[media] rtl2830: wrap DVBv5 CNR to DVBv3 SNR
[linux/fpc-iii.git] / fs / proc / task_mmu.c
blob246eae84b13b1be4bf36bdf48fe50b178a9cb407
1 #include <linux/mm.h>
2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
17 #include <asm/elf.h>
18 #include <asm/uaccess.h>
19 #include <asm/tlbflush.h>
20 #include "internal.h"
22 void task_mem(struct seq_file *m, struct mm_struct *mm)
24 unsigned long data, text, lib, swap;
25 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
28 * Note: to minimize their overhead, mm maintains hiwater_vm and
29 * hiwater_rss only when about to *lower* total_vm or rss. Any
30 * collector of these hiwater stats must therefore get total_vm
31 * and rss too, which will usually be the higher. Barriers? not
32 * worth the effort, such snapshots can always be inconsistent.
34 hiwater_vm = total_vm = mm->total_vm;
35 if (hiwater_vm < mm->hiwater_vm)
36 hiwater_vm = mm->hiwater_vm;
37 hiwater_rss = total_rss = get_mm_rss(mm);
38 if (hiwater_rss < mm->hiwater_rss)
39 hiwater_rss = mm->hiwater_rss;
41 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
42 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
43 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
44 swap = get_mm_counter(mm, MM_SWAPENTS);
45 seq_printf(m,
46 "VmPeak:\t%8lu kB\n"
47 "VmSize:\t%8lu kB\n"
48 "VmLck:\t%8lu kB\n"
49 "VmPin:\t%8lu kB\n"
50 "VmHWM:\t%8lu kB\n"
51 "VmRSS:\t%8lu kB\n"
52 "VmData:\t%8lu kB\n"
53 "VmStk:\t%8lu kB\n"
54 "VmExe:\t%8lu kB\n"
55 "VmLib:\t%8lu kB\n"
56 "VmPTE:\t%8lu kB\n"
57 "VmSwap:\t%8lu kB\n",
58 hiwater_vm << (PAGE_SHIFT-10),
59 total_vm << (PAGE_SHIFT-10),
60 mm->locked_vm << (PAGE_SHIFT-10),
61 mm->pinned_vm << (PAGE_SHIFT-10),
62 hiwater_rss << (PAGE_SHIFT-10),
63 total_rss << (PAGE_SHIFT-10),
64 data << (PAGE_SHIFT-10),
65 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
66 (PTRS_PER_PTE * sizeof(pte_t) *
67 atomic_long_read(&mm->nr_ptes)) >> 10,
68 swap << (PAGE_SHIFT-10));
71 unsigned long task_vsize(struct mm_struct *mm)
73 return PAGE_SIZE * mm->total_vm;
76 unsigned long task_statm(struct mm_struct *mm,
77 unsigned long *shared, unsigned long *text,
78 unsigned long *data, unsigned long *resident)
80 *shared = get_mm_counter(mm, MM_FILEPAGES);
81 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
82 >> PAGE_SHIFT;
83 *data = mm->total_vm - mm->shared_vm;
84 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
85 return mm->total_vm;
88 #ifdef CONFIG_NUMA
90 * Save get_task_policy() for show_numa_map().
92 static void hold_task_mempolicy(struct proc_maps_private *priv)
94 struct task_struct *task = priv->task;
96 task_lock(task);
97 priv->task_mempolicy = get_task_policy(task);
98 mpol_get(priv->task_mempolicy);
99 task_unlock(task);
101 static void release_task_mempolicy(struct proc_maps_private *priv)
103 mpol_put(priv->task_mempolicy);
105 #else
106 static void hold_task_mempolicy(struct proc_maps_private *priv)
109 static void release_task_mempolicy(struct proc_maps_private *priv)
112 #endif
114 static void vma_stop(struct proc_maps_private *priv)
116 struct mm_struct *mm = priv->mm;
118 release_task_mempolicy(priv);
119 up_read(&mm->mmap_sem);
120 mmput(mm);
123 static struct vm_area_struct *
124 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
126 if (vma == priv->tail_vma)
127 return NULL;
128 return vma->vm_next ?: priv->tail_vma;
131 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
133 if (m->count < m->size) /* vma is copied successfully */
134 m->version = m_next_vma(m->private, vma) ? vma->vm_start : -1UL;
137 static void *m_start(struct seq_file *m, loff_t *ppos)
139 struct proc_maps_private *priv = m->private;
140 unsigned long last_addr = m->version;
141 struct mm_struct *mm;
142 struct vm_area_struct *vma;
143 unsigned int pos = *ppos;
145 /* See m_cache_vma(). Zero at the start or after lseek. */
146 if (last_addr == -1UL)
147 return NULL;
149 priv->task = get_proc_task(priv->inode);
150 if (!priv->task)
151 return ERR_PTR(-ESRCH);
153 mm = priv->mm;
154 if (!mm || !atomic_inc_not_zero(&mm->mm_users))
155 return NULL;
157 down_read(&mm->mmap_sem);
158 hold_task_mempolicy(priv);
159 priv->tail_vma = get_gate_vma(mm);
161 if (last_addr) {
162 vma = find_vma(mm, last_addr);
163 if (vma && (vma = m_next_vma(priv, vma)))
164 return vma;
167 m->version = 0;
168 if (pos < mm->map_count) {
169 for (vma = mm->mmap; pos; pos--) {
170 m->version = vma->vm_start;
171 vma = vma->vm_next;
173 return vma;
176 /* we do not bother to update m->version in this case */
177 if (pos == mm->map_count && priv->tail_vma)
178 return priv->tail_vma;
180 vma_stop(priv);
181 return NULL;
184 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
186 struct proc_maps_private *priv = m->private;
187 struct vm_area_struct *next;
189 (*pos)++;
190 next = m_next_vma(priv, v);
191 if (!next)
192 vma_stop(priv);
193 return next;
196 static void m_stop(struct seq_file *m, void *v)
198 struct proc_maps_private *priv = m->private;
200 if (!IS_ERR_OR_NULL(v))
201 vma_stop(priv);
202 if (priv->task) {
203 put_task_struct(priv->task);
204 priv->task = NULL;
208 static int proc_maps_open(struct inode *inode, struct file *file,
209 const struct seq_operations *ops, int psize)
211 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
213 if (!priv)
214 return -ENOMEM;
216 priv->inode = inode;
217 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
218 if (IS_ERR(priv->mm)) {
219 int err = PTR_ERR(priv->mm);
221 seq_release_private(inode, file);
222 return err;
225 return 0;
228 static int proc_map_release(struct inode *inode, struct file *file)
230 struct seq_file *seq = file->private_data;
231 struct proc_maps_private *priv = seq->private;
233 if (priv->mm)
234 mmdrop(priv->mm);
236 return seq_release_private(inode, file);
239 static int do_maps_open(struct inode *inode, struct file *file,
240 const struct seq_operations *ops)
242 return proc_maps_open(inode, file, ops,
243 sizeof(struct proc_maps_private));
246 static pid_t pid_of_stack(struct proc_maps_private *priv,
247 struct vm_area_struct *vma, bool is_pid)
249 struct inode *inode = priv->inode;
250 struct task_struct *task;
251 pid_t ret = 0;
253 rcu_read_lock();
254 task = pid_task(proc_pid(inode), PIDTYPE_PID);
255 if (task) {
256 task = task_of_stack(task, vma, is_pid);
257 if (task)
258 ret = task_pid_nr_ns(task, inode->i_sb->s_fs_info);
260 rcu_read_unlock();
262 return ret;
265 static void
266 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
268 struct mm_struct *mm = vma->vm_mm;
269 struct file *file = vma->vm_file;
270 struct proc_maps_private *priv = m->private;
271 vm_flags_t flags = vma->vm_flags;
272 unsigned long ino = 0;
273 unsigned long long pgoff = 0;
274 unsigned long start, end;
275 dev_t dev = 0;
276 const char *name = NULL;
278 if (file) {
279 struct inode *inode = file_inode(vma->vm_file);
280 dev = inode->i_sb->s_dev;
281 ino = inode->i_ino;
282 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
285 /* We don't show the stack guard page in /proc/maps */
286 start = vma->vm_start;
287 if (stack_guard_page_start(vma, start))
288 start += PAGE_SIZE;
289 end = vma->vm_end;
290 if (stack_guard_page_end(vma, end))
291 end -= PAGE_SIZE;
293 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
294 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
295 start,
296 end,
297 flags & VM_READ ? 'r' : '-',
298 flags & VM_WRITE ? 'w' : '-',
299 flags & VM_EXEC ? 'x' : '-',
300 flags & VM_MAYSHARE ? 's' : 'p',
301 pgoff,
302 MAJOR(dev), MINOR(dev), ino);
305 * Print the dentry name for named mappings, and a
306 * special [heap] marker for the heap:
308 if (file) {
309 seq_pad(m, ' ');
310 seq_path(m, &file->f_path, "\n");
311 goto done;
314 if (vma->vm_ops && vma->vm_ops->name) {
315 name = vma->vm_ops->name(vma);
316 if (name)
317 goto done;
320 name = arch_vma_name(vma);
321 if (!name) {
322 pid_t tid;
324 if (!mm) {
325 name = "[vdso]";
326 goto done;
329 if (vma->vm_start <= mm->brk &&
330 vma->vm_end >= mm->start_brk) {
331 name = "[heap]";
332 goto done;
335 tid = pid_of_stack(priv, vma, is_pid);
336 if (tid != 0) {
338 * Thread stack in /proc/PID/task/TID/maps or
339 * the main process stack.
341 if (!is_pid || (vma->vm_start <= mm->start_stack &&
342 vma->vm_end >= mm->start_stack)) {
343 name = "[stack]";
344 } else {
345 /* Thread stack in /proc/PID/maps */
346 seq_pad(m, ' ');
347 seq_printf(m, "[stack:%d]", tid);
352 done:
353 if (name) {
354 seq_pad(m, ' ');
355 seq_puts(m, name);
357 seq_putc(m, '\n');
360 static int show_map(struct seq_file *m, void *v, int is_pid)
362 show_map_vma(m, v, is_pid);
363 m_cache_vma(m, v);
364 return 0;
367 static int show_pid_map(struct seq_file *m, void *v)
369 return show_map(m, v, 1);
372 static int show_tid_map(struct seq_file *m, void *v)
374 return show_map(m, v, 0);
377 static const struct seq_operations proc_pid_maps_op = {
378 .start = m_start,
379 .next = m_next,
380 .stop = m_stop,
381 .show = show_pid_map
384 static const struct seq_operations proc_tid_maps_op = {
385 .start = m_start,
386 .next = m_next,
387 .stop = m_stop,
388 .show = show_tid_map
391 static int pid_maps_open(struct inode *inode, struct file *file)
393 return do_maps_open(inode, file, &proc_pid_maps_op);
396 static int tid_maps_open(struct inode *inode, struct file *file)
398 return do_maps_open(inode, file, &proc_tid_maps_op);
401 const struct file_operations proc_pid_maps_operations = {
402 .open = pid_maps_open,
403 .read = seq_read,
404 .llseek = seq_lseek,
405 .release = proc_map_release,
408 const struct file_operations proc_tid_maps_operations = {
409 .open = tid_maps_open,
410 .read = seq_read,
411 .llseek = seq_lseek,
412 .release = proc_map_release,
416 * Proportional Set Size(PSS): my share of RSS.
418 * PSS of a process is the count of pages it has in memory, where each
419 * page is divided by the number of processes sharing it. So if a
420 * process has 1000 pages all to itself, and 1000 shared with one other
421 * process, its PSS will be 1500.
423 * To keep (accumulated) division errors low, we adopt a 64bit
424 * fixed-point pss counter to minimize division errors. So (pss >>
425 * PSS_SHIFT) would be the real byte count.
427 * A shift of 12 before division means (assuming 4K page size):
428 * - 1M 3-user-pages add up to 8KB errors;
429 * - supports mapcount up to 2^24, or 16M;
430 * - supports PSS up to 2^52 bytes, or 4PB.
432 #define PSS_SHIFT 12
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436 struct vm_area_struct *vma;
437 unsigned long resident;
438 unsigned long shared_clean;
439 unsigned long shared_dirty;
440 unsigned long private_clean;
441 unsigned long private_dirty;
442 unsigned long referenced;
443 unsigned long anonymous;
444 unsigned long anonymous_thp;
445 unsigned long swap;
446 unsigned long nonlinear;
447 u64 pss;
450 static void smaps_account(struct mem_size_stats *mss, struct page *page,
451 unsigned long size, bool young, bool dirty)
453 int mapcount;
455 if (PageAnon(page))
456 mss->anonymous += size;
458 mss->resident += size;
459 /* Accumulate the size in pages that have been accessed. */
460 if (young || PageReferenced(page))
461 mss->referenced += size;
462 mapcount = page_mapcount(page);
463 if (mapcount >= 2) {
464 u64 pss_delta;
466 if (dirty || PageDirty(page))
467 mss->shared_dirty += size;
468 else
469 mss->shared_clean += size;
470 pss_delta = (u64)size << PSS_SHIFT;
471 do_div(pss_delta, mapcount);
472 mss->pss += pss_delta;
473 } else {
474 if (dirty || PageDirty(page))
475 mss->private_dirty += size;
476 else
477 mss->private_clean += size;
478 mss->pss += (u64)size << PSS_SHIFT;
482 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
483 struct mm_walk *walk)
485 struct mem_size_stats *mss = walk->private;
486 struct vm_area_struct *vma = mss->vma;
487 pgoff_t pgoff = linear_page_index(vma, addr);
488 struct page *page = NULL;
490 if (pte_present(*pte)) {
491 page = vm_normal_page(vma, addr, *pte);
492 } else if (is_swap_pte(*pte)) {
493 swp_entry_t swpent = pte_to_swp_entry(*pte);
495 if (!non_swap_entry(swpent))
496 mss->swap += PAGE_SIZE;
497 else if (is_migration_entry(swpent))
498 page = migration_entry_to_page(swpent);
499 } else if (pte_file(*pte)) {
500 if (pte_to_pgoff(*pte) != pgoff)
501 mss->nonlinear += PAGE_SIZE;
504 if (!page)
505 return;
507 if (page->index != pgoff)
508 mss->nonlinear += PAGE_SIZE;
510 smaps_account(mss, page, PAGE_SIZE, pte_young(*pte), pte_dirty(*pte));
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
515 struct mm_walk *walk)
517 struct mem_size_stats *mss = walk->private;
518 struct vm_area_struct *vma = mss->vma;
519 struct page *page;
521 /* FOLL_DUMP will return -EFAULT on huge zero page */
522 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
523 if (IS_ERR_OR_NULL(page))
524 return;
525 mss->anonymous_thp += HPAGE_PMD_SIZE;
526 smaps_account(mss, page, HPAGE_PMD_SIZE,
527 pmd_young(*pmd), pmd_dirty(*pmd));
529 #else
530 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
531 struct mm_walk *walk)
534 #endif
536 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
537 struct mm_walk *walk)
539 struct mem_size_stats *mss = walk->private;
540 struct vm_area_struct *vma = mss->vma;
541 pte_t *pte;
542 spinlock_t *ptl;
544 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
545 smaps_pmd_entry(pmd, addr, walk);
546 spin_unlock(ptl);
547 return 0;
550 if (pmd_trans_unstable(pmd))
551 return 0;
553 * The mmap_sem held all the way back in m_start() is what
554 * keeps khugepaged out of here and from collapsing things
555 * in here.
557 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
558 for (; addr != end; pte++, addr += PAGE_SIZE)
559 smaps_pte_entry(pte, addr, walk);
560 pte_unmap_unlock(pte - 1, ptl);
561 cond_resched();
562 return 0;
565 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
568 * Don't forget to update Documentation/ on changes.
570 static const char mnemonics[BITS_PER_LONG][2] = {
572 * In case if we meet a flag we don't know about.
574 [0 ... (BITS_PER_LONG-1)] = "??",
576 [ilog2(VM_READ)] = "rd",
577 [ilog2(VM_WRITE)] = "wr",
578 [ilog2(VM_EXEC)] = "ex",
579 [ilog2(VM_SHARED)] = "sh",
580 [ilog2(VM_MAYREAD)] = "mr",
581 [ilog2(VM_MAYWRITE)] = "mw",
582 [ilog2(VM_MAYEXEC)] = "me",
583 [ilog2(VM_MAYSHARE)] = "ms",
584 [ilog2(VM_GROWSDOWN)] = "gd",
585 [ilog2(VM_PFNMAP)] = "pf",
586 [ilog2(VM_DENYWRITE)] = "dw",
587 #ifdef CONFIG_X86_INTEL_MPX
588 [ilog2(VM_MPX)] = "mp",
589 #endif
590 [ilog2(VM_LOCKED)] = "lo",
591 [ilog2(VM_IO)] = "io",
592 [ilog2(VM_SEQ_READ)] = "sr",
593 [ilog2(VM_RAND_READ)] = "rr",
594 [ilog2(VM_DONTCOPY)] = "dc",
595 [ilog2(VM_DONTEXPAND)] = "de",
596 [ilog2(VM_ACCOUNT)] = "ac",
597 [ilog2(VM_NORESERVE)] = "nr",
598 [ilog2(VM_HUGETLB)] = "ht",
599 [ilog2(VM_NONLINEAR)] = "nl",
600 [ilog2(VM_ARCH_1)] = "ar",
601 [ilog2(VM_DONTDUMP)] = "dd",
602 #ifdef CONFIG_MEM_SOFT_DIRTY
603 [ilog2(VM_SOFTDIRTY)] = "sd",
604 #endif
605 [ilog2(VM_MIXEDMAP)] = "mm",
606 [ilog2(VM_HUGEPAGE)] = "hg",
607 [ilog2(VM_NOHUGEPAGE)] = "nh",
608 [ilog2(VM_MERGEABLE)] = "mg",
610 size_t i;
612 seq_puts(m, "VmFlags: ");
613 for (i = 0; i < BITS_PER_LONG; i++) {
614 if (vma->vm_flags & (1UL << i)) {
615 seq_printf(m, "%c%c ",
616 mnemonics[i][0], mnemonics[i][1]);
619 seq_putc(m, '\n');
622 static int show_smap(struct seq_file *m, void *v, int is_pid)
624 struct vm_area_struct *vma = v;
625 struct mem_size_stats mss;
626 struct mm_walk smaps_walk = {
627 .pmd_entry = smaps_pte_range,
628 .mm = vma->vm_mm,
629 .private = &mss,
632 memset(&mss, 0, sizeof mss);
633 mss.vma = vma;
634 /* mmap_sem is held in m_start */
635 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
636 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
638 show_map_vma(m, vma, is_pid);
640 seq_printf(m,
641 "Size: %8lu kB\n"
642 "Rss: %8lu kB\n"
643 "Pss: %8lu kB\n"
644 "Shared_Clean: %8lu kB\n"
645 "Shared_Dirty: %8lu kB\n"
646 "Private_Clean: %8lu kB\n"
647 "Private_Dirty: %8lu kB\n"
648 "Referenced: %8lu kB\n"
649 "Anonymous: %8lu kB\n"
650 "AnonHugePages: %8lu kB\n"
651 "Swap: %8lu kB\n"
652 "KernelPageSize: %8lu kB\n"
653 "MMUPageSize: %8lu kB\n"
654 "Locked: %8lu kB\n",
655 (vma->vm_end - vma->vm_start) >> 10,
656 mss.resident >> 10,
657 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
658 mss.shared_clean >> 10,
659 mss.shared_dirty >> 10,
660 mss.private_clean >> 10,
661 mss.private_dirty >> 10,
662 mss.referenced >> 10,
663 mss.anonymous >> 10,
664 mss.anonymous_thp >> 10,
665 mss.swap >> 10,
666 vma_kernel_pagesize(vma) >> 10,
667 vma_mmu_pagesize(vma) >> 10,
668 (vma->vm_flags & VM_LOCKED) ?
669 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
671 if (vma->vm_flags & VM_NONLINEAR)
672 seq_printf(m, "Nonlinear: %8lu kB\n",
673 mss.nonlinear >> 10);
675 show_smap_vma_flags(m, vma);
676 m_cache_vma(m, vma);
677 return 0;
680 static int show_pid_smap(struct seq_file *m, void *v)
682 return show_smap(m, v, 1);
685 static int show_tid_smap(struct seq_file *m, void *v)
687 return show_smap(m, v, 0);
690 static const struct seq_operations proc_pid_smaps_op = {
691 .start = m_start,
692 .next = m_next,
693 .stop = m_stop,
694 .show = show_pid_smap
697 static const struct seq_operations proc_tid_smaps_op = {
698 .start = m_start,
699 .next = m_next,
700 .stop = m_stop,
701 .show = show_tid_smap
704 static int pid_smaps_open(struct inode *inode, struct file *file)
706 return do_maps_open(inode, file, &proc_pid_smaps_op);
709 static int tid_smaps_open(struct inode *inode, struct file *file)
711 return do_maps_open(inode, file, &proc_tid_smaps_op);
714 const struct file_operations proc_pid_smaps_operations = {
715 .open = pid_smaps_open,
716 .read = seq_read,
717 .llseek = seq_lseek,
718 .release = proc_map_release,
721 const struct file_operations proc_tid_smaps_operations = {
722 .open = tid_smaps_open,
723 .read = seq_read,
724 .llseek = seq_lseek,
725 .release = proc_map_release,
729 * We do not want to have constant page-shift bits sitting in
730 * pagemap entries and are about to reuse them some time soon.
732 * Here's the "migration strategy":
733 * 1. when the system boots these bits remain what they are,
734 * but a warning about future change is printed in log;
735 * 2. once anyone clears soft-dirty bits via clear_refs file,
736 * these flag is set to denote, that user is aware of the
737 * new API and those page-shift bits change their meaning.
738 * The respective warning is printed in dmesg;
739 * 3. In a couple of releases we will remove all the mentions
740 * of page-shift in pagemap entries.
743 static bool soft_dirty_cleared __read_mostly;
745 enum clear_refs_types {
746 CLEAR_REFS_ALL = 1,
747 CLEAR_REFS_ANON,
748 CLEAR_REFS_MAPPED,
749 CLEAR_REFS_SOFT_DIRTY,
750 CLEAR_REFS_LAST,
753 struct clear_refs_private {
754 struct vm_area_struct *vma;
755 enum clear_refs_types type;
758 static inline void clear_soft_dirty(struct vm_area_struct *vma,
759 unsigned long addr, pte_t *pte)
761 #ifdef CONFIG_MEM_SOFT_DIRTY
763 * The soft-dirty tracker uses #PF-s to catch writes
764 * to pages, so write-protect the pte as well. See the
765 * Documentation/vm/soft-dirty.txt for full description
766 * of how soft-dirty works.
768 pte_t ptent = *pte;
770 if (pte_present(ptent)) {
771 ptent = pte_wrprotect(ptent);
772 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
773 } else if (is_swap_pte(ptent)) {
774 ptent = pte_swp_clear_soft_dirty(ptent);
775 } else if (pte_file(ptent)) {
776 ptent = pte_file_clear_soft_dirty(ptent);
779 set_pte_at(vma->vm_mm, addr, pte, ptent);
780 #endif
783 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
784 unsigned long end, struct mm_walk *walk)
786 struct clear_refs_private *cp = walk->private;
787 struct vm_area_struct *vma = cp->vma;
788 pte_t *pte, ptent;
789 spinlock_t *ptl;
790 struct page *page;
792 split_huge_page_pmd(vma, addr, pmd);
793 if (pmd_trans_unstable(pmd))
794 return 0;
796 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
797 for (; addr != end; pte++, addr += PAGE_SIZE) {
798 ptent = *pte;
800 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
801 clear_soft_dirty(vma, addr, pte);
802 continue;
805 if (!pte_present(ptent))
806 continue;
808 page = vm_normal_page(vma, addr, ptent);
809 if (!page)
810 continue;
812 /* Clear accessed and referenced bits. */
813 ptep_test_and_clear_young(vma, addr, pte);
814 ClearPageReferenced(page);
816 pte_unmap_unlock(pte - 1, ptl);
817 cond_resched();
818 return 0;
821 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
822 size_t count, loff_t *ppos)
824 struct task_struct *task;
825 char buffer[PROC_NUMBUF];
826 struct mm_struct *mm;
827 struct vm_area_struct *vma;
828 enum clear_refs_types type;
829 int itype;
830 int rv;
832 memset(buffer, 0, sizeof(buffer));
833 if (count > sizeof(buffer) - 1)
834 count = sizeof(buffer) - 1;
835 if (copy_from_user(buffer, buf, count))
836 return -EFAULT;
837 rv = kstrtoint(strstrip(buffer), 10, &itype);
838 if (rv < 0)
839 return rv;
840 type = (enum clear_refs_types)itype;
841 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
842 return -EINVAL;
844 if (type == CLEAR_REFS_SOFT_DIRTY) {
845 soft_dirty_cleared = true;
846 pr_warn_once("The pagemap bits 55-60 has changed their meaning!"
847 " See the linux/Documentation/vm/pagemap.txt for "
848 "details.\n");
851 task = get_proc_task(file_inode(file));
852 if (!task)
853 return -ESRCH;
854 mm = get_task_mm(task);
855 if (mm) {
856 struct clear_refs_private cp = {
857 .type = type,
859 struct mm_walk clear_refs_walk = {
860 .pmd_entry = clear_refs_pte_range,
861 .mm = mm,
862 .private = &cp,
864 down_read(&mm->mmap_sem);
865 if (type == CLEAR_REFS_SOFT_DIRTY) {
866 for (vma = mm->mmap; vma; vma = vma->vm_next) {
867 if (!(vma->vm_flags & VM_SOFTDIRTY))
868 continue;
869 up_read(&mm->mmap_sem);
870 down_write(&mm->mmap_sem);
871 for (vma = mm->mmap; vma; vma = vma->vm_next) {
872 vma->vm_flags &= ~VM_SOFTDIRTY;
873 vma_set_page_prot(vma);
875 downgrade_write(&mm->mmap_sem);
876 break;
878 mmu_notifier_invalidate_range_start(mm, 0, -1);
880 for (vma = mm->mmap; vma; vma = vma->vm_next) {
881 cp.vma = vma;
882 if (is_vm_hugetlb_page(vma))
883 continue;
885 * Writing 1 to /proc/pid/clear_refs affects all pages.
887 * Writing 2 to /proc/pid/clear_refs only affects
888 * Anonymous pages.
890 * Writing 3 to /proc/pid/clear_refs only affects file
891 * mapped pages.
893 * Writing 4 to /proc/pid/clear_refs affects all pages.
895 if (type == CLEAR_REFS_ANON && vma->vm_file)
896 continue;
897 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
898 continue;
899 walk_page_range(vma->vm_start, vma->vm_end,
900 &clear_refs_walk);
902 if (type == CLEAR_REFS_SOFT_DIRTY)
903 mmu_notifier_invalidate_range_end(mm, 0, -1);
904 flush_tlb_mm(mm);
905 up_read(&mm->mmap_sem);
906 mmput(mm);
908 put_task_struct(task);
910 return count;
913 const struct file_operations proc_clear_refs_operations = {
914 .write = clear_refs_write,
915 .llseek = noop_llseek,
918 typedef struct {
919 u64 pme;
920 } pagemap_entry_t;
922 struct pagemapread {
923 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
924 pagemap_entry_t *buffer;
925 bool v2;
928 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
929 #define PAGEMAP_WALK_MASK (PMD_MASK)
931 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
932 #define PM_STATUS_BITS 3
933 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
934 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
935 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
936 #define PM_PSHIFT_BITS 6
937 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
938 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
939 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
940 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
941 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
942 /* in "new" pagemap pshift bits are occupied with more status bits */
943 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
945 #define __PM_SOFT_DIRTY (1LL)
946 #define PM_PRESENT PM_STATUS(4LL)
947 #define PM_SWAP PM_STATUS(2LL)
948 #define PM_FILE PM_STATUS(1LL)
949 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
950 #define PM_END_OF_BUFFER 1
952 static inline pagemap_entry_t make_pme(u64 val)
954 return (pagemap_entry_t) { .pme = val };
957 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
958 struct pagemapread *pm)
960 pm->buffer[pm->pos++] = *pme;
961 if (pm->pos >= pm->len)
962 return PM_END_OF_BUFFER;
963 return 0;
966 static int pagemap_pte_hole(unsigned long start, unsigned long end,
967 struct mm_walk *walk)
969 struct pagemapread *pm = walk->private;
970 unsigned long addr = start;
971 int err = 0;
973 while (addr < end) {
974 struct vm_area_struct *vma = find_vma(walk->mm, addr);
975 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
976 /* End of address space hole, which we mark as non-present. */
977 unsigned long hole_end;
979 if (vma)
980 hole_end = min(end, vma->vm_start);
981 else
982 hole_end = end;
984 for (; addr < hole_end; addr += PAGE_SIZE) {
985 err = add_to_pagemap(addr, &pme, pm);
986 if (err)
987 goto out;
990 if (!vma)
991 break;
993 /* Addresses in the VMA. */
994 if (vma->vm_flags & VM_SOFTDIRTY)
995 pme.pme |= PM_STATUS2(pm->v2, __PM_SOFT_DIRTY);
996 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
997 err = add_to_pagemap(addr, &pme, pm);
998 if (err)
999 goto out;
1002 out:
1003 return err;
1006 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1007 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1009 u64 frame, flags;
1010 struct page *page = NULL;
1011 int flags2 = 0;
1013 if (pte_present(pte)) {
1014 frame = pte_pfn(pte);
1015 flags = PM_PRESENT;
1016 page = vm_normal_page(vma, addr, pte);
1017 if (pte_soft_dirty(pte))
1018 flags2 |= __PM_SOFT_DIRTY;
1019 } else if (is_swap_pte(pte)) {
1020 swp_entry_t entry;
1021 if (pte_swp_soft_dirty(pte))
1022 flags2 |= __PM_SOFT_DIRTY;
1023 entry = pte_to_swp_entry(pte);
1024 frame = swp_type(entry) |
1025 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1026 flags = PM_SWAP;
1027 if (is_migration_entry(entry))
1028 page = migration_entry_to_page(entry);
1029 } else {
1030 if (vma->vm_flags & VM_SOFTDIRTY)
1031 flags2 |= __PM_SOFT_DIRTY;
1032 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1033 return;
1036 if (page && !PageAnon(page))
1037 flags |= PM_FILE;
1038 if ((vma->vm_flags & VM_SOFTDIRTY))
1039 flags2 |= __PM_SOFT_DIRTY;
1041 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
1044 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1045 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1046 pmd_t pmd, int offset, int pmd_flags2)
1049 * Currently pmd for thp is always present because thp can not be
1050 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
1051 * This if-check is just to prepare for future implementation.
1053 if (pmd_present(pmd))
1054 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
1055 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
1056 else
1057 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
1059 #else
1060 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1061 pmd_t pmd, int offset, int pmd_flags2)
1064 #endif
1066 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
1067 struct mm_walk *walk)
1069 struct vm_area_struct *vma;
1070 struct pagemapread *pm = walk->private;
1071 spinlock_t *ptl;
1072 pte_t *pte;
1073 int err = 0;
1075 /* find the first VMA at or above 'addr' */
1076 vma = find_vma(walk->mm, addr);
1077 if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1078 int pmd_flags2;
1080 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1081 pmd_flags2 = __PM_SOFT_DIRTY;
1082 else
1083 pmd_flags2 = 0;
1085 for (; addr != end; addr += PAGE_SIZE) {
1086 unsigned long offset;
1087 pagemap_entry_t pme;
1089 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1090 PAGE_SHIFT;
1091 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1092 err = add_to_pagemap(addr, &pme, pm);
1093 if (err)
1094 break;
1096 spin_unlock(ptl);
1097 return err;
1100 if (pmd_trans_unstable(pmd))
1101 return 0;
1103 while (1) {
1104 /* End of address space hole, which we mark as non-present. */
1105 unsigned long hole_end;
1107 if (vma)
1108 hole_end = min(end, vma->vm_start);
1109 else
1110 hole_end = end;
1112 for (; addr < hole_end; addr += PAGE_SIZE) {
1113 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1115 err = add_to_pagemap(addr, &pme, pm);
1116 if (err)
1117 return err;
1120 if (!vma || vma->vm_start >= end)
1121 break;
1123 * We can't possibly be in a hugetlb VMA. In general,
1124 * for a mm_walk with a pmd_entry and a hugetlb_entry,
1125 * the pmd_entry can only be called on addresses in a
1126 * hugetlb if the walk starts in a non-hugetlb VMA and
1127 * spans a hugepage VMA. Since pagemap_read walks are
1128 * PMD-sized and PMD-aligned, this will never be true.
1130 BUG_ON(is_vm_hugetlb_page(vma));
1132 /* Addresses in the VMA. */
1133 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1134 pagemap_entry_t pme;
1135 pte = pte_offset_map(pmd, addr);
1136 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1137 pte_unmap(pte);
1138 err = add_to_pagemap(addr, &pme, pm);
1139 if (err)
1140 return err;
1143 if (addr == end)
1144 break;
1146 vma = find_vma(walk->mm, addr);
1149 cond_resched();
1151 return err;
1154 #ifdef CONFIG_HUGETLB_PAGE
1155 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1156 pte_t pte, int offset, int flags2)
1158 if (pte_present(pte))
1159 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1160 PM_STATUS2(pm->v2, flags2) |
1161 PM_PRESENT);
1162 else
1163 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1164 PM_STATUS2(pm->v2, flags2));
1167 /* This function walks within one hugetlb entry in the single call */
1168 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1169 unsigned long addr, unsigned long end,
1170 struct mm_walk *walk)
1172 struct pagemapread *pm = walk->private;
1173 struct vm_area_struct *vma;
1174 int err = 0;
1175 int flags2;
1176 pagemap_entry_t pme;
1178 vma = find_vma(walk->mm, addr);
1179 WARN_ON_ONCE(!vma);
1181 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1182 flags2 = __PM_SOFT_DIRTY;
1183 else
1184 flags2 = 0;
1186 for (; addr != end; addr += PAGE_SIZE) {
1187 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1188 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1189 err = add_to_pagemap(addr, &pme, pm);
1190 if (err)
1191 return err;
1194 cond_resched();
1196 return err;
1198 #endif /* HUGETLB_PAGE */
1201 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1203 * For each page in the address space, this file contains one 64-bit entry
1204 * consisting of the following:
1206 * Bits 0-54 page frame number (PFN) if present
1207 * Bits 0-4 swap type if swapped
1208 * Bits 5-54 swap offset if swapped
1209 * Bits 55-60 page shift (page size = 1<<page shift)
1210 * Bit 61 page is file-page or shared-anon
1211 * Bit 62 page swapped
1212 * Bit 63 page present
1214 * If the page is not present but in swap, then the PFN contains an
1215 * encoding of the swap file number and the page's offset into the
1216 * swap. Unmapped pages return a null PFN. This allows determining
1217 * precisely which pages are mapped (or in swap) and comparing mapped
1218 * pages between processes.
1220 * Efficient users of this interface will use /proc/pid/maps to
1221 * determine which areas of memory are actually mapped and llseek to
1222 * skip over unmapped regions.
1224 static ssize_t pagemap_read(struct file *file, char __user *buf,
1225 size_t count, loff_t *ppos)
1227 struct task_struct *task = get_proc_task(file_inode(file));
1228 struct mm_struct *mm;
1229 struct pagemapread pm;
1230 int ret = -ESRCH;
1231 struct mm_walk pagemap_walk = {};
1232 unsigned long src;
1233 unsigned long svpfn;
1234 unsigned long start_vaddr;
1235 unsigned long end_vaddr;
1236 int copied = 0;
1238 if (!task)
1239 goto out;
1241 ret = -EINVAL;
1242 /* file position must be aligned */
1243 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1244 goto out_task;
1246 ret = 0;
1247 if (!count)
1248 goto out_task;
1250 pm.v2 = soft_dirty_cleared;
1251 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1252 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1253 ret = -ENOMEM;
1254 if (!pm.buffer)
1255 goto out_task;
1257 mm = mm_access(task, PTRACE_MODE_READ);
1258 ret = PTR_ERR(mm);
1259 if (!mm || IS_ERR(mm))
1260 goto out_free;
1262 pagemap_walk.pmd_entry = pagemap_pte_range;
1263 pagemap_walk.pte_hole = pagemap_pte_hole;
1264 #ifdef CONFIG_HUGETLB_PAGE
1265 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1266 #endif
1267 pagemap_walk.mm = mm;
1268 pagemap_walk.private = &pm;
1270 src = *ppos;
1271 svpfn = src / PM_ENTRY_BYTES;
1272 start_vaddr = svpfn << PAGE_SHIFT;
1273 end_vaddr = TASK_SIZE_OF(task);
1275 /* watch out for wraparound */
1276 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1277 start_vaddr = end_vaddr;
1280 * The odds are that this will stop walking way
1281 * before end_vaddr, because the length of the
1282 * user buffer is tracked in "pm", and the walk
1283 * will stop when we hit the end of the buffer.
1285 ret = 0;
1286 while (count && (start_vaddr < end_vaddr)) {
1287 int len;
1288 unsigned long end;
1290 pm.pos = 0;
1291 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1292 /* overflow ? */
1293 if (end < start_vaddr || end > end_vaddr)
1294 end = end_vaddr;
1295 down_read(&mm->mmap_sem);
1296 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1297 up_read(&mm->mmap_sem);
1298 start_vaddr = end;
1300 len = min(count, PM_ENTRY_BYTES * pm.pos);
1301 if (copy_to_user(buf, pm.buffer, len)) {
1302 ret = -EFAULT;
1303 goto out_mm;
1305 copied += len;
1306 buf += len;
1307 count -= len;
1309 *ppos += copied;
1310 if (!ret || ret == PM_END_OF_BUFFER)
1311 ret = copied;
1313 out_mm:
1314 mmput(mm);
1315 out_free:
1316 kfree(pm.buffer);
1317 out_task:
1318 put_task_struct(task);
1319 out:
1320 return ret;
1323 static int pagemap_open(struct inode *inode, struct file *file)
1325 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1326 "to stop being page-shift some time soon. See the "
1327 "linux/Documentation/vm/pagemap.txt for details.\n");
1328 return 0;
1331 const struct file_operations proc_pagemap_operations = {
1332 .llseek = mem_lseek, /* borrow this */
1333 .read = pagemap_read,
1334 .open = pagemap_open,
1336 #endif /* CONFIG_PROC_PAGE_MONITOR */
1338 #ifdef CONFIG_NUMA
1340 struct numa_maps {
1341 struct vm_area_struct *vma;
1342 unsigned long pages;
1343 unsigned long anon;
1344 unsigned long active;
1345 unsigned long writeback;
1346 unsigned long mapcount_max;
1347 unsigned long dirty;
1348 unsigned long swapcache;
1349 unsigned long node[MAX_NUMNODES];
1352 struct numa_maps_private {
1353 struct proc_maps_private proc_maps;
1354 struct numa_maps md;
1357 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1358 unsigned long nr_pages)
1360 int count = page_mapcount(page);
1362 md->pages += nr_pages;
1363 if (pte_dirty || PageDirty(page))
1364 md->dirty += nr_pages;
1366 if (PageSwapCache(page))
1367 md->swapcache += nr_pages;
1369 if (PageActive(page) || PageUnevictable(page))
1370 md->active += nr_pages;
1372 if (PageWriteback(page))
1373 md->writeback += nr_pages;
1375 if (PageAnon(page))
1376 md->anon += nr_pages;
1378 if (count > md->mapcount_max)
1379 md->mapcount_max = count;
1381 md->node[page_to_nid(page)] += nr_pages;
1384 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1385 unsigned long addr)
1387 struct page *page;
1388 int nid;
1390 if (!pte_present(pte))
1391 return NULL;
1393 page = vm_normal_page(vma, addr, pte);
1394 if (!page)
1395 return NULL;
1397 if (PageReserved(page))
1398 return NULL;
1400 nid = page_to_nid(page);
1401 if (!node_isset(nid, node_states[N_MEMORY]))
1402 return NULL;
1404 return page;
1407 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1408 unsigned long end, struct mm_walk *walk)
1410 struct numa_maps *md;
1411 spinlock_t *ptl;
1412 pte_t *orig_pte;
1413 pte_t *pte;
1415 md = walk->private;
1417 if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
1418 pte_t huge_pte = *(pte_t *)pmd;
1419 struct page *page;
1421 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1422 if (page)
1423 gather_stats(page, md, pte_dirty(huge_pte),
1424 HPAGE_PMD_SIZE/PAGE_SIZE);
1425 spin_unlock(ptl);
1426 return 0;
1429 if (pmd_trans_unstable(pmd))
1430 return 0;
1431 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1432 do {
1433 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1434 if (!page)
1435 continue;
1436 gather_stats(page, md, pte_dirty(*pte), 1);
1438 } while (pte++, addr += PAGE_SIZE, addr != end);
1439 pte_unmap_unlock(orig_pte, ptl);
1440 return 0;
1442 #ifdef CONFIG_HUGETLB_PAGE
1443 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1444 unsigned long addr, unsigned long end, struct mm_walk *walk)
1446 struct numa_maps *md;
1447 struct page *page;
1449 if (!pte_present(*pte))
1450 return 0;
1452 page = pte_page(*pte);
1453 if (!page)
1454 return 0;
1456 md = walk->private;
1457 gather_stats(page, md, pte_dirty(*pte), 1);
1458 return 0;
1461 #else
1462 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1463 unsigned long addr, unsigned long end, struct mm_walk *walk)
1465 return 0;
1467 #endif
1470 * Display pages allocated per node and memory policy via /proc.
1472 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1474 struct numa_maps_private *numa_priv = m->private;
1475 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1476 struct vm_area_struct *vma = v;
1477 struct numa_maps *md = &numa_priv->md;
1478 struct file *file = vma->vm_file;
1479 struct mm_struct *mm = vma->vm_mm;
1480 struct mm_walk walk = {};
1481 struct mempolicy *pol;
1482 char buffer[64];
1483 int nid;
1485 if (!mm)
1486 return 0;
1488 /* Ensure we start with an empty set of numa_maps statistics. */
1489 memset(md, 0, sizeof(*md));
1491 md->vma = vma;
1493 walk.hugetlb_entry = gather_hugetbl_stats;
1494 walk.pmd_entry = gather_pte_stats;
1495 walk.private = md;
1496 walk.mm = mm;
1498 pol = __get_vma_policy(vma, vma->vm_start);
1499 if (pol) {
1500 mpol_to_str(buffer, sizeof(buffer), pol);
1501 mpol_cond_put(pol);
1502 } else {
1503 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1506 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1508 if (file) {
1509 seq_puts(m, " file=");
1510 seq_path(m, &file->f_path, "\n\t= ");
1511 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1512 seq_puts(m, " heap");
1513 } else {
1514 pid_t tid = pid_of_stack(proc_priv, vma, is_pid);
1515 if (tid != 0) {
1517 * Thread stack in /proc/PID/task/TID/maps or
1518 * the main process stack.
1520 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1521 vma->vm_end >= mm->start_stack))
1522 seq_puts(m, " stack");
1523 else
1524 seq_printf(m, " stack:%d", tid);
1528 if (is_vm_hugetlb_page(vma))
1529 seq_puts(m, " huge");
1531 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1533 if (!md->pages)
1534 goto out;
1536 if (md->anon)
1537 seq_printf(m, " anon=%lu", md->anon);
1539 if (md->dirty)
1540 seq_printf(m, " dirty=%lu", md->dirty);
1542 if (md->pages != md->anon && md->pages != md->dirty)
1543 seq_printf(m, " mapped=%lu", md->pages);
1545 if (md->mapcount_max > 1)
1546 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1548 if (md->swapcache)
1549 seq_printf(m, " swapcache=%lu", md->swapcache);
1551 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1552 seq_printf(m, " active=%lu", md->active);
1554 if (md->writeback)
1555 seq_printf(m, " writeback=%lu", md->writeback);
1557 for_each_node_state(nid, N_MEMORY)
1558 if (md->node[nid])
1559 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1560 out:
1561 seq_putc(m, '\n');
1562 m_cache_vma(m, vma);
1563 return 0;
1566 static int show_pid_numa_map(struct seq_file *m, void *v)
1568 return show_numa_map(m, v, 1);
1571 static int show_tid_numa_map(struct seq_file *m, void *v)
1573 return show_numa_map(m, v, 0);
1576 static const struct seq_operations proc_pid_numa_maps_op = {
1577 .start = m_start,
1578 .next = m_next,
1579 .stop = m_stop,
1580 .show = show_pid_numa_map,
1583 static const struct seq_operations proc_tid_numa_maps_op = {
1584 .start = m_start,
1585 .next = m_next,
1586 .stop = m_stop,
1587 .show = show_tid_numa_map,
1590 static int numa_maps_open(struct inode *inode, struct file *file,
1591 const struct seq_operations *ops)
1593 return proc_maps_open(inode, file, ops,
1594 sizeof(struct numa_maps_private));
1597 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1599 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1602 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1604 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1607 const struct file_operations proc_pid_numa_maps_operations = {
1608 .open = pid_numa_maps_open,
1609 .read = seq_read,
1610 .llseek = seq_lseek,
1611 .release = proc_map_release,
1614 const struct file_operations proc_tid_numa_maps_operations = {
1615 .open = tid_numa_maps_open,
1616 .read = seq_read,
1617 .llseek = seq_lseek,
1618 .release = proc_map_release,
1620 #endif /* CONFIG_NUMA */