody (except
509 * transient RCU lookups) can reach this dentry.
511 BUG_ON((int)dentry
->d_lockref
.count
> 0);
512 this_cpu_dec(nr_dentry
);
513 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
514 dentry
->d_op
->d_release(dentry
);
516 spin_lock(&dentry
->d_lock
);
517 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
518 dentry
->d_flags
|= DCACHE_MAY_FREE
;
521 spin_unlock(&dentry
->d_lock
);
522 if (likely(can_free
))
527 * Finish off a dentry we've decided to kill.
528 * dentry->d_lock must be held, returns with it unlocked.
529 * If ref is non-zero, then decrement the refcount too.
530 * Returns dentry requiring refcount drop, or NULL if we're done.
532 static struct dentry
*dentry_kill(struct dentry
*dentry
)
533 __releases(dentry
->d_lock
)
535 struct inode
*inode
= dentry
->d_inode
;
536 struct dentry
*parent
= NULL
;
538 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
541 if (!IS_ROOT(dentry
)) {
542 parent
= dentry
->d_parent
;
543 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
545 spin_unlock(&inode
->i_lock
);
550 __dentry_kill(dentry
);
554 spin_unlock(&dentry
->d_lock
);
556 return dentry
; /* try again with same dentry */
559 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
561 struct dentry
*parent
= dentry
->d_parent
;
564 if (unlikely((int)dentry
->d_lockref
.count
< 0))
566 if (likely(spin_trylock(&parent
->d_lock
)))
569 spin_unlock(&dentry
->d_lock
);
571 parent
= ACCESS_ONCE(dentry
->d_parent
);
572 spin_lock(&parent
->d_lock
);
574 * We can't blindly lock dentry until we are sure
575 * that we won't violate the locking order.
576 * Any changes of dentry->d_parent must have
577 * been done with parent->d_lock held, so
578 * spin_lock() above is enough of a barrier
579 * for checking if it's still our child.
581 if (unlikely(parent
!= dentry
->d_parent
)) {
582 spin_unlock(&parent
->d_lock
);
586 if (parent
!= dentry
)
587 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
596 * This is complicated by the fact that we do not want to put
597 * dentries that are no longer on any hash chain on the unused
598 * list: we'd much rather just get rid of them immediately.
600 * However, that implies that we have to traverse the dentry
601 * tree upwards to the parents which might _also_ now be
602 * scheduled for deletion (it may have been only waiting for
603 * its last child to go away).
605 * This tail recursion is done by hand as we don't want to depend
606 * on the compiler to always get this right (gcc generally doesn't).
607 * Real recursion would eat up our stack space.
611 * dput - release a dentry
612 * @dentry: dentry to release
614 * Release a dentry. This will drop the usage count and if appropriate
615 * call the dentry unlink method as well as removing it from the queues and
616 * releasing its resources. If the parent dentries were scheduled for release
617 * they too may now get deleted.
619 void dput(struct dentry
*dentry
)
621 if (unlikely(!dentry
))
625 if (lockref_put_or_lock(&dentry
->d_lockref
))
628 /* Unreachable? Get rid of it */
629 if (unlikely(d_unhashed(dentry
)))
632 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
633 if (dentry
->d_op
->d_delete(dentry
))
637 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
638 dentry
->d_flags
|= DCACHE_REFERENCED
;
639 dentry_lru_add(dentry
);
641 dentry
->d_lockref
.count
--;
642 spin_unlock(&dentry
->d_lock
);
646 dentry
= dentry_kill(dentry
);
653 /* This must be called with d_lock held */
654 static inline void __dget_dlock(struct dentry
*dentry
)
656 dentry
->d_lockref
.count
++;
659 static inline void __dget(struct dentry
*dentry
)
661 lockref_get(&dentry
->d_lockref
);
664 struct dentry
*dget_parent(struct dentry
*dentry
)
670 * Do optimistic parent lookup without any
674 ret
= ACCESS_ONCE(dentry
->d_parent
);
675 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
677 if (likely(gotref
)) {
678 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
685 * Don't need rcu_dereference because we re-check it was correct under
689 ret
= dentry
->d_parent
;
690 spin_lock(&ret
->d_lock
);
691 if (unlikely(ret
!= dentry
->d_parent
)) {
692 spin_unlock(&ret
->d_lock
);
697 BUG_ON(!ret
->d_lockref
.count
);
698 ret
->d_lockref
.count
++;
699 spin_unlock(&ret
->d_lock
);
702 EXPORT_SYMBOL(dget_parent
);
705 * d_find_alias - grab a hashed alias of inode
706 * @inode: inode in question
708 * If inode has a hashed alias, or is a directory and has any alias,
709 * acquire the reference to alias and return it. Otherwise return NULL.
710 * Notice that if inode is a directory there can be only one alias and
711 * it can be unhashed only if it has no children, or if it is the root
712 * of a filesystem, or if the directory was renamed and d_revalidate
713 * was the first vfs operation to notice.
715 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
716 * any other hashed alias over that one.
718 static struct dentry
*__d_find_alias(struct inode
*inode
)
720 struct dentry
*alias
, *discon_alias
;
724 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
725 spin_lock(&alias
->d_lock
);
726 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
727 if (IS_ROOT(alias
) &&
728 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
729 discon_alias
= alias
;
732 spin_unlock(&alias
->d_lock
);
736 spin_unlock(&alias
->d_lock
);
739 alias
= discon_alias
;
740 spin_lock(&alias
->d_lock
);
741 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
743 spin_unlock(&alias
->d_lock
);
746 spin_unlock(&alias
->d_lock
);
752 struct dentry
*d_find_alias(struct inode
*inode
)
754 struct dentry
*de
= NULL
;
756 if (!hlist_empty(&inode
->i_dentry
)) {
757 spin_lock(&inode
->i_lock
);
758 de
= __d_find_alias(inode
);
759 spin_unlock(&inode
->i_lock
);
763 EXPORT_SYMBOL(d_find_alias
);
766 * Try to kill dentries associated with this inode.
767 * WARNING: you must own a reference to inode.
769 void d_prune_aliases(struct inode
*inode
)
771 struct dentry
*dentry
;
773 spin_lock(&inode
->i_lock
);
774 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
775 spin_lock(&dentry
->d_lock
);
776 if (!dentry
->d_lockref
.count
) {
777 struct dentry
*parent
= lock_parent(dentry
);
778 if (likely(!dentry
->d_lockref
.count
)) {
779 __dentry_kill(dentry
);
784 spin_unlock(&parent
->d_lock
);
786 spin_unlock(&dentry
->d_lock
);
788 spin_unlock(&inode
->i_lock
);
790 EXPORT_SYMBOL(d_prune_aliases
);
792 static void shrink_dentry_list(struct list_head
*list
)
794 struct dentry
*dentry
, *parent
;
796 while (!list_empty(list
)) {
798 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
799 spin_lock(&dentry
->d_lock
);
800 parent
= lock_parent(dentry
);
803 * The dispose list is isolated and dentries are not accounted
804 * to the LRU here, so we can simply remove it from the list
805 * here regardless of whether it is referenced or not.
807 d_shrink_del(dentry
);
810 * We found an inuse dentry which was not removed from
811 * the LRU because of laziness during lookup. Do not free it.
813 if ((int)dentry
->d_lockref
.count
> 0) {
814 spin_unlock(&dentry
->d_lock
);
816 spin_unlock(&parent
->d_lock
);
821 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
822 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
823 spin_unlock(&dentry
->d_lock
);
825 spin_unlock(&parent
->d_lock
);
831 inode
= dentry
->d_inode
;
832 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
833 d_shrink_add(dentry
, list
);
834 spin_unlock(&dentry
->d_lock
);
836 spin_unlock(&parent
->d_lock
);
840 __dentry_kill(dentry
);
843 * We need to prune ancestors too. This is necessary to prevent
844 * quadratic behavior of shrink_dcache_parent(), but is also
845 * expected to be beneficial in reducing dentry cache
849 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
850 parent
= lock_parent(dentry
);
851 if (dentry
->d_lockref
.count
!= 1) {
852 dentry
->d_lockref
.count
--;
853 spin_unlock(&dentry
->d_lock
);
855 spin_unlock(&parent
->d_lock
);
858 inode
= dentry
->d_inode
; /* can't be NULL */
859 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
860 spin_unlock(&dentry
->d_lock
);
862 spin_unlock(&parent
->d_lock
);
866 __dentry_kill(dentry
);
872 static enum lru_status
873 dentry_lru_isolate(struct list_head
*item
, spinlock_t
*lru_lock
, void *arg
)
875 struct list_head
*freeable
= arg
;
876 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
880 * we are inverting the lru lock/dentry->d_lock here,
881 * so use a trylock. If we fail to get the lock, just skip
884 if (!spin_trylock(&dentry
->d_lock
))
888 * Referenced dentries are still in use. If they have active
889 * counts, just remove them from the LRU. Otherwise give them
890 * another pass through the LRU.
892 if (dentry
->d_lockref
.count
) {
893 d_lru_isolate(dentry
);
894 spin_unlock(&dentry
->d_lock
);
898 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
899 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
900 spin_unlock(&dentry
->d_lock
);
903 * The list move itself will be made by the common LRU code. At
904 * this point, we've dropped the dentry->d_lock but keep the
905 * lru lock. This is safe to do, since every list movement is
906 * protected by the lru lock even if both locks are held.
908 * This is guaranteed by the fact that all LRU management
909 * functions are intermediated by the LRU API calls like
910 * list_lru_add and list_lru_del. List movement in this file
911 * only ever occur through this functions or through callbacks
912 * like this one, that are called from the LRU API.
914 * The only exceptions to this are functions like
915 * shrink_dentry_list, and code that first checks for the
916 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
917 * operating only with stack provided lists after they are
918 * properly isolated from the main list. It is thus, always a
924 d_lru_shrink_move(dentry
, freeable
);
925 spin_unlock(&dentry
->d_lock
);
931 * prune_dcache_sb - shrink the dcache
933 * @nr_to_scan : number of entries to try to free
934 * @nid: which node to scan for freeable entities
936 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
937 * done when we need more memory an called from the superblock shrinker
940 * This function may fail to free any resources if all the dentries are in
943 long prune_dcache_sb(struct super_block
*sb
, unsigned long nr_to_scan
,
949 freed
= list_lru_walk_node(&sb
->s_dentry_lru
, nid
, dentry_lru_isolate
,
950 &dispose
, &nr_to_scan
);
951 shrink_dentry_list(&dispose
);
955 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
956 spinlock_t
*lru_lock
, void *arg
)
958 struct list_head
*freeable
= arg
;
959 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
962 * we are inverting the lru lock/dentry->d_lock here,
963 * so use a trylock. If we fail to get the lock, just skip
966 if (!spin_trylock(&dentry
->d_lock
))
969 d_lru_shrink_move(dentry
, freeable
);
970 spin_unlock(&dentry
->d_lock
);
977 * shrink_dcache_sb - shrink dcache for a superblock
980 * Shrink the dcache for the specified super block. This is used to free
981 * the dcache before unmounting a file system.
983 void shrink_dcache_sb(struct super_block
*sb
)
990 freed
= list_lru_walk(&sb
->s_dentry_lru
,
991 dentry_lru_isolate_shrink
, &dispose
, UINT_MAX
);
993 this_cpu_sub(nr_dentry_unused
, freed
);
994 shrink_dentry_list(&dispose
);
997 EXPORT_SYMBOL(shrink_dcache_sb
);
1000 * enum d_walk_ret - action to talke during tree walk
1001 * @D_WALK_CONTINUE: contrinue walk
1002 * @D_WALK_QUIT: quit walk
1003 * @D_WALK_NORETRY: quit when retry is needed
1004 * @D_WALK_SKIP: skip this dentry and its children
1014 * d_walk - walk the dentry tree
1015 * @parent: start of walk
1016 * @data: data passed to @enter() and @finish()
1017 * @enter: callback when first entering the dentry
1018 * @finish: callback when successfully finished the walk
1020 * The @enter() and @finish() callbacks are called with d_lock held.
1022 static void d_walk(struct dentry
*parent
, void *data
,
1023 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1024 void (*finish
)(void *))
1026 struct dentry
*this_parent
;
1027 struct list_head
*next
;
1029 enum d_walk_ret ret
;
1033 read_seqbegin_or_lock(&rename_lock
, &seq
);
1034 this_parent
= parent
;
1035 spin_lock(&this_parent
->d_lock
);
1037 ret
= enter(data
, this_parent
);
1039 case D_WALK_CONTINUE
:
1044 case D_WALK_NORETRY
:
1049 next
= this_parent
->d_subdirs
.next
;
1051 while (next
!= &this_parent
->d_subdirs
) {
1052 struct list_head
*tmp
= next
;
1053 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1056 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1058 ret
= enter(data
, dentry
);
1060 case D_WALK_CONTINUE
:
1063 spin_unlock(&dentry
->d_lock
);
1065 case D_WALK_NORETRY
:
1069 spin_unlock(&dentry
->d_lock
);
1073 if (!list_empty(&dentry
->d_subdirs
)) {
1074 spin_unlock(&this_parent
->d_lock
);
1075 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1076 this_parent
= dentry
;
1077 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1080 spin_unlock(&dentry
->d_lock
);
1083 * All done at this level ... ascend and resume the search.
1087 if (this_parent
!= parent
) {
1088 struct dentry
*child
= this_parent
;
1089 this_parent
= child
->d_parent
;
1091 spin_unlock(&child
->d_lock
);
1092 spin_lock(&this_parent
->d_lock
);
1094 /* might go back up the wrong parent if we have had a rename. */
1095 if (need_seqretry(&rename_lock
, seq
))
1097 next
= child
->d_child
.next
;
1098 while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
)) {
1099 if (next
== &this_parent
->d_subdirs
)
1101 child
= list_entry(next
, struct dentry
, d_child
);
1107 if (need_seqretry(&rename_lock
, seq
))
1114 spin_unlock(&this_parent
->d_lock
);
1115 done_seqretry(&rename_lock
, seq
);
1119 spin_unlock(&this_parent
->d_lock
);
1129 * Search for at least 1 mount point in the dentry's subdirs.
1130 * We descend to the next level whenever the d_subdirs
1131 * list is non-empty and continue searching.
1134 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1137 if (d_mountpoint(dentry
)) {
1141 return D_WALK_CONTINUE
;
1145 * have_submounts - check for mounts over a dentry
1146 * @parent: dentry to check.
1148 * Return true if the parent or its subdirectories contain
1151 int have_submounts(struct dentry
*parent
)
1155 d_walk(parent
, &ret
, check_mount
, NULL
);
1159 EXPORT_SYMBOL(have_submounts
);
1162 * Called by mount code to set a mountpoint and check if the mountpoint is
1163 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1164 * subtree can become unreachable).
1166 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1167 * this reason take rename_lock and d_lock on dentry and ancestors.
1169 int d_set_mounted(struct dentry
*dentry
)
1173 write_seqlock(&rename_lock
);
1174 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1175 /* Need exclusion wrt. d_invalidate() */
1176 spin_lock(&p
->d_lock
);
1177 if (unlikely(d_unhashed(p
))) {
1178 spin_unlock(&p
->d_lock
);
1181 spin_unlock(&p
->d_lock
);
1183 spin_lock(&dentry
->d_lock
);
1184 if (!d_unlinked(dentry
)) {
1185 dentry
->d_flags
|= DCACHE_MOUNTED
;
1188 spin_unlock(&dentry
->d_lock
);
1190 write_sequnlock(&rename_lock
);
1195 * Search the dentry child list of the specified parent,
1196 * and move any unused dentries to the end of the unused
1197 * list for prune_dcache(). We descend to the next level
1198 * whenever the d_subdirs list is non-empty and continue
1201 * It returns zero iff there are no unused children,
1202 * otherwise it returns the number of children moved to
1203 * the end of the unused list. This may not be the total
1204 * number of unused children, because select_parent can
1205 * drop the lock and return early due to latency
1209 struct select_data
{
1210 struct dentry
*start
;
1211 struct list_head dispose
;
1215 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1217 struct select_data
*data
= _data
;
1218 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1220 if (data
->start
== dentry
)
1223 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1226 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1228 if (!dentry
->d_lockref
.count
) {
1229 d_shrink_add(dentry
, &data
->dispose
);
1234 * We can return to the caller if we have found some (this
1235 * ensures forward progress). We'll be coming back to find
1238 if (!list_empty(&data
->dispose
))
1239 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1245 * shrink_dcache_parent - prune dcache
1246 * @parent: parent of entries to prune
1248 * Prune the dcache to remove unused children of the parent dentry.
1250 void shrink_dcache_parent(struct dentry
*parent
)
1253 struct select_data data
;
1255 INIT_LIST_HEAD(&data
.dispose
);
1256 data
.start
= parent
;
1259 d_walk(parent
, &data
, select_collect
, NULL
);
1263 shrink_dentry_list(&data
.dispose
);
1267 EXPORT_SYMBOL(shrink_dcache_parent
);
1269 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1271 /* it has busy descendents; complain about those instead */
1272 if (!list_empty(&dentry
->d_subdirs
))
1273 return D_WALK_CONTINUE
;
1275 /* root with refcount 1 is fine */
1276 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1277 return D_WALK_CONTINUE
;
1279 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1280 " still in use (%d) [unmount of %s %s]\n",
1283 dentry
->d_inode
->i_ino
: 0UL,
1285 dentry
->d_lockref
.count
,
1286 dentry
->d_sb
->s_type
->name
,
1287 dentry
->d_sb
->s_id
);
1289 return D_WALK_CONTINUE
;
1292 static void do_one_tree(struct dentry
*dentry
)
1294 shrink_dcache_parent(dentry
);
1295 d_walk(dentry
, dentry
, umount_check
, NULL
);
1301 * destroy the dentries attached to a superblock on unmounting
1303 void shrink_dcache_for_umount(struct super_block
*sb
)
1305 struct dentry
*dentry
;
1307 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1309 dentry
= sb
->s_root
;
1311 do_one_tree(dentry
);
1313 while (!hlist_bl_empty(&sb
->s_anon
)) {
1314 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1315 do_one_tree(dentry
);
1319 struct detach_data
{
1320 struct select_data select
;
1321 struct dentry
*mountpoint
;
1323 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1325 struct detach_data
*data
= _data
;
1327 if (d_mountpoint(dentry
)) {
1328 __dget_dlock(dentry
);
1329 data
->mountpoint
= dentry
;
1333 return select_collect(&data
->select
, dentry
);
1336 static void check_and_drop(void *_data
)
1338 struct detach_data
*data
= _data
;
1340 if (!data
->mountpoint
&& !data
->select
.found
)
1341 __d_drop(data
->select
.start
);
1345 * d_invalidate - detach submounts, prune dcache, and drop
1346 * @dentry: dentry to invalidate (aka detach, prune and drop)
1350 * The final d_drop is done as an atomic operation relative to
1351 * rename_lock ensuring there are no races with d_set_mounted. This
1352 * ensures there are no unhashed dentries on the path to a mountpoint.
1354 void d_invalidate(struct dentry
*dentry
)
1357 * If it's already been dropped, return OK.
1359 spin_lock(&dentry
->d_lock
);
1360 if (d_unhashed(dentry
)) {
1361 spin_unlock(&dentry
->d_lock
);
1364 spin_unlock(&dentry
->d_lock
);
1366 /* Negative dentries can be dropped without further checks */
1367 if (!dentry
->d_inode
) {
1373 struct detach_data data
;
1375 data
.mountpoint
= NULL
;
1376 INIT_LIST_HEAD(&data
.select
.dispose
);
1377 data
.select
.start
= dentry
;
1378 data
.select
.found
= 0;
1380 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1382 if (data
.select
.found
)
1383 shrink_dentry_list(&data
.select
.dispose
);
1385 if (data
.mountpoint
) {
1386 detach_mounts(data
.mountpoint
);
1387 dput(data
.mountpoint
);
1390 if (!data
.mountpoint
&& !data
.select
.found
)
1396 EXPORT_SYMBOL(d_invalidate
);
1399 * __d_alloc - allocate a dcache entry
1400 * @sb: filesystem it will belong to
1401 * @name: qstr of the name
1403 * Allocates a dentry. It returns %NULL if there is insufficient memory
1404 * available. On a success the dentry is returned. The name passed in is
1405 * copied and the copy passed in may be reused after this call.
1408 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1410 struct dentry
*dentry
;
1413 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1418 * We guarantee that the inline name is always NUL-terminated.
1419 * This way the memcpy() done by the name switching in rename
1420 * will still always have a NUL at the end, even if we might
1421 * be overwriting an internal NUL character
1423 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1424 if (name
->len
> DNAME_INLINE_LEN
-1) {
1425 size_t size
= offsetof(struct external_name
, name
[1]);
1426 struct external_name
*p
= kmalloc(size
+ name
->len
, GFP_KERNEL
);
1428 kmem_cache_free(dentry_cache
, dentry
);
1431 atomic_set(&p
->u
.count
, 1);
1434 dname
= dentry
->d_iname
;
1437 dentry
->d_name
.len
= name
->len
;
1438 dentry
->d_name
.hash
= name
->hash
;
1439 memcpy(dname
, name
->name
, name
->len
);
1440 dname
[name
->len
] = 0;
1442 /* Make sure we always see the terminating NUL character */
1444 dentry
->d_name
.name
= dname
;
1446 dentry
->d_lockref
.count
= 1;
1447 dentry
->d_flags
= 0;
1448 spin_lock_init(&dentry
->d_lock
);
1449 seqcount_init(&dentry
->d_seq
);
1450 dentry
->d_inode
= NULL
;
1451 dentry
->d_parent
= dentry
;
1453 dentry
->d_op
= NULL
;
1454 dentry
->d_fsdata
= NULL
;
1455 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1456 INIT_LIST_HEAD(&dentry
->d_lru
);
1457 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1458 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1459 INIT_LIST_HEAD(&dentry
->d_child
);
1460 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1462 this_cpu_inc(nr_dentry
);
1468 * d_alloc - allocate a dcache entry
1469 * @parent: parent of entry to allocate
1470 * @name: qstr of the name
1472 * Allocates a dentry. It returns %NULL if there is insufficient memory
1473 * available. On a success the dentry is returned. The name passed in is
1474 * copied and the copy passed in may be reused after this call.
1476 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1478 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1482 spin_lock(&parent
->d_lock
);
1484 * don't need child lock because it is not subject
1485 * to concurrency here
1487 __dget_dlock(parent
);
1488 dentry
->d_parent
= parent
;
1489 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1490 spin_unlock(&parent
->d_lock
);
1494 EXPORT_SYMBOL(d_alloc
);
1497 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1498 * @sb: the superblock
1499 * @name: qstr of the name
1501 * For a filesystem that just pins its dentries in memory and never
1502 * performs lookups at all, return an unhashed IS_ROOT dentry.
1504 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1506 return __d_alloc(sb
, name
);
1508 EXPORT_SYMBOL(d_alloc_pseudo
);
1510 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1515 q
.len
= strlen(name
);
1516 q
.hash
= full_name_hash(q
.name
, q
.len
);
1517 return d_alloc(parent
, &q
);
1519 EXPORT_SYMBOL(d_alloc_name
);
1521 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1523 WARN_ON_ONCE(dentry
->d_op
);
1524 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1526 DCACHE_OP_REVALIDATE
|
1527 DCACHE_OP_WEAK_REVALIDATE
|
1528 DCACHE_OP_DELETE
));
1533 dentry
->d_flags
|= DCACHE_OP_HASH
;
1535 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1536 if (op
->d_revalidate
)
1537 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1538 if (op
->d_weak_revalidate
)
1539 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1541 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1543 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1546 EXPORT_SYMBOL(d_set_d_op
);
1548 static unsigned d_flags_for_inode(struct inode
*inode
)
1550 unsigned add_flags
= DCACHE_FILE_TYPE
;
1553 return DCACHE_MISS_TYPE
;
1555 if (S_ISDIR(inode
->i_mode
)) {
1556 add_flags
= DCACHE_DIRECTORY_TYPE
;
1557 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1558 if (unlikely(!inode
->i_op
->lookup
))
1559 add_flags
= DCACHE_AUTODIR_TYPE
;
1561 inode
->i_opflags
|= IOP_LOOKUP
;
1563 } else if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1564 if (unlikely(inode
->i_op
->follow_link
))
1565 add_flags
= DCACHE_SYMLINK_TYPE
;
1567 inode
->i_opflags
|= IOP_NOFOLLOW
;
1570 if (unlikely(IS_AUTOMOUNT(inode
)))
1571 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1575 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1577 unsigned add_flags
= d_flags_for_inode(inode
);
1579 spin_lock(&dentry
->d_lock
);
1580 __d_set_type(dentry
, add_flags
);
1582 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1583 dentry
->d_inode
= inode
;
1584 dentry_rcuwalk_barrier(dentry
);
1585 spin_unlock(&dentry
->d_lock
);
1586 fsnotify_d_instantiate(dentry
, inode
);
1590 * d_instantiate - fill in inode information for a dentry
1591 * @entry: dentry to complete
1592 * @inode: inode to attach to this dentry
1594 * Fill in inode information in the entry.
1596 * This turns negative dentries into productive full members
1599 * NOTE! This assumes that the inode count has been incremented
1600 * (or otherwise set) by the caller to indicate that it is now
1601 * in use by the dcache.
1604 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1606 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1608 spin_lock(&inode
->i_lock
);
1609 __d_instantiate(entry
, inode
);
1611 spin_unlock(&inode
->i_lock
);
1612 security_d_instantiate(entry
, inode
);
1614 EXPORT_SYMBOL(d_instantiate
);
1617 * d_instantiate_unique - instantiate a non-aliased dentry
1618 * @entry: dentry to instantiate
1619 * @inode: inode to attach to this dentry
1621 * Fill in inode information in the entry. On success, it returns NULL.
1622 * If an unhashed alias of "entry" already exists, then we return the
1623 * aliased dentry instead and drop one reference to inode.
1625 * Note that in order to avoid conflicts with rename() etc, the caller
1626 * had better be holding the parent directory semaphore.
1628 * This also assumes that the inode count has been incremented
1629 * (or otherwise set) by the caller to indicate that it is now
1630 * in use by the dcache.
1632 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1633 struct inode
*inode
)
1635 struct dentry
*alias
;
1636 int len
= entry
->d_name
.len
;
1637 const char *name
= entry
->d_name
.name
;
1638 unsigned int hash
= entry
->d_name
.hash
;
1641 __d_instantiate(entry
, NULL
);
1645 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
1647 * Don't need alias->d_lock here, because aliases with
1648 * d_parent == entry->d_parent are not subject to name or
1649 * parent changes, because the parent inode i_mutex is held.
1651 if (alias
->d_name
.hash
!= hash
)
1653 if (alias
->d_parent
!= entry
->d_parent
)
1655 if (alias
->d_name
.len
!= len
)
1657 if (dentry_cmp(alias
, name
, len
))
1663 __d_instantiate(entry
, inode
);
1667 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1669 struct dentry
*result
;
1671 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1674 spin_lock(&inode
->i_lock
);
1675 result
= __d_instantiate_unique(entry
, inode
);
1677 spin_unlock(&inode
->i_lock
);
1680 security_d_instantiate(entry
, inode
);
1684 BUG_ON(!d_unhashed(result
));
1689 EXPORT_SYMBOL(d_instantiate_unique
);
1692 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1693 * @entry: dentry to complete
1694 * @inode: inode to attach to this dentry
1696 * Fill in inode information in the entry. If a directory alias is found, then
1697 * return an error (and drop inode). Together with d_materialise_unique() this
1698 * guarantees that a directory inode may never have more than one alias.
1700 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1702 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1704 spin_lock(&inode
->i_lock
);
1705 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1706 spin_unlock(&inode
->i_lock
);
1710 __d_instantiate(entry
, inode
);
1711 spin_unlock(&inode
->i_lock
);
1712 security_d_instantiate(entry
, inode
);
1716 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1718 struct dentry
*d_make_root(struct inode
*root_inode
)
1720 struct dentry
*res
= NULL
;
1723 static const struct qstr name
= QSTR_INIT("/", 1);
1725 res
= __d_alloc(root_inode
->i_sb
, &name
);
1727 d_instantiate(res
, root_inode
);
1733 EXPORT_SYMBOL(d_make_root
);
1735 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1737 struct dentry
*alias
;
1739 if (hlist_empty(&inode
->i_dentry
))
1741 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1747 * d_find_any_alias - find any alias for a given inode
1748 * @inode: inode to find an alias for
1750 * If any aliases exist for the given inode, take and return a
1751 * reference for one of them. If no aliases exist, return %NULL.
1753 struct dentry
*d_find_any_alias(struct inode
*inode
)
1757 spin_lock(&inode
->i_lock
);
1758 de
= __d_find_any_alias(inode
);
1759 spin_unlock(&inode
->i_lock
);
1762 EXPORT_SYMBOL(d_find_any_alias
);
1764 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1766 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1772 return ERR_PTR(-ESTALE
);
1774 return ERR_CAST(inode
);
1776 res
= d_find_any_alias(inode
);
1780 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1782 res
= ERR_PTR(-ENOMEM
);
1786 spin_lock(&inode
->i_lock
);
1787 res
= __d_find_any_alias(inode
);
1789 spin_unlock(&inode
->i_lock
);
1794 /* attach a disconnected dentry */
1795 add_flags
= d_flags_for_inode(inode
);
1798 add_flags
|= DCACHE_DISCONNECTED
;
1800 spin_lock(&tmp
->d_lock
);
1801 tmp
->d_inode
= inode
;
1802 tmp
->d_flags
|= add_flags
;
1803 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1804 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1805 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1806 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1807 spin_unlock(&tmp
->d_lock
);
1808 spin_unlock(&inode
->i_lock
);
1809 security_d_instantiate(tmp
, inode
);
1814 if (res
&& !IS_ERR(res
))
1815 security_d_instantiate(res
, inode
);
1821 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1822 * @inode: inode to allocate the dentry for
1824 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1825 * similar open by handle operations. The returned dentry may be anonymous,
1826 * or may have a full name (if the inode was already in the cache).
1828 * When called on a directory inode, we must ensure that the inode only ever
1829 * has one dentry. If a dentry is found, that is returned instead of
1830 * allocating a new one.
1832 * On successful return, the reference to the inode has been transferred
1833 * to the dentry. In case of an error the reference on the inode is released.
1834 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1835 * be passed in and the error will be propagated to the return value,
1836 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1838 struct dentry
*d_obtain_alias(struct inode
*inode
)
1840 return __d_obtain_alias(inode
, 1);
1842 EXPORT_SYMBOL(d_obtain_alias
);
1845 * d_obtain_root - find or allocate a dentry for a given inode
1846 * @inode: inode to allocate the dentry for
1848 * Obtain an IS_ROOT dentry for the root of a filesystem.
1850 * We must ensure that directory inodes only ever have one dentry. If a
1851 * dentry is found, that is returned instead of allocating a new one.
1853 * On successful return, the reference to the inode has been transferred
1854 * to the dentry. In case of an error the reference on the inode is
1855 * released. A %NULL or IS_ERR inode may be passed in and will be the
1856 * error will be propagate to the return value, with a %NULL @inode
1857 * replaced by ERR_PTR(-ESTALE).
1859 struct dentry
*d_obtain_root(struct inode
*inode
)
1861 return __d_obtain_alias(inode
, 0);
1863 EXPORT_SYMBOL(d_obtain_root
);
1866 * d_add_ci - lookup or allocate new dentry with case-exact name
1867 * @inode: the inode case-insensitive lookup has found
1868 * @dentry: the negative dentry that was passed to the parent's lookup func
1869 * @name: the case-exact name to be associated with the returned dentry
1871 * This is to avoid filling the dcache with case-insensitive names to the
1872 * same inode, only the actual correct case is stored in the dcache for
1873 * case-insensitive filesystems.
1875 * For a case-insensitive lookup match and if the the case-exact dentry
1876 * already exists in in the dcache, use it and return it.
1878 * If no entry exists with the exact case name, allocate new dentry with
1879 * the exact case, and return the spliced entry.
1881 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1884 struct dentry
*found
;
1888 * First check if a dentry matching the name already exists,
1889 * if not go ahead and create it now.
1891 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1893 new = d_alloc(dentry
->d_parent
, name
);
1895 found
= ERR_PTR(-ENOMEM
);
1897 found
= d_splice_alias(inode
, new);
1908 EXPORT_SYMBOL(d_add_ci
);
1911 * Do the slow-case of the dentry name compare.
1913 * Unlike the dentry_cmp() function, we need to atomically
1914 * load the name and length information, so that the
1915 * filesystem can rely on them, and can use the 'name' and
1916 * 'len' information without worrying about walking off the
1917 * end of memory etc.
1919 * Thus the read_seqcount_retry() and the "duplicate" info
1920 * in arguments (the low-level filesystem should not look
1921 * at the dentry inode or name contents directly, since
1922 * rename can change them while we're in RCU mode).
1924 enum slow_d_compare
{
1930 static noinline
enum slow_d_compare
slow_dentry_cmp(
1931 const struct dentry
*parent
,
1932 struct dentry
*dentry
,
1934 const struct qstr
*name
)
1936 int tlen
= dentry
->d_name
.len
;
1937 const char *tname
= dentry
->d_name
.name
;
1939 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
1941 return D_COMP_SEQRETRY
;
1943 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
1944 return D_COMP_NOMATCH
;
1949 * __d_lookup_rcu - search for a dentry (racy, store-free)
1950 * @parent: parent dentry
1951 * @name: qstr of name we wish to find
1952 * @seqp: returns d_seq value at the point where the dentry was found
1953 * Returns: dentry, or NULL
1955 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1956 * resolution (store-free path walking) design described in
1957 * Documentation/filesystems/path-lookup.txt.
1959 * This is not to be used outside core vfs.
1961 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1962 * held, and rcu_read_lock held. The returned dentry must not be stored into
1963 * without taking d_lock and checking d_seq sequence count against @seq
1966 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
1969 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1970 * the returned dentry, so long as its parent's seqlock is checked after the
1971 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1972 * is formed, giving integrity down the path walk.
1974 * NOTE! The caller *has* to check the resulting dentry against the sequence
1975 * number we've returned before using any of the resulting dentry state!
1977 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
1978 const struct qstr
*name
,
1981 u64 hashlen
= name
->hash_len
;
1982 const unsigned char *str
= name
->name
;
1983 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
1984 struct hlist_bl_node
*node
;
1985 struct dentry
*dentry
;
1988 * Note: There is significant duplication with __d_lookup_rcu which is
1989 * required to prevent single threaded performance regressions
1990 * especially on architectures where smp_rmb (in seqcounts) are costly.
1991 * Keep the two functions in sync.
1995 * The hash list is protected using RCU.
1997 * Carefully use d_seq when comparing a candidate dentry, to avoid
1998 * races with d_move().
2000 * It is possible that concurrent renames can mess up our list
2001 * walk here and result in missing our dentry, resulting in the
2002 * false-negative result. d_lookup() protects against concurrent
2003 * renames using rename_lock seqlock.
2005 * See Documentation/filesystems/path-lookup.txt for more details.
2007 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2012 * The dentry sequence count protects us from concurrent
2013 * renames, and thus protects parent and name fields.
2015 * The caller must perform a seqcount check in order
2016 * to do anything useful with the returned dentry.
2018 * NOTE! We do a "raw" seqcount_begin here. That means that
2019 * we don't wait for the sequence count to stabilize if it
2020 * is in the middle of a sequence change. If we do the slow
2021 * dentry compare, we will do seqretries until it is stable,
2022 * and if we end up with a successful lookup, we actually
2023 * want to exit RCU lookup anyway.
2025 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2026 if (dentry
->d_parent
!= parent
)
2028 if (d_unhashed(dentry
))
2031 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2032 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2035 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
2038 case D_COMP_NOMATCH
:
2045 if (dentry
->d_name
.hash_len
!= hashlen
)
2048 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
2055 * d_lookup - search for a dentry
2056 * @parent: parent dentry
2057 * @name: qstr of name we wish to find
2058 * Returns: dentry, or NULL
2060 * d_lookup searches the children of the parent dentry for the name in
2061 * question. If the dentry is found its reference count is incremented and the
2062 * dentry is returned. The caller must use dput to free the entry when it has
2063 * finished using it. %NULL is returned if the dentry does not exist.
2065 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2067 struct dentry
*dentry
;
2071 seq
= read_seqbegin(&rename_lock
);
2072 dentry
= __d_lookup(parent
, name
);
2075 } while (read_seqretry(&rename_lock
, seq
));
2078 EXPORT_SYMBOL(d_lookup
);
2081 * __d_lookup - search for a dentry (racy)
2082 * @parent: parent dentry
2083 * @name: qstr of name we wish to find
2084 * Returns: dentry, or NULL
2086 * __d_lookup is like d_lookup, however it may (rarely) return a
2087 * false-negative result due to unrelated rename activity.
2089 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2090 * however it must be used carefully, eg. with a following d_lookup in
2091 * the case of failure.
2093 * __d_lookup callers must be commented.
2095 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2097 unsigned int len
= name
->len
;
2098 unsigned int hash
= name
->hash
;
2099 const unsigned char *str
= name
->name
;
2100 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
2101 struct hlist_bl_node
*node
;
2102 struct dentry
*found
= NULL
;
2103 struct dentry
*dentry
;
2106 * Note: There is significant duplication with __d_lookup_rcu which is
2107 * required to prevent single threaded performance regressions
2108 * especially on architectures where smp_rmb (in seqcounts) are costly.
2109 * Keep the two functions in sync.
2113 * The hash list is protected using RCU.
2115 * Take d_lock when comparing a candidate dentry, to avoid races
2118 * It is possible that concurrent renames can mess up our list
2119 * walk here and result in missing our dentry, resulting in the
2120 * false-negative result. d_lookup() protects against concurrent
2121 * renames using rename_lock seqlock.
2123 * See Documentation/filesystems/path-lookup.txt for more details.
2127 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2129 if (dentry
->d_name
.hash
!= hash
)
2132 spin_lock(&dentry
->d_lock
);
2133 if (dentry
->d_parent
!= parent
)
2135 if (d_unhashed(dentry
))
2139 * It is safe to compare names since d_move() cannot
2140 * change the qstr (protected by d_lock).
2142 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
2143 int tlen
= dentry
->d_name
.len
;
2144 const char *tname
= dentry
->d_name
.name
;
2145 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2148 if (dentry
->d_name
.len
!= len
)
2150 if (dentry_cmp(dentry
, str
, len
))
2154 dentry
->d_lockref
.count
++;
2156 spin_unlock(&dentry
->d_lock
);
2159 spin_unlock(&dentry
->d_lock
);
2167 * d_hash_and_lookup - hash the qstr then search for a dentry
2168 * @dir: Directory to search in
2169 * @name: qstr of name we wish to find
2171 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2173 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2176 * Check for a fs-specific hash function. Note that we must
2177 * calculate the standard hash first, as the d_op->d_hash()
2178 * routine may choose to leave the hash value unchanged.
2180 name
->hash
= full_name_hash(name
->name
, name
->len
);
2181 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2182 int err
= dir
->d_op
->d_hash(dir
, name
);
2183 if (unlikely(err
< 0))
2184 return ERR_PTR(err
);
2186 return d_lookup(dir
, name
);
2188 EXPORT_SYMBOL(d_hash_and_lookup
);
2191 * d_validate - verify dentry provided from insecure source (deprecated)
2192 * @dentry: The dentry alleged to be valid child of @dparent
2193 * @dparent: The parent dentry (known to be valid)
2195 * An insecure source has sent us a dentry, here we verify it and dget() it.
2196 * This is used by ncpfs in its readdir implementation.
2197 * Zero is returned in the dentry is invalid.
2199 * This function is slow for big directories, and deprecated, do not use it.
2201 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
2203 struct dentry
*child
;
2205 spin_lock(&dparent
->d_lock
);
2206 list_for_each_entry(child
, &dparent
->d_subdirs
, d_child
) {
2207 if (dentry
== child
) {
2208 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
2209 __dget_dlock(dentry
);
2210 spin_unlock(&dentry
->d_lock
);
2211 spin_unlock(&dparent
->d_lock
);
2215 spin_unlock(&dparent
->d_lock
);
2219 EXPORT_SYMBOL(d_validate
);
2222 * When a file is deleted, we have two options:
2223 * - turn this dentry into a negative dentry
2224 * - unhash this dentry and free it.
2226 * Usually, we want to just turn this into
2227 * a negative dentry, but if anybody else is
2228 * currently using the dentry or the inode
2229 * we can't do that and we fall back on removing
2230 * it from the hash queues and waiting for
2231 * it to be deleted later when it has no users
2235 * d_delete - delete a dentry
2236 * @dentry: The dentry to delete
2238 * Turn the dentry into a negative dentry if possible, otherwise
2239 * remove it from the hash queues so it can be deleted later
2242 void d_delete(struct dentry
* dentry
)
2244 struct inode
*inode
;
2247 * Are we the only user?
2250 spin_lock(&dentry
->d_lock
);
2251 inode
= dentry
->d_inode
;
2252 isdir
= S_ISDIR(inode
->i_mode
);
2253 if (dentry
->d_lockref
.count
== 1) {
2254 if (!spin_trylock(&inode
->i_lock
)) {
2255 spin_unlock(&dentry
->d_lock
);
2259 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2260 dentry_unlink_inode(dentry
);
2261 fsnotify_nameremove(dentry
, isdir
);
2265 if (!d_unhashed(dentry
))
2268 spin_unlock(&dentry
->d_lock
);
2270 fsnotify_nameremove(dentry
, isdir
);
2272 EXPORT_SYMBOL(d_delete
);
2274 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2276 BUG_ON(!d_unhashed(entry
));
2278 entry
->d_flags
|= DCACHE_RCUACCESS
;
2279 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2283 static void _d_rehash(struct dentry
* entry
)
2285 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2289 * d_rehash - add an entry back to the hash
2290 * @entry: dentry to add to the hash
2292 * Adds a dentry to the hash according to its name.
2295 void d_rehash(struct dentry
* entry
)
2297 spin_lock(&entry
->d_lock
);
2299 spin_unlock(&entry
->d_lock
);
2301 EXPORT_SYMBOL(d_rehash
);
2304 * dentry_update_name_case - update case insensitive dentry with a new name
2305 * @dentry: dentry to be updated
2308 * Update a case insensitive dentry with new case of name.
2310 * dentry must have been returned by d_lookup with name @name. Old and new
2311 * name lengths must match (ie. no d_compare which allows mismatched name
2314 * Parent inode i_mutex must be held over d_lookup and into this call (to
2315 * keep renames and concurrent inserts, and readdir(2) away).
2317 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2319 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2320 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2322 spin_lock(&dentry
->d_lock
);
2323 write_seqcount_begin(&dentry
->d_seq
);
2324 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2325 write_seqcount_end(&dentry
->d_seq
);
2326 spin_unlock(&dentry
->d_lock
);
2328 EXPORT_SYMBOL(dentry_update_name_case
);
2330 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2332 if (unlikely(dname_external(target
))) {
2333 if (unlikely(dname_external(dentry
))) {
2335 * Both external: swap the pointers
2337 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2340 * dentry:internal, target:external. Steal target's
2341 * storage and make target internal.
2343 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2344 dentry
->d_name
.len
+ 1);
2345 dentry
->d_name
.name
= target
->d_name
.name
;
2346 target
->d_name
.name
= target
->d_iname
;
2349 if (unlikely(dname_external(dentry
))) {
2351 * dentry:external, target:internal. Give dentry's
2352 * storage to target and make dentry internal
2354 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2355 target
->d_name
.len
+ 1);
2356 target
->d_name
.name
= dentry
->d_name
.name
;
2357 dentry
->d_name
.name
= dentry
->d_iname
;
2360 * Both are internal.
2363 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2364 kmemcheck_mark_initialized(dentry
->d_iname
, DNAME_INLINE_LEN
);
2365 kmemcheck_mark_initialized(target
->d_iname
, DNAME_INLINE_LEN
);
2366 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2367 swap(((long *) &dentry
->d_iname
)[i
],
2368 ((long *) &target
->d_iname
)[i
]);
2372 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2375 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2377 struct external_name
*old_name
= NULL
;
2378 if (unlikely(dname_external(dentry
)))
2379 old_name
= external_name(dentry
);
2380 if (unlikely(dname_external(target
))) {
2381 atomic_inc(&external_name(target
)->u
.count
);
2382 dentry
->d_name
= target
->d_name
;
2384 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2385 target
->d_name
.len
+ 1);
2386 dentry
->d_name
.name
= dentry
->d_iname
;
2387 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2389 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2390 kfree_rcu(old_name
, u
.head
);
2393 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2396 * XXXX: do we really need to take target->d_lock?
2398 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2399 spin_lock(&target
->d_parent
->d_lock
);
2401 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2402 spin_lock(&dentry
->d_parent
->d_lock
);
2403 spin_lock_nested(&target
->d_parent
->d_lock
,
2404 DENTRY_D_LOCK_NESTED
);
2406 spin_lock(&target
->d_parent
->d_lock
);
2407 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2408 DENTRY_D_LOCK_NESTED
);
2411 if (target
< dentry
) {
2412 spin_lock_nested(&target
->d_lock
, 2);
2413 spin_lock_nested(&dentry
->d_lock
, 3);
2415 spin_lock_nested(&dentry
->d_lock
, 2);
2416 spin_lock_nested(&target
->d_lock
, 3);
2420 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2422 if (target
->d_parent
!= dentry
->d_parent
)
2423 spin_unlock(&dentry
->d_parent
->d_lock
);
2424 if (target
->d_parent
!= target
)
2425 spin_unlock(&target
->d_parent
->d_lock
);
2426 spin_unlock(&target
->d_lock
);
2427 spin_unlock(&dentry
->d_lock
);
2431 * When switching names, the actual string doesn't strictly have to
2432 * be preserved in the target - because we're dropping the target
2433 * anyway. As such, we can just do a simple memcpy() to copy over
2434 * the new name before we switch, unless we are going to rehash
2435 * it. Note that if we *do* unhash the target, we are not allowed
2436 * to rehash it without giving it a new name/hash key - whether
2437 * we swap or overwrite the names here, resulting name won't match
2438 * the reality in filesystem; it's only there for d_path() purposes.
2439 * Note that all of this is happening under rename_lock, so the
2440 * any hash lookup seeing it in the middle of manipulations will
2441 * be discarded anyway. So we do not care what happens to the hash
2445 * __d_move - move a dentry
2446 * @dentry: entry to move
2447 * @target: new dentry
2448 * @exchange: exchange the two dentries
2450 * Update the dcache to reflect the move of a file name. Negative
2451 * dcache entries should not be moved in this way. Caller must hold
2452 * rename_lock, the i_mutex of the source and target directories,
2453 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2455 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2458 if (!dentry
->d_inode
)
2459 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2461 BUG_ON(d_ancestor(dentry
, target
));
2462 BUG_ON(d_ancestor(target
, dentry
));
2464 dentry_lock_for_move(dentry
, target
);
2466 write_seqcount_begin(&dentry
->d_seq
);
2467 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2469 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2472 * Move the dentry to the target hash queue. Don't bother checking
2473 * for the same hash queue because of how unlikely it is.
2476 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2479 * Unhash the target (d_delete() is not usable here). If exchanging
2480 * the two dentries, then rehash onto the other's hash queue.
2485 d_hash(dentry
->d_parent
, dentry
->d_name
.hash
));
2488 /* Switch the names.. */
2490 swap_names(dentry
, target
);
2492 copy_name(dentry
, target
);
2494 /* ... and switch them in the tree */
2495 if (IS_ROOT(dentry
)) {
2496 /* splicing a tree */
2497 dentry
->d_parent
= target
->d_parent
;
2498 target
->d_parent
= target
;
2499 list_del_init(&target
->d_child
);
2500 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2502 /* swapping two dentries */
2503 swap(dentry
->d_parent
, target
->d_parent
);
2504 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2505 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2507 fsnotify_d_move(target
);
2508 fsnotify_d_move(dentry
);
2511 write_seqcount_end(&target
->d_seq
);
2512 write_seqcount_end(&dentry
->d_seq
);
2514 dentry_unlock_for_move(dentry
, target
);
2518 * d_move - move a dentry
2519 * @dentry: entry to move
2520 * @target: new dentry
2522 * Update the dcache to reflect the move of a file name. Negative
2523 * dcache entries should not be moved in this way. See the locking
2524 * requirements for __d_move.
2526 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2528 write_seqlock(&rename_lock
);
2529 __d_move(dentry
, target
, false);
2530 write_sequnlock(&rename_lock
);
2532 EXPORT_SYMBOL(d_move
);
2535 * d_exchange - exchange two dentries
2536 * @dentry1: first dentry
2537 * @dentry2: second dentry
2539 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2541 write_seqlock(&rename_lock
);
2543 WARN_ON(!dentry1
->d_inode
);
2544 WARN_ON(!dentry2
->d_inode
);
2545 WARN_ON(IS_ROOT(dentry1
));
2546 WARN_ON(IS_ROOT(dentry2
));
2548 __d_move(dentry1
, dentry2
, true);
2550 write_sequnlock(&rename_lock
);
2554 * d_ancestor - search for an ancestor
2555 * @p1: ancestor dentry
2558 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2559 * an ancestor of p2, else NULL.
2561 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2565 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2566 if (p
->d_parent
== p1
)
2573 * This helper attempts to cope with remotely renamed directories
2575 * It assumes that the caller is already holding
2576 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2578 * Note: If ever the locking in lock_rename() changes, then please
2579 * remember to update this too...
2581 static int __d_unalias(struct inode
*inode
,
2582 struct dentry
*dentry
, struct dentry
*alias
)
2584 struct mutex
*m1
= NULL
, *m2
= NULL
;
2587 /* If alias and dentry share a parent, then no extra locks required */
2588 if (alias
->d_parent
== dentry
->d_parent
)
2591 /* See lock_rename() */
2592 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2594 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2595 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2597 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2599 __d_move(alias
, dentry
, false);
2602 spin_unlock(&inode
->i_lock
);
2611 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2612 * @inode: the inode which may have a disconnected dentry
2613 * @dentry: a negative dentry which we want to point to the inode.
2615 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2616 * place of the given dentry and return it, else simply d_add the inode
2617 * to the dentry and return NULL.
2619 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2620 * we should error out: directories can't have multiple aliases.
2622 * This is needed in the lookup routine of any filesystem that is exportable
2623 * (via knfsd) so that we can build dcache paths to directories effectively.
2625 * If a dentry was found and moved, then it is returned. Otherwise NULL
2626 * is returned. This matches the expected return value of ->lookup.
2628 * Cluster filesystems may call this function with a negative, hashed dentry.
2629 * In that case, we know that the inode will be a regular file, and also this
2630 * will only occur during atomic_open. So we need to check for the dentry
2631 * being already hashed only in the final case.
2633 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2636 return ERR_CAST(inode
);
2638 BUG_ON(!d_unhashed(dentry
));
2641 __d_instantiate(dentry
, NULL
);
2644 spin_lock(&inode
->i_lock
);
2645 if (S_ISDIR(inode
->i_mode
)) {
2646 struct dentry
*new = __d_find_any_alias(inode
);
2647 if (unlikely(new)) {
2648 write_seqlock(&rename_lock
);
2649 if (unlikely(d_ancestor(new, dentry
))) {
2650 write_sequnlock(&rename_lock
);
2651 spin_unlock(&inode
->i_lock
);
2653 new = ERR_PTR(-ELOOP
);
2654 pr_warn_ratelimited(
2655 "VFS: Lookup of '%s' in %s %s"
2656 " would have caused loop\n",
2657 dentry
->d_name
.name
,
2658 inode
->i_sb
->s_type
->name
,
2660 } else if (!IS_ROOT(new)) {
2661 int err
= __d_unalias(inode
, dentry
, new);
2662 write_sequnlock(&rename_lock
);
2668 __d_move(new, dentry
, false);
2669 write_sequnlock(&rename_lock
);
2670 spin_unlock(&inode
->i_lock
);
2671 security_d_instantiate(new, inode
);
2677 /* already taking inode->i_lock, so d_add() by hand */
2678 __d_instantiate(dentry
, inode
);
2679 spin_unlock(&inode
->i_lock
);
2681 security_d_instantiate(dentry
, inode
);
2685 EXPORT_SYMBOL(d_splice_alias
);
2687 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2691 return -ENAMETOOLONG
;
2693 memcpy(*buffer
, str
, namelen
);
2698 * prepend_name - prepend a pathname in front of current buffer pointer
2699 * @buffer: buffer pointer
2700 * @buflen: allocated length of the buffer
2701 * @name: name string and length qstr structure
2703 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2704 * make sure that either the old or the new name pointer and length are
2705 * fetched. However, there may be mismatch between length and pointer.
2706 * The length cannot be trusted, we need to copy it byte-by-byte until
2707 * the length is reached or a null byte is found. It also prepends "/" at
2708 * the beginning of the name. The sequence number check at the caller will
2709 * retry it again when a d_move() does happen. So any garbage in the buffer
2710 * due to mismatched pointer and length will be discarded.
2712 * Data dependency barrier is needed to make sure that we see that terminating
2713 * NUL. Alpha strikes again, film at 11...
2715 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2717 const char *dname
= ACCESS_ONCE(name
->name
);
2718 u32 dlen
= ACCESS_ONCE(name
->len
);
2721 smp_read_barrier_depends();
2723 *buflen
-= dlen
+ 1;
2725 return -ENAMETOOLONG
;
2726 p
= *buffer
-= dlen
+ 1;
2738 * prepend_path - Prepend path string to a buffer
2739 * @path: the dentry/vfsmount to report
2740 * @root: root vfsmnt/dentry
2741 * @buffer: pointer to the end of the buffer
2742 * @buflen: pointer to buffer length
2744 * The function will first try to write out the pathname without taking any
2745 * lock other than the RCU read lock to make sure that dentries won't go away.
2746 * It only checks the sequence number of the global rename_lock as any change
2747 * in the dentry's d_seq will be preceded by changes in the rename_lock
2748 * sequence number. If the sequence number had been changed, it will restart
2749 * the whole pathname back-tracing sequence again by taking the rename_lock.
2750 * In this case, there is no need to take the RCU read lock as the recursive
2751 * parent pointer references will keep the dentry chain alive as long as no
2752 * rename operation is performed.
2754 static int prepend_path(const struct path
*path
,
2755 const struct path
*root
,
2756 char **buffer
, int *buflen
)
2758 struct dentry
*dentry
;
2759 struct vfsmount
*vfsmnt
;
2762 unsigned seq
, m_seq
= 0;
2768 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
2775 dentry
= path
->dentry
;
2777 mnt
= real_mount(vfsmnt
);
2778 read_seqbegin_or_lock(&rename_lock
, &seq
);
2779 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2780 struct dentry
* parent
;
2782 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2783 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
2785 if (mnt
!= parent
) {
2786 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
2792 * Filesystems needing to implement special "root names"
2793 * should do so with ->d_dname()
2795 if (IS_ROOT(dentry
) &&
2796 (dentry
->d_name
.len
!= 1 ||
2797 dentry
->d_name
.name
[0] != '/')) {
2798 WARN(1, "Root dentry has weird name <%.*s>\n",
2799 (int) dentry
->d_name
.len
,
2800 dentry
->d_name
.name
);
2803 error
= is_mounted(vfsmnt
) ? 1 : 2;
2806 parent
= dentry
->d_parent
;
2808 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
2816 if (need_seqretry(&rename_lock
, seq
)) {
2820 done_seqretry(&rename_lock
, seq
);
2824 if (need_seqretry(&mount_lock
, m_seq
)) {
2828 done_seqretry(&mount_lock
, m_seq
);
2830 if (error
>= 0 && bptr
== *buffer
) {
2832 error
= -ENAMETOOLONG
;
2842 * __d_path - return the path of a dentry
2843 * @path: the dentry/vfsmount to report
2844 * @root: root vfsmnt/dentry
2845 * @buf: buffer to return value in
2846 * @buflen: buffer length
2848 * Convert a dentry into an ASCII path name.
2850 * Returns a pointer into the buffer or an error code if the
2851 * path was too long.
2853 * "buflen" should be positive.
2855 * If the path is not reachable from the supplied root, return %NULL.
2857 char *__d_path(const struct path
*path
,
2858 const struct path
*root
,
2859 char *buf
, int buflen
)
2861 char *res
= buf
+ buflen
;
2864 prepend(&res
, &buflen
, "\0", 1);
2865 error
= prepend_path(path
, root
, &res
, &buflen
);
2868 return ERR_PTR(error
);
2874 char *d_absolute_path(const struct path
*path
,
2875 char *buf
, int buflen
)
2877 struct path root
= {};
2878 char *res
= buf
+ buflen
;
2881 prepend(&res
, &buflen
, "\0", 1);
2882 error
= prepend_path(path
, &root
, &res
, &buflen
);
2887 return ERR_PTR(error
);
2892 * same as __d_path but appends "(deleted)" for unlinked files.
2894 static int path_with_deleted(const struct path
*path
,
2895 const struct path
*root
,
2896 char **buf
, int *buflen
)
2898 prepend(buf
, buflen
, "\0", 1);
2899 if (d_unlinked(path
->dentry
)) {
2900 int error
= prepend(buf
, buflen
, " (deleted)", 10);
2905 return prepend_path(path
, root
, buf
, buflen
);
2908 static int prepend_unreachable(char **buffer
, int *buflen
)
2910 return prepend(buffer
, buflen
, "(unreachable)", 13);
2913 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
2918 seq
= read_seqcount_begin(&fs
->seq
);
2920 } while (read_seqcount_retry(&fs
->seq
, seq
));
2924 * d_path - return the path of a dentry
2925 * @path: path to report
2926 * @buf: buffer to return value in
2927 * @buflen: buffer length
2929 * Convert a dentry into an ASCII path name. If the entry has been deleted
2930 * the string " (deleted)" is appended. Note that this is ambiguous.
2932 * Returns a pointer into the buffer or an error code if the path was
2933 * too long. Note: Callers should use the returned pointer, not the passed
2934 * in buffer, to use the name! The implementation often starts at an offset
2935 * into the buffer, and may leave 0 bytes at the start.
2937 * "buflen" should be positive.
2939 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2941 char *res
= buf
+ buflen
;
2946 * We have various synthetic filesystems that never get mounted. On
2947 * these filesystems dentries are never used for lookup purposes, and
2948 * thus don't need to be hashed. They also don't need a name until a
2949 * user wants to identify the object in /proc/pid/fd/. The little hack
2950 * below allows us to generate a name for these objects on demand:
2952 * Some pseudo inodes are mountable. When they are mounted
2953 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2954 * and instead have d_path return the mounted path.
2956 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
2957 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
2958 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2961 get_fs_root_rcu(current
->fs
, &root
);
2962 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
2966 res
= ERR_PTR(error
);
2969 EXPORT_SYMBOL(d_path
);
2972 * Helper function for dentry_operations.d_dname() members
2974 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2975 const char *fmt
, ...)
2981 va_start(args
, fmt
);
2982 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2985 if (sz
> sizeof(temp
) || sz
> buflen
)
2986 return ERR_PTR(-ENAMETOOLONG
);
2988 buffer
+= buflen
- sz
;
2989 return memcpy(buffer
, temp
, sz
);
2992 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2994 char *end
= buffer
+ buflen
;
2995 /* these dentries are never renamed, so d_lock is not needed */
2996 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
2997 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
2998 prepend(&end
, &buflen
, "/", 1))
2999 end
= ERR_PTR(-ENAMETOOLONG
);
3002 EXPORT_SYMBOL(simple_dname
);
3005 * Write full pathname from the root of the filesystem into the buffer.
3007 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3009 struct dentry
*dentry
;
3022 prepend(&end
, &len
, "\0", 1);
3026 read_seqbegin_or_lock(&rename_lock
, &seq
);
3027 while (!IS_ROOT(dentry
)) {
3028 struct dentry
*parent
= dentry
->d_parent
;
3031 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3040 if (need_seqretry(&rename_lock
, seq
)) {
3044 done_seqretry(&rename_lock
, seq
);
3049 return ERR_PTR(-ENAMETOOLONG
);
3052 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3054 return __dentry_path(dentry
, buf
, buflen
);
3056 EXPORT_SYMBOL(dentry_path_raw
);
3058 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3063 if (d_unlinked(dentry
)) {
3065 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3069 retval
= __dentry_path(dentry
, buf
, buflen
);
3070 if (!IS_ERR(retval
) && p
)
3071 *p
= '/'; /* restore '/' overriden with '\0' */
3074 return ERR_PTR(-ENAMETOOLONG
);
3077 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3083 seq
= read_seqcount_begin(&fs
->seq
);
3086 } while (read_seqcount_retry(&fs
->seq
, seq
));
3090 * NOTE! The user-level library version returns a
3091 * character pointer. The kernel system call just
3092 * returns the length of the buffer filled (which
3093 * includes the ending '\0' character), or a negative
3094 * error value. So libc would do something like
3096 * char *getcwd(char * buf, size_t size)
3100 * retval = sys_getcwd(buf, size);
3107 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3110 struct path pwd
, root
;
3111 char *page
= __getname();
3117 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3120 if (!d_unlinked(pwd
.dentry
)) {
3122 char *cwd
= page
+ PATH_MAX
;
3123 int buflen
= PATH_MAX
;
3125 prepend(&cwd
, &buflen
, "\0", 1);
3126 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3132 /* Unreachable from current root */
3134 error
= prepend_unreachable(&cwd
, &buflen
);
3140 len
= PATH_MAX
+ page
- cwd
;
3143 if (copy_to_user(buf
, cwd
, len
))
3156 * Test whether new_dentry is a subdirectory of old_dentry.
3158 * Trivially implemented using the dcache structure
3162 * is_subdir - is new dentry a subdirectory of old_dentry
3163 * @new_dentry: new dentry
3164 * @old_dentry: old dentry
3166 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3167 * Returns 0 otherwise.
3168 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3171 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3176 if (new_dentry
== old_dentry
)
3180 /* for restarting inner loop in case of seq retry */
3181 seq
= read_seqbegin(&rename_lock
);
3183 * Need rcu_readlock to protect against the d_parent trashing
3187 if (d_ancestor(old_dentry
, new_dentry
))
3192 } while (read_seqretry(&rename_lock
, seq
));
3197 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3199 struct dentry
*root
= data
;
3200 if (dentry
!= root
) {
3201 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3204 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3205 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3206 dentry
->d_lockref
.count
--;
3209 return D_WALK_CONTINUE
;
3212 void d_genocide(struct dentry
*parent
)
3214 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3217 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3219 inode_dec_link_count(inode
);
3220 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3221 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3222 !d_unlinked(dentry
));
3223 spin_lock(&dentry
->d_parent
->d_lock
);
3224 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3225 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3226 (unsigned long long)inode
->i_ino
);
3227 spin_unlock(&dentry
->d_lock
);
3228 spin_unlock(&dentry
->d_parent
->d_lock
);
3229 d_instantiate(dentry
, inode
);
3231 EXPORT_SYMBOL(d_tmpfile
);
3233 static __initdata
unsigned long dhash_entries
;
3234 static int __init
set_dhash_entries(char *str
)
3238 dhash_entries
= simple_strtoul(str
, &str
, 0);
3241 __setup("dhash_entries=", set_dhash_entries
);
3243 static void __init
dcache_init_early(void)
3247 /* If hashes are distributed across NUMA nodes, defer
3248 * hash allocation until vmalloc space is available.
3254 alloc_large_system_hash("Dentry cache",
3255 sizeof(struct hlist_bl_head
),
3264 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3265 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3268 static void __init
dcache_init(void)
3273 * A constructor could be added for stable state like the lists,
3274 * but it is probably not worth it because of the cache nature
3277 dentry_cache
= KMEM_CACHE(dentry
,
3278 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3280 /* Hash may have been set up in dcache_init_early */
3285 alloc_large_system_hash("Dentry cache",
3286 sizeof(struct hlist_bl_head
),
3295 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3296 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3299 /* SLAB cache for __getname() consumers */
3300 struct kmem_cache
*names_cachep __read_mostly
;
3301 EXPORT_SYMBOL(names_cachep
);
3303 EXPORT_SYMBOL(d_genocide
);
3305 void __init
vfs_caches_init_early(void)
3307 dcache_init_early();
3311 void __init
vfs_caches_init(unsigned long mempages
)
3313 unsigned long reserve
;
3315 /* Base hash sizes on available memory, with a reserve equal to
3316 150% of current kernel size */
3318 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3319 mempages
-= reserve
;
3321 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3322 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3326 files_init(mempages
);