1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
29 if (status != VXGE_HW_OK) \
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem
*vp_reg
)
38 val64
= readq(&vp_reg
->rxmac_vcfg0
);
39 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64
, &vp_reg
->rxmac_vcfg0
);
41 val64
= readq(&vp_reg
->rxmac_vcfg0
);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device
*hldev
, u32 vp_id
)
49 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
50 struct __vxge_hw_virtualpath
*vpath
;
51 u64 val64
, rxd_count
, rxd_spat
;
52 int count
= 0, total_count
= 0;
54 vpath
= &hldev
->virtual_paths
[vp_id
];
55 vp_reg
= vpath
->vp_reg
;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg
);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64
= readq(&vp_reg
->prc_cfg6
);
65 rxd_spat
= VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64
) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
74 rxd_count
= readq(&vp_reg
->prc_rxd_doorbell
);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64
= readq(&vp_reg
->frm_in_progress_cnt
);
80 if ((rxd_count
<= rxd_spat
) || (val64
> 0))
85 } while ((count
< VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT
) &&
86 (total_count
< VXGE_HW_MAX_POLLING_COUNT
));
88 if (total_count
>= VXGE_HW_MAX_POLLING_COUNT
)
89 printk(KERN_ALERT
"%s: Still Receiving traffic. Abort wait\n",
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device
*hldev
)
101 int i
, total_count
= 0;
103 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
104 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
107 total_count
+= vxge_hw_vpath_wait_receive_idle(hldev
, i
);
108 if (total_count
>= VXGE_HW_MAX_POLLING_COUNT
)
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem
*reg
, u64 mask
, u32 max_millis
)
139 } while (++i
<= max_millis
);
144 static inline enum vxge_hw_status
145 __vxge_hw_pio_mem_write64(u64 val64
, void __iomem
*addr
,
146 u64 mask
, u32 max_millis
)
148 __vxge_hw_pio_mem_write32_lower((u32
)vxge_bVALn(val64
, 32, 32), addr
);
150 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32), addr
);
153 return __vxge_hw_device_register_poll(addr
, mask
, max_millis
);
156 static enum vxge_hw_status
157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath
*vpath
, u32 action
,
158 u32 fw_memo
, u32 offset
, u64
*data0
, u64
*data1
,
161 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
162 enum vxge_hw_status status
;
164 u32 retry
= 0, max_retry
= 3;
166 spin_lock(&vpath
->lock
);
167 if (!vpath
->vp_open
) {
168 spin_unlock(&vpath
->lock
);
172 writeq(*data0
, &vp_reg
->rts_access_steer_data0
);
173 writeq(*data1
, &vp_reg
->rts_access_steer_data1
);
176 val64
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action
) |
177 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo
) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset
) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
|
182 status
= __vxge_hw_pio_mem_write64(val64
,
183 &vp_reg
->rts_access_steer_ctrl
,
184 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
,
185 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
187 /* The __vxge_hw_device_register_poll can udelay for a significant
188 * amount of time, blocking other process from the CPU. If it delays
189 * for ~5secs, a NMI error can occur. A way around this is to give up
190 * the processor via msleep, but this is not allowed is under lock.
191 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
192 * 1sec and sleep for 10ms until the firmware operation has completed
195 while ((status
!= VXGE_HW_OK
) && retry
++ < max_retry
) {
198 status
= __vxge_hw_device_register_poll(
199 &vp_reg
->rts_access_steer_ctrl
,
200 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE
,
201 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
204 if (status
!= VXGE_HW_OK
)
207 val64
= readq(&vp_reg
->rts_access_steer_ctrl
);
208 if (val64
& VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS
) {
209 *data0
= readq(&vp_reg
->rts_access_steer_data0
);
210 *data1
= readq(&vp_reg
->rts_access_steer_data1
);
213 status
= VXGE_HW_FAIL
;
217 spin_unlock(&vpath
->lock
);
222 vxge_hw_upgrade_read_version(struct __vxge_hw_device
*hldev
, u32
*major
,
223 u32
*minor
, u32
*build
)
225 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
226 struct __vxge_hw_virtualpath
*vpath
;
227 enum vxge_hw_status status
;
229 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
231 status
= vxge_hw_vpath_fw_api(vpath
,
232 VXGE_HW_FW_UPGRADE_ACTION
,
233 VXGE_HW_FW_UPGRADE_MEMO
,
234 VXGE_HW_FW_UPGRADE_OFFSET_READ
,
235 &data0
, &data1
, &steer_ctrl
);
236 if (status
!= VXGE_HW_OK
)
239 *major
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0
);
240 *minor
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0
);
241 *build
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0
);
246 enum vxge_hw_status
vxge_hw_flash_fw(struct __vxge_hw_device
*hldev
)
248 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
249 struct __vxge_hw_virtualpath
*vpath
;
250 enum vxge_hw_status status
;
253 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
255 status
= vxge_hw_vpath_fw_api(vpath
,
256 VXGE_HW_FW_UPGRADE_ACTION
,
257 VXGE_HW_FW_UPGRADE_MEMO
,
258 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT
,
259 &data0
, &data1
, &steer_ctrl
);
260 if (status
!= VXGE_HW_OK
) {
261 vxge_debug_init(VXGE_ERR
, "%s: FW upgrade failed", __func__
);
265 ret
= VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl
) & 0x7F;
267 vxge_debug_init(VXGE_ERR
, "%s: FW commit failed with error %d",
269 status
= VXGE_HW_FAIL
;
277 vxge_update_fw_image(struct __vxge_hw_device
*hldev
, const u8
*fwdata
, int size
)
279 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
280 struct __vxge_hw_virtualpath
*vpath
;
281 enum vxge_hw_status status
;
282 int ret_code
, sec_code
;
284 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
286 /* send upgrade start command */
287 status
= vxge_hw_vpath_fw_api(vpath
,
288 VXGE_HW_FW_UPGRADE_ACTION
,
289 VXGE_HW_FW_UPGRADE_MEMO
,
290 VXGE_HW_FW_UPGRADE_OFFSET_START
,
291 &data0
, &data1
, &steer_ctrl
);
292 if (status
!= VXGE_HW_OK
) {
293 vxge_debug_init(VXGE_ERR
, " %s: Upgrade start cmd failed",
298 /* Transfer fw image to adapter 16 bytes at a time */
299 for (; size
> 0; size
-= VXGE_HW_FW_UPGRADE_BLK_SIZE
) {
302 /* The next 128bits of fwdata to be loaded onto the adapter */
303 data0
= *((u64
*)fwdata
);
304 data1
= *((u64
*)fwdata
+ 1);
306 status
= vxge_hw_vpath_fw_api(vpath
,
307 VXGE_HW_FW_UPGRADE_ACTION
,
308 VXGE_HW_FW_UPGRADE_MEMO
,
309 VXGE_HW_FW_UPGRADE_OFFSET_SEND
,
310 &data0
, &data1
, &steer_ctrl
);
311 if (status
!= VXGE_HW_OK
) {
312 vxge_debug_init(VXGE_ERR
, "%s: Upgrade send failed",
317 ret_code
= VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0
);
319 case VXGE_HW_FW_UPGRADE_OK
:
320 /* All OK, send next 16 bytes. */
322 case VXGE_FW_UPGRADE_BYTES2SKIP
:
323 /* skip bytes in the stream */
324 fwdata
+= (data0
>> 8) & 0xFFFFFFFF;
326 case VXGE_HW_FW_UPGRADE_DONE
:
328 case VXGE_HW_FW_UPGRADE_ERR
:
329 sec_code
= VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0
);
331 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1
:
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7
:
334 "corrupted data from .ncf file\n");
336 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3
:
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4
:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5
:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6
:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8
:
341 printk(KERN_ERR
"invalid .ncf file\n");
343 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW
:
344 printk(KERN_ERR
"buffer overflow\n");
346 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH
:
347 printk(KERN_ERR
"failed to flash the image\n");
349 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN
:
351 "generic error. Unknown error type\n");
354 printk(KERN_ERR
"Unknown error of type %d\n",
358 status
= VXGE_HW_FAIL
;
361 printk(KERN_ERR
"Unknown FW error: %d\n", ret_code
);
362 status
= VXGE_HW_FAIL
;
365 /* point to next 16 bytes */
366 fwdata
+= VXGE_HW_FW_UPGRADE_BLK_SIZE
;
373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device
*hldev
,
374 struct eprom_image
*img
)
376 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
377 struct __vxge_hw_virtualpath
*vpath
;
378 enum vxge_hw_status status
;
381 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
383 for (i
= 0; i
< VXGE_HW_MAX_ROM_IMAGES
; i
++) {
384 data0
= VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i
);
385 data1
= steer_ctrl
= 0;
387 status
= vxge_hw_vpath_fw_api(vpath
,
388 VXGE_HW_FW_API_GET_EPROM_REV
,
389 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
390 0, &data0
, &data1
, &steer_ctrl
);
391 if (status
!= VXGE_HW_OK
)
394 img
[i
].is_valid
= VXGE_HW_GET_EPROM_IMAGE_VALID(data0
);
395 img
[i
].index
= VXGE_HW_GET_EPROM_IMAGE_INDEX(data0
);
396 img
[i
].type
= VXGE_HW_GET_EPROM_IMAGE_TYPE(data0
);
397 img
[i
].version
= VXGE_HW_GET_EPROM_IMAGE_REV(data0
);
404 * __vxge_hw_channel_free - Free memory allocated for channel
405 * This function deallocates memory from the channel and various arrays
408 static void __vxge_hw_channel_free(struct __vxge_hw_channel
*channel
)
410 kfree(channel
->work_arr
);
411 kfree(channel
->free_arr
);
412 kfree(channel
->reserve_arr
);
413 kfree(channel
->orig_arr
);
418 * __vxge_hw_channel_initialize - Initialize a channel
419 * This function initializes a channel by properly setting the
422 static enum vxge_hw_status
423 __vxge_hw_channel_initialize(struct __vxge_hw_channel
*channel
)
426 struct __vxge_hw_virtualpath
*vpath
;
428 vpath
= channel
->vph
->vpath
;
430 if ((channel
->reserve_arr
!= NULL
) && (channel
->orig_arr
!= NULL
)) {
431 for (i
= 0; i
< channel
->length
; i
++)
432 channel
->orig_arr
[i
] = channel
->reserve_arr
[i
];
435 switch (channel
->type
) {
436 case VXGE_HW_CHANNEL_TYPE_FIFO
:
437 vpath
->fifoh
= (struct __vxge_hw_fifo
*)channel
;
438 channel
->stats
= &((struct __vxge_hw_fifo
*)
439 channel
)->stats
->common_stats
;
441 case VXGE_HW_CHANNEL_TYPE_RING
:
442 vpath
->ringh
= (struct __vxge_hw_ring
*)channel
;
443 channel
->stats
= &((struct __vxge_hw_ring
*)
444 channel
)->stats
->common_stats
;
454 * __vxge_hw_channel_reset - Resets a channel
455 * This function resets a channel by properly setting the various references
457 static enum vxge_hw_status
458 __vxge_hw_channel_reset(struct __vxge_hw_channel
*channel
)
462 for (i
= 0; i
< channel
->length
; i
++) {
463 if (channel
->reserve_arr
!= NULL
)
464 channel
->reserve_arr
[i
] = channel
->orig_arr
[i
];
465 if (channel
->free_arr
!= NULL
)
466 channel
->free_arr
[i
] = NULL
;
467 if (channel
->work_arr
!= NULL
)
468 channel
->work_arr
[i
] = NULL
;
470 channel
->free_ptr
= channel
->length
;
471 channel
->reserve_ptr
= channel
->length
;
472 channel
->reserve_top
= 0;
473 channel
->post_index
= 0;
474 channel
->compl_index
= 0;
480 * __vxge_hw_device_pci_e_init
481 * Initialize certain PCI/PCI-X configuration registers
482 * with recommended values. Save config space for future hw resets.
484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device
*hldev
)
488 /* Set the PErr Repconse bit and SERR in PCI command register. */
489 pci_read_config_word(hldev
->pdev
, PCI_COMMAND
, &cmd
);
491 pci_write_config_word(hldev
->pdev
, PCI_COMMAND
, cmd
);
493 pci_save_state(hldev
->pdev
);
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
498 * This routine checks the vpath reset in progress register is turned zero
500 static enum vxge_hw_status
501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem
*vpath_rst_in_prog
)
503 enum vxge_hw_status status
;
504 status
= __vxge_hw_device_register_poll(vpath_rst_in_prog
,
505 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506 VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
511 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512 * Set the swapper bits appropriately for the lagacy section.
514 static enum vxge_hw_status
515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem
*legacy_reg
)
518 enum vxge_hw_status status
= VXGE_HW_OK
;
520 val64
= readq(&legacy_reg
->toc_swapper_fb
);
525 case VXGE_HW_SWAPPER_INITIAL_VALUE
:
528 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED
:
529 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE
,
530 &legacy_reg
->pifm_rd_swap_en
);
531 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE
,
532 &legacy_reg
->pifm_rd_flip_en
);
533 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
,
534 &legacy_reg
->pifm_wr_swap_en
);
535 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE
,
536 &legacy_reg
->pifm_wr_flip_en
);
539 case VXGE_HW_SWAPPER_BYTE_SWAPPED
:
540 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE
,
541 &legacy_reg
->pifm_rd_swap_en
);
542 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
,
543 &legacy_reg
->pifm_wr_swap_en
);
546 case VXGE_HW_SWAPPER_BIT_FLIPPED
:
547 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE
,
548 &legacy_reg
->pifm_rd_flip_en
);
549 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE
,
550 &legacy_reg
->pifm_wr_flip_en
);
556 val64
= readq(&legacy_reg
->toc_swapper_fb
);
558 if (val64
!= VXGE_HW_SWAPPER_INITIAL_VALUE
)
559 status
= VXGE_HW_ERR_SWAPPER_CTRL
;
565 * __vxge_hw_device_toc_get
566 * This routine sets the swapper and reads the toc pointer and returns the
567 * memory mapped address of the toc
569 static struct vxge_hw_toc_reg __iomem
*
570 __vxge_hw_device_toc_get(void __iomem
*bar0
)
573 struct vxge_hw_toc_reg __iomem
*toc
= NULL
;
574 enum vxge_hw_status status
;
576 struct vxge_hw_legacy_reg __iomem
*legacy_reg
=
577 (struct vxge_hw_legacy_reg __iomem
*)bar0
;
579 status
= __vxge_hw_legacy_swapper_set(legacy_reg
);
580 if (status
!= VXGE_HW_OK
)
583 val64
= readq(&legacy_reg
->toc_first_pointer
);
590 * __vxge_hw_device_reg_addr_get
591 * This routine sets the swapper and reads the toc pointer and initializes the
592 * register location pointers in the device object. It waits until the ric is
593 * completed initializing registers.
595 static enum vxge_hw_status
596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device
*hldev
)
600 enum vxge_hw_status status
= VXGE_HW_OK
;
602 hldev
->legacy_reg
= hldev
->bar0
;
604 hldev
->toc_reg
= __vxge_hw_device_toc_get(hldev
->bar0
);
605 if (hldev
->toc_reg
== NULL
) {
606 status
= VXGE_HW_FAIL
;
610 val64
= readq(&hldev
->toc_reg
->toc_common_pointer
);
611 hldev
->common_reg
= hldev
->bar0
+ val64
;
613 val64
= readq(&hldev
->toc_reg
->toc_mrpcim_pointer
);
614 hldev
->mrpcim_reg
= hldev
->bar0
+ val64
;
616 for (i
= 0; i
< VXGE_HW_TITAN_SRPCIM_REG_SPACES
; i
++) {
617 val64
= readq(&hldev
->toc_reg
->toc_srpcim_pointer
[i
]);
618 hldev
->srpcim_reg
[i
] = hldev
->bar0
+ val64
;
621 for (i
= 0; i
< VXGE_HW_TITAN_VPMGMT_REG_SPACES
; i
++) {
622 val64
= readq(&hldev
->toc_reg
->toc_vpmgmt_pointer
[i
]);
623 hldev
->vpmgmt_reg
[i
] = hldev
->bar0
+ val64
;
626 for (i
= 0; i
< VXGE_HW_TITAN_VPATH_REG_SPACES
; i
++) {
627 val64
= readq(&hldev
->toc_reg
->toc_vpath_pointer
[i
]);
628 hldev
->vpath_reg
[i
] = hldev
->bar0
+ val64
;
631 val64
= readq(&hldev
->toc_reg
->toc_kdfc
);
633 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64
)) {
635 hldev
->kdfc
= hldev
->bar0
+ VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64
) ;
641 status
= __vxge_hw_device_vpath_reset_in_prog_check(
642 (u64 __iomem
*)&hldev
->common_reg
->vpath_rst_in_prog
);
648 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649 * This routine returns the Access Rights of the driver
652 __vxge_hw_device_access_rights_get(u32 host_type
, u32 func_id
)
654 u32 access_rights
= VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH
;
657 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION
:
659 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
660 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
663 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION
:
664 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
665 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
667 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0
:
668 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
|
669 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
671 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION
:
672 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION
:
673 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG
:
675 case VXGE_HW_SR_VH_FUNCTION0
:
676 case VXGE_HW_VH_NORMAL_FUNCTION
:
677 access_rights
|= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
;
681 return access_rights
;
684 * __vxge_hw_device_is_privilaged
685 * This routine checks if the device function is privilaged or not
689 __vxge_hw_device_is_privilaged(u32 host_type
, u32 func_id
)
691 if (__vxge_hw_device_access_rights_get(host_type
,
693 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)
696 return VXGE_HW_ERR_PRIVILEGED_OPERATION
;
700 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701 * Returns the function number of the vpath.
704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
)
708 val64
= readq(&vpmgmt_reg
->vpath_to_func_map_cfg1
);
711 (u32
)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64
);
715 * __vxge_hw_device_host_info_get
716 * This routine returns the host type assignments
718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device
*hldev
)
723 val64
= readq(&hldev
->common_reg
->host_type_assignments
);
726 (u32
)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64
);
728 hldev
->vpath_assignments
= readq(&hldev
->common_reg
->vpath_assignments
);
730 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
731 if (!(hldev
->vpath_assignments
& vxge_mBIT(i
)))
735 __vxge_hw_vpath_func_id_get(hldev
->vpmgmt_reg
[i
]);
737 hldev
->access_rights
= __vxge_hw_device_access_rights_get(
738 hldev
->host_type
, hldev
->func_id
);
740 hldev
->virtual_paths
[i
].vp_open
= VXGE_HW_VP_NOT_OPEN
;
741 hldev
->virtual_paths
[i
].vp_reg
= hldev
->vpath_reg
[i
];
743 hldev
->first_vp_id
= i
;
749 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750 * link width and signalling rate.
752 static enum vxge_hw_status
753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device
*hldev
)
755 struct pci_dev
*dev
= hldev
->pdev
;
758 /* Get the negotiated link width and speed from PCI config space */
759 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnk
);
761 if ((lnk
& PCI_EXP_LNKSTA_CLS
) != 1)
762 return VXGE_HW_ERR_INVALID_PCI_INFO
;
764 switch ((lnk
& PCI_EXP_LNKSTA_NLW
) >> 4) {
765 case PCIE_LNK_WIDTH_RESRV
:
772 return VXGE_HW_ERR_INVALID_PCI_INFO
;
779 * __vxge_hw_device_initialize
780 * Initialize Titan-V hardware.
782 static enum vxge_hw_status
783 __vxge_hw_device_initialize(struct __vxge_hw_device
*hldev
)
785 enum vxge_hw_status status
= VXGE_HW_OK
;
787 if (VXGE_HW_OK
== __vxge_hw_device_is_privilaged(hldev
->host_type
,
789 /* Validate the pci-e link width and speed */
790 status
= __vxge_hw_verify_pci_e_info(hldev
);
791 if (status
!= VXGE_HW_OK
)
800 * __vxge_hw_vpath_fw_ver_get - Get the fw version
803 static enum vxge_hw_status
804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath
*vpath
,
805 struct vxge_hw_device_hw_info
*hw_info
)
807 struct vxge_hw_device_version
*fw_version
= &hw_info
->fw_version
;
808 struct vxge_hw_device_date
*fw_date
= &hw_info
->fw_date
;
809 struct vxge_hw_device_version
*flash_version
= &hw_info
->flash_version
;
810 struct vxge_hw_device_date
*flash_date
= &hw_info
->flash_date
;
811 u64 data0
= 0, data1
= 0, steer_ctrl
= 0;
812 enum vxge_hw_status status
;
814 status
= vxge_hw_vpath_fw_api(vpath
,
815 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY
,
816 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
817 0, &data0
, &data1
, &steer_ctrl
);
818 if (status
!= VXGE_HW_OK
)
822 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0
);
824 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0
);
826 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0
);
828 snprintf(fw_date
->date
, VXGE_HW_FW_STRLEN
, "%2.2d/%2.2d/%4.4d",
829 fw_date
->month
, fw_date
->day
, fw_date
->year
);
832 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0
);
834 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0
);
836 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0
);
838 snprintf(fw_version
->version
, VXGE_HW_FW_STRLEN
, "%d.%d.%d",
839 fw_version
->major
, fw_version
->minor
, fw_version
->build
);
842 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1
);
844 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1
);
846 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1
);
848 snprintf(flash_date
->date
, VXGE_HW_FW_STRLEN
, "%2.2d/%2.2d/%4.4d",
849 flash_date
->month
, flash_date
->day
, flash_date
->year
);
851 flash_version
->major
=
852 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1
);
853 flash_version
->minor
=
854 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1
);
855 flash_version
->build
=
856 (u32
) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1
);
858 snprintf(flash_version
->version
, VXGE_HW_FW_STRLEN
, "%d.%d.%d",
859 flash_version
->major
, flash_version
->minor
,
860 flash_version
->build
);
867 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868 * part number and product description.
870 static enum vxge_hw_status
871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath
*vpath
,
872 struct vxge_hw_device_hw_info
*hw_info
)
874 enum vxge_hw_status status
;
875 u64 data0
, data1
= 0, steer_ctrl
= 0;
876 u8
*serial_number
= hw_info
->serial_number
;
877 u8
*part_number
= hw_info
->part_number
;
878 u8
*product_desc
= hw_info
->product_desc
;
881 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER
;
883 status
= vxge_hw_vpath_fw_api(vpath
,
884 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
885 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
886 0, &data0
, &data1
, &steer_ctrl
);
887 if (status
!= VXGE_HW_OK
)
890 ((u64
*)serial_number
)[0] = be64_to_cpu(data0
);
891 ((u64
*)serial_number
)[1] = be64_to_cpu(data1
);
893 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER
;
894 data1
= steer_ctrl
= 0;
896 status
= vxge_hw_vpath_fw_api(vpath
,
897 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
898 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
899 0, &data0
, &data1
, &steer_ctrl
);
900 if (status
!= VXGE_HW_OK
)
903 ((u64
*)part_number
)[0] = be64_to_cpu(data0
);
904 ((u64
*)part_number
)[1] = be64_to_cpu(data1
);
906 for (i
= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0
;
907 i
<= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3
; i
++) {
909 data1
= steer_ctrl
= 0;
911 status
= vxge_hw_vpath_fw_api(vpath
,
912 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY
,
913 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
914 0, &data0
, &data1
, &steer_ctrl
);
915 if (status
!= VXGE_HW_OK
)
918 ((u64
*)product_desc
)[j
++] = be64_to_cpu(data0
);
919 ((u64
*)product_desc
)[j
++] = be64_to_cpu(data1
);
926 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927 * Returns pci function mode
929 static enum vxge_hw_status
930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath
*vpath
,
931 struct vxge_hw_device_hw_info
*hw_info
)
933 u64 data0
, data1
= 0, steer_ctrl
= 0;
934 enum vxge_hw_status status
;
938 status
= vxge_hw_vpath_fw_api(vpath
,
939 VXGE_HW_FW_API_GET_FUNC_MODE
,
940 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
941 0, &data0
, &data1
, &steer_ctrl
);
942 if (status
!= VXGE_HW_OK
)
945 hw_info
->function_mode
= VXGE_HW_GET_FUNC_MODE_VAL(data0
);
950 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951 * from MAC address table.
953 static enum vxge_hw_status
954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath
*vpath
,
955 u8
*macaddr
, u8
*macaddr_mask
)
957 u64 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY
,
958 data0
= 0, data1
= 0, steer_ctrl
= 0;
959 enum vxge_hw_status status
;
963 status
= vxge_hw_vpath_fw_api(vpath
, action
,
964 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
,
965 0, &data0
, &data1
, &steer_ctrl
);
966 if (status
!= VXGE_HW_OK
)
969 data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0
);
970 data1
= VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
973 for (i
= ETH_ALEN
; i
> 0; i
--) {
974 macaddr
[i
- 1] = (u8
) (data0
& 0xFF);
977 macaddr_mask
[i
- 1] = (u8
) (data1
& 0xFF);
981 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY
;
982 data0
= 0, data1
= 0, steer_ctrl
= 0;
984 } while (!is_valid_ether_addr(macaddr
));
990 * vxge_hw_device_hw_info_get - Get the hw information
991 * Returns the vpath mask that has the bits set for each vpath allocated
992 * for the driver, FW version information, and the first mac address for
996 vxge_hw_device_hw_info_get(void __iomem
*bar0
,
997 struct vxge_hw_device_hw_info
*hw_info
)
1001 struct vxge_hw_toc_reg __iomem
*toc
;
1002 struct vxge_hw_mrpcim_reg __iomem
*mrpcim_reg
;
1003 struct vxge_hw_common_reg __iomem
*common_reg
;
1004 struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
;
1005 enum vxge_hw_status status
;
1006 struct __vxge_hw_virtualpath vpath
;
1008 memset(hw_info
, 0, sizeof(struct vxge_hw_device_hw_info
));
1010 toc
= __vxge_hw_device_toc_get(bar0
);
1012 status
= VXGE_HW_ERR_CRITICAL
;
1016 val64
= readq(&toc
->toc_common_pointer
);
1017 common_reg
= bar0
+ val64
;
1019 status
= __vxge_hw_device_vpath_reset_in_prog_check(
1020 (u64 __iomem
*)&common_reg
->vpath_rst_in_prog
);
1021 if (status
!= VXGE_HW_OK
)
1024 hw_info
->vpath_mask
= readq(&common_reg
->vpath_assignments
);
1026 val64
= readq(&common_reg
->host_type_assignments
);
1028 hw_info
->host_type
=
1029 (u32
)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64
);
1031 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1032 if (!((hw_info
->vpath_mask
) & vxge_mBIT(i
)))
1035 val64
= readq(&toc
->toc_vpmgmt_pointer
[i
]);
1037 vpmgmt_reg
= bar0
+ val64
;
1039 hw_info
->func_id
= __vxge_hw_vpath_func_id_get(vpmgmt_reg
);
1040 if (__vxge_hw_device_access_rights_get(hw_info
->host_type
,
1042 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
) {
1044 val64
= readq(&toc
->toc_mrpcim_pointer
);
1046 mrpcim_reg
= bar0
+ val64
;
1048 writeq(0, &mrpcim_reg
->xgmac_gen_fw_memo_mask
);
1052 val64
= readq(&toc
->toc_vpath_pointer
[i
]);
1054 spin_lock_init(&vpath
.lock
);
1055 vpath
.vp_reg
= bar0
+ val64
;
1056 vpath
.vp_open
= VXGE_HW_VP_NOT_OPEN
;
1058 status
= __vxge_hw_vpath_pci_func_mode_get(&vpath
, hw_info
);
1059 if (status
!= VXGE_HW_OK
)
1062 status
= __vxge_hw_vpath_fw_ver_get(&vpath
, hw_info
);
1063 if (status
!= VXGE_HW_OK
)
1066 status
= __vxge_hw_vpath_card_info_get(&vpath
, hw_info
);
1067 if (status
!= VXGE_HW_OK
)
1073 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1074 if (!((hw_info
->vpath_mask
) & vxge_mBIT(i
)))
1077 val64
= readq(&toc
->toc_vpath_pointer
[i
]);
1078 vpath
.vp_reg
= bar0
+ val64
;
1079 vpath
.vp_open
= VXGE_HW_VP_NOT_OPEN
;
1081 status
= __vxge_hw_vpath_addr_get(&vpath
,
1082 hw_info
->mac_addrs
[i
],
1083 hw_info
->mac_addr_masks
[i
]);
1084 if (status
!= VXGE_HW_OK
)
1092 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1094 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool
*blockpool
)
1096 struct __vxge_hw_device
*hldev
;
1097 struct list_head
*p
, *n
;
1102 hldev
= blockpool
->hldev
;
1104 list_for_each_safe(p
, n
, &blockpool
->free_block_list
) {
1105 pci_unmap_single(hldev
->pdev
,
1106 ((struct __vxge_hw_blockpool_entry
*)p
)->dma_addr
,
1107 ((struct __vxge_hw_blockpool_entry
*)p
)->length
,
1108 PCI_DMA_BIDIRECTIONAL
);
1110 vxge_os_dma_free(hldev
->pdev
,
1111 ((struct __vxge_hw_blockpool_entry
*)p
)->memblock
,
1112 &((struct __vxge_hw_blockpool_entry
*)p
)->acc_handle
);
1114 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
1116 blockpool
->pool_size
--;
1119 list_for_each_safe(p
, n
, &blockpool
->free_entry_list
) {
1120 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
1128 * __vxge_hw_blockpool_create - Create block pool
1130 static enum vxge_hw_status
1131 __vxge_hw_blockpool_create(struct __vxge_hw_device
*hldev
,
1132 struct __vxge_hw_blockpool
*blockpool
,
1137 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
1139 dma_addr_t dma_addr
;
1140 struct pci_dev
*dma_handle
;
1141 struct pci_dev
*acc_handle
;
1142 enum vxge_hw_status status
= VXGE_HW_OK
;
1144 if (blockpool
== NULL
) {
1145 status
= VXGE_HW_FAIL
;
1146 goto blockpool_create_exit
;
1149 blockpool
->hldev
= hldev
;
1150 blockpool
->block_size
= VXGE_HW_BLOCK_SIZE
;
1151 blockpool
->pool_size
= 0;
1152 blockpool
->pool_max
= pool_max
;
1153 blockpool
->req_out
= 0;
1155 INIT_LIST_HEAD(&blockpool
->free_block_list
);
1156 INIT_LIST_HEAD(&blockpool
->free_entry_list
);
1158 for (i
= 0; i
< pool_size
+ pool_max
; i
++) {
1159 entry
= kzalloc(sizeof(struct __vxge_hw_blockpool_entry
),
1161 if (entry
== NULL
) {
1162 __vxge_hw_blockpool_destroy(blockpool
);
1163 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1164 goto blockpool_create_exit
;
1166 list_add(&entry
->item
, &blockpool
->free_entry_list
);
1169 for (i
= 0; i
< pool_size
; i
++) {
1170 memblock
= vxge_os_dma_malloc(
1175 if (memblock
== NULL
) {
1176 __vxge_hw_blockpool_destroy(blockpool
);
1177 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1178 goto blockpool_create_exit
;
1181 dma_addr
= pci_map_single(hldev
->pdev
, memblock
,
1182 VXGE_HW_BLOCK_SIZE
, PCI_DMA_BIDIRECTIONAL
);
1183 if (unlikely(pci_dma_mapping_error(hldev
->pdev
,
1185 vxge_os_dma_free(hldev
->pdev
, memblock
, &acc_handle
);
1186 __vxge_hw_blockpool_destroy(blockpool
);
1187 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1188 goto blockpool_create_exit
;
1191 if (!list_empty(&blockpool
->free_entry_list
))
1192 entry
= (struct __vxge_hw_blockpool_entry
*)
1193 list_first_entry(&blockpool
->free_entry_list
,
1194 struct __vxge_hw_blockpool_entry
,
1199 kzalloc(sizeof(struct __vxge_hw_blockpool_entry
),
1201 if (entry
!= NULL
) {
1202 list_del(&entry
->item
);
1203 entry
->length
= VXGE_HW_BLOCK_SIZE
;
1204 entry
->memblock
= memblock
;
1205 entry
->dma_addr
= dma_addr
;
1206 entry
->acc_handle
= acc_handle
;
1207 entry
->dma_handle
= dma_handle
;
1208 list_add(&entry
->item
,
1209 &blockpool
->free_block_list
);
1210 blockpool
->pool_size
++;
1212 __vxge_hw_blockpool_destroy(blockpool
);
1213 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1214 goto blockpool_create_exit
;
1218 blockpool_create_exit
:
1223 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1224 * Check the fifo configuration
1226 static enum vxge_hw_status
1227 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config
*fifo_config
)
1229 if ((fifo_config
->fifo_blocks
< VXGE_HW_MIN_FIFO_BLOCKS
) ||
1230 (fifo_config
->fifo_blocks
> VXGE_HW_MAX_FIFO_BLOCKS
))
1231 return VXGE_HW_BADCFG_FIFO_BLOCKS
;
1237 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1238 * Check the vpath configuration
1240 static enum vxge_hw_status
1241 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config
*vp_config
)
1243 enum vxge_hw_status status
;
1245 if ((vp_config
->min_bandwidth
< VXGE_HW_VPATH_BANDWIDTH_MIN
) ||
1246 (vp_config
->min_bandwidth
> VXGE_HW_VPATH_BANDWIDTH_MAX
))
1247 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH
;
1249 status
= __vxge_hw_device_fifo_config_check(&vp_config
->fifo
);
1250 if (status
!= VXGE_HW_OK
)
1253 if ((vp_config
->mtu
!= VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
) &&
1254 ((vp_config
->mtu
< VXGE_HW_VPATH_MIN_INITIAL_MTU
) ||
1255 (vp_config
->mtu
> VXGE_HW_VPATH_MAX_INITIAL_MTU
)))
1256 return VXGE_HW_BADCFG_VPATH_MTU
;
1258 if ((vp_config
->rpa_strip_vlan_tag
!=
1259 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
) &&
1260 (vp_config
->rpa_strip_vlan_tag
!=
1261 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE
) &&
1262 (vp_config
->rpa_strip_vlan_tag
!=
1263 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE
))
1264 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG
;
1270 * __vxge_hw_device_config_check - Check device configuration.
1271 * Check the device configuration
1273 static enum vxge_hw_status
1274 __vxge_hw_device_config_check(struct vxge_hw_device_config
*new_config
)
1277 enum vxge_hw_status status
;
1279 if ((new_config
->intr_mode
!= VXGE_HW_INTR_MODE_IRQLINE
) &&
1280 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_MSIX
) &&
1281 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_MSIX_ONE_SHOT
) &&
1282 (new_config
->intr_mode
!= VXGE_HW_INTR_MODE_DEF
))
1283 return VXGE_HW_BADCFG_INTR_MODE
;
1285 if ((new_config
->rts_mac_en
!= VXGE_HW_RTS_MAC_DISABLE
) &&
1286 (new_config
->rts_mac_en
!= VXGE_HW_RTS_MAC_ENABLE
))
1287 return VXGE_HW_BADCFG_RTS_MAC_EN
;
1289 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1290 status
= __vxge_hw_device_vpath_config_check(
1291 &new_config
->vp_config
[i
]);
1292 if (status
!= VXGE_HW_OK
)
1300 * vxge_hw_device_initialize - Initialize Titan device.
1301 * Initialize Titan device. Note that all the arguments of this public API
1302 * are 'IN', including @hldev. Driver cooperates with
1303 * OS to find new Titan device, locate its PCI and memory spaces.
1305 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1306 * to enable the latter to perform Titan hardware initialization.
1309 vxge_hw_device_initialize(
1310 struct __vxge_hw_device
**devh
,
1311 struct vxge_hw_device_attr
*attr
,
1312 struct vxge_hw_device_config
*device_config
)
1316 struct __vxge_hw_device
*hldev
= NULL
;
1317 enum vxge_hw_status status
= VXGE_HW_OK
;
1319 status
= __vxge_hw_device_config_check(device_config
);
1320 if (status
!= VXGE_HW_OK
)
1323 hldev
= vzalloc(sizeof(struct __vxge_hw_device
));
1324 if (hldev
== NULL
) {
1325 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1329 hldev
->magic
= VXGE_HW_DEVICE_MAGIC
;
1331 vxge_hw_device_debug_set(hldev
, VXGE_ERR
, VXGE_COMPONENT_ALL
);
1334 memcpy(&hldev
->config
, device_config
,
1335 sizeof(struct vxge_hw_device_config
));
1337 hldev
->bar0
= attr
->bar0
;
1338 hldev
->pdev
= attr
->pdev
;
1340 hldev
->uld_callbacks
= attr
->uld_callbacks
;
1342 __vxge_hw_device_pci_e_init(hldev
);
1344 status
= __vxge_hw_device_reg_addr_get(hldev
);
1345 if (status
!= VXGE_HW_OK
) {
1350 __vxge_hw_device_host_info_get(hldev
);
1352 /* Incrementing for stats blocks */
1355 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1356 if (!(hldev
->vpath_assignments
& vxge_mBIT(i
)))
1359 if (device_config
->vp_config
[i
].ring
.enable
==
1360 VXGE_HW_RING_ENABLE
)
1361 nblocks
+= device_config
->vp_config
[i
].ring
.ring_blocks
;
1363 if (device_config
->vp_config
[i
].fifo
.enable
==
1364 VXGE_HW_FIFO_ENABLE
)
1365 nblocks
+= device_config
->vp_config
[i
].fifo
.fifo_blocks
;
1369 if (__vxge_hw_blockpool_create(hldev
,
1371 device_config
->dma_blockpool_initial
+ nblocks
,
1372 device_config
->dma_blockpool_max
+ nblocks
) != VXGE_HW_OK
) {
1374 vxge_hw_device_terminate(hldev
);
1375 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
1379 status
= __vxge_hw_device_initialize(hldev
);
1380 if (status
!= VXGE_HW_OK
) {
1381 vxge_hw_device_terminate(hldev
);
1391 * vxge_hw_device_terminate - Terminate Titan device.
1392 * Terminate HW device.
1395 vxge_hw_device_terminate(struct __vxge_hw_device
*hldev
)
1397 vxge_assert(hldev
->magic
== VXGE_HW_DEVICE_MAGIC
);
1399 hldev
->magic
= VXGE_HW_DEVICE_DEAD
;
1400 __vxge_hw_blockpool_destroy(&hldev
->block_pool
);
1405 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1406 * and offset and perform an operation
1408 static enum vxge_hw_status
1409 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath
*vpath
,
1410 u32 operation
, u32 offset
, u64
*stat
)
1413 enum vxge_hw_status status
= VXGE_HW_OK
;
1414 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1416 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1417 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1418 goto vpath_stats_access_exit
;
1421 vp_reg
= vpath
->vp_reg
;
1423 val64
= VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation
) |
1424 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE
|
1425 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset
);
1427 status
= __vxge_hw_pio_mem_write64(val64
,
1428 &vp_reg
->xmac_stats_access_cmd
,
1429 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE
,
1430 vpath
->hldev
->config
.device_poll_millis
);
1431 if ((status
== VXGE_HW_OK
) && (operation
== VXGE_HW_STATS_OP_READ
))
1432 *stat
= readq(&vp_reg
->xmac_stats_access_data
);
1436 vpath_stats_access_exit
:
1441 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1443 static enum vxge_hw_status
1444 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1445 struct vxge_hw_xmac_vpath_tx_stats
*vpath_tx_stats
)
1449 u32 offset
= VXGE_HW_STATS_VPATH_TX_OFFSET
;
1450 enum vxge_hw_status status
= VXGE_HW_OK
;
1452 val64
= (u64
*)vpath_tx_stats
;
1454 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1455 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1459 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_vpath_tx_stats
) / 8; i
++) {
1460 status
= __vxge_hw_vpath_stats_access(vpath
,
1461 VXGE_HW_STATS_OP_READ
,
1463 if (status
!= VXGE_HW_OK
)
1473 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1475 static enum vxge_hw_status
1476 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1477 struct vxge_hw_xmac_vpath_rx_stats
*vpath_rx_stats
)
1480 enum vxge_hw_status status
= VXGE_HW_OK
;
1482 u32 offset
= VXGE_HW_STATS_VPATH_RX_OFFSET
;
1483 val64
= (u64
*) vpath_rx_stats
;
1485 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1486 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1489 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_vpath_rx_stats
) / 8; i
++) {
1490 status
= __vxge_hw_vpath_stats_access(vpath
,
1491 VXGE_HW_STATS_OP_READ
,
1492 offset
>> 3, val64
);
1493 if (status
!= VXGE_HW_OK
)
1504 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1506 static enum vxge_hw_status
1507 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath
*vpath
,
1508 struct vxge_hw_vpath_stats_hw_info
*hw_stats
)
1511 enum vxge_hw_status status
= VXGE_HW_OK
;
1512 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
1514 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
1515 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
1518 vp_reg
= vpath
->vp_reg
;
1520 val64
= readq(&vp_reg
->vpath_debug_stats0
);
1521 hw_stats
->ini_num_mwr_sent
=
1522 (u32
)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64
);
1524 val64
= readq(&vp_reg
->vpath_debug_stats1
);
1525 hw_stats
->ini_num_mrd_sent
=
1526 (u32
)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64
);
1528 val64
= readq(&vp_reg
->vpath_debug_stats2
);
1529 hw_stats
->ini_num_cpl_rcvd
=
1530 (u32
)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64
);
1532 val64
= readq(&vp_reg
->vpath_debug_stats3
);
1533 hw_stats
->ini_num_mwr_byte_sent
=
1534 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64
);
1536 val64
= readq(&vp_reg
->vpath_debug_stats4
);
1537 hw_stats
->ini_num_cpl_byte_rcvd
=
1538 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64
);
1540 val64
= readq(&vp_reg
->vpath_debug_stats5
);
1541 hw_stats
->wrcrdtarb_xoff
=
1542 (u32
)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64
);
1544 val64
= readq(&vp_reg
->vpath_debug_stats6
);
1545 hw_stats
->rdcrdtarb_xoff
=
1546 (u32
)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64
);
1548 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1549 hw_stats
->vpath_genstats_count0
=
1550 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1553 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1554 hw_stats
->vpath_genstats_count1
=
1555 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1558 val64
= readq(&vp_reg
->vpath_genstats_count23
);
1559 hw_stats
->vpath_genstats_count2
=
1560 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1563 val64
= readq(&vp_reg
->vpath_genstats_count01
);
1564 hw_stats
->vpath_genstats_count3
=
1565 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1568 val64
= readq(&vp_reg
->vpath_genstats_count4
);
1569 hw_stats
->vpath_genstats_count4
=
1570 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1573 val64
= readq(&vp_reg
->vpath_genstats_count5
);
1574 hw_stats
->vpath_genstats_count5
=
1575 (u32
)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1578 status
= __vxge_hw_vpath_xmac_tx_stats_get(vpath
, &hw_stats
->tx_stats
);
1579 if (status
!= VXGE_HW_OK
)
1582 status
= __vxge_hw_vpath_xmac_rx_stats_get(vpath
, &hw_stats
->rx_stats
);
1583 if (status
!= VXGE_HW_OK
)
1586 VXGE_HW_VPATH_STATS_PIO_READ(
1587 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET
);
1589 hw_stats
->prog_event_vnum0
=
1590 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64
);
1592 hw_stats
->prog_event_vnum1
=
1593 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64
);
1595 VXGE_HW_VPATH_STATS_PIO_READ(
1596 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET
);
1598 hw_stats
->prog_event_vnum2
=
1599 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64
);
1601 hw_stats
->prog_event_vnum3
=
1602 (u32
)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64
);
1604 val64
= readq(&vp_reg
->rx_multi_cast_stats
);
1605 hw_stats
->rx_multi_cast_frame_discard
=
1606 (u16
)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64
);
1608 val64
= readq(&vp_reg
->rx_frm_transferred
);
1609 hw_stats
->rx_frm_transferred
=
1610 (u32
)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64
);
1612 val64
= readq(&vp_reg
->rxd_returned
);
1613 hw_stats
->rxd_returned
=
1614 (u16
)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64
);
1616 val64
= readq(&vp_reg
->dbg_stats_rx_mpa
);
1617 hw_stats
->rx_mpa_len_fail_frms
=
1618 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64
);
1619 hw_stats
->rx_mpa_mrk_fail_frms
=
1620 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64
);
1621 hw_stats
->rx_mpa_crc_fail_frms
=
1622 (u16
)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64
);
1624 val64
= readq(&vp_reg
->dbg_stats_rx_fau
);
1625 hw_stats
->rx_permitted_frms
=
1626 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64
);
1627 hw_stats
->rx_vp_reset_discarded_frms
=
1628 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64
);
1629 hw_stats
->rx_wol_frms
=
1630 (u16
)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64
);
1632 val64
= readq(&vp_reg
->tx_vp_reset_discarded_frms
);
1633 hw_stats
->tx_vp_reset_discarded_frms
=
1634 (u16
)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1641 * vxge_hw_device_stats_get - Get the device hw statistics.
1642 * Returns the vpath h/w stats for the device.
1645 vxge_hw_device_stats_get(struct __vxge_hw_device
*hldev
,
1646 struct vxge_hw_device_stats_hw_info
*hw_stats
)
1649 enum vxge_hw_status status
= VXGE_HW_OK
;
1651 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1652 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)) ||
1653 (hldev
->virtual_paths
[i
].vp_open
==
1654 VXGE_HW_VP_NOT_OPEN
))
1657 memcpy(hldev
->virtual_paths
[i
].hw_stats_sav
,
1658 hldev
->virtual_paths
[i
].hw_stats
,
1659 sizeof(struct vxge_hw_vpath_stats_hw_info
));
1661 status
= __vxge_hw_vpath_stats_get(
1662 &hldev
->virtual_paths
[i
],
1663 hldev
->virtual_paths
[i
].hw_stats
);
1666 memcpy(hw_stats
, &hldev
->stats
.hw_dev_info_stats
,
1667 sizeof(struct vxge_hw_device_stats_hw_info
));
1673 * vxge_hw_driver_stats_get - Get the device sw statistics.
1674 * Returns the vpath s/w stats for the device.
1676 enum vxge_hw_status
vxge_hw_driver_stats_get(
1677 struct __vxge_hw_device
*hldev
,
1678 struct vxge_hw_device_stats_sw_info
*sw_stats
)
1680 memcpy(sw_stats
, &hldev
->stats
.sw_dev_info_stats
,
1681 sizeof(struct vxge_hw_device_stats_sw_info
));
1687 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1688 * and offset and perform an operation
1689 * Get the statistics from the given location and offset.
1692 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device
*hldev
,
1693 u32 operation
, u32 location
, u32 offset
, u64
*stat
)
1696 enum vxge_hw_status status
= VXGE_HW_OK
;
1698 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1700 if (status
!= VXGE_HW_OK
)
1703 val64
= VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation
) |
1704 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE
|
1705 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location
) |
1706 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset
);
1708 status
= __vxge_hw_pio_mem_write64(val64
,
1709 &hldev
->mrpcim_reg
->xmac_stats_sys_cmd
,
1710 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE
,
1711 hldev
->config
.device_poll_millis
);
1713 if ((status
== VXGE_HW_OK
) && (operation
== VXGE_HW_STATS_OP_READ
))
1714 *stat
= readq(&hldev
->mrpcim_reg
->xmac_stats_sys_data
);
1722 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1723 * Get the Statistics on aggregate port
1725 static enum vxge_hw_status
1726 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device
*hldev
, u32 port
,
1727 struct vxge_hw_xmac_aggr_stats
*aggr_stats
)
1731 u32 offset
= VXGE_HW_STATS_AGGRn_OFFSET
;
1732 enum vxge_hw_status status
= VXGE_HW_OK
;
1734 val64
= (u64
*)aggr_stats
;
1736 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1738 if (status
!= VXGE_HW_OK
)
1741 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_aggr_stats
) / 8; i
++) {
1742 status
= vxge_hw_mrpcim_stats_access(hldev
,
1743 VXGE_HW_STATS_OP_READ
,
1744 VXGE_HW_STATS_LOC_AGGR
,
1745 ((offset
+ (104 * port
)) >> 3), val64
);
1746 if (status
!= VXGE_HW_OK
)
1757 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1758 * Get the Statistics on port
1760 static enum vxge_hw_status
1761 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device
*hldev
, u32 port
,
1762 struct vxge_hw_xmac_port_stats
*port_stats
)
1765 enum vxge_hw_status status
= VXGE_HW_OK
;
1768 val64
= (u64
*) port_stats
;
1770 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1772 if (status
!= VXGE_HW_OK
)
1775 for (i
= 0; i
< sizeof(struct vxge_hw_xmac_port_stats
) / 8; i
++) {
1776 status
= vxge_hw_mrpcim_stats_access(hldev
,
1777 VXGE_HW_STATS_OP_READ
,
1778 VXGE_HW_STATS_LOC_AGGR
,
1779 ((offset
+ (608 * port
)) >> 3), val64
);
1780 if (status
!= VXGE_HW_OK
)
1792 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1793 * Get the XMAC Statistics
1796 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device
*hldev
,
1797 struct vxge_hw_xmac_stats
*xmac_stats
)
1799 enum vxge_hw_status status
= VXGE_HW_OK
;
1802 status
= vxge_hw_device_xmac_aggr_stats_get(hldev
,
1803 0, &xmac_stats
->aggr_stats
[0]);
1804 if (status
!= VXGE_HW_OK
)
1807 status
= vxge_hw_device_xmac_aggr_stats_get(hldev
,
1808 1, &xmac_stats
->aggr_stats
[1]);
1809 if (status
!= VXGE_HW_OK
)
1812 for (i
= 0; i
<= VXGE_HW_MAC_MAX_MAC_PORT_ID
; i
++) {
1814 status
= vxge_hw_device_xmac_port_stats_get(hldev
,
1815 i
, &xmac_stats
->port_stats
[i
]);
1816 if (status
!= VXGE_HW_OK
)
1820 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
1822 if (!(hldev
->vpaths_deployed
& vxge_mBIT(i
)))
1825 status
= __vxge_hw_vpath_xmac_tx_stats_get(
1826 &hldev
->virtual_paths
[i
],
1827 &xmac_stats
->vpath_tx_stats
[i
]);
1828 if (status
!= VXGE_HW_OK
)
1831 status
= __vxge_hw_vpath_xmac_rx_stats_get(
1832 &hldev
->virtual_paths
[i
],
1833 &xmac_stats
->vpath_rx_stats
[i
]);
1834 if (status
!= VXGE_HW_OK
)
1842 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1843 * This routine is used to dynamically change the debug output
1845 void vxge_hw_device_debug_set(struct __vxge_hw_device
*hldev
,
1846 enum vxge_debug_level level
, u32 mask
)
1851 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1852 defined(VXGE_DEBUG_ERR_MASK)
1853 hldev
->debug_module_mask
= mask
;
1854 hldev
->debug_level
= level
;
1857 #if defined(VXGE_DEBUG_ERR_MASK)
1858 hldev
->level_err
= level
& VXGE_ERR
;
1861 #if defined(VXGE_DEBUG_TRACE_MASK)
1862 hldev
->level_trace
= level
& VXGE_TRACE
;
1867 * vxge_hw_device_error_level_get - Get the error level
1868 * This routine returns the current error level set
1870 u32
vxge_hw_device_error_level_get(struct __vxge_hw_device
*hldev
)
1872 #if defined(VXGE_DEBUG_ERR_MASK)
1876 return hldev
->level_err
;
1883 * vxge_hw_device_trace_level_get - Get the trace level
1884 * This routine returns the current trace level set
1886 u32
vxge_hw_device_trace_level_get(struct __vxge_hw_device
*hldev
)
1888 #if defined(VXGE_DEBUG_TRACE_MASK)
1892 return hldev
->level_trace
;
1899 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1900 * Returns the Pause frame generation and reception capability of the NIC.
1902 enum vxge_hw_status
vxge_hw_device_getpause_data(struct __vxge_hw_device
*hldev
,
1903 u32 port
, u32
*tx
, u32
*rx
)
1906 enum vxge_hw_status status
= VXGE_HW_OK
;
1908 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
1909 status
= VXGE_HW_ERR_INVALID_DEVICE
;
1913 if (port
> VXGE_HW_MAC_MAX_MAC_PORT_ID
) {
1914 status
= VXGE_HW_ERR_INVALID_PORT
;
1918 if (!(hldev
->access_rights
& VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
1919 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
1923 val64
= readq(&hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1924 if (val64
& VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
)
1926 if (val64
& VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
)
1933 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1934 * It can be used to set or reset Pause frame generation or reception
1935 * support of the NIC.
1937 enum vxge_hw_status
vxge_hw_device_setpause_data(struct __vxge_hw_device
*hldev
,
1938 u32 port
, u32 tx
, u32 rx
)
1941 enum vxge_hw_status status
= VXGE_HW_OK
;
1943 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
1944 status
= VXGE_HW_ERR_INVALID_DEVICE
;
1948 if (port
> VXGE_HW_MAC_MAX_MAC_PORT_ID
) {
1949 status
= VXGE_HW_ERR_INVALID_PORT
;
1953 status
= __vxge_hw_device_is_privilaged(hldev
->host_type
,
1955 if (status
!= VXGE_HW_OK
)
1958 val64
= readq(&hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1960 val64
|= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
;
1962 val64
&= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN
;
1964 val64
|= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
;
1966 val64
&= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN
;
1968 writeq(val64
, &hldev
->mrpcim_reg
->rxmac_pause_cfg_port
[port
]);
1973 u16
vxge_hw_device_link_width_get(struct __vxge_hw_device
*hldev
)
1975 struct pci_dev
*dev
= hldev
->pdev
;
1978 pcie_capability_read_word(dev
, PCI_EXP_LNKSTA
, &lnk
);
1979 return (lnk
& VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH
) >> 4;
1983 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1984 * This function returns the index of memory block
1987 __vxge_hw_ring_block_memblock_idx(u8
*block
)
1989 return (u32
)*((u64
*)(block
+ VXGE_HW_RING_MEMBLOCK_IDX_OFFSET
));
1993 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1994 * This function sets index to a memory block
1997 __vxge_hw_ring_block_memblock_idx_set(u8
*block
, u32 memblock_idx
)
1999 *((u64
*)(block
+ VXGE_HW_RING_MEMBLOCK_IDX_OFFSET
)) = memblock_idx
;
2003 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2005 * Sets the next block pointer in RxD block
2008 __vxge_hw_ring_block_next_pointer_set(u8
*block
, dma_addr_t dma_next
)
2010 *((u64
*)(block
+ VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET
)) = dma_next
;
2014 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2016 * Returns the dma address of the first RxD block
2018 static u64
__vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring
*ring
)
2020 struct vxge_hw_mempool_dma
*dma_object
;
2022 dma_object
= ring
->mempool
->memblocks_dma_arr
;
2023 vxge_assert(dma_object
!= NULL
);
2025 return dma_object
->addr
;
2029 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2030 * This function returns the dma address of a given item
2032 static dma_addr_t
__vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool
*mempoolh
,
2037 struct vxge_hw_mempool_dma
*memblock_dma_object
;
2038 ptrdiff_t dma_item_offset
;
2040 /* get owner memblock index */
2041 memblock_idx
= __vxge_hw_ring_block_memblock_idx(item
);
2043 /* get owner memblock by memblock index */
2044 memblock
= mempoolh
->memblocks_arr
[memblock_idx
];
2046 /* get memblock DMA object by memblock index */
2047 memblock_dma_object
= mempoolh
->memblocks_dma_arr
+ memblock_idx
;
2049 /* calculate offset in the memblock of this item */
2050 dma_item_offset
= (u8
*)item
- (u8
*)memblock
;
2052 return memblock_dma_object
->addr
+ dma_item_offset
;
2056 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2057 * This function returns the dma address of a given item
2059 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool
*mempoolh
,
2060 struct __vxge_hw_ring
*ring
, u32 from
,
2063 u8
*to_item
, *from_item
;
2066 /* get "from" RxD block */
2067 from_item
= mempoolh
->items_arr
[from
];
2068 vxge_assert(from_item
);
2070 /* get "to" RxD block */
2071 to_item
= mempoolh
->items_arr
[to
];
2072 vxge_assert(to_item
);
2074 /* return address of the beginning of previous RxD block */
2075 to_dma
= __vxge_hw_ring_item_dma_addr(mempoolh
, to_item
);
2077 /* set next pointer for this RxD block to point on
2078 * previous item's DMA start address */
2079 __vxge_hw_ring_block_next_pointer_set(from_item
, to_dma
);
2083 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2085 * This function is callback passed to __vxge_hw_mempool_create to create memory
2086 * pool for RxD block
2089 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool
*mempoolh
,
2091 struct vxge_hw_mempool_dma
*dma_object
,
2092 u32 index
, u32 is_last
)
2095 void *item
= mempoolh
->items_arr
[index
];
2096 struct __vxge_hw_ring
*ring
=
2097 (struct __vxge_hw_ring
*)mempoolh
->userdata
;
2099 /* format rxds array */
2100 for (i
= 0; i
< ring
->rxds_per_block
; i
++) {
2101 void *rxdblock_priv
;
2103 struct vxge_hw_ring_rxd_1
*rxdp
;
2105 u32 reserve_index
= ring
->channel
.reserve_ptr
-
2106 (index
* ring
->rxds_per_block
+ i
+ 1);
2107 u32 memblock_item_idx
;
2109 ring
->channel
.reserve_arr
[reserve_index
] = ((u8
*)item
) +
2112 /* Note: memblock_item_idx is index of the item within
2113 * the memblock. For instance, in case of three RxD-blocks
2114 * per memblock this value can be 0, 1 or 2. */
2115 rxdblock_priv
= __vxge_hw_mempool_item_priv(mempoolh
,
2116 memblock_index
, item
,
2117 &memblock_item_idx
);
2119 rxdp
= ring
->channel
.reserve_arr
[reserve_index
];
2121 uld_priv
= ((u8
*)rxdblock_priv
+ ring
->rxd_priv_size
* i
);
2123 /* pre-format Host_Control */
2124 rxdp
->host_control
= (u64
)(size_t)uld_priv
;
2127 __vxge_hw_ring_block_memblock_idx_set(item
, memblock_index
);
2130 /* link last one with first one */
2131 __vxge_hw_ring_rxdblock_link(mempoolh
, ring
, index
, 0);
2135 /* link this RxD block with previous one */
2136 __vxge_hw_ring_rxdblock_link(mempoolh
, ring
, index
- 1, index
);
2141 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2142 * This function replenishes the RxDs from reserve array to work array
2144 static enum vxge_hw_status
2145 vxge_hw_ring_replenish(struct __vxge_hw_ring
*ring
)
2148 struct __vxge_hw_channel
*channel
;
2149 enum vxge_hw_status status
= VXGE_HW_OK
;
2151 channel
= &ring
->channel
;
2153 while (vxge_hw_channel_dtr_count(channel
) > 0) {
2155 status
= vxge_hw_ring_rxd_reserve(ring
, &rxd
);
2157 vxge_assert(status
== VXGE_HW_OK
);
2159 if (ring
->rxd_init
) {
2160 status
= ring
->rxd_init(rxd
, channel
->userdata
);
2161 if (status
!= VXGE_HW_OK
) {
2162 vxge_hw_ring_rxd_free(ring
, rxd
);
2167 vxge_hw_ring_rxd_post(ring
, rxd
);
2169 status
= VXGE_HW_OK
;
2175 * __vxge_hw_channel_allocate - Allocate memory for channel
2176 * This function allocates required memory for the channel and various arrays
2179 static struct __vxge_hw_channel
*
2180 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle
*vph
,
2181 enum __vxge_hw_channel_type type
,
2182 u32 length
, u32 per_dtr_space
,
2185 struct __vxge_hw_channel
*channel
;
2186 struct __vxge_hw_device
*hldev
;
2190 hldev
= vph
->vpath
->hldev
;
2191 vp_id
= vph
->vpath
->vp_id
;
2194 case VXGE_HW_CHANNEL_TYPE_FIFO
:
2195 size
= sizeof(struct __vxge_hw_fifo
);
2197 case VXGE_HW_CHANNEL_TYPE_RING
:
2198 size
= sizeof(struct __vxge_hw_ring
);
2204 channel
= kzalloc(size
, GFP_KERNEL
);
2205 if (channel
== NULL
)
2207 INIT_LIST_HEAD(&channel
->item
);
2209 channel
->common_reg
= hldev
->common_reg
;
2210 channel
->first_vp_id
= hldev
->first_vp_id
;
2211 channel
->type
= type
;
2212 channel
->devh
= hldev
;
2214 channel
->userdata
= userdata
;
2215 channel
->per_dtr_space
= per_dtr_space
;
2216 channel
->length
= length
;
2217 channel
->vp_id
= vp_id
;
2219 channel
->work_arr
= kcalloc(length
, sizeof(void *), GFP_KERNEL
);
2220 if (channel
->work_arr
== NULL
)
2223 channel
->free_arr
= kcalloc(length
, sizeof(void *), GFP_KERNEL
);
2224 if (channel
->free_arr
== NULL
)
2226 channel
->free_ptr
= length
;
2228 channel
->reserve_arr
= kcalloc(length
, sizeof(void *), GFP_KERNEL
);
2229 if (channel
->reserve_arr
== NULL
)
2231 channel
->reserve_ptr
= length
;
2232 channel
->reserve_top
= 0;
2234 channel
->orig_arr
= kcalloc(length
, sizeof(void *), GFP_KERNEL
);
2235 if (channel
->orig_arr
== NULL
)
2240 __vxge_hw_channel_free(channel
);
2247 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2248 * Adds a block to block pool
2250 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device
*devh
,
2253 struct pci_dev
*dma_h
,
2254 struct pci_dev
*acc_handle
)
2256 struct __vxge_hw_blockpool
*blockpool
;
2257 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2258 dma_addr_t dma_addr
;
2260 blockpool
= &devh
->block_pool
;
2262 if (block_addr
== NULL
) {
2263 blockpool
->req_out
--;
2267 dma_addr
= pci_map_single(devh
->pdev
, block_addr
, length
,
2268 PCI_DMA_BIDIRECTIONAL
);
2270 if (unlikely(pci_dma_mapping_error(devh
->pdev
, dma_addr
))) {
2271 vxge_os_dma_free(devh
->pdev
, block_addr
, &acc_handle
);
2272 blockpool
->req_out
--;
2276 if (!list_empty(&blockpool
->free_entry_list
))
2277 entry
= (struct __vxge_hw_blockpool_entry
*)
2278 list_first_entry(&blockpool
->free_entry_list
,
2279 struct __vxge_hw_blockpool_entry
,
2283 entry
= vmalloc(sizeof(struct __vxge_hw_blockpool_entry
));
2285 list_del(&entry
->item
);
2288 entry
->length
= length
;
2289 entry
->memblock
= block_addr
;
2290 entry
->dma_addr
= dma_addr
;
2291 entry
->acc_handle
= acc_handle
;
2292 entry
->dma_handle
= dma_h
;
2293 list_add(&entry
->item
, &blockpool
->free_block_list
);
2294 blockpool
->pool_size
++;
2297 blockpool
->req_out
--;
2304 vxge_os_dma_malloc_async(struct pci_dev
*pdev
, void *devh
, unsigned long size
)
2310 flags
= GFP_ATOMIC
| GFP_DMA
;
2312 flags
= GFP_KERNEL
| GFP_DMA
;
2314 vaddr
= kmalloc((size
), flags
);
2316 vxge_hw_blockpool_block_add(devh
, vaddr
, size
, pdev
, pdev
);
2320 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2323 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool
*blockpool
)
2327 if ((blockpool
->pool_size
+ blockpool
->req_out
) <
2328 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE
) {
2329 nreq
= VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE
;
2330 blockpool
->req_out
+= nreq
;
2333 for (i
= 0; i
< nreq
; i
++)
2334 vxge_os_dma_malloc_async(
2335 (blockpool
->hldev
)->pdev
,
2336 blockpool
->hldev
, VXGE_HW_BLOCK_SIZE
);
2340 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2341 * Allocates a block of memory of given size, either from block pool
2342 * or by calling vxge_os_dma_malloc()
2344 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device
*devh
, u32 size
,
2345 struct vxge_hw_mempool_dma
*dma_object
)
2347 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2348 struct __vxge_hw_blockpool
*blockpool
;
2349 void *memblock
= NULL
;
2351 blockpool
= &devh
->block_pool
;
2353 if (size
!= blockpool
->block_size
) {
2355 memblock
= vxge_os_dma_malloc(devh
->pdev
, size
,
2356 &dma_object
->handle
,
2357 &dma_object
->acc_handle
);
2362 dma_object
->addr
= pci_map_single(devh
->pdev
, memblock
, size
,
2363 PCI_DMA_BIDIRECTIONAL
);
2365 if (unlikely(pci_dma_mapping_error(devh
->pdev
,
2366 dma_object
->addr
))) {
2367 vxge_os_dma_free(devh
->pdev
, memblock
,
2368 &dma_object
->acc_handle
);
2375 if (!list_empty(&blockpool
->free_block_list
))
2376 entry
= (struct __vxge_hw_blockpool_entry
*)
2377 list_first_entry(&blockpool
->free_block_list
,
2378 struct __vxge_hw_blockpool_entry
,
2381 if (entry
!= NULL
) {
2382 list_del(&entry
->item
);
2383 dma_object
->addr
= entry
->dma_addr
;
2384 dma_object
->handle
= entry
->dma_handle
;
2385 dma_object
->acc_handle
= entry
->acc_handle
;
2386 memblock
= entry
->memblock
;
2388 list_add(&entry
->item
,
2389 &blockpool
->free_entry_list
);
2390 blockpool
->pool_size
--;
2393 if (memblock
!= NULL
)
2394 __vxge_hw_blockpool_blocks_add(blockpool
);
2401 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2404 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool
*blockpool
)
2406 struct list_head
*p
, *n
;
2408 list_for_each_safe(p
, n
, &blockpool
->free_block_list
) {
2410 if (blockpool
->pool_size
< blockpool
->pool_max
)
2414 (blockpool
->hldev
)->pdev
,
2415 ((struct __vxge_hw_blockpool_entry
*)p
)->dma_addr
,
2416 ((struct __vxge_hw_blockpool_entry
*)p
)->length
,
2417 PCI_DMA_BIDIRECTIONAL
);
2420 (blockpool
->hldev
)->pdev
,
2421 ((struct __vxge_hw_blockpool_entry
*)p
)->memblock
,
2422 &((struct __vxge_hw_blockpool_entry
*)p
)->acc_handle
);
2424 list_del(&((struct __vxge_hw_blockpool_entry
*)p
)->item
);
2426 list_add(p
, &blockpool
->free_entry_list
);
2428 blockpool
->pool_size
--;
2434 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2435 * __vxge_hw_blockpool_malloc
2437 static void __vxge_hw_blockpool_free(struct __vxge_hw_device
*devh
,
2438 void *memblock
, u32 size
,
2439 struct vxge_hw_mempool_dma
*dma_object
)
2441 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
2442 struct __vxge_hw_blockpool
*blockpool
;
2443 enum vxge_hw_status status
= VXGE_HW_OK
;
2445 blockpool
= &devh
->block_pool
;
2447 if (size
!= blockpool
->block_size
) {
2448 pci_unmap_single(devh
->pdev
, dma_object
->addr
, size
,
2449 PCI_DMA_BIDIRECTIONAL
);
2450 vxge_os_dma_free(devh
->pdev
, memblock
, &dma_object
->acc_handle
);
2453 if (!list_empty(&blockpool
->free_entry_list
))
2454 entry
= (struct __vxge_hw_blockpool_entry
*)
2455 list_first_entry(&blockpool
->free_entry_list
,
2456 struct __vxge_hw_blockpool_entry
,
2460 entry
= vmalloc(sizeof(
2461 struct __vxge_hw_blockpool_entry
));
2463 list_del(&entry
->item
);
2465 if (entry
!= NULL
) {
2466 entry
->length
= size
;
2467 entry
->memblock
= memblock
;
2468 entry
->dma_addr
= dma_object
->addr
;
2469 entry
->acc_handle
= dma_object
->acc_handle
;
2470 entry
->dma_handle
= dma_object
->handle
;
2471 list_add(&entry
->item
,
2472 &blockpool
->free_block_list
);
2473 blockpool
->pool_size
++;
2474 status
= VXGE_HW_OK
;
2476 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2478 if (status
== VXGE_HW_OK
)
2479 __vxge_hw_blockpool_blocks_remove(blockpool
);
2484 * vxge_hw_mempool_destroy
2486 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool
*mempool
)
2489 struct __vxge_hw_device
*devh
= mempool
->devh
;
2491 for (i
= 0; i
< mempool
->memblocks_allocated
; i
++) {
2492 struct vxge_hw_mempool_dma
*dma_object
;
2494 vxge_assert(mempool
->memblocks_arr
[i
]);
2495 vxge_assert(mempool
->memblocks_dma_arr
+ i
);
2497 dma_object
= mempool
->memblocks_dma_arr
+ i
;
2499 for (j
= 0; j
< mempool
->items_per_memblock
; j
++) {
2500 u32 index
= i
* mempool
->items_per_memblock
+ j
;
2502 /* to skip last partially filled(if any) memblock */
2503 if (index
>= mempool
->items_current
)
2507 vfree(mempool
->memblocks_priv_arr
[i
]);
2509 __vxge_hw_blockpool_free(devh
, mempool
->memblocks_arr
[i
],
2510 mempool
->memblock_size
, dma_object
);
2513 vfree(mempool
->items_arr
);
2514 vfree(mempool
->memblocks_dma_arr
);
2515 vfree(mempool
->memblocks_priv_arr
);
2516 vfree(mempool
->memblocks_arr
);
2521 * __vxge_hw_mempool_grow
2522 * Will resize mempool up to %num_allocate value.
2524 static enum vxge_hw_status
2525 __vxge_hw_mempool_grow(struct vxge_hw_mempool
*mempool
, u32 num_allocate
,
2528 u32 i
, first_time
= mempool
->memblocks_allocated
== 0 ? 1 : 0;
2529 u32 n_items
= mempool
->items_per_memblock
;
2530 u32 start_block_idx
= mempool
->memblocks_allocated
;
2531 u32 end_block_idx
= mempool
->memblocks_allocated
+ num_allocate
;
2532 enum vxge_hw_status status
= VXGE_HW_OK
;
2536 if (end_block_idx
> mempool
->memblocks_max
) {
2537 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2541 for (i
= start_block_idx
; i
< end_block_idx
; i
++) {
2543 u32 is_last
= ((end_block_idx
- 1) == i
);
2544 struct vxge_hw_mempool_dma
*dma_object
=
2545 mempool
->memblocks_dma_arr
+ i
;
2548 /* allocate memblock's private part. Each DMA memblock
2549 * has a space allocated for item's private usage upon
2550 * mempool's user request. Each time mempool grows, it will
2551 * allocate new memblock and its private part at once.
2552 * This helps to minimize memory usage a lot. */
2553 mempool
->memblocks_priv_arr
[i
] =
2554 vzalloc(array_size(mempool
->items_priv_size
, n_items
));
2555 if (mempool
->memblocks_priv_arr
[i
] == NULL
) {
2556 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2560 /* allocate DMA-capable memblock */
2561 mempool
->memblocks_arr
[i
] =
2562 __vxge_hw_blockpool_malloc(mempool
->devh
,
2563 mempool
->memblock_size
, dma_object
);
2564 if (mempool
->memblocks_arr
[i
] == NULL
) {
2565 vfree(mempool
->memblocks_priv_arr
[i
]);
2566 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2571 mempool
->memblocks_allocated
++;
2573 memset(mempool
->memblocks_arr
[i
], 0, mempool
->memblock_size
);
2575 the_memblock
= mempool
->memblocks_arr
[i
];
2577 /* fill the items hash array */
2578 for (j
= 0; j
< n_items
; j
++) {
2579 u32 index
= i
* n_items
+ j
;
2581 if (first_time
&& index
>= mempool
->items_initial
)
2584 mempool
->items_arr
[index
] =
2585 ((char *)the_memblock
+ j
*mempool
->item_size
);
2587 /* let caller to do more job on each item */
2588 if (mempool
->item_func_alloc
!= NULL
)
2589 mempool
->item_func_alloc(mempool
, i
,
2590 dma_object
, index
, is_last
);
2592 mempool
->items_current
= index
+ 1;
2595 if (first_time
&& mempool
->items_current
==
2596 mempool
->items_initial
)
2604 * vxge_hw_mempool_create
2605 * This function will create memory pool object. Pool may grow but will
2606 * never shrink. Pool consists of number of dynamically allocated blocks
2607 * with size enough to hold %items_initial number of items. Memory is
2608 * DMA-able but client must map/unmap before interoperating with the device.
2610 static struct vxge_hw_mempool
*
2611 __vxge_hw_mempool_create(struct __vxge_hw_device
*devh
,
2614 u32 items_priv_size
,
2617 const struct vxge_hw_mempool_cbs
*mp_callback
,
2620 enum vxge_hw_status status
= VXGE_HW_OK
;
2621 u32 memblocks_to_allocate
;
2622 struct vxge_hw_mempool
*mempool
= NULL
;
2625 if (memblock_size
< item_size
) {
2626 status
= VXGE_HW_FAIL
;
2630 mempool
= vzalloc(sizeof(struct vxge_hw_mempool
));
2631 if (mempool
== NULL
) {
2632 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2636 mempool
->devh
= devh
;
2637 mempool
->memblock_size
= memblock_size
;
2638 mempool
->items_max
= items_max
;
2639 mempool
->items_initial
= items_initial
;
2640 mempool
->item_size
= item_size
;
2641 mempool
->items_priv_size
= items_priv_size
;
2642 mempool
->item_func_alloc
= mp_callback
->item_func_alloc
;
2643 mempool
->userdata
= userdata
;
2645 mempool
->memblocks_allocated
= 0;
2647 mempool
->items_per_memblock
= memblock_size
/ item_size
;
2649 mempool
->memblocks_max
= (items_max
+ mempool
->items_per_memblock
- 1) /
2650 mempool
->items_per_memblock
;
2652 /* allocate array of memblocks */
2653 mempool
->memblocks_arr
=
2654 vzalloc(array_size(sizeof(void *), mempool
->memblocks_max
));
2655 if (mempool
->memblocks_arr
== NULL
) {
2656 __vxge_hw_mempool_destroy(mempool
);
2657 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2662 /* allocate array of private parts of items per memblocks */
2663 mempool
->memblocks_priv_arr
=
2664 vzalloc(array_size(sizeof(void *), mempool
->memblocks_max
));
2665 if (mempool
->memblocks_priv_arr
== NULL
) {
2666 __vxge_hw_mempool_destroy(mempool
);
2667 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2672 /* allocate array of memblocks DMA objects */
2673 mempool
->memblocks_dma_arr
=
2674 vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma
),
2675 mempool
->memblocks_max
));
2676 if (mempool
->memblocks_dma_arr
== NULL
) {
2677 __vxge_hw_mempool_destroy(mempool
);
2678 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2683 /* allocate hash array of items */
2684 mempool
->items_arr
= vzalloc(array_size(sizeof(void *),
2685 mempool
->items_max
));
2686 if (mempool
->items_arr
== NULL
) {
2687 __vxge_hw_mempool_destroy(mempool
);
2688 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2693 /* calculate initial number of memblocks */
2694 memblocks_to_allocate
= (mempool
->items_initial
+
2695 mempool
->items_per_memblock
- 1) /
2696 mempool
->items_per_memblock
;
2698 /* pre-allocate the mempool */
2699 status
= __vxge_hw_mempool_grow(mempool
, memblocks_to_allocate
,
2701 if (status
!= VXGE_HW_OK
) {
2702 __vxge_hw_mempool_destroy(mempool
);
2703 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2713 * __vxge_hw_ring_abort - Returns the RxD
2714 * This function terminates the RxDs of ring
2716 static enum vxge_hw_status
__vxge_hw_ring_abort(struct __vxge_hw_ring
*ring
)
2719 struct __vxge_hw_channel
*channel
;
2721 channel
= &ring
->channel
;
2724 vxge_hw_channel_dtr_try_complete(channel
, &rxdh
);
2729 vxge_hw_channel_dtr_complete(channel
);
2732 ring
->rxd_term(rxdh
, VXGE_HW_RXD_STATE_POSTED
,
2735 vxge_hw_channel_dtr_free(channel
, rxdh
);
2742 * __vxge_hw_ring_reset - Resets the ring
2743 * This function resets the ring during vpath reset operation
2745 static enum vxge_hw_status
__vxge_hw_ring_reset(struct __vxge_hw_ring
*ring
)
2747 enum vxge_hw_status status
= VXGE_HW_OK
;
2748 struct __vxge_hw_channel
*channel
;
2750 channel
= &ring
->channel
;
2752 __vxge_hw_ring_abort(ring
);
2754 status
= __vxge_hw_channel_reset(channel
);
2756 if (status
!= VXGE_HW_OK
)
2759 if (ring
->rxd_init
) {
2760 status
= vxge_hw_ring_replenish(ring
);
2761 if (status
!= VXGE_HW_OK
)
2769 * __vxge_hw_ring_delete - Removes the ring
2770 * This function freeup the memory pool and removes the ring
2772 static enum vxge_hw_status
2773 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle
*vp
)
2775 struct __vxge_hw_ring
*ring
= vp
->vpath
->ringh
;
2777 __vxge_hw_ring_abort(ring
);
2780 __vxge_hw_mempool_destroy(ring
->mempool
);
2782 vp
->vpath
->ringh
= NULL
;
2783 __vxge_hw_channel_free(&ring
->channel
);
2789 * __vxge_hw_ring_create - Create a Ring
2790 * This function creates Ring and initializes it.
2792 static enum vxge_hw_status
2793 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle
*vp
,
2794 struct vxge_hw_ring_attr
*attr
)
2796 enum vxge_hw_status status
= VXGE_HW_OK
;
2797 struct __vxge_hw_ring
*ring
;
2799 struct vxge_hw_ring_config
*config
;
2800 struct __vxge_hw_device
*hldev
;
2802 static const struct vxge_hw_mempool_cbs ring_mp_callback
= {
2803 .item_func_alloc
= __vxge_hw_ring_mempool_item_alloc
,
2806 if ((vp
== NULL
) || (attr
== NULL
)) {
2807 status
= VXGE_HW_FAIL
;
2811 hldev
= vp
->vpath
->hldev
;
2812 vp_id
= vp
->vpath
->vp_id
;
2814 config
= &hldev
->config
.vp_config
[vp_id
].ring
;
2816 ring_length
= config
->ring_blocks
*
2817 vxge_hw_ring_rxds_per_block_get(config
->buffer_mode
);
2819 ring
= (struct __vxge_hw_ring
*)__vxge_hw_channel_allocate(vp
,
2820 VXGE_HW_CHANNEL_TYPE_RING
,
2822 attr
->per_rxd_space
,
2825 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
2829 vp
->vpath
->ringh
= ring
;
2830 ring
->vp_id
= vp_id
;
2831 ring
->vp_reg
= vp
->vpath
->vp_reg
;
2832 ring
->common_reg
= hldev
->common_reg
;
2833 ring
->stats
= &vp
->vpath
->sw_stats
->ring_stats
;
2834 ring
->config
= config
;
2835 ring
->callback
= attr
->callback
;
2836 ring
->rxd_init
= attr
->rxd_init
;
2837 ring
->rxd_term
= attr
->rxd_term
;
2838 ring
->buffer_mode
= config
->buffer_mode
;
2839 ring
->tim_rti_cfg1_saved
= vp
->vpath
->tim_rti_cfg1_saved
;
2840 ring
->tim_rti_cfg3_saved
= vp
->vpath
->tim_rti_cfg3_saved
;
2841 ring
->rxds_limit
= config
->rxds_limit
;
2843 ring
->rxd_size
= vxge_hw_ring_rxd_size_get(config
->buffer_mode
);
2844 ring
->rxd_priv_size
=
2845 sizeof(struct __vxge_hw_ring_rxd_priv
) + attr
->per_rxd_space
;
2846 ring
->per_rxd_space
= attr
->per_rxd_space
;
2848 ring
->rxd_priv_size
=
2849 ((ring
->rxd_priv_size
+ VXGE_CACHE_LINE_SIZE
- 1) /
2850 VXGE_CACHE_LINE_SIZE
) * VXGE_CACHE_LINE_SIZE
;
2852 /* how many RxDs can fit into one block. Depends on configured
2854 ring
->rxds_per_block
=
2855 vxge_hw_ring_rxds_per_block_get(config
->buffer_mode
);
2857 /* calculate actual RxD block private size */
2858 ring
->rxdblock_priv_size
= ring
->rxd_priv_size
* ring
->rxds_per_block
;
2859 ring
->mempool
= __vxge_hw_mempool_create(hldev
,
2862 ring
->rxdblock_priv_size
,
2863 ring
->config
->ring_blocks
,
2864 ring
->config
->ring_blocks
,
2867 if (ring
->mempool
== NULL
) {
2868 __vxge_hw_ring_delete(vp
);
2869 return VXGE_HW_ERR_OUT_OF_MEMORY
;
2872 status
= __vxge_hw_channel_initialize(&ring
->channel
);
2873 if (status
!= VXGE_HW_OK
) {
2874 __vxge_hw_ring_delete(vp
);
2879 * Specifying rxd_init callback means two things:
2880 * 1) rxds need to be initialized by driver at channel-open time;
2881 * 2) rxds need to be posted at channel-open time
2882 * (that's what the initial_replenish() below does)
2883 * Currently we don't have a case when the 1) is done without the 2).
2885 if (ring
->rxd_init
) {
2886 status
= vxge_hw_ring_replenish(ring
);
2887 if (status
!= VXGE_HW_OK
) {
2888 __vxge_hw_ring_delete(vp
);
2893 /* initial replenish will increment the counter in its post() routine,
2894 * we have to reset it */
2895 ring
->stats
->common_stats
.usage_cnt
= 0;
2901 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2902 * Initialize Titan device config with default values.
2905 vxge_hw_device_config_default_get(struct vxge_hw_device_config
*device_config
)
2909 device_config
->dma_blockpool_initial
=
2910 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE
;
2911 device_config
->dma_blockpool_max
= VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE
;
2912 device_config
->intr_mode
= VXGE_HW_INTR_MODE_DEF
;
2913 device_config
->rth_en
= VXGE_HW_RTH_DEFAULT
;
2914 device_config
->rth_it_type
= VXGE_HW_RTH_IT_TYPE_DEFAULT
;
2915 device_config
->device_poll_millis
= VXGE_HW_DEF_DEVICE_POLL_MILLIS
;
2916 device_config
->rts_mac_en
= VXGE_HW_RTS_MAC_DEFAULT
;
2918 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
2919 device_config
->vp_config
[i
].vp_id
= i
;
2921 device_config
->vp_config
[i
].min_bandwidth
=
2922 VXGE_HW_VPATH_BANDWIDTH_DEFAULT
;
2924 device_config
->vp_config
[i
].ring
.enable
= VXGE_HW_RING_DEFAULT
;
2926 device_config
->vp_config
[i
].ring
.ring_blocks
=
2927 VXGE_HW_DEF_RING_BLOCKS
;
2929 device_config
->vp_config
[i
].ring
.buffer_mode
=
2930 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT
;
2932 device_config
->vp_config
[i
].ring
.scatter_mode
=
2933 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT
;
2935 device_config
->vp_config
[i
].ring
.rxds_limit
=
2936 VXGE_HW_DEF_RING_RXDS_LIMIT
;
2938 device_config
->vp_config
[i
].fifo
.enable
= VXGE_HW_FIFO_ENABLE
;
2940 device_config
->vp_config
[i
].fifo
.fifo_blocks
=
2941 VXGE_HW_MIN_FIFO_BLOCKS
;
2943 device_config
->vp_config
[i
].fifo
.max_frags
=
2944 VXGE_HW_MAX_FIFO_FRAGS
;
2946 device_config
->vp_config
[i
].fifo
.memblock_size
=
2947 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE
;
2949 device_config
->vp_config
[i
].fifo
.alignment_size
=
2950 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE
;
2952 device_config
->vp_config
[i
].fifo
.intr
=
2953 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT
;
2955 device_config
->vp_config
[i
].fifo
.no_snoop_bits
=
2956 VXGE_HW_FIFO_NO_SNOOP_DEFAULT
;
2957 device_config
->vp_config
[i
].tti
.intr_enable
=
2958 VXGE_HW_TIM_INTR_DEFAULT
;
2960 device_config
->vp_config
[i
].tti
.btimer_val
=
2961 VXGE_HW_USE_FLASH_DEFAULT
;
2963 device_config
->vp_config
[i
].tti
.timer_ac_en
=
2964 VXGE_HW_USE_FLASH_DEFAULT
;
2966 device_config
->vp_config
[i
].tti
.timer_ci_en
=
2967 VXGE_HW_USE_FLASH_DEFAULT
;
2969 device_config
->vp_config
[i
].tti
.timer_ri_en
=
2970 VXGE_HW_USE_FLASH_DEFAULT
;
2972 device_config
->vp_config
[i
].tti
.rtimer_val
=
2973 VXGE_HW_USE_FLASH_DEFAULT
;
2975 device_config
->vp_config
[i
].tti
.util_sel
=
2976 VXGE_HW_USE_FLASH_DEFAULT
;
2978 device_config
->vp_config
[i
].tti
.ltimer_val
=
2979 VXGE_HW_USE_FLASH_DEFAULT
;
2981 device_config
->vp_config
[i
].tti
.urange_a
=
2982 VXGE_HW_USE_FLASH_DEFAULT
;
2984 device_config
->vp_config
[i
].tti
.uec_a
=
2985 VXGE_HW_USE_FLASH_DEFAULT
;
2987 device_config
->vp_config
[i
].tti
.urange_b
=
2988 VXGE_HW_USE_FLASH_DEFAULT
;
2990 device_config
->vp_config
[i
].tti
.uec_b
=
2991 VXGE_HW_USE_FLASH_DEFAULT
;
2993 device_config
->vp_config
[i
].tti
.urange_c
=
2994 VXGE_HW_USE_FLASH_DEFAULT
;
2996 device_config
->vp_config
[i
].tti
.uec_c
=
2997 VXGE_HW_USE_FLASH_DEFAULT
;
2999 device_config
->vp_config
[i
].tti
.uec_d
=
3000 VXGE_HW_USE_FLASH_DEFAULT
;
3002 device_config
->vp_config
[i
].rti
.intr_enable
=
3003 VXGE_HW_TIM_INTR_DEFAULT
;
3005 device_config
->vp_config
[i
].rti
.btimer_val
=
3006 VXGE_HW_USE_FLASH_DEFAULT
;
3008 device_config
->vp_config
[i
].rti
.timer_ac_en
=
3009 VXGE_HW_USE_FLASH_DEFAULT
;
3011 device_config
->vp_config
[i
].rti
.timer_ci_en
=
3012 VXGE_HW_USE_FLASH_DEFAULT
;
3014 device_config
->vp_config
[i
].rti
.timer_ri_en
=
3015 VXGE_HW_USE_FLASH_DEFAULT
;
3017 device_config
->vp_config
[i
].rti
.rtimer_val
=
3018 VXGE_HW_USE_FLASH_DEFAULT
;
3020 device_config
->vp_config
[i
].rti
.util_sel
=
3021 VXGE_HW_USE_FLASH_DEFAULT
;
3023 device_config
->vp_config
[i
].rti
.ltimer_val
=
3024 VXGE_HW_USE_FLASH_DEFAULT
;
3026 device_config
->vp_config
[i
].rti
.urange_a
=
3027 VXGE_HW_USE_FLASH_DEFAULT
;
3029 device_config
->vp_config
[i
].rti
.uec_a
=
3030 VXGE_HW_USE_FLASH_DEFAULT
;
3032 device_config
->vp_config
[i
].rti
.urange_b
=
3033 VXGE_HW_USE_FLASH_DEFAULT
;
3035 device_config
->vp_config
[i
].rti
.uec_b
=
3036 VXGE_HW_USE_FLASH_DEFAULT
;
3038 device_config
->vp_config
[i
].rti
.urange_c
=
3039 VXGE_HW_USE_FLASH_DEFAULT
;
3041 device_config
->vp_config
[i
].rti
.uec_c
=
3042 VXGE_HW_USE_FLASH_DEFAULT
;
3044 device_config
->vp_config
[i
].rti
.uec_d
=
3045 VXGE_HW_USE_FLASH_DEFAULT
;
3047 device_config
->vp_config
[i
].mtu
=
3048 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
;
3050 device_config
->vp_config
[i
].rpa_strip_vlan_tag
=
3051 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
;
3058 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3059 * Set the swapper bits appropriately for the vpath.
3061 static enum vxge_hw_status
3062 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem
*vpath_reg
)
3064 #ifndef __BIG_ENDIAN
3067 val64
= readq(&vpath_reg
->vpath_general_cfg1
);
3069 val64
|= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN
;
3070 writeq(val64
, &vpath_reg
->vpath_general_cfg1
);
3077 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3078 * Set the swapper bits appropriately for the vpath.
3080 static enum vxge_hw_status
3081 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem
*legacy_reg
,
3082 struct vxge_hw_vpath_reg __iomem
*vpath_reg
)
3086 val64
= readq(&legacy_reg
->pifm_wr_swap_en
);
3088 if (val64
== VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE
) {
3089 val64
= readq(&vpath_reg
->kdfcctl_cfg0
);
3092 val64
|= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0
|
3093 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1
|
3094 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2
;
3096 writeq(val64
, &vpath_reg
->kdfcctl_cfg0
);
3104 * vxge_hw_mgmt_reg_read - Read Titan register.
3107 vxge_hw_mgmt_reg_read(struct __vxge_hw_device
*hldev
,
3108 enum vxge_hw_mgmt_reg_type type
,
3109 u32 index
, u32 offset
, u64
*value
)
3111 enum vxge_hw_status status
= VXGE_HW_OK
;
3113 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
3114 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3119 case vxge_hw_mgmt_reg_type_legacy
:
3120 if (offset
> sizeof(struct vxge_hw_legacy_reg
) - 8) {
3121 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3124 *value
= readq((void __iomem
*)hldev
->legacy_reg
+ offset
);
3126 case vxge_hw_mgmt_reg_type_toc
:
3127 if (offset
> sizeof(struct vxge_hw_toc_reg
) - 8) {
3128 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3131 *value
= readq((void __iomem
*)hldev
->toc_reg
+ offset
);
3133 case vxge_hw_mgmt_reg_type_common
:
3134 if (offset
> sizeof(struct vxge_hw_common_reg
) - 8) {
3135 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3138 *value
= readq((void __iomem
*)hldev
->common_reg
+ offset
);
3140 case vxge_hw_mgmt_reg_type_mrpcim
:
3141 if (!(hldev
->access_rights
&
3142 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
3143 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
3146 if (offset
> sizeof(struct vxge_hw_mrpcim_reg
) - 8) {
3147 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3150 *value
= readq((void __iomem
*)hldev
->mrpcim_reg
+ offset
);
3152 case vxge_hw_mgmt_reg_type_srpcim
:
3153 if (!(hldev
->access_rights
&
3154 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
)) {
3155 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
3158 if (index
> VXGE_HW_TITAN_SRPCIM_REG_SPACES
- 1) {
3159 status
= VXGE_HW_ERR_INVALID_INDEX
;
3162 if (offset
> sizeof(struct vxge_hw_srpcim_reg
) - 8) {
3163 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3166 *value
= readq((void __iomem
*)hldev
->srpcim_reg
[index
] +
3169 case vxge_hw_mgmt_reg_type_vpmgmt
:
3170 if ((index
> VXGE_HW_TITAN_VPMGMT_REG_SPACES
- 1) ||
3171 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3172 status
= VXGE_HW_ERR_INVALID_INDEX
;
3175 if (offset
> sizeof(struct vxge_hw_vpmgmt_reg
) - 8) {
3176 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3179 *value
= readq((void __iomem
*)hldev
->vpmgmt_reg
[index
] +
3182 case vxge_hw_mgmt_reg_type_vpath
:
3183 if ((index
> VXGE_HW_TITAN_VPATH_REG_SPACES
- 1) ||
3184 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3185 status
= VXGE_HW_ERR_INVALID_INDEX
;
3188 if (index
> VXGE_HW_TITAN_VPATH_REG_SPACES
- 1) {
3189 status
= VXGE_HW_ERR_INVALID_INDEX
;
3192 if (offset
> sizeof(struct vxge_hw_vpath_reg
) - 8) {
3193 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3196 *value
= readq((void __iomem
*)hldev
->vpath_reg
[index
] +
3200 status
= VXGE_HW_ERR_INVALID_TYPE
;
3209 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3212 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device
*hldev
, u64 vpath_mask
)
3214 struct vxge_hw_vpmgmt_reg __iomem
*vpmgmt_reg
;
3217 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
3218 if (!((vpath_mask
) & vxge_mBIT(i
)))
3220 vpmgmt_reg
= hldev
->vpmgmt_reg
[i
];
3221 for (j
= 0; j
< VXGE_HW_MAC_MAX_MAC_PORT_ID
; j
++) {
3222 if (readq(&vpmgmt_reg
->rxmac_cfg0_port_vpmgmt_clone
[j
])
3223 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS
)
3224 return VXGE_HW_FAIL
;
3230 * vxge_hw_mgmt_reg_Write - Write Titan register.
3233 vxge_hw_mgmt_reg_write(struct __vxge_hw_device
*hldev
,
3234 enum vxge_hw_mgmt_reg_type type
,
3235 u32 index
, u32 offset
, u64 value
)
3237 enum vxge_hw_status status
= VXGE_HW_OK
;
3239 if ((hldev
== NULL
) || (hldev
->magic
!= VXGE_HW_DEVICE_MAGIC
)) {
3240 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3245 case vxge_hw_mgmt_reg_type_legacy
:
3246 if (offset
> sizeof(struct vxge_hw_legacy_reg
) - 8) {
3247 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3250 writeq(value
, (void __iomem
*)hldev
->legacy_reg
+ offset
);
3252 case vxge_hw_mgmt_reg_type_toc
:
3253 if (offset
> sizeof(struct vxge_hw_toc_reg
) - 8) {
3254 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3257 writeq(value
, (void __iomem
*)hldev
->toc_reg
+ offset
);
3259 case vxge_hw_mgmt_reg_type_common
:
3260 if (offset
> sizeof(struct vxge_hw_common_reg
) - 8) {
3261 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3264 writeq(value
, (void __iomem
*)hldev
->common_reg
+ offset
);
3266 case vxge_hw_mgmt_reg_type_mrpcim
:
3267 if (!(hldev
->access_rights
&
3268 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM
)) {
3269 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
3272 if (offset
> sizeof(struct vxge_hw_mrpcim_reg
) - 8) {
3273 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3276 writeq(value
, (void __iomem
*)hldev
->mrpcim_reg
+ offset
);
3278 case vxge_hw_mgmt_reg_type_srpcim
:
3279 if (!(hldev
->access_rights
&
3280 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM
)) {
3281 status
= VXGE_HW_ERR_PRIVILEGED_OPERATION
;
3284 if (index
> VXGE_HW_TITAN_SRPCIM_REG_SPACES
- 1) {
3285 status
= VXGE_HW_ERR_INVALID_INDEX
;
3288 if (offset
> sizeof(struct vxge_hw_srpcim_reg
) - 8) {
3289 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3292 writeq(value
, (void __iomem
*)hldev
->srpcim_reg
[index
] +
3296 case vxge_hw_mgmt_reg_type_vpmgmt
:
3297 if ((index
> VXGE_HW_TITAN_VPMGMT_REG_SPACES
- 1) ||
3298 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3299 status
= VXGE_HW_ERR_INVALID_INDEX
;
3302 if (offset
> sizeof(struct vxge_hw_vpmgmt_reg
) - 8) {
3303 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3306 writeq(value
, (void __iomem
*)hldev
->vpmgmt_reg
[index
] +
3309 case vxge_hw_mgmt_reg_type_vpath
:
3310 if ((index
> VXGE_HW_TITAN_VPATH_REG_SPACES
-1) ||
3311 (!(hldev
->vpath_assignments
& vxge_mBIT(index
)))) {
3312 status
= VXGE_HW_ERR_INVALID_INDEX
;
3315 if (offset
> sizeof(struct vxge_hw_vpath_reg
) - 8) {
3316 status
= VXGE_HW_ERR_INVALID_OFFSET
;
3319 writeq(value
, (void __iomem
*)hldev
->vpath_reg
[index
] +
3323 status
= VXGE_HW_ERR_INVALID_TYPE
;
3331 * __vxge_hw_fifo_abort - Returns the TxD
3332 * This function terminates the TxDs of fifo
3334 static enum vxge_hw_status
__vxge_hw_fifo_abort(struct __vxge_hw_fifo
*fifo
)
3339 vxge_hw_channel_dtr_try_complete(&fifo
->channel
, &txdlh
);
3344 vxge_hw_channel_dtr_complete(&fifo
->channel
);
3346 if (fifo
->txdl_term
) {
3347 fifo
->txdl_term(txdlh
,
3348 VXGE_HW_TXDL_STATE_POSTED
,
3349 fifo
->channel
.userdata
);
3352 vxge_hw_channel_dtr_free(&fifo
->channel
, txdlh
);
3359 * __vxge_hw_fifo_reset - Resets the fifo
3360 * This function resets the fifo during vpath reset operation
3362 static enum vxge_hw_status
__vxge_hw_fifo_reset(struct __vxge_hw_fifo
*fifo
)
3364 enum vxge_hw_status status
= VXGE_HW_OK
;
3366 __vxge_hw_fifo_abort(fifo
);
3367 status
= __vxge_hw_channel_reset(&fifo
->channel
);
3373 * __vxge_hw_fifo_delete - Removes the FIFO
3374 * This function freeup the memory pool and removes the FIFO
3376 static enum vxge_hw_status
3377 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle
*vp
)
3379 struct __vxge_hw_fifo
*fifo
= vp
->vpath
->fifoh
;
3381 __vxge_hw_fifo_abort(fifo
);
3384 __vxge_hw_mempool_destroy(fifo
->mempool
);
3386 vp
->vpath
->fifoh
= NULL
;
3388 __vxge_hw_channel_free(&fifo
->channel
);
3394 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3396 * This function is callback passed to __vxge_hw_mempool_create to create memory
3400 __vxge_hw_fifo_mempool_item_alloc(
3401 struct vxge_hw_mempool
*mempoolh
,
3402 u32 memblock_index
, struct vxge_hw_mempool_dma
*dma_object
,
3403 u32 index
, u32 is_last
)
3405 u32 memblock_item_idx
;
3406 struct __vxge_hw_fifo_txdl_priv
*txdl_priv
;
3407 struct vxge_hw_fifo_txd
*txdp
=
3408 (struct vxge_hw_fifo_txd
*)mempoolh
->items_arr
[index
];
3409 struct __vxge_hw_fifo
*fifo
=
3410 (struct __vxge_hw_fifo
*)mempoolh
->userdata
;
3411 void *memblock
= mempoolh
->memblocks_arr
[memblock_index
];
3415 txdp
->host_control
= (u64
) (size_t)
3416 __vxge_hw_mempool_item_priv(mempoolh
, memblock_index
, txdp
,
3417 &memblock_item_idx
);
3419 txdl_priv
= __vxge_hw_fifo_txdl_priv(fifo
, txdp
);
3421 vxge_assert(txdl_priv
);
3423 fifo
->channel
.reserve_arr
[fifo
->channel
.reserve_ptr
- 1 - index
] = txdp
;
3425 /* pre-format HW's TxDL's private */
3426 txdl_priv
->dma_offset
= (char *)txdp
- (char *)memblock
;
3427 txdl_priv
->dma_addr
= dma_object
->addr
+ txdl_priv
->dma_offset
;
3428 txdl_priv
->dma_handle
= dma_object
->handle
;
3429 txdl_priv
->memblock
= memblock
;
3430 txdl_priv
->first_txdp
= txdp
;
3431 txdl_priv
->next_txdl_priv
= NULL
;
3432 txdl_priv
->alloc_frags
= 0;
3436 * __vxge_hw_fifo_create - Create a FIFO
3437 * This function creates FIFO and initializes it.
3439 static enum vxge_hw_status
3440 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle
*vp
,
3441 struct vxge_hw_fifo_attr
*attr
)
3443 enum vxge_hw_status status
= VXGE_HW_OK
;
3444 struct __vxge_hw_fifo
*fifo
;
3445 struct vxge_hw_fifo_config
*config
;
3446 u32 txdl_size
, txdl_per_memblock
;
3447 struct vxge_hw_mempool_cbs fifo_mp_callback
;
3448 struct __vxge_hw_virtualpath
*vpath
;
3450 if ((vp
== NULL
) || (attr
== NULL
)) {
3451 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3455 config
= &vpath
->hldev
->config
.vp_config
[vpath
->vp_id
].fifo
;
3457 txdl_size
= config
->max_frags
* sizeof(struct vxge_hw_fifo_txd
);
3459 txdl_per_memblock
= config
->memblock_size
/ txdl_size
;
3461 fifo
= (struct __vxge_hw_fifo
*)__vxge_hw_channel_allocate(vp
,
3462 VXGE_HW_CHANNEL_TYPE_FIFO
,
3463 config
->fifo_blocks
* txdl_per_memblock
,
3464 attr
->per_txdl_space
, attr
->userdata
);
3467 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
3471 vpath
->fifoh
= fifo
;
3472 fifo
->nofl_db
= vpath
->nofl_db
;
3474 fifo
->vp_id
= vpath
->vp_id
;
3475 fifo
->vp_reg
= vpath
->vp_reg
;
3476 fifo
->stats
= &vpath
->sw_stats
->fifo_stats
;
3478 fifo
->config
= config
;
3480 /* apply "interrupts per txdl" attribute */
3481 fifo
->interrupt_type
= VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ
;
3482 fifo
->tim_tti_cfg1_saved
= vpath
->tim_tti_cfg1_saved
;
3483 fifo
->tim_tti_cfg3_saved
= vpath
->tim_tti_cfg3_saved
;
3485 if (fifo
->config
->intr
)
3486 fifo
->interrupt_type
= VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST
;
3488 fifo
->no_snoop_bits
= config
->no_snoop_bits
;
3491 * FIFO memory management strategy:
3493 * TxDL split into three independent parts:
3495 * - TxD HW private part
3496 * - driver private part
3498 * Adaptative memory allocation used. i.e. Memory allocated on
3499 * demand with the size which will fit into one memory block.
3500 * One memory block may contain more than one TxDL.
3502 * During "reserve" operations more memory can be allocated on demand
3503 * for example due to FIFO full condition.
3505 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3506 * routine which will essentially stop the channel and free resources.
3509 /* TxDL common private size == TxDL private + driver private */
3511 sizeof(struct __vxge_hw_fifo_txdl_priv
) + attr
->per_txdl_space
;
3512 fifo
->priv_size
= ((fifo
->priv_size
+ VXGE_CACHE_LINE_SIZE
- 1) /
3513 VXGE_CACHE_LINE_SIZE
) * VXGE_CACHE_LINE_SIZE
;
3515 fifo
->per_txdl_space
= attr
->per_txdl_space
;
3517 /* recompute txdl size to be cacheline aligned */
3518 fifo
->txdl_size
= txdl_size
;
3519 fifo
->txdl_per_memblock
= txdl_per_memblock
;
3521 fifo
->txdl_term
= attr
->txdl_term
;
3522 fifo
->callback
= attr
->callback
;
3524 if (fifo
->txdl_per_memblock
== 0) {
3525 __vxge_hw_fifo_delete(vp
);
3526 status
= VXGE_HW_ERR_INVALID_BLOCK_SIZE
;
3530 fifo_mp_callback
.item_func_alloc
= __vxge_hw_fifo_mempool_item_alloc
;
3533 __vxge_hw_mempool_create(vpath
->hldev
,
3534 fifo
->config
->memblock_size
,
3537 (fifo
->config
->fifo_blocks
* fifo
->txdl_per_memblock
),
3538 (fifo
->config
->fifo_blocks
* fifo
->txdl_per_memblock
),
3542 if (fifo
->mempool
== NULL
) {
3543 __vxge_hw_fifo_delete(vp
);
3544 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
3548 status
= __vxge_hw_channel_initialize(&fifo
->channel
);
3549 if (status
!= VXGE_HW_OK
) {
3550 __vxge_hw_fifo_delete(vp
);
3554 vxge_assert(fifo
->channel
.reserve_ptr
);
3560 * __vxge_hw_vpath_pci_read - Read the content of given address
3561 * in pci config space.
3562 * Read from the vpath pci config space.
3564 static enum vxge_hw_status
3565 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath
*vpath
,
3566 u32 phy_func_0
, u32 offset
, u32
*val
)
3569 enum vxge_hw_status status
= VXGE_HW_OK
;
3570 struct vxge_hw_vpath_reg __iomem
*vp_reg
= vpath
->vp_reg
;
3572 val64
= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset
);
3575 val64
|= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0
;
3577 writeq(val64
, &vp_reg
->pci_config_access_cfg1
);
3579 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ
,
3580 &vp_reg
->pci_config_access_cfg2
);
3583 status
= __vxge_hw_device_register_poll(
3584 &vp_reg
->pci_config_access_cfg2
,
3585 VXGE_HW_INTR_MASK_ALL
, VXGE_HW_DEF_DEVICE_POLL_MILLIS
);
3587 if (status
!= VXGE_HW_OK
)
3590 val64
= readq(&vp_reg
->pci_config_access_status
);
3592 if (val64
& VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR
) {
3593 status
= VXGE_HW_FAIL
;
3596 *val
= (u32
)vxge_bVALn(val64
, 32, 32);
3602 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3603 * @hldev: HW device.
3604 * @on_off: TRUE if flickering to be on, FALSE to be off
3606 * Flicker the link LED.
3609 vxge_hw_device_flick_link_led(struct __vxge_hw_device
*hldev
, u64 on_off
)
3611 struct __vxge_hw_virtualpath
*vpath
;
3612 u64 data0
, data1
= 0, steer_ctrl
= 0;
3613 enum vxge_hw_status status
;
3615 if (hldev
== NULL
) {
3616 status
= VXGE_HW_ERR_INVALID_DEVICE
;
3620 vpath
= &hldev
->virtual_paths
[hldev
->first_vp_id
];
3623 status
= vxge_hw_vpath_fw_api(vpath
,
3624 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL
,
3625 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO
,
3626 0, &data0
, &data1
, &steer_ctrl
);
3632 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3635 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle
*vp
,
3636 u32 action
, u32 rts_table
, u32 offset
,
3637 u64
*data0
, u64
*data1
)
3639 enum vxge_hw_status status
;
3643 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3648 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT
) ||
3650 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
) ||
3652 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK
) ||
3654 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY
)) {
3655 steer_ctrl
= VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL
;
3658 status
= vxge_hw_vpath_fw_api(vp
->vpath
, action
, rts_table
, offset
,
3659 data0
, data1
, &steer_ctrl
);
3660 if (status
!= VXGE_HW_OK
)
3663 if ((rts_table
!= VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
) &&
3665 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
))
3672 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3675 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle
*vp
, u32 action
,
3676 u32 rts_table
, u32 offset
, u64 steer_data0
,
3679 u64 data0
, data1
= 0, steer_ctrl
= 0;
3680 enum vxge_hw_status status
;
3683 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3687 data0
= steer_data0
;
3689 if ((rts_table
== VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA
) ||
3691 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
))
3692 data1
= steer_data1
;
3694 status
= vxge_hw_vpath_fw_api(vp
->vpath
, action
, rts_table
, offset
,
3695 &data0
, &data1
, &steer_ctrl
);
3701 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3703 enum vxge_hw_status
vxge_hw_vpath_rts_rth_set(
3704 struct __vxge_hw_vpath_handle
*vp
,
3705 enum vxge_hw_rth_algoritms algorithm
,
3706 struct vxge_hw_rth_hash_types
*hash_type
,
3710 enum vxge_hw_status status
= VXGE_HW_OK
;
3713 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3717 status
= __vxge_hw_vpath_rts_table_get(vp
,
3718 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY
,
3719 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG
,
3721 if (status
!= VXGE_HW_OK
)
3724 data0
&= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3725 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3727 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN
|
3728 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size
) |
3729 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm
);
3731 if (hash_type
->hash_type_tcpipv4_en
)
3732 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN
;
3734 if (hash_type
->hash_type_ipv4_en
)
3735 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN
;
3737 if (hash_type
->hash_type_tcpipv6_en
)
3738 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN
;
3740 if (hash_type
->hash_type_ipv6_en
)
3741 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN
;
3743 if (hash_type
->hash_type_tcpipv6ex_en
)
3745 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN
;
3747 if (hash_type
->hash_type_ipv6ex_en
)
3748 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN
;
3750 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0
))
3751 data0
&= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE
;
3753 data0
|= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE
;
3755 status
= __vxge_hw_vpath_rts_table_set(vp
,
3756 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
,
3757 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG
,
3764 vxge_hw_rts_rth_data0_data1_get(u32 j
, u64
*data0
, u64
*data1
,
3765 u16 flag
, u8
*itable
)
3769 *data0
= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j
)|
3770 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN
|
3771 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3776 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j
)|
3777 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN
|
3778 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3782 *data1
= VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j
)|
3783 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN
|
3784 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3789 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j
)|
3790 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN
|
3791 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3798 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3800 enum vxge_hw_status
vxge_hw_vpath_rts_rth_itable_set(
3801 struct __vxge_hw_vpath_handle
**vpath_handles
,
3807 u32 i
, j
, action
, rts_table
;
3811 enum vxge_hw_status status
= VXGE_HW_OK
;
3812 struct __vxge_hw_vpath_handle
*vp
= vpath_handles
[0];
3815 status
= VXGE_HW_ERR_INVALID_HANDLE
;
3819 max_entries
= (((u32
)1) << itable_size
);
3821 if (vp
->vpath
->hldev
->config
.rth_it_type
3822 == VXGE_HW_RTH_IT_TYPE_SOLO_IT
) {
3823 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
;
3825 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT
;
3827 for (j
= 0; j
< max_entries
; j
++) {
3832 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3835 status
= __vxge_hw_vpath_rts_table_set(vpath_handles
[0],
3836 action
, rts_table
, j
, data0
, data1
);
3838 if (status
!= VXGE_HW_OK
)
3842 for (j
= 0; j
< max_entries
; j
++) {
3847 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN
|
3848 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3851 status
= __vxge_hw_vpath_rts_table_set(
3852 vpath_handles
[mtable
[itable
[j
]]], action
,
3853 rts_table
, j
, data0
, data1
);
3855 if (status
!= VXGE_HW_OK
)
3859 action
= VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY
;
3861 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT
;
3862 for (i
= 0; i
< vpath_count
; i
++) {
3864 for (j
= 0; j
< max_entries
;) {
3869 while (j
< max_entries
) {
3870 if (mtable
[itable
[j
]] != i
) {
3874 vxge_hw_rts_rth_data0_data1_get(j
,
3875 &data0
, &data1
, 1, itable
);
3880 while (j
< max_entries
) {
3881 if (mtable
[itable
[j
]] != i
) {
3885 vxge_hw_rts_rth_data0_data1_get(j
,
3886 &data0
, &data1
, 2, itable
);
3891 while (j
< max_entries
) {
3892 if (mtable
[itable
[j
]] != i
) {
3896 vxge_hw_rts_rth_data0_data1_get(j
,
3897 &data0
, &data1
, 3, itable
);
3902 while (j
< max_entries
) {
3903 if (mtable
[itable
[j
]] != i
) {
3907 vxge_hw_rts_rth_data0_data1_get(j
,
3908 &data0
, &data1
, 4, itable
);
3914 status
= __vxge_hw_vpath_rts_table_set(
3919 if (status
!= VXGE_HW_OK
)
3930 * vxge_hw_vpath_check_leak - Check for memory leak
3931 * @ringh: Handle to the ring object used for receive
3933 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3934 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3935 * Returns: VXGE_HW_FAIL, if leak has occurred.
3939 vxge_hw_vpath_check_leak(struct __vxge_hw_ring
*ring
)
3941 enum vxge_hw_status status
= VXGE_HW_OK
;
3942 u64 rxd_new_count
, rxd_spat
;
3947 rxd_new_count
= readl(&ring
->vp_reg
->prc_rxd_doorbell
);
3948 rxd_spat
= readq(&ring
->vp_reg
->prc_cfg6
);
3949 rxd_spat
= VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat
);
3951 if (rxd_new_count
>= rxd_spat
)
3952 status
= VXGE_HW_FAIL
;
3958 * __vxge_hw_vpath_mgmt_read
3959 * This routine reads the vpath_mgmt registers
3961 static enum vxge_hw_status
3962 __vxge_hw_vpath_mgmt_read(
3963 struct __vxge_hw_device
*hldev
,
3964 struct __vxge_hw_virtualpath
*vpath
)
3966 u32 i
, mtu
= 0, max_pyld
= 0;
3969 for (i
= 0; i
< VXGE_HW_MAC_MAX_MAC_PORT_ID
; i
++) {
3971 val64
= readq(&vpath
->vpmgmt_reg
->
3972 rxmac_cfg0_port_vpmgmt_clone
[i
]);
3975 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3981 vpath
->max_mtu
= mtu
+ VXGE_HW_MAC_HEADER_MAX_SIZE
;
3983 val64
= readq(&vpath
->vpmgmt_reg
->xmac_vsport_choices_vp
);
3985 for (i
= 0; i
< VXGE_HW_MAX_VIRTUAL_PATHS
; i
++) {
3986 if (val64
& vxge_mBIT(i
))
3987 vpath
->vsport_number
= i
;
3990 val64
= readq(&vpath
->vpmgmt_reg
->xgmac_gen_status_vpmgmt_clone
);
3992 if (val64
& VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK
)
3993 VXGE_HW_DEVICE_LINK_STATE_SET(vpath
->hldev
, VXGE_HW_LINK_UP
);
3995 VXGE_HW_DEVICE_LINK_STATE_SET(vpath
->hldev
, VXGE_HW_LINK_DOWN
);
4001 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4002 * This routine checks the vpath_rst_in_prog register to see if
4003 * adapter completed the reset process for the vpath
4005 static enum vxge_hw_status
4006 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath
*vpath
)
4008 enum vxge_hw_status status
;
4010 status
= __vxge_hw_device_register_poll(
4011 &vpath
->hldev
->common_reg
->vpath_rst_in_prog
,
4012 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4013 1 << (16 - vpath
->vp_id
)),
4014 vpath
->hldev
->config
.device_poll_millis
);
4020 * __vxge_hw_vpath_reset
4021 * This routine resets the vpath on the device
4023 static enum vxge_hw_status
4024 __vxge_hw_vpath_reset(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4028 val64
= VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id
));
4030 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
4031 &hldev
->common_reg
->cmn_rsthdlr_cfg0
);
4037 * __vxge_hw_vpath_sw_reset
4038 * This routine resets the vpath structures
4040 static enum vxge_hw_status
4041 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4043 enum vxge_hw_status status
= VXGE_HW_OK
;
4044 struct __vxge_hw_virtualpath
*vpath
;
4046 vpath
= &hldev
->virtual_paths
[vp_id
];
4049 status
= __vxge_hw_ring_reset(vpath
->ringh
);
4050 if (status
!= VXGE_HW_OK
)
4055 status
= __vxge_hw_fifo_reset(vpath
->fifoh
);
4061 * __vxge_hw_vpath_prc_configure
4062 * This routine configures the prc registers of virtual path using the config
4066 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4069 struct __vxge_hw_virtualpath
*vpath
;
4070 struct vxge_hw_vp_config
*vp_config
;
4071 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4073 vpath
= &hldev
->virtual_paths
[vp_id
];
4074 vp_reg
= vpath
->vp_reg
;
4075 vp_config
= vpath
->vp_config
;
4077 if (vp_config
->ring
.enable
== VXGE_HW_RING_DISABLE
)
4080 val64
= readq(&vp_reg
->prc_cfg1
);
4081 val64
|= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE
;
4082 writeq(val64
, &vp_reg
->prc_cfg1
);
4084 val64
= readq(&vpath
->vp_reg
->prc_cfg6
);
4085 val64
|= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN
;
4086 writeq(val64
, &vpath
->vp_reg
->prc_cfg6
);
4088 val64
= readq(&vp_reg
->prc_cfg7
);
4090 if (vpath
->vp_config
->ring
.scatter_mode
!=
4091 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT
) {
4093 val64
&= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4095 switch (vpath
->vp_config
->ring
.scatter_mode
) {
4096 case VXGE_HW_RING_SCATTER_MODE_A
:
4097 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4098 VXGE_HW_PRC_CFG7_SCATTER_MODE_A
);
4100 case VXGE_HW_RING_SCATTER_MODE_B
:
4101 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4102 VXGE_HW_PRC_CFG7_SCATTER_MODE_B
);
4104 case VXGE_HW_RING_SCATTER_MODE_C
:
4105 val64
|= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4106 VXGE_HW_PRC_CFG7_SCATTER_MODE_C
);
4111 writeq(val64
, &vp_reg
->prc_cfg7
);
4113 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4114 __vxge_hw_ring_first_block_address_get(
4115 vpath
->ringh
) >> 3), &vp_reg
->prc_cfg5
);
4117 val64
= readq(&vp_reg
->prc_cfg4
);
4118 val64
|= VXGE_HW_PRC_CFG4_IN_SVC
;
4119 val64
&= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4121 val64
|= VXGE_HW_PRC_CFG4_RING_MODE(
4122 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER
);
4124 if (hldev
->config
.rth_en
== VXGE_HW_RTH_DISABLE
)
4125 val64
|= VXGE_HW_PRC_CFG4_RTH_DISABLE
;
4127 val64
&= ~VXGE_HW_PRC_CFG4_RTH_DISABLE
;
4129 writeq(val64
, &vp_reg
->prc_cfg4
);
4133 * __vxge_hw_vpath_kdfc_configure
4134 * This routine configures the kdfc registers of virtual path using the
4137 static enum vxge_hw_status
4138 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4142 enum vxge_hw_status status
= VXGE_HW_OK
;
4143 struct __vxge_hw_virtualpath
*vpath
;
4144 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4146 vpath
= &hldev
->virtual_paths
[vp_id
];
4147 vp_reg
= vpath
->vp_reg
;
4148 status
= __vxge_hw_kdfc_swapper_set(hldev
->legacy_reg
, vp_reg
);
4150 if (status
!= VXGE_HW_OK
)
4153 val64
= readq(&vp_reg
->kdfc_drbl_triplet_total
);
4155 vpath
->max_kdfc_db
=
4156 (u32
)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4159 if (vpath
->vp_config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4161 vpath
->max_nofl_db
= vpath
->max_kdfc_db
;
4163 if (vpath
->max_nofl_db
<
4164 ((vpath
->vp_config
->fifo
.memblock_size
/
4165 (vpath
->vp_config
->fifo
.max_frags
*
4166 sizeof(struct vxge_hw_fifo_txd
))) *
4167 vpath
->vp_config
->fifo
.fifo_blocks
)) {
4169 return VXGE_HW_BADCFG_FIFO_BLOCKS
;
4171 val64
= VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4172 (vpath
->max_nofl_db
*2)-1);
4175 writeq(val64
, &vp_reg
->kdfc_fifo_trpl_partition
);
4177 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE
,
4178 &vp_reg
->kdfc_fifo_trpl_ctrl
);
4180 val64
= readq(&vp_reg
->kdfc_trpl_fifo_0_ctrl
);
4182 val64
&= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4183 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4185 val64
|= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4186 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY
) |
4187 #ifndef __BIG_ENDIAN
4188 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN
|
4190 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4192 writeq(val64
, &vp_reg
->kdfc_trpl_fifo_0_ctrl
);
4193 writeq((u64
)0, &vp_reg
->kdfc_trpl_fifo_0_wb_address
);
4195 vpath_stride
= readq(&hldev
->toc_reg
->toc_kdfc_vpath_stride
);
4198 (struct __vxge_hw_non_offload_db_wrapper __iomem
*)
4199 (hldev
->kdfc
+ (vp_id
*
4200 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4207 * __vxge_hw_vpath_mac_configure
4208 * This routine configures the mac of virtual path using the config passed
4210 static enum vxge_hw_status
4211 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4214 struct __vxge_hw_virtualpath
*vpath
;
4215 struct vxge_hw_vp_config
*vp_config
;
4216 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4218 vpath
= &hldev
->virtual_paths
[vp_id
];
4219 vp_reg
= vpath
->vp_reg
;
4220 vp_config
= vpath
->vp_config
;
4222 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4223 vpath
->vsport_number
), &vp_reg
->xmac_vsport_choice
);
4225 if (vp_config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4227 val64
= readq(&vp_reg
->xmac_rpa_vcfg
);
4229 if (vp_config
->rpa_strip_vlan_tag
!=
4230 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT
) {
4231 if (vp_config
->rpa_strip_vlan_tag
)
4232 val64
|= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG
;
4234 val64
&= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG
;
4237 writeq(val64
, &vp_reg
->xmac_rpa_vcfg
);
4238 val64
= readq(&vp_reg
->rxmac_vcfg0
);
4240 if (vp_config
->mtu
!=
4241 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU
) {
4242 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4243 if ((vp_config
->mtu
+
4244 VXGE_HW_MAC_HEADER_MAX_SIZE
) < vpath
->max_mtu
)
4245 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4247 VXGE_HW_MAC_HEADER_MAX_SIZE
);
4249 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4253 writeq(val64
, &vp_reg
->rxmac_vcfg0
);
4255 val64
= readq(&vp_reg
->rxmac_vcfg1
);
4257 val64
&= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4258 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE
);
4260 if (hldev
->config
.rth_it_type
==
4261 VXGE_HW_RTH_IT_TYPE_MULTI_IT
) {
4262 val64
|= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4264 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE
;
4267 writeq(val64
, &vp_reg
->rxmac_vcfg1
);
4273 * __vxge_hw_vpath_tim_configure
4274 * This routine configures the tim registers of virtual path using the config
4277 static enum vxge_hw_status
4278 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4281 struct __vxge_hw_virtualpath
*vpath
;
4282 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4283 struct vxge_hw_vp_config
*config
;
4285 vpath
= &hldev
->virtual_paths
[vp_id
];
4286 vp_reg
= vpath
->vp_reg
;
4287 config
= vpath
->vp_config
;
4289 writeq(0, &vp_reg
->tim_dest_addr
);
4290 writeq(0, &vp_reg
->tim_vpath_map
);
4291 writeq(0, &vp_reg
->tim_bitmap
);
4292 writeq(0, &vp_reg
->tim_remap
);
4294 if (config
->ring
.enable
== VXGE_HW_RING_ENABLE
)
4295 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4296 (vp_id
* VXGE_HW_MAX_INTR_PER_VP
) +
4297 VXGE_HW_VPATH_INTR_RX
), &vp_reg
->tim_ring_assn
);
4299 val64
= readq(&vp_reg
->tim_pci_cfg
);
4300 val64
|= VXGE_HW_TIM_PCI_CFG_ADD_PAD
;
4301 writeq(val64
, &vp_reg
->tim_pci_cfg
);
4303 if (config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4305 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4307 if (config
->tti
.btimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4308 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4310 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4311 config
->tti
.btimer_val
);
4314 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN
;
4316 if (config
->tti
.timer_ac_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4317 if (config
->tti
.timer_ac_en
)
4318 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4320 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4323 if (config
->tti
.timer_ci_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4324 if (config
->tti
.timer_ci_en
)
4325 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4327 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4330 if (config
->tti
.urange_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4331 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4332 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4333 config
->tti
.urange_a
);
4336 if (config
->tti
.urange_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4337 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4338 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4339 config
->tti
.urange_b
);
4342 if (config
->tti
.urange_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4343 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4344 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4345 config
->tti
.urange_c
);
4348 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4349 vpath
->tim_tti_cfg1_saved
= val64
;
4351 val64
= readq(&vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4353 if (config
->tti
.uec_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4354 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4355 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4359 if (config
->tti
.uec_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4360 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4361 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4365 if (config
->tti
.uec_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4366 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4367 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4371 if (config
->tti
.uec_d
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4372 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4373 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4377 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4378 val64
= readq(&vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4380 if (config
->tti
.timer_ri_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4381 if (config
->tti
.timer_ri_en
)
4382 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4384 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4387 if (config
->tti
.rtimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4388 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4390 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4391 config
->tti
.rtimer_val
);
4394 if (config
->tti
.util_sel
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4395 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4396 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id
);
4399 if (config
->tti
.ltimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4400 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4402 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4403 config
->tti
.ltimer_val
);
4406 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_TX
]);
4407 vpath
->tim_tti_cfg3_saved
= val64
;
4410 if (config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4412 val64
= readq(&vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4414 if (config
->rti
.btimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4415 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4417 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4418 config
->rti
.btimer_val
);
4421 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN
;
4423 if (config
->rti
.timer_ac_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4424 if (config
->rti
.timer_ac_en
)
4425 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4427 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC
;
4430 if (config
->rti
.timer_ci_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4431 if (config
->rti
.timer_ci_en
)
4432 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4434 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI
;
4437 if (config
->rti
.urange_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4438 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4439 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4440 config
->rti
.urange_a
);
4443 if (config
->rti
.urange_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4444 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4445 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4446 config
->rti
.urange_b
);
4449 if (config
->rti
.urange_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4450 val64
&= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4451 val64
|= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4452 config
->rti
.urange_c
);
4455 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4456 vpath
->tim_rti_cfg1_saved
= val64
;
4458 val64
= readq(&vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4460 if (config
->rti
.uec_a
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4461 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4462 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4466 if (config
->rti
.uec_b
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4467 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4468 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4472 if (config
->rti
.uec_c
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4473 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4474 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4478 if (config
->rti
.uec_d
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4479 val64
&= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4480 val64
|= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4484 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4485 val64
= readq(&vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4487 if (config
->rti
.timer_ri_en
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4488 if (config
->rti
.timer_ri_en
)
4489 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4491 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI
;
4494 if (config
->rti
.rtimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4495 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4497 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4498 config
->rti
.rtimer_val
);
4501 if (config
->rti
.util_sel
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4502 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4503 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id
);
4506 if (config
->rti
.ltimer_val
!= VXGE_HW_USE_FLASH_DEFAULT
) {
4507 val64
&= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4509 val64
|= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4510 config
->rti
.ltimer_val
);
4513 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_RX
]);
4514 vpath
->tim_rti_cfg3_saved
= val64
;
4518 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4519 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4520 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_EINTA
]);
4521 writeq(val64
, &vp_reg
->tim_cfg1_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4522 writeq(val64
, &vp_reg
->tim_cfg2_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4523 writeq(val64
, &vp_reg
->tim_cfg3_int_num
[VXGE_HW_VPATH_INTR_BMAP
]);
4525 val64
= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4526 val64
|= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4527 val64
|= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4528 writeq(val64
, &vp_reg
->tim_wrkld_clc
);
4534 * __vxge_hw_vpath_initialize
4535 * This routine is the final phase of init which initializes the
4536 * registers of the vpath using the configuration passed.
4538 static enum vxge_hw_status
4539 __vxge_hw_vpath_initialize(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4543 enum vxge_hw_status status
= VXGE_HW_OK
;
4544 struct __vxge_hw_virtualpath
*vpath
;
4545 struct vxge_hw_vpath_reg __iomem
*vp_reg
;
4547 vpath
= &hldev
->virtual_paths
[vp_id
];
4549 if (!(hldev
->vpath_assignments
& vxge_mBIT(vp_id
))) {
4550 status
= VXGE_HW_ERR_VPATH_NOT_AVAILABLE
;
4553 vp_reg
= vpath
->vp_reg
;
4555 status
= __vxge_hw_vpath_swapper_set(vpath
->vp_reg
);
4556 if (status
!= VXGE_HW_OK
)
4559 status
= __vxge_hw_vpath_mac_configure(hldev
, vp_id
);
4560 if (status
!= VXGE_HW_OK
)
4563 status
= __vxge_hw_vpath_kdfc_configure(hldev
, vp_id
);
4564 if (status
!= VXGE_HW_OK
)
4567 status
= __vxge_hw_vpath_tim_configure(hldev
, vp_id
);
4568 if (status
!= VXGE_HW_OK
)
4571 val64
= readq(&vp_reg
->rtdma_rd_optimization_ctrl
);
4573 /* Get MRRS value from device control */
4574 status
= __vxge_hw_vpath_pci_read(vpath
, 1, 0x78, &val32
);
4575 if (status
== VXGE_HW_OK
) {
4576 val32
= (val32
& VXGE_HW_PCI_EXP_DEVCTL_READRQ
) >> 12;
4578 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4580 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32
);
4582 val64
|= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE
;
4585 val64
&= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4587 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4588 VXGE_HW_MAX_PAYLOAD_SIZE_512
);
4590 val64
|= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN
;
4591 writeq(val64
, &vp_reg
->rtdma_rd_optimization_ctrl
);
4598 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4599 * This routine closes all channels it opened and freeup memory
4601 static void __vxge_hw_vp_terminate(struct __vxge_hw_device
*hldev
, u32 vp_id
)
4603 struct __vxge_hw_virtualpath
*vpath
;
4605 vpath
= &hldev
->virtual_paths
[vp_id
];
4607 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
)
4610 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath
->hldev
->tim_int_mask0
,
4611 vpath
->hldev
->tim_int_mask1
, vpath
->vp_id
);
4612 hldev
->stats
.hw_dev_info_stats
.vpath_info
[vpath
->vp_id
] = NULL
;
4614 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4615 * work after the interface is brought down.
4617 spin_lock(&vpath
->lock
);
4618 vpath
->vp_open
= VXGE_HW_VP_NOT_OPEN
;
4619 spin_unlock(&vpath
->lock
);
4621 vpath
->vpmgmt_reg
= NULL
;
4622 vpath
->nofl_db
= NULL
;
4624 vpath
->vsport_number
= 0;
4625 vpath
->max_kdfc_db
= 0;
4626 vpath
->max_nofl_db
= 0;
4627 vpath
->ringh
= NULL
;
4628 vpath
->fifoh
= NULL
;
4629 memset(&vpath
->vpath_handles
, 0, sizeof(struct list_head
));
4630 vpath
->stats_block
= NULL
;
4631 vpath
->hw_stats
= NULL
;
4632 vpath
->hw_stats_sav
= NULL
;
4633 vpath
->sw_stats
= NULL
;
4640 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4641 * This routine is the initial phase of init which resets the vpath and
4642 * initializes the software support structures.
4644 static enum vxge_hw_status
4645 __vxge_hw_vp_initialize(struct __vxge_hw_device
*hldev
, u32 vp_id
,
4646 struct vxge_hw_vp_config
*config
)
4648 struct __vxge_hw_virtualpath
*vpath
;
4649 enum vxge_hw_status status
= VXGE_HW_OK
;
4651 if (!(hldev
->vpath_assignments
& vxge_mBIT(vp_id
))) {
4652 status
= VXGE_HW_ERR_VPATH_NOT_AVAILABLE
;
4656 vpath
= &hldev
->virtual_paths
[vp_id
];
4658 spin_lock_init(&vpath
->lock
);
4659 vpath
->vp_id
= vp_id
;
4660 vpath
->vp_open
= VXGE_HW_VP_OPEN
;
4661 vpath
->hldev
= hldev
;
4662 vpath
->vp_config
= config
;
4663 vpath
->vp_reg
= hldev
->vpath_reg
[vp_id
];
4664 vpath
->vpmgmt_reg
= hldev
->vpmgmt_reg
[vp_id
];
4666 __vxge_hw_vpath_reset(hldev
, vp_id
);
4668 status
= __vxge_hw_vpath_reset_check(vpath
);
4669 if (status
!= VXGE_HW_OK
) {
4670 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4674 status
= __vxge_hw_vpath_mgmt_read(hldev
, vpath
);
4675 if (status
!= VXGE_HW_OK
) {
4676 memset(vpath
, 0, sizeof(struct __vxge_hw_virtualpath
));
4680 INIT_LIST_HEAD(&vpath
->vpath_handles
);
4682 vpath
->sw_stats
= &hldev
->stats
.sw_dev_info_stats
.vpath_info
[vp_id
];
4684 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev
->tim_int_mask0
,
4685 hldev
->tim_int_mask1
, vp_id
);
4687 status
= __vxge_hw_vpath_initialize(hldev
, vp_id
);
4688 if (status
!= VXGE_HW_OK
)
4689 __vxge_hw_vp_terminate(hldev
, vp_id
);
4695 * vxge_hw_vpath_mtu_set - Set MTU.
4696 * Set new MTU value. Example, to use jumbo frames:
4697 * vxge_hw_vpath_mtu_set(my_device, 9600);
4700 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle
*vp
, u32 new_mtu
)
4703 enum vxge_hw_status status
= VXGE_HW_OK
;
4704 struct __vxge_hw_virtualpath
*vpath
;
4707 status
= VXGE_HW_ERR_INVALID_HANDLE
;
4712 new_mtu
+= VXGE_HW_MAC_HEADER_MAX_SIZE
;
4714 if ((new_mtu
< VXGE_HW_MIN_MTU
) || (new_mtu
> vpath
->max_mtu
))
4715 status
= VXGE_HW_ERR_INVALID_MTU_SIZE
;
4717 val64
= readq(&vpath
->vp_reg
->rxmac_vcfg0
);
4719 val64
&= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4720 val64
|= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu
);
4722 writeq(val64
, &vpath
->vp_reg
->rxmac_vcfg0
);
4724 vpath
->vp_config
->mtu
= new_mtu
- VXGE_HW_MAC_HEADER_MAX_SIZE
;
4731 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4732 * Enable the DMA vpath statistics. The function is to be called to re-enable
4733 * the adapter to update stats into the host memory
4735 static enum vxge_hw_status
4736 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle
*vp
)
4738 enum vxge_hw_status status
= VXGE_HW_OK
;
4739 struct __vxge_hw_virtualpath
*vpath
;
4743 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
4744 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
4748 memcpy(vpath
->hw_stats_sav
, vpath
->hw_stats
,
4749 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4751 status
= __vxge_hw_vpath_stats_get(vpath
, vpath
->hw_stats
);
4757 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4758 * This function allocates a block from block pool or from the system
4760 static struct __vxge_hw_blockpool_entry
*
4761 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device
*devh
, u32 size
)
4763 struct __vxge_hw_blockpool_entry
*entry
= NULL
;
4764 struct __vxge_hw_blockpool
*blockpool
;
4766 blockpool
= &devh
->block_pool
;
4768 if (size
== blockpool
->block_size
) {
4770 if (!list_empty(&blockpool
->free_block_list
))
4771 entry
= (struct __vxge_hw_blockpool_entry
*)
4772 list_first_entry(&blockpool
->free_block_list
,
4773 struct __vxge_hw_blockpool_entry
,
4776 if (entry
!= NULL
) {
4777 list_del(&entry
->item
);
4778 blockpool
->pool_size
--;
4783 __vxge_hw_blockpool_blocks_add(blockpool
);
4789 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4790 * This function is used to open access to virtual path of an
4791 * adapter for offload, GRO operations. This function returns
4795 vxge_hw_vpath_open(struct __vxge_hw_device
*hldev
,
4796 struct vxge_hw_vpath_attr
*attr
,
4797 struct __vxge_hw_vpath_handle
**vpath_handle
)
4799 struct __vxge_hw_virtualpath
*vpath
;
4800 struct __vxge_hw_vpath_handle
*vp
;
4801 enum vxge_hw_status status
;
4803 vpath
= &hldev
->virtual_paths
[attr
->vp_id
];
4805 if (vpath
->vp_open
== VXGE_HW_VP_OPEN
) {
4806 status
= VXGE_HW_ERR_INVALID_STATE
;
4807 goto vpath_open_exit1
;
4810 status
= __vxge_hw_vp_initialize(hldev
, attr
->vp_id
,
4811 &hldev
->config
.vp_config
[attr
->vp_id
]);
4812 if (status
!= VXGE_HW_OK
)
4813 goto vpath_open_exit1
;
4815 vp
= vzalloc(sizeof(struct __vxge_hw_vpath_handle
));
4817 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
4818 goto vpath_open_exit2
;
4823 if (vpath
->vp_config
->fifo
.enable
== VXGE_HW_FIFO_ENABLE
) {
4824 status
= __vxge_hw_fifo_create(vp
, &attr
->fifo_attr
);
4825 if (status
!= VXGE_HW_OK
)
4826 goto vpath_open_exit6
;
4829 if (vpath
->vp_config
->ring
.enable
== VXGE_HW_RING_ENABLE
) {
4830 status
= __vxge_hw_ring_create(vp
, &attr
->ring_attr
);
4831 if (status
!= VXGE_HW_OK
)
4832 goto vpath_open_exit7
;
4834 __vxge_hw_vpath_prc_configure(hldev
, attr
->vp_id
);
4837 vpath
->fifoh
->tx_intr_num
=
4838 (attr
->vp_id
* VXGE_HW_MAX_INTR_PER_VP
) +
4839 VXGE_HW_VPATH_INTR_TX
;
4841 vpath
->stats_block
= __vxge_hw_blockpool_block_allocate(hldev
,
4842 VXGE_HW_BLOCK_SIZE
);
4843 if (vpath
->stats_block
== NULL
) {
4844 status
= VXGE_HW_ERR_OUT_OF_MEMORY
;
4845 goto vpath_open_exit8
;
4848 vpath
->hw_stats
= vpath
->stats_block
->memblock
;
4849 memset(vpath
->hw_stats
, 0,
4850 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4852 hldev
->stats
.hw_dev_info_stats
.vpath_info
[attr
->vp_id
] =
4855 vpath
->hw_stats_sav
=
4856 &hldev
->stats
.hw_dev_info_stats
.vpath_info_sav
[attr
->vp_id
];
4857 memset(vpath
->hw_stats_sav
, 0,
4858 sizeof(struct vxge_hw_vpath_stats_hw_info
));
4860 writeq(vpath
->stats_block
->dma_addr
, &vpath
->vp_reg
->stats_cfg
);
4862 status
= vxge_hw_vpath_stats_enable(vp
);
4863 if (status
!= VXGE_HW_OK
)
4864 goto vpath_open_exit8
;
4866 list_add(&vp
->item
, &vpath
->vpath_handles
);
4868 hldev
->vpaths_deployed
|= vxge_mBIT(vpath
->vp_id
);
4872 attr
->fifo_attr
.userdata
= vpath
->fifoh
;
4873 attr
->ring_attr
.userdata
= vpath
->ringh
;
4878 if (vpath
->ringh
!= NULL
)
4879 __vxge_hw_ring_delete(vp
);
4881 if (vpath
->fifoh
!= NULL
)
4882 __vxge_hw_fifo_delete(vp
);
4886 __vxge_hw_vp_terminate(hldev
, attr
->vp_id
);
4893 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4895 * @vp: Handle got from previous vpath open
4897 * This function is used to close access to virtual path opened
4900 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle
*vp
)
4902 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
4903 struct __vxge_hw_ring
*ring
= vpath
->ringh
;
4904 struct vxgedev
*vdev
= netdev_priv(vpath
->hldev
->ndev
);
4905 u64 new_count
, val64
, val164
;
4908 new_count
= readq(&vpath
->vp_reg
->rxdmem_size
);
4909 new_count
&= 0x1fff;
4911 new_count
= ring
->config
->ring_blocks
* VXGE_HW_BLOCK_SIZE
/ 8;
4913 val164
= VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count
);
4915 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164
),
4916 &vpath
->vp_reg
->prc_rxd_doorbell
);
4917 readl(&vpath
->vp_reg
->prc_rxd_doorbell
);
4920 val64
= readq(&vpath
->vp_reg
->prc_cfg6
);
4921 val64
= VXGE_HW_PRC_CFG6_RXD_SPAT(val64
);
4925 * Each RxD is of 4 qwords
4927 new_count
-= (val64
+ 1);
4928 val64
= min(val164
, new_count
) / 4;
4930 ring
->rxds_limit
= min(ring
->rxds_limit
, val64
);
4931 if (ring
->rxds_limit
< 4)
4932 ring
->rxds_limit
= 4;
4936 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4938 * @entry: Entry of block to be freed
4940 * This function frees a block from block pool
4943 __vxge_hw_blockpool_block_free(struct __vxge_hw_device
*devh
,
4944 struct __vxge_hw_blockpool_entry
*entry
)
4946 struct __vxge_hw_blockpool
*blockpool
;
4948 blockpool
= &devh
->block_pool
;
4950 if (entry
->length
== blockpool
->block_size
) {
4951 list_add(&entry
->item
, &blockpool
->free_block_list
);
4952 blockpool
->pool_size
++;
4955 __vxge_hw_blockpool_blocks_remove(blockpool
);
4959 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4960 * This function is used to close access to virtual path opened
4963 enum vxge_hw_status
vxge_hw_vpath_close(struct __vxge_hw_vpath_handle
*vp
)
4965 struct __vxge_hw_virtualpath
*vpath
= NULL
;
4966 struct __vxge_hw_device
*devh
= NULL
;
4967 u32 vp_id
= vp
->vpath
->vp_id
;
4968 u32 is_empty
= TRUE
;
4969 enum vxge_hw_status status
= VXGE_HW_OK
;
4972 devh
= vpath
->hldev
;
4974 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
4975 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
4976 goto vpath_close_exit
;
4979 list_del(&vp
->item
);
4981 if (!list_empty(&vpath
->vpath_handles
)) {
4982 list_add(&vp
->item
, &vpath
->vpath_handles
);
4987 status
= VXGE_HW_FAIL
;
4988 goto vpath_close_exit
;
4991 devh
->vpaths_deployed
&= ~vxge_mBIT(vp_id
);
4993 if (vpath
->ringh
!= NULL
)
4994 __vxge_hw_ring_delete(vp
);
4996 if (vpath
->fifoh
!= NULL
)
4997 __vxge_hw_fifo_delete(vp
);
4999 if (vpath
->stats_block
!= NULL
)
5000 __vxge_hw_blockpool_block_free(devh
, vpath
->stats_block
);
5004 __vxge_hw_vp_terminate(devh
, vp_id
);
5011 * vxge_hw_vpath_reset - Resets vpath
5012 * This function is used to request a reset of vpath
5014 enum vxge_hw_status
vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle
*vp
)
5016 enum vxge_hw_status status
;
5018 struct __vxge_hw_virtualpath
*vpath
= vp
->vpath
;
5020 vp_id
= vpath
->vp_id
;
5022 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
5023 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
5027 status
= __vxge_hw_vpath_reset(vpath
->hldev
, vp_id
);
5028 if (status
== VXGE_HW_OK
)
5029 vpath
->sw_stats
->soft_reset_cnt
++;
5035 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5036 * This function poll's for the vpath reset completion and re initializes
5040 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle
*vp
)
5042 struct __vxge_hw_virtualpath
*vpath
= NULL
;
5043 enum vxge_hw_status status
;
5044 struct __vxge_hw_device
*hldev
;
5047 vp_id
= vp
->vpath
->vp_id
;
5049 hldev
= vpath
->hldev
;
5051 if (vpath
->vp_open
== VXGE_HW_VP_NOT_OPEN
) {
5052 status
= VXGE_HW_ERR_VPATH_NOT_OPEN
;
5056 status
= __vxge_hw_vpath_reset_check(vpath
);
5057 if (status
!= VXGE_HW_OK
)
5060 status
= __vxge_hw_vpath_sw_reset(hldev
, vp_id
);
5061 if (status
!= VXGE_HW_OK
)
5064 status
= __vxge_hw_vpath_initialize(hldev
, vp_id
);
5065 if (status
!= VXGE_HW_OK
)
5068 if (vpath
->ringh
!= NULL
)
5069 __vxge_hw_vpath_prc_configure(hldev
, vp_id
);
5071 memset(vpath
->hw_stats
, 0,
5072 sizeof(struct vxge_hw_vpath_stats_hw_info
));
5074 memset(vpath
->hw_stats_sav
, 0,
5075 sizeof(struct vxge_hw_vpath_stats_hw_info
));
5077 writeq(vpath
->stats_block
->dma_addr
,
5078 &vpath
->vp_reg
->stats_cfg
);
5080 status
= vxge_hw_vpath_stats_enable(vp
);
5087 * vxge_hw_vpath_enable - Enable vpath.
5088 * This routine clears the vpath reset thereby enabling a vpath
5089 * to start forwarding frames and generating interrupts.
5092 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle
*vp
)
5094 struct __vxge_hw_device
*hldev
;
5097 hldev
= vp
->vpath
->hldev
;
5099 val64
= VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5100 1 << (16 - vp
->vpath
->vp_id
));
5102 __vxge_hw_pio_mem_write32_upper((u32
)vxge_bVALn(val64
, 0, 32),
5103 &hldev
->common_reg
->cmn_rsthdlr_cfg1
);