4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/writeback.h>
19 #include <trace/events/f2fs.h>
21 void f2fs_set_inode_flags(struct inode
*inode
)
23 unsigned int flags
= F2FS_I(inode
)->i_flags
;
24 unsigned int new_fl
= 0;
26 if (flags
& FS_SYNC_FL
)
28 if (flags
& FS_APPEND_FL
)
30 if (flags
& FS_IMMUTABLE_FL
)
31 new_fl
|= S_IMMUTABLE
;
32 if (flags
& FS_NOATIME_FL
)
34 if (flags
& FS_DIRSYNC_FL
)
36 inode_set_flags(inode
, new_fl
,
37 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
40 static void __get_inode_rdev(struct inode
*inode
, struct f2fs_inode
*ri
)
42 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
43 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
46 old_decode_dev(le32_to_cpu(ri
->i_addr
[0]));
49 new_decode_dev(le32_to_cpu(ri
->i_addr
[1]));
53 static bool __written_first_block(struct f2fs_inode
*ri
)
55 block_t addr
= le32_to_cpu(ri
->i_addr
[0]);
57 if (addr
!= NEW_ADDR
&& addr
!= NULL_ADDR
)
62 static void __set_inode_rdev(struct inode
*inode
, struct f2fs_inode
*ri
)
64 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
65 if (old_valid_dev(inode
->i_rdev
)) {
67 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
72 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
78 static void __recover_inline_status(struct inode
*inode
, struct page
*ipage
)
80 void *inline_data
= inline_data_addr(ipage
);
81 __le32
*start
= inline_data
;
82 __le32
*end
= start
+ MAX_INLINE_DATA
/ sizeof(__le32
);
86 f2fs_wait_on_page_writeback(ipage
, NODE
);
88 set_inode_flag(F2FS_I(inode
), FI_DATA_EXIST
);
89 set_raw_inline(F2FS_I(inode
), F2FS_INODE(ipage
));
90 set_page_dirty(ipage
);
97 static int do_read_inode(struct inode
*inode
)
99 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
100 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
101 struct page
*node_page
;
102 struct f2fs_inode
*ri
;
104 /* Check if ino is within scope */
105 if (check_nid_range(sbi
, inode
->i_ino
)) {
106 f2fs_msg(inode
->i_sb
, KERN_ERR
, "bad inode number: %lu",
107 (unsigned long) inode
->i_ino
);
112 node_page
= get_node_page(sbi
, inode
->i_ino
);
113 if (IS_ERR(node_page
))
114 return PTR_ERR(node_page
);
116 ri
= F2FS_INODE(node_page
);
118 inode
->i_mode
= le16_to_cpu(ri
->i_mode
);
119 i_uid_write(inode
, le32_to_cpu(ri
->i_uid
));
120 i_gid_write(inode
, le32_to_cpu(ri
->i_gid
));
121 set_nlink(inode
, le32_to_cpu(ri
->i_links
));
122 inode
->i_size
= le64_to_cpu(ri
->i_size
);
123 inode
->i_blocks
= le64_to_cpu(ri
->i_blocks
);
125 inode
->i_atime
.tv_sec
= le64_to_cpu(ri
->i_atime
);
126 inode
->i_ctime
.tv_sec
= le64_to_cpu(ri
->i_ctime
);
127 inode
->i_mtime
.tv_sec
= le64_to_cpu(ri
->i_mtime
);
128 inode
->i_atime
.tv_nsec
= le32_to_cpu(ri
->i_atime_nsec
);
129 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ri
->i_ctime_nsec
);
130 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ri
->i_mtime_nsec
);
131 inode
->i_generation
= le32_to_cpu(ri
->i_generation
);
133 fi
->i_current_depth
= le32_to_cpu(ri
->i_current_depth
);
134 fi
->i_xattr_nid
= le32_to_cpu(ri
->i_xattr_nid
);
135 fi
->i_flags
= le32_to_cpu(ri
->i_flags
);
137 fi
->i_advise
= ri
->i_advise
;
138 fi
->i_pino
= le32_to_cpu(ri
->i_pino
);
139 fi
->i_dir_level
= ri
->i_dir_level
;
141 f2fs_init_extent_tree(inode
, &ri
->i_ext
);
143 get_inline_info(fi
, ri
);
145 /* check data exist */
146 if (f2fs_has_inline_data(inode
) && !f2fs_exist_data(inode
))
147 __recover_inline_status(inode
, node_page
);
149 /* get rdev by using inline_info */
150 __get_inode_rdev(inode
, ri
);
152 if (__written_first_block(ri
))
153 set_inode_flag(F2FS_I(inode
), FI_FIRST_BLOCK_WRITTEN
);
155 f2fs_put_page(node_page
, 1);
157 stat_inc_inline_xattr(inode
);
158 stat_inc_inline_inode(inode
);
159 stat_inc_inline_dir(inode
);
164 struct inode
*f2fs_iget(struct super_block
*sb
, unsigned long ino
)
166 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
170 inode
= iget_locked(sb
, ino
);
172 return ERR_PTR(-ENOMEM
);
174 if (!(inode
->i_state
& I_NEW
)) {
175 trace_f2fs_iget(inode
);
178 if (ino
== F2FS_NODE_INO(sbi
) || ino
== F2FS_META_INO(sbi
))
181 ret
= do_read_inode(inode
);
185 if (ino
== F2FS_NODE_INO(sbi
)) {
186 inode
->i_mapping
->a_ops
= &f2fs_node_aops
;
187 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_ZERO
);
188 } else if (ino
== F2FS_META_INO(sbi
)) {
189 inode
->i_mapping
->a_ops
= &f2fs_meta_aops
;
190 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_ZERO
);
191 } else if (S_ISREG(inode
->i_mode
)) {
192 inode
->i_op
= &f2fs_file_inode_operations
;
193 inode
->i_fop
= &f2fs_file_operations
;
194 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
195 } else if (S_ISDIR(inode
->i_mode
)) {
196 inode
->i_op
= &f2fs_dir_inode_operations
;
197 inode
->i_fop
= &f2fs_dir_operations
;
198 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
199 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_HIGH_ZERO
);
200 } else if (S_ISLNK(inode
->i_mode
)) {
201 if (f2fs_encrypted_inode(inode
))
202 inode
->i_op
= &f2fs_encrypted_symlink_inode_operations
;
204 inode
->i_op
= &f2fs_symlink_inode_operations
;
205 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
206 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
207 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
208 inode
->i_op
= &f2fs_special_inode_operations
;
209 init_special_inode(inode
, inode
->i_mode
, inode
->i_rdev
);
214 unlock_new_inode(inode
);
215 trace_f2fs_iget(inode
);
220 trace_f2fs_iget_exit(inode
, ret
);
224 void update_inode(struct inode
*inode
, struct page
*node_page
)
226 struct f2fs_inode
*ri
;
228 f2fs_wait_on_page_writeback(node_page
, NODE
);
230 ri
= F2FS_INODE(node_page
);
232 ri
->i_mode
= cpu_to_le16(inode
->i_mode
);
233 ri
->i_advise
= F2FS_I(inode
)->i_advise
;
234 ri
->i_uid
= cpu_to_le32(i_uid_read(inode
));
235 ri
->i_gid
= cpu_to_le32(i_gid_read(inode
));
236 ri
->i_links
= cpu_to_le32(inode
->i_nlink
);
237 ri
->i_size
= cpu_to_le64(i_size_read(inode
));
238 ri
->i_blocks
= cpu_to_le64(inode
->i_blocks
);
240 if (F2FS_I(inode
)->extent_tree
)
241 set_raw_extent(&F2FS_I(inode
)->extent_tree
->largest
,
244 memset(&ri
->i_ext
, 0, sizeof(ri
->i_ext
));
245 set_raw_inline(F2FS_I(inode
), ri
);
247 ri
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
248 ri
->i_ctime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
249 ri
->i_mtime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
250 ri
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
251 ri
->i_ctime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
252 ri
->i_mtime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
253 ri
->i_current_depth
= cpu_to_le32(F2FS_I(inode
)->i_current_depth
);
254 ri
->i_xattr_nid
= cpu_to_le32(F2FS_I(inode
)->i_xattr_nid
);
255 ri
->i_flags
= cpu_to_le32(F2FS_I(inode
)->i_flags
);
256 ri
->i_pino
= cpu_to_le32(F2FS_I(inode
)->i_pino
);
257 ri
->i_generation
= cpu_to_le32(inode
->i_generation
);
258 ri
->i_dir_level
= F2FS_I(inode
)->i_dir_level
;
260 __set_inode_rdev(inode
, ri
);
261 set_cold_node(inode
, node_page
);
262 set_page_dirty(node_page
);
264 clear_inode_flag(F2FS_I(inode
), FI_DIRTY_INODE
);
267 void update_inode_page(struct inode
*inode
)
269 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
270 struct page
*node_page
;
272 node_page
= get_node_page(sbi
, inode
->i_ino
);
273 if (IS_ERR(node_page
)) {
274 int err
= PTR_ERR(node_page
);
275 if (err
== -ENOMEM
) {
278 } else if (err
!= -ENOENT
) {
279 f2fs_stop_checkpoint(sbi
);
283 update_inode(inode
, node_page
);
284 f2fs_put_page(node_page
, 1);
287 int f2fs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
289 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
291 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
292 inode
->i_ino
== F2FS_META_INO(sbi
))
295 if (!is_inode_flag_set(F2FS_I(inode
), FI_DIRTY_INODE
))
299 * We need to balance fs here to prevent from producing dirty node pages
300 * during the urgent cleaning time when runing out of free sections.
302 update_inode_page(inode
);
304 f2fs_balance_fs(sbi
);
309 * Called at the last iput() if i_nlink is zero
311 void f2fs_evict_inode(struct inode
*inode
)
313 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
314 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
315 nid_t xnid
= fi
->i_xattr_nid
;
318 /* some remained atomic pages should discarded */
319 if (f2fs_is_atomic_file(inode
))
320 commit_inmem_pages(inode
, true);
322 trace_f2fs_evict_inode(inode
);
323 truncate_inode_pages_final(&inode
->i_data
);
325 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
326 inode
->i_ino
== F2FS_META_INO(sbi
))
329 f2fs_bug_on(sbi
, get_dirty_pages(inode
));
330 remove_dirty_dir_inode(inode
);
332 f2fs_destroy_extent_tree(inode
);
334 if (inode
->i_nlink
|| is_bad_inode(inode
))
337 sb_start_intwrite(inode
->i_sb
);
338 set_inode_flag(fi
, FI_NO_ALLOC
);
339 i_size_write(inode
, 0);
341 if (F2FS_HAS_BLOCKS(inode
))
342 err
= f2fs_truncate(inode
, true);
346 err
= remove_inode_page(inode
);
350 sb_end_intwrite(inode
->i_sb
);
352 stat_dec_inline_xattr(inode
);
353 stat_dec_inline_dir(inode
);
354 stat_dec_inline_inode(inode
);
356 invalidate_mapping_pages(NODE_MAPPING(sbi
), inode
->i_ino
, inode
->i_ino
);
358 invalidate_mapping_pages(NODE_MAPPING(sbi
), xnid
, xnid
);
359 if (is_inode_flag_set(fi
, FI_APPEND_WRITE
))
360 add_dirty_inode(sbi
, inode
->i_ino
, APPEND_INO
);
361 if (is_inode_flag_set(fi
, FI_UPDATE_WRITE
))
362 add_dirty_inode(sbi
, inode
->i_ino
, UPDATE_INO
);
363 if (is_inode_flag_set(fi
, FI_FREE_NID
)) {
364 if (err
&& err
!= -ENOENT
)
365 alloc_nid_done(sbi
, inode
->i_ino
);
367 alloc_nid_failed(sbi
, inode
->i_ino
);
368 clear_inode_flag(fi
, FI_FREE_NID
);
371 if (err
&& err
!= -ENOENT
) {
372 if (!exist_written_data(sbi
, inode
->i_ino
, ORPHAN_INO
)) {
374 * get here because we failed to release resource
375 * of inode previously, reminder our user to run fsck
378 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
379 f2fs_msg(sbi
->sb
, KERN_WARNING
,
380 "inode (ino:%lu) resource leak, run fsck "
381 "to fix this issue!", inode
->i_ino
);
385 #ifdef CONFIG_F2FS_FS_ENCRYPTION
386 if (fi
->i_crypt_info
)
387 f2fs_free_encryption_info(inode
, fi
->i_crypt_info
);
392 /* caller should call f2fs_lock_op() */
393 void handle_failed_inode(struct inode
*inode
)
395 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
399 make_bad_inode(inode
);
400 unlock_new_inode(inode
);
402 i_size_write(inode
, 0);
403 if (F2FS_HAS_BLOCKS(inode
))
404 err
= f2fs_truncate(inode
, false);
407 err
= remove_inode_page(inode
);
410 * if we skip truncate_node in remove_inode_page bacause we failed
411 * before, it's better to find another way to release resource of
412 * this inode (e.g. valid block count, node block or nid). Here we
413 * choose to add this inode to orphan list, so that we can call iput
414 * for releasing in orphan recovery flow.
416 * Note: we should add inode to orphan list before f2fs_unlock_op()
417 * so we can prevent losing this orphan when encoutering checkpoint
418 * and following suddenly power-off.
420 if (err
&& err
!= -ENOENT
) {
421 err
= acquire_orphan_inode(sbi
);
423 add_orphan_inode(sbi
, inode
->i_ino
);
426 set_inode_flag(F2FS_I(inode
), FI_FREE_NID
);
429 /* iput will drop the inode object */