[media] s5p-cec: Fix memory allocation failure check
[linux/fpc-iii.git] / drivers / dma / edma.c
blob3d277fa76c1abb7397071ef58350a091e943ba4a
1 /*
2 * TI EDMA DMA engine driver
4 * Copyright 2012 Texas Instruments
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation version 2.
10 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
11 * kind, whether express or implied; without even the implied warranty
12 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/dmaengine.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/edma.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/pm_runtime.h>
34 #include <linux/platform_data/edma.h>
36 #include "dmaengine.h"
37 #include "virt-dma.h"
39 /* Offsets matching "struct edmacc_param" */
40 #define PARM_OPT 0x00
41 #define PARM_SRC 0x04
42 #define PARM_A_B_CNT 0x08
43 #define PARM_DST 0x0c
44 #define PARM_SRC_DST_BIDX 0x10
45 #define PARM_LINK_BCNTRLD 0x14
46 #define PARM_SRC_DST_CIDX 0x18
47 #define PARM_CCNT 0x1c
49 #define PARM_SIZE 0x20
51 /* Offsets for EDMA CC global channel registers and their shadows */
52 #define SH_ER 0x00 /* 64 bits */
53 #define SH_ECR 0x08 /* 64 bits */
54 #define SH_ESR 0x10 /* 64 bits */
55 #define SH_CER 0x18 /* 64 bits */
56 #define SH_EER 0x20 /* 64 bits */
57 #define SH_EECR 0x28 /* 64 bits */
58 #define SH_EESR 0x30 /* 64 bits */
59 #define SH_SER 0x38 /* 64 bits */
60 #define SH_SECR 0x40 /* 64 bits */
61 #define SH_IER 0x50 /* 64 bits */
62 #define SH_IECR 0x58 /* 64 bits */
63 #define SH_IESR 0x60 /* 64 bits */
64 #define SH_IPR 0x68 /* 64 bits */
65 #define SH_ICR 0x70 /* 64 bits */
66 #define SH_IEVAL 0x78
67 #define SH_QER 0x80
68 #define SH_QEER 0x84
69 #define SH_QEECR 0x88
70 #define SH_QEESR 0x8c
71 #define SH_QSER 0x90
72 #define SH_QSECR 0x94
73 #define SH_SIZE 0x200
75 /* Offsets for EDMA CC global registers */
76 #define EDMA_REV 0x0000
77 #define EDMA_CCCFG 0x0004
78 #define EDMA_QCHMAP 0x0200 /* 8 registers */
79 #define EDMA_DMAQNUM 0x0240 /* 8 registers (4 on OMAP-L1xx) */
80 #define EDMA_QDMAQNUM 0x0260
81 #define EDMA_QUETCMAP 0x0280
82 #define EDMA_QUEPRI 0x0284
83 #define EDMA_EMR 0x0300 /* 64 bits */
84 #define EDMA_EMCR 0x0308 /* 64 bits */
85 #define EDMA_QEMR 0x0310
86 #define EDMA_QEMCR 0x0314
87 #define EDMA_CCERR 0x0318
88 #define EDMA_CCERRCLR 0x031c
89 #define EDMA_EEVAL 0x0320
90 #define EDMA_DRAE 0x0340 /* 4 x 64 bits*/
91 #define EDMA_QRAE 0x0380 /* 4 registers */
92 #define EDMA_QUEEVTENTRY 0x0400 /* 2 x 16 registers */
93 #define EDMA_QSTAT 0x0600 /* 2 registers */
94 #define EDMA_QWMTHRA 0x0620
95 #define EDMA_QWMTHRB 0x0624
96 #define EDMA_CCSTAT 0x0640
98 #define EDMA_M 0x1000 /* global channel registers */
99 #define EDMA_ECR 0x1008
100 #define EDMA_ECRH 0x100C
101 #define EDMA_SHADOW0 0x2000 /* 4 shadow regions */
102 #define EDMA_PARM 0x4000 /* PaRAM entries */
104 #define PARM_OFFSET(param_no) (EDMA_PARM + ((param_no) << 5))
106 #define EDMA_DCHMAP 0x0100 /* 64 registers */
108 /* CCCFG register */
109 #define GET_NUM_DMACH(x) (x & 0x7) /* bits 0-2 */
110 #define GET_NUM_QDMACH(x) ((x & 0x70) >> 4) /* bits 4-6 */
111 #define GET_NUM_PAENTRY(x) ((x & 0x7000) >> 12) /* bits 12-14 */
112 #define GET_NUM_EVQUE(x) ((x & 0x70000) >> 16) /* bits 16-18 */
113 #define GET_NUM_REGN(x) ((x & 0x300000) >> 20) /* bits 20-21 */
114 #define CHMAP_EXIST BIT(24)
116 /* CCSTAT register */
117 #define EDMA_CCSTAT_ACTV BIT(4)
120 * Max of 20 segments per channel to conserve PaRAM slots
121 * Also note that MAX_NR_SG should be atleast the no.of periods
122 * that are required for ASoC, otherwise DMA prep calls will
123 * fail. Today davinci-pcm is the only user of this driver and
124 * requires atleast 17 slots, so we setup the default to 20.
126 #define MAX_NR_SG 20
127 #define EDMA_MAX_SLOTS MAX_NR_SG
128 #define EDMA_DESCRIPTORS 16
130 #define EDMA_CHANNEL_ANY -1 /* for edma_alloc_channel() */
131 #define EDMA_SLOT_ANY -1 /* for edma_alloc_slot() */
132 #define EDMA_CONT_PARAMS_ANY 1001
133 #define EDMA_CONT_PARAMS_FIXED_EXACT 1002
134 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
136 /* PaRAM slots are laid out like this */
137 struct edmacc_param {
138 u32 opt;
139 u32 src;
140 u32 a_b_cnt;
141 u32 dst;
142 u32 src_dst_bidx;
143 u32 link_bcntrld;
144 u32 src_dst_cidx;
145 u32 ccnt;
146 } __packed;
148 /* fields in edmacc_param.opt */
149 #define SAM BIT(0)
150 #define DAM BIT(1)
151 #define SYNCDIM BIT(2)
152 #define STATIC BIT(3)
153 #define EDMA_FWID (0x07 << 8)
154 #define TCCMODE BIT(11)
155 #define EDMA_TCC(t) ((t) << 12)
156 #define TCINTEN BIT(20)
157 #define ITCINTEN BIT(21)
158 #define TCCHEN BIT(22)
159 #define ITCCHEN BIT(23)
161 struct edma_pset {
162 u32 len;
163 dma_addr_t addr;
164 struct edmacc_param param;
167 struct edma_desc {
168 struct virt_dma_desc vdesc;
169 struct list_head node;
170 enum dma_transfer_direction direction;
171 int cyclic;
172 int absync;
173 int pset_nr;
174 struct edma_chan *echan;
175 int processed;
178 * The following 4 elements are used for residue accounting.
180 * - processed_stat: the number of SG elements we have traversed
181 * so far to cover accounting. This is updated directly to processed
182 * during edma_callback and is always <= processed, because processed
183 * refers to the number of pending transfer (programmed to EDMA
184 * controller), where as processed_stat tracks number of transfers
185 * accounted for so far.
187 * - residue: The amount of bytes we have left to transfer for this desc
189 * - residue_stat: The residue in bytes of data we have covered
190 * so far for accounting. This is updated directly to residue
191 * during callbacks to keep it current.
193 * - sg_len: Tracks the length of the current intermediate transfer,
194 * this is required to update the residue during intermediate transfer
195 * completion callback.
197 int processed_stat;
198 u32 sg_len;
199 u32 residue;
200 u32 residue_stat;
202 struct edma_pset pset[0];
205 struct edma_cc;
207 struct edma_tc {
208 struct device_node *node;
209 u16 id;
212 struct edma_chan {
213 struct virt_dma_chan vchan;
214 struct list_head node;
215 struct edma_desc *edesc;
216 struct edma_cc *ecc;
217 struct edma_tc *tc;
218 int ch_num;
219 bool alloced;
220 bool hw_triggered;
221 int slot[EDMA_MAX_SLOTS];
222 int missed;
223 struct dma_slave_config cfg;
226 struct edma_cc {
227 struct device *dev;
228 struct edma_soc_info *info;
229 void __iomem *base;
230 int id;
231 bool legacy_mode;
233 /* eDMA3 resource information */
234 unsigned num_channels;
235 unsigned num_qchannels;
236 unsigned num_region;
237 unsigned num_slots;
238 unsigned num_tc;
239 bool chmap_exist;
240 enum dma_event_q default_queue;
242 unsigned int ccint;
243 unsigned int ccerrint;
246 * The slot_inuse bit for each PaRAM slot is clear unless the slot is
247 * in use by Linux or if it is allocated to be used by DSP.
249 unsigned long *slot_inuse;
251 struct dma_device dma_slave;
252 struct dma_device *dma_memcpy;
253 struct edma_chan *slave_chans;
254 struct edma_tc *tc_list;
255 int dummy_slot;
258 /* dummy param set used to (re)initialize parameter RAM slots */
259 static const struct edmacc_param dummy_paramset = {
260 .link_bcntrld = 0xffff,
261 .ccnt = 1,
264 #define EDMA_BINDING_LEGACY 0
265 #define EDMA_BINDING_TPCC 1
266 static const struct of_device_id edma_of_ids[] = {
268 .compatible = "ti,edma3",
269 .data = (void *)EDMA_BINDING_LEGACY,
272 .compatible = "ti,edma3-tpcc",
273 .data = (void *)EDMA_BINDING_TPCC,
278 static const struct of_device_id edma_tptc_of_ids[] = {
279 { .compatible = "ti,edma3-tptc", },
283 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
285 return (unsigned int)__raw_readl(ecc->base + offset);
288 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
290 __raw_writel(val, ecc->base + offset);
293 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
294 unsigned or)
296 unsigned val = edma_read(ecc, offset);
298 val &= and;
299 val |= or;
300 edma_write(ecc, offset, val);
303 static inline void edma_and(struct edma_cc *ecc, int offset, unsigned and)
305 unsigned val = edma_read(ecc, offset);
307 val &= and;
308 edma_write(ecc, offset, val);
311 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
313 unsigned val = edma_read(ecc, offset);
315 val |= or;
316 edma_write(ecc, offset, val);
319 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
320 int i)
322 return edma_read(ecc, offset + (i << 2));
325 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
326 unsigned val)
328 edma_write(ecc, offset + (i << 2), val);
331 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
332 unsigned and, unsigned or)
334 edma_modify(ecc, offset + (i << 2), and, or);
337 static inline void edma_or_array(struct edma_cc *ecc, int offset, int i,
338 unsigned or)
340 edma_or(ecc, offset + (i << 2), or);
343 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
344 unsigned or)
346 edma_or(ecc, offset + ((i * 2 + j) << 2), or);
349 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
350 int j, unsigned val)
352 edma_write(ecc, offset + ((i * 2 + j) << 2), val);
355 static inline unsigned int edma_shadow0_read(struct edma_cc *ecc, int offset)
357 return edma_read(ecc, EDMA_SHADOW0 + offset);
360 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
361 int offset, int i)
363 return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
366 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
367 unsigned val)
369 edma_write(ecc, EDMA_SHADOW0 + offset, val);
372 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
373 int i, unsigned val)
375 edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
378 static inline unsigned int edma_param_read(struct edma_cc *ecc, int offset,
379 int param_no)
381 return edma_read(ecc, EDMA_PARM + offset + (param_no << 5));
384 static inline void edma_param_write(struct edma_cc *ecc, int offset,
385 int param_no, unsigned val)
387 edma_write(ecc, EDMA_PARM + offset + (param_no << 5), val);
390 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
391 int param_no, unsigned and, unsigned or)
393 edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
396 static inline void edma_param_and(struct edma_cc *ecc, int offset, int param_no,
397 unsigned and)
399 edma_and(ecc, EDMA_PARM + offset + (param_no << 5), and);
402 static inline void edma_param_or(struct edma_cc *ecc, int offset, int param_no,
403 unsigned or)
405 edma_or(ecc, EDMA_PARM + offset + (param_no << 5), or);
408 static inline void set_bits(int offset, int len, unsigned long *p)
410 for (; len > 0; len--)
411 set_bit(offset + (len - 1), p);
414 static inline void clear_bits(int offset, int len, unsigned long *p)
416 for (; len > 0; len--)
417 clear_bit(offset + (len - 1), p);
420 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
421 int priority)
423 int bit = queue_no * 4;
425 edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
428 static void edma_set_chmap(struct edma_chan *echan, int slot)
430 struct edma_cc *ecc = echan->ecc;
431 int channel = EDMA_CHAN_SLOT(echan->ch_num);
433 if (ecc->chmap_exist) {
434 slot = EDMA_CHAN_SLOT(slot);
435 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
439 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
441 struct edma_cc *ecc = echan->ecc;
442 int channel = EDMA_CHAN_SLOT(echan->ch_num);
444 if (enable) {
445 edma_shadow0_write_array(ecc, SH_ICR, channel >> 5,
446 BIT(channel & 0x1f));
447 edma_shadow0_write_array(ecc, SH_IESR, channel >> 5,
448 BIT(channel & 0x1f));
449 } else {
450 edma_shadow0_write_array(ecc, SH_IECR, channel >> 5,
451 BIT(channel & 0x1f));
456 * paRAM slot management functions
458 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
459 const struct edmacc_param *param)
461 slot = EDMA_CHAN_SLOT(slot);
462 if (slot >= ecc->num_slots)
463 return;
464 memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
467 static void edma_read_slot(struct edma_cc *ecc, unsigned slot,
468 struct edmacc_param *param)
470 slot = EDMA_CHAN_SLOT(slot);
471 if (slot >= ecc->num_slots)
472 return;
473 memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
477 * edma_alloc_slot - allocate DMA parameter RAM
478 * @ecc: pointer to edma_cc struct
479 * @slot: specific slot to allocate; negative for "any unused slot"
481 * This allocates a parameter RAM slot, initializing it to hold a
482 * dummy transfer. Slots allocated using this routine have not been
483 * mapped to a hardware DMA channel, and will normally be used by
484 * linking to them from a slot associated with a DMA channel.
486 * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
487 * slots may be allocated on behalf of DSP firmware.
489 * Returns the number of the slot, else negative errno.
491 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
493 if (slot >= 0) {
494 slot = EDMA_CHAN_SLOT(slot);
495 /* Requesting entry paRAM slot for a HW triggered channel. */
496 if (ecc->chmap_exist && slot < ecc->num_channels)
497 slot = EDMA_SLOT_ANY;
500 if (slot < 0) {
501 if (ecc->chmap_exist)
502 slot = 0;
503 else
504 slot = ecc->num_channels;
505 for (;;) {
506 slot = find_next_zero_bit(ecc->slot_inuse,
507 ecc->num_slots,
508 slot);
509 if (slot == ecc->num_slots)
510 return -ENOMEM;
511 if (!test_and_set_bit(slot, ecc->slot_inuse))
512 break;
514 } else if (slot >= ecc->num_slots) {
515 return -EINVAL;
516 } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
517 return -EBUSY;
520 edma_write_slot(ecc, slot, &dummy_paramset);
522 return EDMA_CTLR_CHAN(ecc->id, slot);
525 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
527 slot = EDMA_CHAN_SLOT(slot);
528 if (slot >= ecc->num_slots)
529 return;
531 edma_write_slot(ecc, slot, &dummy_paramset);
532 clear_bit(slot, ecc->slot_inuse);
536 * edma_link - link one parameter RAM slot to another
537 * @ecc: pointer to edma_cc struct
538 * @from: parameter RAM slot originating the link
539 * @to: parameter RAM slot which is the link target
541 * The originating slot should not be part of any active DMA transfer.
543 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
545 if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
546 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
548 from = EDMA_CHAN_SLOT(from);
549 to = EDMA_CHAN_SLOT(to);
550 if (from >= ecc->num_slots || to >= ecc->num_slots)
551 return;
553 edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
554 PARM_OFFSET(to));
558 * edma_get_position - returns the current transfer point
559 * @ecc: pointer to edma_cc struct
560 * @slot: parameter RAM slot being examined
561 * @dst: true selects the dest position, false the source
563 * Returns the position of the current active slot
565 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
566 bool dst)
568 u32 offs;
570 slot = EDMA_CHAN_SLOT(slot);
571 offs = PARM_OFFSET(slot);
572 offs += dst ? PARM_DST : PARM_SRC;
574 return edma_read(ecc, offs);
578 * Channels with event associations will be triggered by their hardware
579 * events, and channels without such associations will be triggered by
580 * software. (At this writing there is no interface for using software
581 * triggers except with channels that don't support hardware triggers.)
583 static void edma_start(struct edma_chan *echan)
585 struct edma_cc *ecc = echan->ecc;
586 int channel = EDMA_CHAN_SLOT(echan->ch_num);
587 int j = (channel >> 5);
588 unsigned int mask = BIT(channel & 0x1f);
590 if (!echan->hw_triggered) {
591 /* EDMA channels without event association */
592 dev_dbg(ecc->dev, "ESR%d %08x\n", j,
593 edma_shadow0_read_array(ecc, SH_ESR, j));
594 edma_shadow0_write_array(ecc, SH_ESR, j, mask);
595 } else {
596 /* EDMA channel with event association */
597 dev_dbg(ecc->dev, "ER%d %08x\n", j,
598 edma_shadow0_read_array(ecc, SH_ER, j));
599 /* Clear any pending event or error */
600 edma_write_array(ecc, EDMA_ECR, j, mask);
601 edma_write_array(ecc, EDMA_EMCR, j, mask);
602 /* Clear any SER */
603 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
604 edma_shadow0_write_array(ecc, SH_EESR, j, mask);
605 dev_dbg(ecc->dev, "EER%d %08x\n", j,
606 edma_shadow0_read_array(ecc, SH_EER, j));
610 static void edma_stop(struct edma_chan *echan)
612 struct edma_cc *ecc = echan->ecc;
613 int channel = EDMA_CHAN_SLOT(echan->ch_num);
614 int j = (channel >> 5);
615 unsigned int mask = BIT(channel & 0x1f);
617 edma_shadow0_write_array(ecc, SH_EECR, j, mask);
618 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
619 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
620 edma_write_array(ecc, EDMA_EMCR, j, mask);
622 /* clear possibly pending completion interrupt */
623 edma_shadow0_write_array(ecc, SH_ICR, j, mask);
625 dev_dbg(ecc->dev, "EER%d %08x\n", j,
626 edma_shadow0_read_array(ecc, SH_EER, j));
628 /* REVISIT: consider guarding against inappropriate event
629 * chaining by overwriting with dummy_paramset.
634 * Temporarily disable EDMA hardware events on the specified channel,
635 * preventing them from triggering new transfers
637 static void edma_pause(struct edma_chan *echan)
639 int channel = EDMA_CHAN_SLOT(echan->ch_num);
640 unsigned int mask = BIT(channel & 0x1f);
642 edma_shadow0_write_array(echan->ecc, SH_EECR, channel >> 5, mask);
645 /* Re-enable EDMA hardware events on the specified channel. */
646 static void edma_resume(struct edma_chan *echan)
648 int channel = EDMA_CHAN_SLOT(echan->ch_num);
649 unsigned int mask = BIT(channel & 0x1f);
651 edma_shadow0_write_array(echan->ecc, SH_EESR, channel >> 5, mask);
654 static void edma_trigger_channel(struct edma_chan *echan)
656 struct edma_cc *ecc = echan->ecc;
657 int channel = EDMA_CHAN_SLOT(echan->ch_num);
658 unsigned int mask = BIT(channel & 0x1f);
660 edma_shadow0_write_array(ecc, SH_ESR, (channel >> 5), mask);
662 dev_dbg(ecc->dev, "ESR%d %08x\n", (channel >> 5),
663 edma_shadow0_read_array(ecc, SH_ESR, (channel >> 5)));
666 static void edma_clean_channel(struct edma_chan *echan)
668 struct edma_cc *ecc = echan->ecc;
669 int channel = EDMA_CHAN_SLOT(echan->ch_num);
670 int j = (channel >> 5);
671 unsigned int mask = BIT(channel & 0x1f);
673 dev_dbg(ecc->dev, "EMR%d %08x\n", j, edma_read_array(ecc, EDMA_EMR, j));
674 edma_shadow0_write_array(ecc, SH_ECR, j, mask);
675 /* Clear the corresponding EMR bits */
676 edma_write_array(ecc, EDMA_EMCR, j, mask);
677 /* Clear any SER */
678 edma_shadow0_write_array(ecc, SH_SECR, j, mask);
679 edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
682 /* Move channel to a specific event queue */
683 static void edma_assign_channel_eventq(struct edma_chan *echan,
684 enum dma_event_q eventq_no)
686 struct edma_cc *ecc = echan->ecc;
687 int channel = EDMA_CHAN_SLOT(echan->ch_num);
688 int bit = (channel & 0x7) * 4;
690 /* default to low priority queue */
691 if (eventq_no == EVENTQ_DEFAULT)
692 eventq_no = ecc->default_queue;
693 if (eventq_no >= ecc->num_tc)
694 return;
696 eventq_no &= 7;
697 edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
698 eventq_no << bit);
701 static int edma_alloc_channel(struct edma_chan *echan,
702 enum dma_event_q eventq_no)
704 struct edma_cc *ecc = echan->ecc;
705 int channel = EDMA_CHAN_SLOT(echan->ch_num);
707 /* ensure access through shadow region 0 */
708 edma_or_array2(ecc, EDMA_DRAE, 0, channel >> 5, BIT(channel & 0x1f));
710 /* ensure no events are pending */
711 edma_stop(echan);
713 edma_setup_interrupt(echan, true);
715 edma_assign_channel_eventq(echan, eventq_no);
717 return 0;
720 static void edma_free_channel(struct edma_chan *echan)
722 /* ensure no events are pending */
723 edma_stop(echan);
724 /* REVISIT should probably take out of shadow region 0 */
725 edma_setup_interrupt(echan, false);
728 static inline struct edma_cc *to_edma_cc(struct dma_device *d)
730 return container_of(d, struct edma_cc, dma_slave);
733 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
735 return container_of(c, struct edma_chan, vchan.chan);
738 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
740 return container_of(tx, struct edma_desc, vdesc.tx);
743 static void edma_desc_free(struct virt_dma_desc *vdesc)
745 kfree(container_of(vdesc, struct edma_desc, vdesc));
748 /* Dispatch a queued descriptor to the controller (caller holds lock) */
749 static void edma_execute(struct edma_chan *echan)
751 struct edma_cc *ecc = echan->ecc;
752 struct virt_dma_desc *vdesc;
753 struct edma_desc *edesc;
754 struct device *dev = echan->vchan.chan.device->dev;
755 int i, j, left, nslots;
757 if (!echan->edesc) {
758 /* Setup is needed for the first transfer */
759 vdesc = vchan_next_desc(&echan->vchan);
760 if (!vdesc)
761 return;
762 list_del(&vdesc->node);
763 echan->edesc = to_edma_desc(&vdesc->tx);
766 edesc = echan->edesc;
768 /* Find out how many left */
769 left = edesc->pset_nr - edesc->processed;
770 nslots = min(MAX_NR_SG, left);
771 edesc->sg_len = 0;
773 /* Write descriptor PaRAM set(s) */
774 for (i = 0; i < nslots; i++) {
775 j = i + edesc->processed;
776 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
777 edesc->sg_len += edesc->pset[j].len;
778 dev_vdbg(dev,
779 "\n pset[%d]:\n"
780 " chnum\t%d\n"
781 " slot\t%d\n"
782 " opt\t%08x\n"
783 " src\t%08x\n"
784 " dst\t%08x\n"
785 " abcnt\t%08x\n"
786 " ccnt\t%08x\n"
787 " bidx\t%08x\n"
788 " cidx\t%08x\n"
789 " lkrld\t%08x\n",
790 j, echan->ch_num, echan->slot[i],
791 edesc->pset[j].param.opt,
792 edesc->pset[j].param.src,
793 edesc->pset[j].param.dst,
794 edesc->pset[j].param.a_b_cnt,
795 edesc->pset[j].param.ccnt,
796 edesc->pset[j].param.src_dst_bidx,
797 edesc->pset[j].param.src_dst_cidx,
798 edesc->pset[j].param.link_bcntrld);
799 /* Link to the previous slot if not the last set */
800 if (i != (nslots - 1))
801 edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
804 edesc->processed += nslots;
807 * If this is either the last set in a set of SG-list transactions
808 * then setup a link to the dummy slot, this results in all future
809 * events being absorbed and that's OK because we're done
811 if (edesc->processed == edesc->pset_nr) {
812 if (edesc->cyclic)
813 edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
814 else
815 edma_link(ecc, echan->slot[nslots - 1],
816 echan->ecc->dummy_slot);
819 if (echan->missed) {
821 * This happens due to setup times between intermediate
822 * transfers in long SG lists which have to be broken up into
823 * transfers of MAX_NR_SG
825 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
826 edma_clean_channel(echan);
827 edma_stop(echan);
828 edma_start(echan);
829 edma_trigger_channel(echan);
830 echan->missed = 0;
831 } else if (edesc->processed <= MAX_NR_SG) {
832 dev_dbg(dev, "first transfer starting on channel %d\n",
833 echan->ch_num);
834 edma_start(echan);
835 } else {
836 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
837 echan->ch_num, edesc->processed);
838 edma_resume(echan);
842 static int edma_terminate_all(struct dma_chan *chan)
844 struct edma_chan *echan = to_edma_chan(chan);
845 unsigned long flags;
846 LIST_HEAD(head);
848 spin_lock_irqsave(&echan->vchan.lock, flags);
851 * Stop DMA activity: we assume the callback will not be called
852 * after edma_dma() returns (even if it does, it will see
853 * echan->edesc is NULL and exit.)
855 if (echan->edesc) {
856 edma_stop(echan);
857 /* Move the cyclic channel back to default queue */
858 if (!echan->tc && echan->edesc->cyclic)
859 edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
861 * free the running request descriptor
862 * since it is not in any of the vdesc lists
864 edma_desc_free(&echan->edesc->vdesc);
865 echan->edesc = NULL;
868 vchan_get_all_descriptors(&echan->vchan, &head);
869 spin_unlock_irqrestore(&echan->vchan.lock, flags);
870 vchan_dma_desc_free_list(&echan->vchan, &head);
872 return 0;
875 static void edma_synchronize(struct dma_chan *chan)
877 struct edma_chan *echan = to_edma_chan(chan);
879 vchan_synchronize(&echan->vchan);
882 static int edma_slave_config(struct dma_chan *chan,
883 struct dma_slave_config *cfg)
885 struct edma_chan *echan = to_edma_chan(chan);
887 if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
888 cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
889 return -EINVAL;
891 memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
893 return 0;
896 static int edma_dma_pause(struct dma_chan *chan)
898 struct edma_chan *echan = to_edma_chan(chan);
900 if (!echan->edesc)
901 return -EINVAL;
903 edma_pause(echan);
904 return 0;
907 static int edma_dma_resume(struct dma_chan *chan)
909 struct edma_chan *echan = to_edma_chan(chan);
911 edma_resume(echan);
912 return 0;
916 * A PaRAM set configuration abstraction used by other modes
917 * @chan: Channel who's PaRAM set we're configuring
918 * @pset: PaRAM set to initialize and setup.
919 * @src_addr: Source address of the DMA
920 * @dst_addr: Destination address of the DMA
921 * @burst: In units of dev_width, how much to send
922 * @dev_width: How much is the dev_width
923 * @dma_length: Total length of the DMA transfer
924 * @direction: Direction of the transfer
926 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
927 dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
928 unsigned int acnt, unsigned int dma_length,
929 enum dma_transfer_direction direction)
931 struct edma_chan *echan = to_edma_chan(chan);
932 struct device *dev = chan->device->dev;
933 struct edmacc_param *param = &epset->param;
934 int bcnt, ccnt, cidx;
935 int src_bidx, dst_bidx, src_cidx, dst_cidx;
936 int absync;
938 /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
939 if (!burst)
940 burst = 1;
942 * If the maxburst is equal to the fifo width, use
943 * A-synced transfers. This allows for large contiguous
944 * buffer transfers using only one PaRAM set.
946 if (burst == 1) {
948 * For the A-sync case, bcnt and ccnt are the remainder
949 * and quotient respectively of the division of:
950 * (dma_length / acnt) by (SZ_64K -1). This is so
951 * that in case bcnt over flows, we have ccnt to use.
952 * Note: In A-sync tranfer only, bcntrld is used, but it
953 * only applies for sg_dma_len(sg) >= SZ_64K.
954 * In this case, the best way adopted is- bccnt for the
955 * first frame will be the remainder below. Then for
956 * every successive frame, bcnt will be SZ_64K-1. This
957 * is assured as bcntrld = 0xffff in end of function.
959 absync = false;
960 ccnt = dma_length / acnt / (SZ_64K - 1);
961 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
963 * If bcnt is non-zero, we have a remainder and hence an
964 * extra frame to transfer, so increment ccnt.
966 if (bcnt)
967 ccnt++;
968 else
969 bcnt = SZ_64K - 1;
970 cidx = acnt;
971 } else {
973 * If maxburst is greater than the fifo address_width,
974 * use AB-synced transfers where A count is the fifo
975 * address_width and B count is the maxburst. In this
976 * case, we are limited to transfers of C count frames
977 * of (address_width * maxburst) where C count is limited
978 * to SZ_64K-1. This places an upper bound on the length
979 * of an SG segment that can be handled.
981 absync = true;
982 bcnt = burst;
983 ccnt = dma_length / (acnt * bcnt);
984 if (ccnt > (SZ_64K - 1)) {
985 dev_err(dev, "Exceeded max SG segment size\n");
986 return -EINVAL;
988 cidx = acnt * bcnt;
991 epset->len = dma_length;
993 if (direction == DMA_MEM_TO_DEV) {
994 src_bidx = acnt;
995 src_cidx = cidx;
996 dst_bidx = 0;
997 dst_cidx = 0;
998 epset->addr = src_addr;
999 } else if (direction == DMA_DEV_TO_MEM) {
1000 src_bidx = 0;
1001 src_cidx = 0;
1002 dst_bidx = acnt;
1003 dst_cidx = cidx;
1004 epset->addr = dst_addr;
1005 } else if (direction == DMA_MEM_TO_MEM) {
1006 src_bidx = acnt;
1007 src_cidx = cidx;
1008 dst_bidx = acnt;
1009 dst_cidx = cidx;
1010 } else {
1011 dev_err(dev, "%s: direction not implemented yet\n", __func__);
1012 return -EINVAL;
1015 param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1016 /* Configure A or AB synchronized transfers */
1017 if (absync)
1018 param->opt |= SYNCDIM;
1020 param->src = src_addr;
1021 param->dst = dst_addr;
1023 param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1024 param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
1026 param->a_b_cnt = bcnt << 16 | acnt;
1027 param->ccnt = ccnt;
1029 * Only time when (bcntrld) auto reload is required is for
1030 * A-sync case, and in this case, a requirement of reload value
1031 * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1032 * and then later will be populated by edma_execute.
1034 param->link_bcntrld = 0xffffffff;
1035 return absync;
1038 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1039 struct dma_chan *chan, struct scatterlist *sgl,
1040 unsigned int sg_len, enum dma_transfer_direction direction,
1041 unsigned long tx_flags, void *context)
1043 struct edma_chan *echan = to_edma_chan(chan);
1044 struct device *dev = chan->device->dev;
1045 struct edma_desc *edesc;
1046 dma_addr_t src_addr = 0, dst_addr = 0;
1047 enum dma_slave_buswidth dev_width;
1048 u32 burst;
1049 struct scatterlist *sg;
1050 int i, nslots, ret;
1052 if (unlikely(!echan || !sgl || !sg_len))
1053 return NULL;
1055 if (direction == DMA_DEV_TO_MEM) {
1056 src_addr = echan->cfg.src_addr;
1057 dev_width = echan->cfg.src_addr_width;
1058 burst = echan->cfg.src_maxburst;
1059 } else if (direction == DMA_MEM_TO_DEV) {
1060 dst_addr = echan->cfg.dst_addr;
1061 dev_width = echan->cfg.dst_addr_width;
1062 burst = echan->cfg.dst_maxburst;
1063 } else {
1064 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1065 return NULL;
1068 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1069 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1070 return NULL;
1073 edesc = kzalloc(sizeof(*edesc) + sg_len * sizeof(edesc->pset[0]),
1074 GFP_ATOMIC);
1075 if (!edesc)
1076 return NULL;
1078 edesc->pset_nr = sg_len;
1079 edesc->residue = 0;
1080 edesc->direction = direction;
1081 edesc->echan = echan;
1083 /* Allocate a PaRAM slot, if needed */
1084 nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1086 for (i = 0; i < nslots; i++) {
1087 if (echan->slot[i] < 0) {
1088 echan->slot[i] =
1089 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1090 if (echan->slot[i] < 0) {
1091 kfree(edesc);
1092 dev_err(dev, "%s: Failed to allocate slot\n",
1093 __func__);
1094 return NULL;
1099 /* Configure PaRAM sets for each SG */
1100 for_each_sg(sgl, sg, sg_len, i) {
1101 /* Get address for each SG */
1102 if (direction == DMA_DEV_TO_MEM)
1103 dst_addr = sg_dma_address(sg);
1104 else
1105 src_addr = sg_dma_address(sg);
1107 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1108 dst_addr, burst, dev_width,
1109 sg_dma_len(sg), direction);
1110 if (ret < 0) {
1111 kfree(edesc);
1112 return NULL;
1115 edesc->absync = ret;
1116 edesc->residue += sg_dma_len(sg);
1118 if (i == sg_len - 1)
1119 /* Enable completion interrupt */
1120 edesc->pset[i].param.opt |= TCINTEN;
1121 else if (!((i+1) % MAX_NR_SG))
1123 * Enable early completion interrupt for the
1124 * intermediateset. In this case the driver will be
1125 * notified when the paRAM set is submitted to TC. This
1126 * will allow more time to set up the next set of slots.
1128 edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1130 edesc->residue_stat = edesc->residue;
1132 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1135 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1136 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1137 size_t len, unsigned long tx_flags)
1139 int ret, nslots;
1140 struct edma_desc *edesc;
1141 struct device *dev = chan->device->dev;
1142 struct edma_chan *echan = to_edma_chan(chan);
1143 unsigned int width, pset_len;
1145 if (unlikely(!echan || !len))
1146 return NULL;
1148 if (len < SZ_64K) {
1150 * Transfer size less than 64K can be handled with one paRAM
1151 * slot and with one burst.
1152 * ACNT = length
1154 width = len;
1155 pset_len = len;
1156 nslots = 1;
1157 } else {
1159 * Transfer size bigger than 64K will be handled with maximum of
1160 * two paRAM slots.
1161 * slot1: (full_length / 32767) times 32767 bytes bursts.
1162 * ACNT = 32767, length1: (full_length / 32767) * 32767
1163 * slot2: the remaining amount of data after slot1.
1164 * ACNT = full_length - length1, length2 = ACNT
1166 * When the full_length is multibple of 32767 one slot can be
1167 * used to complete the transfer.
1169 width = SZ_32K - 1;
1170 pset_len = rounddown(len, width);
1171 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1172 if (unlikely(pset_len == len))
1173 nslots = 1;
1174 else
1175 nslots = 2;
1178 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1179 GFP_ATOMIC);
1180 if (!edesc)
1181 return NULL;
1183 edesc->pset_nr = nslots;
1184 edesc->residue = edesc->residue_stat = len;
1185 edesc->direction = DMA_MEM_TO_MEM;
1186 edesc->echan = echan;
1188 ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1189 width, pset_len, DMA_MEM_TO_MEM);
1190 if (ret < 0) {
1191 kfree(edesc);
1192 return NULL;
1195 edesc->absync = ret;
1197 edesc->pset[0].param.opt |= ITCCHEN;
1198 if (nslots == 1) {
1199 /* Enable transfer complete interrupt */
1200 edesc->pset[0].param.opt |= TCINTEN;
1201 } else {
1202 /* Enable transfer complete chaining for the first slot */
1203 edesc->pset[0].param.opt |= TCCHEN;
1205 if (echan->slot[1] < 0) {
1206 echan->slot[1] = edma_alloc_slot(echan->ecc,
1207 EDMA_SLOT_ANY);
1208 if (echan->slot[1] < 0) {
1209 kfree(edesc);
1210 dev_err(dev, "%s: Failed to allocate slot\n",
1211 __func__);
1212 return NULL;
1215 dest += pset_len;
1216 src += pset_len;
1217 pset_len = width = len % (SZ_32K - 1);
1219 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1220 width, pset_len, DMA_MEM_TO_MEM);
1221 if (ret < 0) {
1222 kfree(edesc);
1223 return NULL;
1226 edesc->pset[1].param.opt |= ITCCHEN;
1227 edesc->pset[1].param.opt |= TCINTEN;
1230 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1233 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1234 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1235 size_t period_len, enum dma_transfer_direction direction,
1236 unsigned long tx_flags)
1238 struct edma_chan *echan = to_edma_chan(chan);
1239 struct device *dev = chan->device->dev;
1240 struct edma_desc *edesc;
1241 dma_addr_t src_addr, dst_addr;
1242 enum dma_slave_buswidth dev_width;
1243 bool use_intermediate = false;
1244 u32 burst;
1245 int i, ret, nslots;
1247 if (unlikely(!echan || !buf_len || !period_len))
1248 return NULL;
1250 if (direction == DMA_DEV_TO_MEM) {
1251 src_addr = echan->cfg.src_addr;
1252 dst_addr = buf_addr;
1253 dev_width = echan->cfg.src_addr_width;
1254 burst = echan->cfg.src_maxburst;
1255 } else if (direction == DMA_MEM_TO_DEV) {
1256 src_addr = buf_addr;
1257 dst_addr = echan->cfg.dst_addr;
1258 dev_width = echan->cfg.dst_addr_width;
1259 burst = echan->cfg.dst_maxburst;
1260 } else {
1261 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1262 return NULL;
1265 if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1266 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1267 return NULL;
1270 if (unlikely(buf_len % period_len)) {
1271 dev_err(dev, "Period should be multiple of Buffer length\n");
1272 return NULL;
1275 nslots = (buf_len / period_len) + 1;
1278 * Cyclic DMA users such as audio cannot tolerate delays introduced
1279 * by cases where the number of periods is more than the maximum
1280 * number of SGs the EDMA driver can handle at a time. For DMA types
1281 * such as Slave SGs, such delays are tolerable and synchronized,
1282 * but the synchronization is difficult to achieve with Cyclic and
1283 * cannot be guaranteed, so we error out early.
1285 if (nslots > MAX_NR_SG) {
1287 * If the burst and period sizes are the same, we can put
1288 * the full buffer into a single period and activate
1289 * intermediate interrupts. This will produce interrupts
1290 * after each burst, which is also after each desired period.
1292 if (burst == period_len) {
1293 period_len = buf_len;
1294 nslots = 2;
1295 use_intermediate = true;
1296 } else {
1297 return NULL;
1301 edesc = kzalloc(sizeof(*edesc) + nslots * sizeof(edesc->pset[0]),
1302 GFP_ATOMIC);
1303 if (!edesc)
1304 return NULL;
1306 edesc->cyclic = 1;
1307 edesc->pset_nr = nslots;
1308 edesc->residue = edesc->residue_stat = buf_len;
1309 edesc->direction = direction;
1310 edesc->echan = echan;
1312 dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1313 __func__, echan->ch_num, nslots, period_len, buf_len);
1315 for (i = 0; i < nslots; i++) {
1316 /* Allocate a PaRAM slot, if needed */
1317 if (echan->slot[i] < 0) {
1318 echan->slot[i] =
1319 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1320 if (echan->slot[i] < 0) {
1321 kfree(edesc);
1322 dev_err(dev, "%s: Failed to allocate slot\n",
1323 __func__);
1324 return NULL;
1328 if (i == nslots - 1) {
1329 memcpy(&edesc->pset[i], &edesc->pset[0],
1330 sizeof(edesc->pset[0]));
1331 break;
1334 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1335 dst_addr, burst, dev_width, period_len,
1336 direction);
1337 if (ret < 0) {
1338 kfree(edesc);
1339 return NULL;
1342 if (direction == DMA_DEV_TO_MEM)
1343 dst_addr += period_len;
1344 else
1345 src_addr += period_len;
1347 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1348 dev_vdbg(dev,
1349 "\n pset[%d]:\n"
1350 " chnum\t%d\n"
1351 " slot\t%d\n"
1352 " opt\t%08x\n"
1353 " src\t%08x\n"
1354 " dst\t%08x\n"
1355 " abcnt\t%08x\n"
1356 " ccnt\t%08x\n"
1357 " bidx\t%08x\n"
1358 " cidx\t%08x\n"
1359 " lkrld\t%08x\n",
1360 i, echan->ch_num, echan->slot[i],
1361 edesc->pset[i].param.opt,
1362 edesc->pset[i].param.src,
1363 edesc->pset[i].param.dst,
1364 edesc->pset[i].param.a_b_cnt,
1365 edesc->pset[i].param.ccnt,
1366 edesc->pset[i].param.src_dst_bidx,
1367 edesc->pset[i].param.src_dst_cidx,
1368 edesc->pset[i].param.link_bcntrld);
1370 edesc->absync = ret;
1373 * Enable period interrupt only if it is requested
1375 if (tx_flags & DMA_PREP_INTERRUPT) {
1376 edesc->pset[i].param.opt |= TCINTEN;
1378 /* Also enable intermediate interrupts if necessary */
1379 if (use_intermediate)
1380 edesc->pset[i].param.opt |= ITCINTEN;
1384 /* Place the cyclic channel to highest priority queue */
1385 if (!echan->tc)
1386 edma_assign_channel_eventq(echan, EVENTQ_0);
1388 return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1391 static void edma_completion_handler(struct edma_chan *echan)
1393 struct device *dev = echan->vchan.chan.device->dev;
1394 struct edma_desc *edesc;
1396 spin_lock(&echan->vchan.lock);
1397 edesc = echan->edesc;
1398 if (edesc) {
1399 if (edesc->cyclic) {
1400 vchan_cyclic_callback(&edesc->vdesc);
1401 spin_unlock(&echan->vchan.lock);
1402 return;
1403 } else if (edesc->processed == edesc->pset_nr) {
1404 edesc->residue = 0;
1405 edma_stop(echan);
1406 vchan_cookie_complete(&edesc->vdesc);
1407 echan->edesc = NULL;
1409 dev_dbg(dev, "Transfer completed on channel %d\n",
1410 echan->ch_num);
1411 } else {
1412 dev_dbg(dev, "Sub transfer completed on channel %d\n",
1413 echan->ch_num);
1415 edma_pause(echan);
1417 /* Update statistics for tx_status */
1418 edesc->residue -= edesc->sg_len;
1419 edesc->residue_stat = edesc->residue;
1420 edesc->processed_stat = edesc->processed;
1422 edma_execute(echan);
1425 spin_unlock(&echan->vchan.lock);
1428 /* eDMA interrupt handler */
1429 static irqreturn_t dma_irq_handler(int irq, void *data)
1431 struct edma_cc *ecc = data;
1432 int ctlr;
1433 u32 sh_ier;
1434 u32 sh_ipr;
1435 u32 bank;
1437 ctlr = ecc->id;
1438 if (ctlr < 0)
1439 return IRQ_NONE;
1441 dev_vdbg(ecc->dev, "dma_irq_handler\n");
1443 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1444 if (!sh_ipr) {
1445 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1446 if (!sh_ipr)
1447 return IRQ_NONE;
1448 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1449 bank = 1;
1450 } else {
1451 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1452 bank = 0;
1455 do {
1456 u32 slot;
1457 u32 channel;
1459 slot = __ffs(sh_ipr);
1460 sh_ipr &= ~(BIT(slot));
1462 if (sh_ier & BIT(slot)) {
1463 channel = (bank << 5) | slot;
1464 /* Clear the corresponding IPR bits */
1465 edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1466 edma_completion_handler(&ecc->slave_chans[channel]);
1468 } while (sh_ipr);
1470 edma_shadow0_write(ecc, SH_IEVAL, 1);
1471 return IRQ_HANDLED;
1474 static void edma_error_handler(struct edma_chan *echan)
1476 struct edma_cc *ecc = echan->ecc;
1477 struct device *dev = echan->vchan.chan.device->dev;
1478 struct edmacc_param p;
1480 if (!echan->edesc)
1481 return;
1483 spin_lock(&echan->vchan.lock);
1485 edma_read_slot(ecc, echan->slot[0], &p);
1487 * Issue later based on missed flag which will be sure
1488 * to happen as:
1489 * (1) we finished transmitting an intermediate slot and
1490 * edma_execute is coming up.
1491 * (2) or we finished current transfer and issue will
1492 * call edma_execute.
1494 * Important note: issuing can be dangerous here and
1495 * lead to some nasty recursion when we are in a NULL
1496 * slot. So we avoid doing so and set the missed flag.
1498 if (p.a_b_cnt == 0 && p.ccnt == 0) {
1499 dev_dbg(dev, "Error on null slot, setting miss\n");
1500 echan->missed = 1;
1501 } else {
1503 * The slot is already programmed but the event got
1504 * missed, so its safe to issue it here.
1506 dev_dbg(dev, "Missed event, TRIGGERING\n");
1507 edma_clean_channel(echan);
1508 edma_stop(echan);
1509 edma_start(echan);
1510 edma_trigger_channel(echan);
1512 spin_unlock(&echan->vchan.lock);
1515 static inline bool edma_error_pending(struct edma_cc *ecc)
1517 if (edma_read_array(ecc, EDMA_EMR, 0) ||
1518 edma_read_array(ecc, EDMA_EMR, 1) ||
1519 edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1520 return true;
1522 return false;
1525 /* eDMA error interrupt handler */
1526 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1528 struct edma_cc *ecc = data;
1529 int i, j;
1530 int ctlr;
1531 unsigned int cnt = 0;
1532 unsigned int val;
1534 ctlr = ecc->id;
1535 if (ctlr < 0)
1536 return IRQ_NONE;
1538 dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1540 if (!edma_error_pending(ecc)) {
1542 * The registers indicate no pending error event but the irq
1543 * handler has been called.
1544 * Ask eDMA to re-evaluate the error registers.
1546 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1547 __func__);
1548 edma_write(ecc, EDMA_EEVAL, 1);
1549 return IRQ_NONE;
1552 while (1) {
1553 /* Event missed register(s) */
1554 for (j = 0; j < 2; j++) {
1555 unsigned long emr;
1557 val = edma_read_array(ecc, EDMA_EMR, j);
1558 if (!val)
1559 continue;
1561 dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1562 emr = val;
1563 for (i = find_next_bit(&emr, 32, 0); i < 32;
1564 i = find_next_bit(&emr, 32, i + 1)) {
1565 int k = (j << 5) + i;
1567 /* Clear the corresponding EMR bits */
1568 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1569 /* Clear any SER */
1570 edma_shadow0_write_array(ecc, SH_SECR, j,
1571 BIT(i));
1572 edma_error_handler(&ecc->slave_chans[k]);
1576 val = edma_read(ecc, EDMA_QEMR);
1577 if (val) {
1578 dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1579 /* Not reported, just clear the interrupt reason. */
1580 edma_write(ecc, EDMA_QEMCR, val);
1581 edma_shadow0_write(ecc, SH_QSECR, val);
1584 val = edma_read(ecc, EDMA_CCERR);
1585 if (val) {
1586 dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1587 /* Not reported, just clear the interrupt reason. */
1588 edma_write(ecc, EDMA_CCERRCLR, val);
1591 if (!edma_error_pending(ecc))
1592 break;
1593 cnt++;
1594 if (cnt > 10)
1595 break;
1597 edma_write(ecc, EDMA_EEVAL, 1);
1598 return IRQ_HANDLED;
1601 /* Alloc channel resources */
1602 static int edma_alloc_chan_resources(struct dma_chan *chan)
1604 struct edma_chan *echan = to_edma_chan(chan);
1605 struct edma_cc *ecc = echan->ecc;
1606 struct device *dev = ecc->dev;
1607 enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1608 int ret;
1610 if (echan->tc) {
1611 eventq_no = echan->tc->id;
1612 } else if (ecc->tc_list) {
1613 /* memcpy channel */
1614 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1615 eventq_no = echan->tc->id;
1618 ret = edma_alloc_channel(echan, eventq_no);
1619 if (ret)
1620 return ret;
1622 echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1623 if (echan->slot[0] < 0) {
1624 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1625 EDMA_CHAN_SLOT(echan->ch_num));
1626 goto err_slot;
1629 /* Set up channel -> slot mapping for the entry slot */
1630 edma_set_chmap(echan, echan->slot[0]);
1631 echan->alloced = true;
1633 dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1634 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1635 echan->hw_triggered ? "HW" : "SW");
1637 return 0;
1639 err_slot:
1640 edma_free_channel(echan);
1641 return ret;
1644 /* Free channel resources */
1645 static void edma_free_chan_resources(struct dma_chan *chan)
1647 struct edma_chan *echan = to_edma_chan(chan);
1648 struct device *dev = echan->ecc->dev;
1649 int i;
1651 /* Terminate transfers */
1652 edma_stop(echan);
1654 vchan_free_chan_resources(&echan->vchan);
1656 /* Free EDMA PaRAM slots */
1657 for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1658 if (echan->slot[i] >= 0) {
1659 edma_free_slot(echan->ecc, echan->slot[i]);
1660 echan->slot[i] = -1;
1664 /* Set entry slot to the dummy slot */
1665 edma_set_chmap(echan, echan->ecc->dummy_slot);
1667 /* Free EDMA channel */
1668 if (echan->alloced) {
1669 edma_free_channel(echan);
1670 echan->alloced = false;
1673 echan->tc = NULL;
1674 echan->hw_triggered = false;
1676 dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1677 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1680 /* Send pending descriptor to hardware */
1681 static void edma_issue_pending(struct dma_chan *chan)
1683 struct edma_chan *echan = to_edma_chan(chan);
1684 unsigned long flags;
1686 spin_lock_irqsave(&echan->vchan.lock, flags);
1687 if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1688 edma_execute(echan);
1689 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1693 * This limit exists to avoid a possible infinite loop when waiting for proof
1694 * that a particular transfer is completed. This limit can be hit if there
1695 * are large bursts to/from slow devices or the CPU is never able to catch
1696 * the DMA hardware idle. On an AM335x transfering 48 bytes from the UART
1697 * RX-FIFO, as many as 55 loops have been seen.
1699 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1701 static u32 edma_residue(struct edma_desc *edesc)
1703 bool dst = edesc->direction == DMA_DEV_TO_MEM;
1704 int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1705 struct edma_chan *echan = edesc->echan;
1706 struct edma_pset *pset = edesc->pset;
1707 dma_addr_t done, pos;
1708 int i;
1711 * We always read the dst/src position from the first RamPar
1712 * pset. That's the one which is active now.
1714 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1717 * "pos" may represent a transfer request that is still being
1718 * processed by the EDMACC or EDMATC. We will busy wait until
1719 * any one of the situations occurs:
1720 * 1. the DMA hardware is idle
1721 * 2. a new transfer request is setup
1722 * 3. we hit the loop limit
1724 while (edma_read(echan->ecc, EDMA_CCSTAT) & EDMA_CCSTAT_ACTV) {
1725 /* check if a new transfer request is setup */
1726 if (edma_get_position(echan->ecc,
1727 echan->slot[0], dst) != pos) {
1728 break;
1731 if (!--loop_count) {
1732 dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1733 "%s: timeout waiting for PaRAM update\n",
1734 __func__);
1735 break;
1738 cpu_relax();
1742 * Cyclic is simple. Just subtract pset[0].addr from pos.
1744 * We never update edesc->residue in the cyclic case, so we
1745 * can tell the remaining room to the end of the circular
1746 * buffer.
1748 if (edesc->cyclic) {
1749 done = pos - pset->addr;
1750 edesc->residue_stat = edesc->residue - done;
1751 return edesc->residue_stat;
1755 * For SG operation we catch up with the last processed
1756 * status.
1758 pset += edesc->processed_stat;
1760 for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1762 * If we are inside this pset address range, we know
1763 * this is the active one. Get the current delta and
1764 * stop walking the psets.
1766 if (pos >= pset->addr && pos < pset->addr + pset->len)
1767 return edesc->residue_stat - (pos - pset->addr);
1769 /* Otherwise mark it done and update residue_stat. */
1770 edesc->processed_stat++;
1771 edesc->residue_stat -= pset->len;
1773 return edesc->residue_stat;
1776 /* Check request completion status */
1777 static enum dma_status edma_tx_status(struct dma_chan *chan,
1778 dma_cookie_t cookie,
1779 struct dma_tx_state *txstate)
1781 struct edma_chan *echan = to_edma_chan(chan);
1782 struct virt_dma_desc *vdesc;
1783 enum dma_status ret;
1784 unsigned long flags;
1786 ret = dma_cookie_status(chan, cookie, txstate);
1787 if (ret == DMA_COMPLETE || !txstate)
1788 return ret;
1790 spin_lock_irqsave(&echan->vchan.lock, flags);
1791 if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie)
1792 txstate->residue = edma_residue(echan->edesc);
1793 else if ((vdesc = vchan_find_desc(&echan->vchan, cookie)))
1794 txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1795 spin_unlock_irqrestore(&echan->vchan.lock, flags);
1797 return ret;
1800 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1802 if (!memcpy_channels)
1803 return false;
1804 while (*memcpy_channels != -1) {
1805 if (*memcpy_channels == ch_num)
1806 return true;
1807 memcpy_channels++;
1809 return false;
1812 #define EDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1813 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1814 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1815 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1817 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1819 struct dma_device *s_ddev = &ecc->dma_slave;
1820 struct dma_device *m_ddev = NULL;
1821 s32 *memcpy_channels = ecc->info->memcpy_channels;
1822 int i, j;
1824 dma_cap_zero(s_ddev->cap_mask);
1825 dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1826 dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1827 if (ecc->legacy_mode && !memcpy_channels) {
1828 dev_warn(ecc->dev,
1829 "Legacy memcpy is enabled, things might not work\n");
1831 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1832 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1833 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1836 s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1837 s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1838 s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1839 s_ddev->device_free_chan_resources = edma_free_chan_resources;
1840 s_ddev->device_issue_pending = edma_issue_pending;
1841 s_ddev->device_tx_status = edma_tx_status;
1842 s_ddev->device_config = edma_slave_config;
1843 s_ddev->device_pause = edma_dma_pause;
1844 s_ddev->device_resume = edma_dma_resume;
1845 s_ddev->device_terminate_all = edma_terminate_all;
1846 s_ddev->device_synchronize = edma_synchronize;
1848 s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1849 s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1850 s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1851 s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1853 s_ddev->dev = ecc->dev;
1854 INIT_LIST_HEAD(&s_ddev->channels);
1856 if (memcpy_channels) {
1857 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1858 ecc->dma_memcpy = m_ddev;
1860 dma_cap_zero(m_ddev->cap_mask);
1861 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1863 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1864 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1865 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1866 m_ddev->device_issue_pending = edma_issue_pending;
1867 m_ddev->device_tx_status = edma_tx_status;
1868 m_ddev->device_config = edma_slave_config;
1869 m_ddev->device_pause = edma_dma_pause;
1870 m_ddev->device_resume = edma_dma_resume;
1871 m_ddev->device_terminate_all = edma_terminate_all;
1872 m_ddev->device_synchronize = edma_synchronize;
1874 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1875 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1876 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1877 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1879 m_ddev->dev = ecc->dev;
1880 INIT_LIST_HEAD(&m_ddev->channels);
1881 } else if (!ecc->legacy_mode) {
1882 dev_info(ecc->dev, "memcpy is disabled\n");
1885 for (i = 0; i < ecc->num_channels; i++) {
1886 struct edma_chan *echan = &ecc->slave_chans[i];
1887 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
1888 echan->ecc = ecc;
1889 echan->vchan.desc_free = edma_desc_free;
1891 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
1892 vchan_init(&echan->vchan, m_ddev);
1893 else
1894 vchan_init(&echan->vchan, s_ddev);
1896 INIT_LIST_HEAD(&echan->node);
1897 for (j = 0; j < EDMA_MAX_SLOTS; j++)
1898 echan->slot[j] = -1;
1902 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
1903 struct edma_cc *ecc)
1905 int i;
1906 u32 value, cccfg;
1907 s8 (*queue_priority_map)[2];
1909 /* Decode the eDMA3 configuration from CCCFG register */
1910 cccfg = edma_read(ecc, EDMA_CCCFG);
1912 value = GET_NUM_REGN(cccfg);
1913 ecc->num_region = BIT(value);
1915 value = GET_NUM_DMACH(cccfg);
1916 ecc->num_channels = BIT(value + 1);
1918 value = GET_NUM_QDMACH(cccfg);
1919 ecc->num_qchannels = value * 2;
1921 value = GET_NUM_PAENTRY(cccfg);
1922 ecc->num_slots = BIT(value + 4);
1924 value = GET_NUM_EVQUE(cccfg);
1925 ecc->num_tc = value + 1;
1927 ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
1929 dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
1930 dev_dbg(dev, "num_region: %u\n", ecc->num_region);
1931 dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
1932 dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
1933 dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
1934 dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
1935 dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
1937 /* Nothing need to be done if queue priority is provided */
1938 if (pdata->queue_priority_mapping)
1939 return 0;
1942 * Configure TC/queue priority as follows:
1943 * Q0 - priority 0
1944 * Q1 - priority 1
1945 * Q2 - priority 2
1946 * ...
1947 * The meaning of priority numbers: 0 highest priority, 7 lowest
1948 * priority. So Q0 is the highest priority queue and the last queue has
1949 * the lowest priority.
1951 queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
1952 GFP_KERNEL);
1953 if (!queue_priority_map)
1954 return -ENOMEM;
1956 for (i = 0; i < ecc->num_tc; i++) {
1957 queue_priority_map[i][0] = i;
1958 queue_priority_map[i][1] = i;
1960 queue_priority_map[i][0] = -1;
1961 queue_priority_map[i][1] = -1;
1963 pdata->queue_priority_mapping = queue_priority_map;
1964 /* Default queue has the lowest priority */
1965 pdata->default_queue = i - 1;
1967 return 0;
1970 #if IS_ENABLED(CONFIG_OF)
1971 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
1972 size_t sz)
1974 const char pname[] = "ti,edma-xbar-event-map";
1975 struct resource res;
1976 void __iomem *xbar;
1977 s16 (*xbar_chans)[2];
1978 size_t nelm = sz / sizeof(s16);
1979 u32 shift, offset, mux;
1980 int ret, i;
1982 xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
1983 if (!xbar_chans)
1984 return -ENOMEM;
1986 ret = of_address_to_resource(dev->of_node, 1, &res);
1987 if (ret)
1988 return -ENOMEM;
1990 xbar = devm_ioremap(dev, res.start, resource_size(&res));
1991 if (!xbar)
1992 return -ENOMEM;
1994 ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
1995 nelm);
1996 if (ret)
1997 return -EIO;
1999 /* Invalidate last entry for the other user of this mess */
2000 nelm >>= 1;
2001 xbar_chans[nelm][0] = -1;
2002 xbar_chans[nelm][1] = -1;
2004 for (i = 0; i < nelm; i++) {
2005 shift = (xbar_chans[i][1] & 0x03) << 3;
2006 offset = xbar_chans[i][1] & 0xfffffffc;
2007 mux = readl(xbar + offset);
2008 mux &= ~(0xff << shift);
2009 mux |= xbar_chans[i][0] << shift;
2010 writel(mux, (xbar + offset));
2013 pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2014 return 0;
2017 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2018 bool legacy_mode)
2020 struct edma_soc_info *info;
2021 struct property *prop;
2022 size_t sz;
2023 int ret;
2025 info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2026 if (!info)
2027 return ERR_PTR(-ENOMEM);
2029 if (legacy_mode) {
2030 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2031 &sz);
2032 if (prop) {
2033 ret = edma_xbar_event_map(dev, info, sz);
2034 if (ret)
2035 return ERR_PTR(ret);
2037 return info;
2040 /* Get the list of channels allocated to be used for memcpy */
2041 prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2042 if (prop) {
2043 const char pname[] = "ti,edma-memcpy-channels";
2044 size_t nelm = sz / sizeof(s32);
2045 s32 *memcpy_ch;
2047 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2048 GFP_KERNEL);
2049 if (!memcpy_ch)
2050 return ERR_PTR(-ENOMEM);
2052 ret = of_property_read_u32_array(dev->of_node, pname,
2053 (u32 *)memcpy_ch, nelm);
2054 if (ret)
2055 return ERR_PTR(ret);
2057 memcpy_ch[nelm] = -1;
2058 info->memcpy_channels = memcpy_ch;
2061 prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2062 &sz);
2063 if (prop) {
2064 const char pname[] = "ti,edma-reserved-slot-ranges";
2065 u32 (*tmp)[2];
2066 s16 (*rsv_slots)[2];
2067 size_t nelm = sz / sizeof(*tmp);
2068 struct edma_rsv_info *rsv_info;
2069 int i;
2071 if (!nelm)
2072 return info;
2074 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2075 if (!tmp)
2076 return ERR_PTR(-ENOMEM);
2078 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2079 if (!rsv_info) {
2080 kfree(tmp);
2081 return ERR_PTR(-ENOMEM);
2084 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2085 GFP_KERNEL);
2086 if (!rsv_slots) {
2087 kfree(tmp);
2088 return ERR_PTR(-ENOMEM);
2091 ret = of_property_read_u32_array(dev->of_node, pname,
2092 (u32 *)tmp, nelm * 2);
2093 if (ret) {
2094 kfree(tmp);
2095 return ERR_PTR(ret);
2098 for (i = 0; i < nelm; i++) {
2099 rsv_slots[i][0] = tmp[i][0];
2100 rsv_slots[i][1] = tmp[i][1];
2102 rsv_slots[nelm][0] = -1;
2103 rsv_slots[nelm][1] = -1;
2105 info->rsv = rsv_info;
2106 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2108 kfree(tmp);
2111 return info;
2114 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2115 struct of_dma *ofdma)
2117 struct edma_cc *ecc = ofdma->of_dma_data;
2118 struct dma_chan *chan = NULL;
2119 struct edma_chan *echan;
2120 int i;
2122 if (!ecc || dma_spec->args_count < 1)
2123 return NULL;
2125 for (i = 0; i < ecc->num_channels; i++) {
2126 echan = &ecc->slave_chans[i];
2127 if (echan->ch_num == dma_spec->args[0]) {
2128 chan = &echan->vchan.chan;
2129 break;
2133 if (!chan)
2134 return NULL;
2136 if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2137 goto out;
2139 if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2140 dma_spec->args[1] < echan->ecc->num_tc) {
2141 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2142 goto out;
2145 return NULL;
2146 out:
2147 /* The channel is going to be used as HW synchronized */
2148 echan->hw_triggered = true;
2149 return dma_get_slave_channel(chan);
2151 #else
2152 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2153 bool legacy_mode)
2155 return ERR_PTR(-EINVAL);
2158 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2159 struct of_dma *ofdma)
2161 return NULL;
2163 #endif
2165 static int edma_probe(struct platform_device *pdev)
2167 struct edma_soc_info *info = pdev->dev.platform_data;
2168 s8 (*queue_priority_mapping)[2];
2169 int i, off, ln;
2170 const s16 (*rsv_slots)[2];
2171 const s16 (*xbar_chans)[2];
2172 int irq;
2173 char *irq_name;
2174 struct resource *mem;
2175 struct device_node *node = pdev->dev.of_node;
2176 struct device *dev = &pdev->dev;
2177 struct edma_cc *ecc;
2178 bool legacy_mode = true;
2179 int ret;
2181 if (node) {
2182 const struct of_device_id *match;
2184 match = of_match_node(edma_of_ids, node);
2185 if (match && (u32)match->data == EDMA_BINDING_TPCC)
2186 legacy_mode = false;
2188 info = edma_setup_info_from_dt(dev, legacy_mode);
2189 if (IS_ERR(info)) {
2190 dev_err(dev, "failed to get DT data\n");
2191 return PTR_ERR(info);
2195 if (!info)
2196 return -ENODEV;
2198 pm_runtime_enable(dev);
2199 ret = pm_runtime_get_sync(dev);
2200 if (ret < 0) {
2201 dev_err(dev, "pm_runtime_get_sync() failed\n");
2202 return ret;
2205 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2206 if (ret)
2207 return ret;
2209 ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2210 if (!ecc)
2211 return -ENOMEM;
2213 ecc->dev = dev;
2214 ecc->id = pdev->id;
2215 ecc->legacy_mode = legacy_mode;
2216 /* When booting with DT the pdev->id is -1 */
2217 if (ecc->id < 0)
2218 ecc->id = 0;
2220 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2221 if (!mem) {
2222 dev_dbg(dev, "mem resource not found, using index 0\n");
2223 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2224 if (!mem) {
2225 dev_err(dev, "no mem resource?\n");
2226 return -ENODEV;
2229 ecc->base = devm_ioremap_resource(dev, mem);
2230 if (IS_ERR(ecc->base))
2231 return PTR_ERR(ecc->base);
2233 platform_set_drvdata(pdev, ecc);
2235 /* Get eDMA3 configuration from IP */
2236 ret = edma_setup_from_hw(dev, info, ecc);
2237 if (ret)
2238 return ret;
2240 /* Allocate memory based on the information we got from the IP */
2241 ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2242 sizeof(*ecc->slave_chans), GFP_KERNEL);
2243 if (!ecc->slave_chans)
2244 return -ENOMEM;
2246 ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2247 sizeof(unsigned long), GFP_KERNEL);
2248 if (!ecc->slot_inuse)
2249 return -ENOMEM;
2251 ecc->default_queue = info->default_queue;
2253 for (i = 0; i < ecc->num_slots; i++)
2254 edma_write_slot(ecc, i, &dummy_paramset);
2256 if (info->rsv) {
2257 /* Set the reserved slots in inuse list */
2258 rsv_slots = info->rsv->rsv_slots;
2259 if (rsv_slots) {
2260 for (i = 0; rsv_slots[i][0] != -1; i++) {
2261 off = rsv_slots[i][0];
2262 ln = rsv_slots[i][1];
2263 set_bits(off, ln, ecc->slot_inuse);
2268 /* Clear the xbar mapped channels in unused list */
2269 xbar_chans = info->xbar_chans;
2270 if (xbar_chans) {
2271 for (i = 0; xbar_chans[i][1] != -1; i++) {
2272 off = xbar_chans[i][1];
2276 irq = platform_get_irq_byname(pdev, "edma3_ccint");
2277 if (irq < 0 && node)
2278 irq = irq_of_parse_and_map(node, 0);
2280 if (irq >= 0) {
2281 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2282 dev_name(dev));
2283 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2284 ecc);
2285 if (ret) {
2286 dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2287 return ret;
2289 ecc->ccint = irq;
2292 irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2293 if (irq < 0 && node)
2294 irq = irq_of_parse_and_map(node, 2);
2296 if (irq >= 0) {
2297 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2298 dev_name(dev));
2299 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2300 ecc);
2301 if (ret) {
2302 dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2303 return ret;
2305 ecc->ccerrint = irq;
2308 ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2309 if (ecc->dummy_slot < 0) {
2310 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2311 return ecc->dummy_slot;
2314 queue_priority_mapping = info->queue_priority_mapping;
2316 if (!ecc->legacy_mode) {
2317 int lowest_priority = 0;
2318 struct of_phandle_args tc_args;
2320 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2321 sizeof(*ecc->tc_list), GFP_KERNEL);
2322 if (!ecc->tc_list)
2323 return -ENOMEM;
2325 for (i = 0;; i++) {
2326 ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2327 1, i, &tc_args);
2328 if (ret || i == ecc->num_tc)
2329 break;
2331 ecc->tc_list[i].node = tc_args.np;
2332 ecc->tc_list[i].id = i;
2333 queue_priority_mapping[i][1] = tc_args.args[0];
2334 if (queue_priority_mapping[i][1] > lowest_priority) {
2335 lowest_priority = queue_priority_mapping[i][1];
2336 info->default_queue = i;
2341 /* Event queue priority mapping */
2342 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2343 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2344 queue_priority_mapping[i][1]);
2346 for (i = 0; i < ecc->num_region; i++) {
2347 edma_write_array2(ecc, EDMA_DRAE, i, 0, 0x0);
2348 edma_write_array2(ecc, EDMA_DRAE, i, 1, 0x0);
2349 edma_write_array(ecc, EDMA_QRAE, i, 0x0);
2351 ecc->info = info;
2353 /* Init the dma device and channels */
2354 edma_dma_init(ecc, legacy_mode);
2356 for (i = 0; i < ecc->num_channels; i++) {
2357 /* Assign all channels to the default queue */
2358 edma_assign_channel_eventq(&ecc->slave_chans[i],
2359 info->default_queue);
2360 /* Set entry slot to the dummy slot */
2361 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2364 ecc->dma_slave.filter.map = info->slave_map;
2365 ecc->dma_slave.filter.mapcnt = info->slavecnt;
2366 ecc->dma_slave.filter.fn = edma_filter_fn;
2368 ret = dma_async_device_register(&ecc->dma_slave);
2369 if (ret) {
2370 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2371 goto err_reg1;
2374 if (ecc->dma_memcpy) {
2375 ret = dma_async_device_register(ecc->dma_memcpy);
2376 if (ret) {
2377 dev_err(dev, "memcpy ddev registration failed (%d)\n",
2378 ret);
2379 dma_async_device_unregister(&ecc->dma_slave);
2380 goto err_reg1;
2384 if (node)
2385 of_dma_controller_register(node, of_edma_xlate, ecc);
2387 dev_info(dev, "TI EDMA DMA engine driver\n");
2389 return 0;
2391 err_reg1:
2392 edma_free_slot(ecc, ecc->dummy_slot);
2393 return ret;
2396 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2398 struct edma_chan *echan, *_echan;
2400 list_for_each_entry_safe(echan, _echan,
2401 &dmadev->channels, vchan.chan.device_node) {
2402 list_del(&echan->vchan.chan.device_node);
2403 tasklet_kill(&echan->vchan.task);
2407 static int edma_remove(struct platform_device *pdev)
2409 struct device *dev = &pdev->dev;
2410 struct edma_cc *ecc = dev_get_drvdata(dev);
2412 devm_free_irq(dev, ecc->ccint, ecc);
2413 devm_free_irq(dev, ecc->ccerrint, ecc);
2415 edma_cleanupp_vchan(&ecc->dma_slave);
2417 if (dev->of_node)
2418 of_dma_controller_free(dev->of_node);
2419 dma_async_device_unregister(&ecc->dma_slave);
2420 if (ecc->dma_memcpy)
2421 dma_async_device_unregister(ecc->dma_memcpy);
2422 edma_free_slot(ecc, ecc->dummy_slot);
2424 return 0;
2427 #ifdef CONFIG_PM_SLEEP
2428 static int edma_pm_suspend(struct device *dev)
2430 struct edma_cc *ecc = dev_get_drvdata(dev);
2431 struct edma_chan *echan = ecc->slave_chans;
2432 int i;
2434 for (i = 0; i < ecc->num_channels; i++) {
2435 if (echan[i].alloced)
2436 edma_setup_interrupt(&echan[i], false);
2439 return 0;
2442 static int edma_pm_resume(struct device *dev)
2444 struct edma_cc *ecc = dev_get_drvdata(dev);
2445 struct edma_chan *echan = ecc->slave_chans;
2446 int i;
2447 s8 (*queue_priority_mapping)[2];
2449 queue_priority_mapping = ecc->info->queue_priority_mapping;
2451 /* Event queue priority mapping */
2452 for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2453 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2454 queue_priority_mapping[i][1]);
2456 for (i = 0; i < ecc->num_channels; i++) {
2457 if (echan[i].alloced) {
2458 /* ensure access through shadow region 0 */
2459 edma_or_array2(ecc, EDMA_DRAE, 0, i >> 5,
2460 BIT(i & 0x1f));
2462 edma_setup_interrupt(&echan[i], true);
2464 /* Set up channel -> slot mapping for the entry slot */
2465 edma_set_chmap(&echan[i], echan[i].slot[0]);
2469 return 0;
2471 #endif
2473 static const struct dev_pm_ops edma_pm_ops = {
2474 SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2477 static struct platform_driver edma_driver = {
2478 .probe = edma_probe,
2479 .remove = edma_remove,
2480 .driver = {
2481 .name = "edma",
2482 .pm = &edma_pm_ops,
2483 .of_match_table = edma_of_ids,
2487 static int edma_tptc_probe(struct platform_device *pdev)
2489 pm_runtime_enable(&pdev->dev);
2490 return pm_runtime_get_sync(&pdev->dev);
2493 static struct platform_driver edma_tptc_driver = {
2494 .probe = edma_tptc_probe,
2495 .driver = {
2496 .name = "edma3-tptc",
2497 .of_match_table = edma_tptc_of_ids,
2501 bool edma_filter_fn(struct dma_chan *chan, void *param)
2503 bool match = false;
2505 if (chan->device->dev->driver == &edma_driver.driver) {
2506 struct edma_chan *echan = to_edma_chan(chan);
2507 unsigned ch_req = *(unsigned *)param;
2508 if (ch_req == echan->ch_num) {
2509 /* The channel is going to be used as HW synchronized */
2510 echan->hw_triggered = true;
2511 match = true;
2514 return match;
2516 EXPORT_SYMBOL(edma_filter_fn);
2518 static int edma_init(void)
2520 int ret;
2522 ret = platform_driver_register(&edma_tptc_driver);
2523 if (ret)
2524 return ret;
2526 return platform_driver_register(&edma_driver);
2528 subsys_initcall(edma_init);
2530 static void __exit edma_exit(void)
2532 platform_driver_unregister(&edma_driver);
2533 platform_driver_unregister(&edma_tptc_driver);
2535 module_exit(edma_exit);
2537 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2538 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2539 MODULE_LICENSE("GPL v2");