3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
17 bool f2fs_may_inline_data(struct inode
*inode
)
19 if (!test_opt(F2FS_I_SB(inode
), INLINE_DATA
))
22 if (f2fs_is_atomic_file(inode
))
25 if (!S_ISREG(inode
->i_mode
) && !S_ISLNK(inode
->i_mode
))
28 if (i_size_read(inode
) > MAX_INLINE_DATA
)
31 if (f2fs_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
37 bool f2fs_may_inline_dentry(struct inode
*inode
)
39 if (!test_opt(F2FS_I_SB(inode
), INLINE_DENTRY
))
42 if (!S_ISDIR(inode
->i_mode
))
48 void read_inline_data(struct page
*page
, struct page
*ipage
)
50 void *src_addr
, *dst_addr
;
52 if (PageUptodate(page
))
55 f2fs_bug_on(F2FS_P_SB(page
), page
->index
);
57 zero_user_segment(page
, MAX_INLINE_DATA
, PAGE_CACHE_SIZE
);
59 /* Copy the whole inline data block */
60 src_addr
= inline_data_addr(ipage
);
61 dst_addr
= kmap_atomic(page
);
62 memcpy(dst_addr
, src_addr
, MAX_INLINE_DATA
);
63 flush_dcache_page(page
);
64 kunmap_atomic(dst_addr
);
65 SetPageUptodate(page
);
68 bool truncate_inline_inode(struct page
*ipage
, u64 from
)
72 if (from
>= MAX_INLINE_DATA
)
75 addr
= inline_data_addr(ipage
);
77 f2fs_wait_on_page_writeback(ipage
, NODE
);
78 memset(addr
+ from
, 0, MAX_INLINE_DATA
- from
);
83 int f2fs_read_inline_data(struct inode
*inode
, struct page
*page
)
87 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
90 return PTR_ERR(ipage
);
93 if (!f2fs_has_inline_data(inode
)) {
94 f2fs_put_page(ipage
, 1);
99 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
101 read_inline_data(page
, ipage
);
103 SetPageUptodate(page
);
104 f2fs_put_page(ipage
, 1);
109 int f2fs_convert_inline_page(struct dnode_of_data
*dn
, struct page
*page
)
111 void *src_addr
, *dst_addr
;
112 struct f2fs_io_info fio
= {
113 .sbi
= F2FS_I_SB(dn
->inode
),
115 .rw
= WRITE_SYNC
| REQ_PRIO
,
117 .encrypted_page
= NULL
,
121 f2fs_bug_on(F2FS_I_SB(dn
->inode
), page
->index
);
123 if (!f2fs_exist_data(dn
->inode
))
126 err
= f2fs_reserve_block(dn
, 0);
130 f2fs_wait_on_page_writeback(page
, DATA
);
132 if (PageUptodate(page
))
135 zero_user_segment(page
, MAX_INLINE_DATA
, PAGE_CACHE_SIZE
);
137 /* Copy the whole inline data block */
138 src_addr
= inline_data_addr(dn
->inode_page
);
139 dst_addr
= kmap_atomic(page
);
140 memcpy(dst_addr
, src_addr
, MAX_INLINE_DATA
);
141 flush_dcache_page(page
);
142 kunmap_atomic(dst_addr
);
143 SetPageUptodate(page
);
145 set_page_dirty(page
);
147 /* clear dirty state */
148 dirty
= clear_page_dirty_for_io(page
);
150 /* write data page to try to make data consistent */
151 set_page_writeback(page
);
152 fio
.blk_addr
= dn
->data_blkaddr
;
153 write_data_page(dn
, &fio
);
154 set_data_blkaddr(dn
);
155 f2fs_update_extent_cache(dn
);
156 f2fs_wait_on_page_writeback(page
, DATA
);
158 inode_dec_dirty_pages(dn
->inode
);
160 /* this converted inline_data should be recovered. */
161 set_inode_flag(F2FS_I(dn
->inode
), FI_APPEND_WRITE
);
163 /* clear inline data and flag after data writeback */
164 truncate_inline_inode(dn
->inode_page
, 0);
166 stat_dec_inline_inode(dn
->inode
);
167 f2fs_clear_inline_inode(dn
->inode
);
173 int f2fs_convert_inline_inode(struct inode
*inode
)
175 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
176 struct dnode_of_data dn
;
177 struct page
*ipage
, *page
;
180 page
= grab_cache_page(inode
->i_mapping
, 0);
186 ipage
= get_node_page(sbi
, inode
->i_ino
);
188 err
= PTR_ERR(ipage
);
192 set_new_dnode(&dn
, inode
, ipage
, ipage
, 0);
194 if (f2fs_has_inline_data(inode
))
195 err
= f2fs_convert_inline_page(&dn
, page
);
201 f2fs_put_page(page
, 1);
205 int f2fs_write_inline_data(struct inode
*inode
, struct page
*page
)
207 void *src_addr
, *dst_addr
;
208 struct dnode_of_data dn
;
211 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
212 err
= get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
216 if (!f2fs_has_inline_data(inode
)) {
221 f2fs_bug_on(F2FS_I_SB(inode
), page
->index
);
223 f2fs_wait_on_page_writeback(dn
.inode_page
, NODE
);
224 src_addr
= kmap_atomic(page
);
225 dst_addr
= inline_data_addr(dn
.inode_page
);
226 memcpy(dst_addr
, src_addr
, MAX_INLINE_DATA
);
227 kunmap_atomic(src_addr
);
229 set_inode_flag(F2FS_I(inode
), FI_APPEND_WRITE
);
230 set_inode_flag(F2FS_I(inode
), FI_DATA_EXIST
);
232 sync_inode_page(&dn
);
237 bool recover_inline_data(struct inode
*inode
, struct page
*npage
)
239 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
240 struct f2fs_inode
*ri
= NULL
;
241 void *src_addr
, *dst_addr
;
245 * The inline_data recovery policy is as follows.
246 * [prev.] [next] of inline_data flag
247 * o o -> recover inline_data
248 * o x -> remove inline_data, and then recover data blocks
249 * x o -> remove inline_data, and then recover inline_data
250 * x x -> recover data blocks
253 ri
= F2FS_INODE(npage
);
255 if (f2fs_has_inline_data(inode
) &&
256 ri
&& (ri
->i_inline
& F2FS_INLINE_DATA
)) {
258 ipage
= get_node_page(sbi
, inode
->i_ino
);
259 f2fs_bug_on(sbi
, IS_ERR(ipage
));
261 f2fs_wait_on_page_writeback(ipage
, NODE
);
263 src_addr
= inline_data_addr(npage
);
264 dst_addr
= inline_data_addr(ipage
);
265 memcpy(dst_addr
, src_addr
, MAX_INLINE_DATA
);
267 set_inode_flag(F2FS_I(inode
), FI_INLINE_DATA
);
268 set_inode_flag(F2FS_I(inode
), FI_DATA_EXIST
);
270 update_inode(inode
, ipage
);
271 f2fs_put_page(ipage
, 1);
275 if (f2fs_has_inline_data(inode
)) {
276 ipage
= get_node_page(sbi
, inode
->i_ino
);
277 f2fs_bug_on(sbi
, IS_ERR(ipage
));
278 if (!truncate_inline_inode(ipage
, 0))
280 f2fs_clear_inline_inode(inode
);
281 update_inode(inode
, ipage
);
282 f2fs_put_page(ipage
, 1);
283 } else if (ri
&& (ri
->i_inline
& F2FS_INLINE_DATA
)) {
284 if (truncate_blocks(inode
, 0, false))
291 struct f2fs_dir_entry
*find_in_inline_dir(struct inode
*dir
,
292 struct f2fs_filename
*fname
, struct page
**res_page
)
294 struct f2fs_sb_info
*sbi
= F2FS_SB(dir
->i_sb
);
295 struct f2fs_inline_dentry
*inline_dentry
;
296 struct qstr name
= FSTR_TO_QSTR(&fname
->disk_name
);
297 struct f2fs_dir_entry
*de
;
298 struct f2fs_dentry_ptr d
;
300 f2fs_hash_t namehash
;
302 ipage
= get_node_page(sbi
, dir
->i_ino
);
306 namehash
= f2fs_dentry_hash(&name
, fname
);
308 inline_dentry
= inline_data_addr(ipage
);
310 make_dentry_ptr(NULL
, &d
, (void *)inline_dentry
, 2);
311 de
= find_target_dentry(fname
, namehash
, NULL
, &d
);
316 f2fs_put_page(ipage
, 0);
319 * For the most part, it should be a bug when name_len is zero.
320 * We stop here for figuring out where the bugs has occurred.
322 f2fs_bug_on(sbi
, d
.max
< 0);
326 struct f2fs_dir_entry
*f2fs_parent_inline_dir(struct inode
*dir
,
329 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dir
);
331 struct f2fs_dir_entry
*de
;
332 struct f2fs_inline_dentry
*dentry_blk
;
334 ipage
= get_node_page(sbi
, dir
->i_ino
);
338 dentry_blk
= inline_data_addr(ipage
);
339 de
= &dentry_blk
->dentry
[1];
345 int make_empty_inline_dir(struct inode
*inode
, struct inode
*parent
,
348 struct f2fs_inline_dentry
*dentry_blk
;
349 struct f2fs_dentry_ptr d
;
351 dentry_blk
= inline_data_addr(ipage
);
353 make_dentry_ptr(NULL
, &d
, (void *)dentry_blk
, 2);
354 do_make_empty_dir(inode
, parent
, &d
);
356 set_page_dirty(ipage
);
358 /* update i_size to MAX_INLINE_DATA */
359 if (i_size_read(inode
) < MAX_INLINE_DATA
) {
360 i_size_write(inode
, MAX_INLINE_DATA
);
361 set_inode_flag(F2FS_I(inode
), FI_UPDATE_DIR
);
367 * NOTE: ipage is grabbed by caller, but if any error occurs, we should
368 * release ipage in this function.
370 static int f2fs_convert_inline_dir(struct inode
*dir
, struct page
*ipage
,
371 struct f2fs_inline_dentry
*inline_dentry
)
374 struct dnode_of_data dn
;
375 struct f2fs_dentry_block
*dentry_blk
;
378 page
= grab_cache_page(dir
->i_mapping
, 0);
380 f2fs_put_page(ipage
, 1);
384 set_new_dnode(&dn
, dir
, ipage
, NULL
, 0);
385 err
= f2fs_reserve_block(&dn
, 0);
389 f2fs_wait_on_page_writeback(page
, DATA
);
390 zero_user_segment(page
, MAX_INLINE_DATA
, PAGE_CACHE_SIZE
);
392 dentry_blk
= kmap_atomic(page
);
394 /* copy data from inline dentry block to new dentry block */
395 memcpy(dentry_blk
->dentry_bitmap
, inline_dentry
->dentry_bitmap
,
396 INLINE_DENTRY_BITMAP_SIZE
);
397 memset(dentry_blk
->dentry_bitmap
+ INLINE_DENTRY_BITMAP_SIZE
, 0,
398 SIZE_OF_DENTRY_BITMAP
- INLINE_DENTRY_BITMAP_SIZE
);
400 * we do not need to zero out remainder part of dentry and filename
401 * field, since we have used bitmap for marking the usage status of
402 * them, besides, we can also ignore copying/zeroing reserved space
403 * of dentry block, because them haven't been used so far.
405 memcpy(dentry_blk
->dentry
, inline_dentry
->dentry
,
406 sizeof(struct f2fs_dir_entry
) * NR_INLINE_DENTRY
);
407 memcpy(dentry_blk
->filename
, inline_dentry
->filename
,
408 NR_INLINE_DENTRY
* F2FS_SLOT_LEN
);
410 kunmap_atomic(dentry_blk
);
411 SetPageUptodate(page
);
412 set_page_dirty(page
);
414 /* clear inline dir and flag after data writeback */
415 truncate_inline_inode(ipage
, 0);
417 stat_dec_inline_dir(dir
);
418 clear_inode_flag(F2FS_I(dir
), FI_INLINE_DENTRY
);
420 if (i_size_read(dir
) < PAGE_CACHE_SIZE
) {
421 i_size_write(dir
, PAGE_CACHE_SIZE
);
422 set_inode_flag(F2FS_I(dir
), FI_UPDATE_DIR
);
425 sync_inode_page(&dn
);
427 f2fs_put_page(page
, 1);
431 int f2fs_add_inline_entry(struct inode
*dir
, const struct qstr
*name
,
432 struct inode
*inode
, nid_t ino
, umode_t mode
)
434 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dir
);
436 unsigned int bit_pos
;
437 f2fs_hash_t name_hash
;
438 size_t namelen
= name
->len
;
439 struct f2fs_inline_dentry
*dentry_blk
= NULL
;
440 struct f2fs_dentry_ptr d
;
441 int slots
= GET_DENTRY_SLOTS(namelen
);
442 struct page
*page
= NULL
;
445 ipage
= get_node_page(sbi
, dir
->i_ino
);
447 return PTR_ERR(ipage
);
449 dentry_blk
= inline_data_addr(ipage
);
450 bit_pos
= room_for_filename(&dentry_blk
->dentry_bitmap
,
451 slots
, NR_INLINE_DENTRY
);
452 if (bit_pos
>= NR_INLINE_DENTRY
) {
453 err
= f2fs_convert_inline_dir(dir
, ipage
, dentry_blk
);
461 down_write(&F2FS_I(inode
)->i_sem
);
462 page
= init_inode_metadata(inode
, dir
, name
, ipage
);
469 f2fs_wait_on_page_writeback(ipage
, NODE
);
471 name_hash
= f2fs_dentry_hash(name
, NULL
);
472 make_dentry_ptr(NULL
, &d
, (void *)dentry_blk
, 2);
473 f2fs_update_dentry(ino
, mode
, &d
, name
, name_hash
, bit_pos
);
475 set_page_dirty(ipage
);
477 /* we don't need to mark_inode_dirty now */
479 F2FS_I(inode
)->i_pino
= dir
->i_ino
;
480 update_inode(inode
, page
);
481 f2fs_put_page(page
, 1);
484 update_parent_metadata(dir
, inode
, 0);
487 up_write(&F2FS_I(inode
)->i_sem
);
489 if (is_inode_flag_set(F2FS_I(dir
), FI_UPDATE_DIR
)) {
490 update_inode(dir
, ipage
);
491 clear_inode_flag(F2FS_I(dir
), FI_UPDATE_DIR
);
494 f2fs_put_page(ipage
, 1);
498 void f2fs_delete_inline_entry(struct f2fs_dir_entry
*dentry
, struct page
*page
,
499 struct inode
*dir
, struct inode
*inode
)
501 struct f2fs_inline_dentry
*inline_dentry
;
502 int slots
= GET_DENTRY_SLOTS(le16_to_cpu(dentry
->name_len
));
503 unsigned int bit_pos
;
507 f2fs_wait_on_page_writeback(page
, NODE
);
509 inline_dentry
= inline_data_addr(page
);
510 bit_pos
= dentry
- inline_dentry
->dentry
;
511 for (i
= 0; i
< slots
; i
++)
512 test_and_clear_bit_le(bit_pos
+ i
,
513 &inline_dentry
->dentry_bitmap
);
515 set_page_dirty(page
);
517 dir
->i_ctime
= dir
->i_mtime
= CURRENT_TIME
;
520 f2fs_drop_nlink(dir
, inode
, page
);
522 f2fs_put_page(page
, 1);
525 bool f2fs_empty_inline_dir(struct inode
*dir
)
527 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dir
);
529 unsigned int bit_pos
= 2;
530 struct f2fs_inline_dentry
*dentry_blk
;
532 ipage
= get_node_page(sbi
, dir
->i_ino
);
536 dentry_blk
= inline_data_addr(ipage
);
537 bit_pos
= find_next_bit_le(&dentry_blk
->dentry_bitmap
,
541 f2fs_put_page(ipage
, 1);
543 if (bit_pos
< NR_INLINE_DENTRY
)
549 int f2fs_read_inline_dir(struct file
*file
, struct dir_context
*ctx
,
550 struct f2fs_str
*fstr
)
552 struct inode
*inode
= file_inode(file
);
553 struct f2fs_inline_dentry
*inline_dentry
= NULL
;
554 struct page
*ipage
= NULL
;
555 struct f2fs_dentry_ptr d
;
557 if (ctx
->pos
== NR_INLINE_DENTRY
)
560 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
562 return PTR_ERR(ipage
);
564 inline_dentry
= inline_data_addr(ipage
);
566 make_dentry_ptr(inode
, &d
, (void *)inline_dentry
, 2);
568 if (!f2fs_fill_dentries(ctx
, &d
, 0, fstr
))
569 ctx
->pos
= NR_INLINE_DENTRY
;
571 f2fs_put_page(ipage
, 1);
575 int f2fs_inline_data_fiemap(struct inode
*inode
,
576 struct fiemap_extent_info
*fieinfo
, __u64 start
, __u64 len
)
578 __u64 byteaddr
, ilen
;
579 __u32 flags
= FIEMAP_EXTENT_DATA_INLINE
| FIEMAP_EXTENT_NOT_ALIGNED
|
585 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
587 return PTR_ERR(ipage
);
589 if (!f2fs_has_inline_data(inode
)) {
594 ilen
= min_t(size_t, MAX_INLINE_DATA
, i_size_read(inode
));
597 if (start
+ len
< ilen
)
601 get_node_info(F2FS_I_SB(inode
), inode
->i_ino
, &ni
);
602 byteaddr
= (__u64
)ni
.blk_addr
<< inode
->i_sb
->s_blocksize_bits
;
603 byteaddr
+= (char *)inline_data_addr(ipage
) - (char *)F2FS_INODE(ipage
);
604 err
= fiemap_fill_next_extent(fieinfo
, start
, byteaddr
, ilen
, flags
);
606 f2fs_put_page(ipage
, 1);