gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / ethernet / neterion / vxge / vxge-config.c
blob51cd57ab3d9584d3d67508cc94aa6c9590aa11d1
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
27 offset, \
28 &val64); \
29 if (status != VXGE_HW_OK) \
30 return status; \
33 static void
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
36 u64 val64;
38 val64 = readq(&vp_reg->rxmac_vcfg0);
39 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64, &vp_reg->rxmac_vcfg0);
41 val64 = readq(&vp_reg->rxmac_vcfg0);
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
49 struct vxge_hw_vpath_reg __iomem *vp_reg;
50 struct __vxge_hw_virtualpath *vpath;
51 u64 val64, rxd_count, rxd_spat;
52 int count = 0, total_count = 0;
54 vpath = &hldev->virtual_paths[vp_id];
55 vp_reg = vpath->vp_reg;
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
64 val64 = readq(&vp_reg->prc_cfg6);
65 rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 * leg room.
69 rxd_spat *= 2;
71 do {
72 mdelay(1);
74 rxd_count = readq(&vp_reg->prc_rxd_doorbell);
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
79 val64 = readq(&vp_reg->frm_in_progress_cnt);
80 if ((rxd_count <= rxd_spat) || (val64 > 0))
81 count = 0;
82 else
83 count++;
84 total_count++;
85 } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 (total_count < VXGE_HW_MAX_POLLING_COUNT));
88 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 __func__);
92 return total_count;
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
101 int i, total_count = 0;
103 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 continue;
107 total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 break;
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
121 u64 val64;
122 u32 i = 0;
124 udelay(10);
126 do {
127 val64 = readq(reg);
128 if (!(val64 & mask))
129 return VXGE_HW_OK;
130 udelay(100);
131 } while (++i <= 9);
133 i = 0;
134 do {
135 val64 = readq(reg);
136 if (!(val64 & mask))
137 return VXGE_HW_OK;
138 mdelay(1);
139 } while (++i <= max_millis);
141 return VXGE_HW_FAIL;
144 static inline enum vxge_hw_status
145 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
146 u64 mask, u32 max_millis)
148 __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
149 wmb();
150 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
151 wmb();
153 return __vxge_hw_device_register_poll(addr, mask, max_millis);
156 static enum vxge_hw_status
157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
158 u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
159 u64 *steer_ctrl)
161 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
162 enum vxge_hw_status status;
163 u64 val64;
164 u32 retry = 0, max_retry = 3;
166 spin_lock(&vpath->lock);
167 if (!vpath->vp_open) {
168 spin_unlock(&vpath->lock);
169 max_retry = 100;
172 writeq(*data0, &vp_reg->rts_access_steer_data0);
173 writeq(*data1, &vp_reg->rts_access_steer_data1);
174 wmb();
176 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
177 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
180 *steer_ctrl;
182 status = __vxge_hw_pio_mem_write64(val64,
183 &vp_reg->rts_access_steer_ctrl,
184 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
185 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
187 /* The __vxge_hw_device_register_poll can udelay for a significant
188 * amount of time, blocking other process from the CPU. If it delays
189 * for ~5secs, a NMI error can occur. A way around this is to give up
190 * the processor via msleep, but this is not allowed is under lock.
191 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
192 * 1sec and sleep for 10ms until the firmware operation has completed
193 * or timed-out.
195 while ((status != VXGE_HW_OK) && retry++ < max_retry) {
196 if (!vpath->vp_open)
197 msleep(20);
198 status = __vxge_hw_device_register_poll(
199 &vp_reg->rts_access_steer_ctrl,
200 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
201 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
204 if (status != VXGE_HW_OK)
205 goto out;
207 val64 = readq(&vp_reg->rts_access_steer_ctrl);
208 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
209 *data0 = readq(&vp_reg->rts_access_steer_data0);
210 *data1 = readq(&vp_reg->rts_access_steer_data1);
211 *steer_ctrl = val64;
212 } else
213 status = VXGE_HW_FAIL;
215 out:
216 if (vpath->vp_open)
217 spin_unlock(&vpath->lock);
218 return status;
221 enum vxge_hw_status
222 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
223 u32 *minor, u32 *build)
225 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
226 struct __vxge_hw_virtualpath *vpath;
227 enum vxge_hw_status status;
229 vpath = &hldev->virtual_paths[hldev->first_vp_id];
231 status = vxge_hw_vpath_fw_api(vpath,
232 VXGE_HW_FW_UPGRADE_ACTION,
233 VXGE_HW_FW_UPGRADE_MEMO,
234 VXGE_HW_FW_UPGRADE_OFFSET_READ,
235 &data0, &data1, &steer_ctrl);
236 if (status != VXGE_HW_OK)
237 return status;
239 *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
240 *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
241 *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
243 return status;
246 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
248 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
249 struct __vxge_hw_virtualpath *vpath;
250 enum vxge_hw_status status;
251 u32 ret;
253 vpath = &hldev->virtual_paths[hldev->first_vp_id];
255 status = vxge_hw_vpath_fw_api(vpath,
256 VXGE_HW_FW_UPGRADE_ACTION,
257 VXGE_HW_FW_UPGRADE_MEMO,
258 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
259 &data0, &data1, &steer_ctrl);
260 if (status != VXGE_HW_OK) {
261 vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
262 goto exit;
265 ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
266 if (ret != 1) {
267 vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
268 __func__, ret);
269 status = VXGE_HW_FAIL;
272 exit:
273 return status;
276 enum vxge_hw_status
277 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
279 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
280 struct __vxge_hw_virtualpath *vpath;
281 enum vxge_hw_status status;
282 int ret_code, sec_code;
284 vpath = &hldev->virtual_paths[hldev->first_vp_id];
286 /* send upgrade start command */
287 status = vxge_hw_vpath_fw_api(vpath,
288 VXGE_HW_FW_UPGRADE_ACTION,
289 VXGE_HW_FW_UPGRADE_MEMO,
290 VXGE_HW_FW_UPGRADE_OFFSET_START,
291 &data0, &data1, &steer_ctrl);
292 if (status != VXGE_HW_OK) {
293 vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
294 __func__);
295 return status;
298 /* Transfer fw image to adapter 16 bytes at a time */
299 for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
300 steer_ctrl = 0;
302 /* The next 128bits of fwdata to be loaded onto the adapter */
303 data0 = *((u64 *)fwdata);
304 data1 = *((u64 *)fwdata + 1);
306 status = vxge_hw_vpath_fw_api(vpath,
307 VXGE_HW_FW_UPGRADE_ACTION,
308 VXGE_HW_FW_UPGRADE_MEMO,
309 VXGE_HW_FW_UPGRADE_OFFSET_SEND,
310 &data0, &data1, &steer_ctrl);
311 if (status != VXGE_HW_OK) {
312 vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
313 __func__);
314 goto out;
317 ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
318 switch (ret_code) {
319 case VXGE_HW_FW_UPGRADE_OK:
320 /* All OK, send next 16 bytes. */
321 break;
322 case VXGE_FW_UPGRADE_BYTES2SKIP:
323 /* skip bytes in the stream */
324 fwdata += (data0 >> 8) & 0xFFFFFFFF;
325 break;
326 case VXGE_HW_FW_UPGRADE_DONE:
327 goto out;
328 case VXGE_HW_FW_UPGRADE_ERR:
329 sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
330 switch (sec_code) {
331 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
333 printk(KERN_ERR
334 "corrupted data from .ncf file\n");
335 break;
336 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
341 printk(KERN_ERR "invalid .ncf file\n");
342 break;
343 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
344 printk(KERN_ERR "buffer overflow\n");
345 break;
346 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
347 printk(KERN_ERR "failed to flash the image\n");
348 break;
349 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
350 printk(KERN_ERR
351 "generic error. Unknown error type\n");
352 break;
353 default:
354 printk(KERN_ERR "Unknown error of type %d\n",
355 sec_code);
356 break;
358 status = VXGE_HW_FAIL;
359 goto out;
360 default:
361 printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
362 status = VXGE_HW_FAIL;
363 goto out;
365 /* point to next 16 bytes */
366 fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
368 out:
369 return status;
372 enum vxge_hw_status
373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
374 struct eprom_image *img)
376 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
377 struct __vxge_hw_virtualpath *vpath;
378 enum vxge_hw_status status;
379 int i;
381 vpath = &hldev->virtual_paths[hldev->first_vp_id];
383 for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
384 data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
385 data1 = steer_ctrl = 0;
387 status = vxge_hw_vpath_fw_api(vpath,
388 VXGE_HW_FW_API_GET_EPROM_REV,
389 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
390 0, &data0, &data1, &steer_ctrl);
391 if (status != VXGE_HW_OK)
392 break;
394 img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
395 img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
396 img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
397 img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
400 return status;
404 * __vxge_hw_channel_free - Free memory allocated for channel
405 * This function deallocates memory from the channel and various arrays
406 * in the channel
408 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
410 kfree(channel->work_arr);
411 kfree(channel->free_arr);
412 kfree(channel->reserve_arr);
413 kfree(channel->orig_arr);
414 kfree(channel);
418 * __vxge_hw_channel_initialize - Initialize a channel
419 * This function initializes a channel by properly setting the
420 * various references
422 static enum vxge_hw_status
423 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
425 u32 i;
426 struct __vxge_hw_virtualpath *vpath;
428 vpath = channel->vph->vpath;
430 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
431 for (i = 0; i < channel->length; i++)
432 channel->orig_arr[i] = channel->reserve_arr[i];
435 switch (channel->type) {
436 case VXGE_HW_CHANNEL_TYPE_FIFO:
437 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
438 channel->stats = &((struct __vxge_hw_fifo *)
439 channel)->stats->common_stats;
440 break;
441 case VXGE_HW_CHANNEL_TYPE_RING:
442 vpath->ringh = (struct __vxge_hw_ring *)channel;
443 channel->stats = &((struct __vxge_hw_ring *)
444 channel)->stats->common_stats;
445 break;
446 default:
447 break;
450 return VXGE_HW_OK;
454 * __vxge_hw_channel_reset - Resets a channel
455 * This function resets a channel by properly setting the various references
457 static enum vxge_hw_status
458 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
460 u32 i;
462 for (i = 0; i < channel->length; i++) {
463 if (channel->reserve_arr != NULL)
464 channel->reserve_arr[i] = channel->orig_arr[i];
465 if (channel->free_arr != NULL)
466 channel->free_arr[i] = NULL;
467 if (channel->work_arr != NULL)
468 channel->work_arr[i] = NULL;
470 channel->free_ptr = channel->length;
471 channel->reserve_ptr = channel->length;
472 channel->reserve_top = 0;
473 channel->post_index = 0;
474 channel->compl_index = 0;
476 return VXGE_HW_OK;
480 * __vxge_hw_device_pci_e_init
481 * Initialize certain PCI/PCI-X configuration registers
482 * with recommended values. Save config space for future hw resets.
484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
486 u16 cmd = 0;
488 /* Set the PErr Repconse bit and SERR in PCI command register. */
489 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
490 cmd |= 0x140;
491 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
493 pci_save_state(hldev->pdev);
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
497 * in progress
498 * This routine checks the vpath reset in progress register is turned zero
500 static enum vxge_hw_status
501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
503 enum vxge_hw_status status;
504 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
505 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
507 return status;
511 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512 * Set the swapper bits appropriately for the lagacy section.
514 static enum vxge_hw_status
515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
517 u64 val64;
518 enum vxge_hw_status status = VXGE_HW_OK;
520 val64 = readq(&legacy_reg->toc_swapper_fb);
522 wmb();
524 switch (val64) {
525 case VXGE_HW_SWAPPER_INITIAL_VALUE:
526 return status;
528 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
529 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
530 &legacy_reg->pifm_rd_swap_en);
531 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
532 &legacy_reg->pifm_rd_flip_en);
533 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
534 &legacy_reg->pifm_wr_swap_en);
535 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
536 &legacy_reg->pifm_wr_flip_en);
537 break;
539 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
540 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
541 &legacy_reg->pifm_rd_swap_en);
542 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
543 &legacy_reg->pifm_wr_swap_en);
544 break;
546 case VXGE_HW_SWAPPER_BIT_FLIPPED:
547 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
548 &legacy_reg->pifm_rd_flip_en);
549 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
550 &legacy_reg->pifm_wr_flip_en);
551 break;
554 wmb();
556 val64 = readq(&legacy_reg->toc_swapper_fb);
558 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
559 status = VXGE_HW_ERR_SWAPPER_CTRL;
561 return status;
565 * __vxge_hw_device_toc_get
566 * This routine sets the swapper and reads the toc pointer and returns the
567 * memory mapped address of the toc
569 static struct vxge_hw_toc_reg __iomem *
570 __vxge_hw_device_toc_get(void __iomem *bar0)
572 u64 val64;
573 struct vxge_hw_toc_reg __iomem *toc = NULL;
574 enum vxge_hw_status status;
576 struct vxge_hw_legacy_reg __iomem *legacy_reg =
577 (struct vxge_hw_legacy_reg __iomem *)bar0;
579 status = __vxge_hw_legacy_swapper_set(legacy_reg);
580 if (status != VXGE_HW_OK)
581 goto exit;
583 val64 = readq(&legacy_reg->toc_first_pointer);
584 toc = bar0 + val64;
585 exit:
586 return toc;
590 * __vxge_hw_device_reg_addr_get
591 * This routine sets the swapper and reads the toc pointer and initializes the
592 * register location pointers in the device object. It waits until the ric is
593 * completed initializing registers.
595 static enum vxge_hw_status
596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
598 u64 val64;
599 u32 i;
600 enum vxge_hw_status status = VXGE_HW_OK;
602 hldev->legacy_reg = hldev->bar0;
604 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
605 if (hldev->toc_reg == NULL) {
606 status = VXGE_HW_FAIL;
607 goto exit;
610 val64 = readq(&hldev->toc_reg->toc_common_pointer);
611 hldev->common_reg = hldev->bar0 + val64;
613 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
614 hldev->mrpcim_reg = hldev->bar0 + val64;
616 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
617 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
618 hldev->srpcim_reg[i] = hldev->bar0 + val64;
621 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
622 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
623 hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
626 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
627 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
628 hldev->vpath_reg[i] = hldev->bar0 + val64;
631 val64 = readq(&hldev->toc_reg->toc_kdfc);
633 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
634 case 0:
635 hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
636 break;
637 default:
638 break;
641 status = __vxge_hw_device_vpath_reset_in_prog_check(
642 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
643 exit:
644 return status;
648 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649 * This routine returns the Access Rights of the driver
651 static u32
652 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
654 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
656 switch (host_type) {
657 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
658 if (func_id == 0) {
659 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
660 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
662 break;
663 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
664 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
665 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
666 break;
667 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
668 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
670 break;
671 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
672 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
673 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
674 break;
675 case VXGE_HW_SR_VH_FUNCTION0:
676 case VXGE_HW_VH_NORMAL_FUNCTION:
677 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
678 break;
681 return access_rights;
684 * __vxge_hw_device_is_privilaged
685 * This routine checks if the device function is privilaged or not
688 enum vxge_hw_status
689 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
691 if (__vxge_hw_device_access_rights_get(host_type,
692 func_id) &
693 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
694 return VXGE_HW_OK;
695 else
696 return VXGE_HW_ERR_PRIVILEGED_OPERATION;
700 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701 * Returns the function number of the vpath.
703 static u32
704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
706 u64 val64;
708 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
710 return
711 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
715 * __vxge_hw_device_host_info_get
716 * This routine returns the host type assignments
718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
720 u64 val64;
721 u32 i;
723 val64 = readq(&hldev->common_reg->host_type_assignments);
725 hldev->host_type =
726 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
728 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
730 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
731 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
732 continue;
734 hldev->func_id =
735 __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
737 hldev->access_rights = __vxge_hw_device_access_rights_get(
738 hldev->host_type, hldev->func_id);
740 hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
741 hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
743 hldev->first_vp_id = i;
744 break;
749 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750 * link width and signalling rate.
752 static enum vxge_hw_status
753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
755 struct pci_dev *dev = hldev->pdev;
756 u16 lnk;
758 /* Get the negotiated link width and speed from PCI config space */
759 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
761 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
762 return VXGE_HW_ERR_INVALID_PCI_INFO;
764 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
765 case PCIE_LNK_WIDTH_RESRV:
766 case PCIE_LNK_X1:
767 case PCIE_LNK_X2:
768 case PCIE_LNK_X4:
769 case PCIE_LNK_X8:
770 break;
771 default:
772 return VXGE_HW_ERR_INVALID_PCI_INFO;
775 return VXGE_HW_OK;
779 * __vxge_hw_device_initialize
780 * Initialize Titan-V hardware.
782 static enum vxge_hw_status
783 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
785 enum vxge_hw_status status = VXGE_HW_OK;
787 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
788 hldev->func_id)) {
789 /* Validate the pci-e link width and speed */
790 status = __vxge_hw_verify_pci_e_info(hldev);
791 if (status != VXGE_HW_OK)
792 goto exit;
795 exit:
796 return status;
800 * __vxge_hw_vpath_fw_ver_get - Get the fw version
801 * Returns FW Version
803 static enum vxge_hw_status
804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
805 struct vxge_hw_device_hw_info *hw_info)
807 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
808 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
809 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
810 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
811 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
812 enum vxge_hw_status status;
814 status = vxge_hw_vpath_fw_api(vpath,
815 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
816 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
817 0, &data0, &data1, &steer_ctrl);
818 if (status != VXGE_HW_OK)
819 goto exit;
821 fw_date->day =
822 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
823 fw_date->month =
824 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
825 fw_date->year =
826 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
828 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
829 fw_date->month, fw_date->day, fw_date->year);
831 fw_version->major =
832 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
833 fw_version->minor =
834 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
835 fw_version->build =
836 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
838 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
839 fw_version->major, fw_version->minor, fw_version->build);
841 flash_date->day =
842 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
843 flash_date->month =
844 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
845 flash_date->year =
846 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
848 snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
849 flash_date->month, flash_date->day, flash_date->year);
851 flash_version->major =
852 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
853 flash_version->minor =
854 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
855 flash_version->build =
856 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
858 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
859 flash_version->major, flash_version->minor,
860 flash_version->build);
862 exit:
863 return status;
867 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868 * part number and product description.
870 static enum vxge_hw_status
871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
872 struct vxge_hw_device_hw_info *hw_info)
874 enum vxge_hw_status status;
875 u64 data0, data1 = 0, steer_ctrl = 0;
876 u8 *serial_number = hw_info->serial_number;
877 u8 *part_number = hw_info->part_number;
878 u8 *product_desc = hw_info->product_desc;
879 u32 i, j = 0;
881 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
883 status = vxge_hw_vpath_fw_api(vpath,
884 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
885 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
886 0, &data0, &data1, &steer_ctrl);
887 if (status != VXGE_HW_OK)
888 return status;
890 ((u64 *)serial_number)[0] = be64_to_cpu(data0);
891 ((u64 *)serial_number)[1] = be64_to_cpu(data1);
893 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
894 data1 = steer_ctrl = 0;
896 status = vxge_hw_vpath_fw_api(vpath,
897 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
898 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
899 0, &data0, &data1, &steer_ctrl);
900 if (status != VXGE_HW_OK)
901 return status;
903 ((u64 *)part_number)[0] = be64_to_cpu(data0);
904 ((u64 *)part_number)[1] = be64_to_cpu(data1);
906 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
907 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
908 data0 = i;
909 data1 = steer_ctrl = 0;
911 status = vxge_hw_vpath_fw_api(vpath,
912 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
913 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
914 0, &data0, &data1, &steer_ctrl);
915 if (status != VXGE_HW_OK)
916 return status;
918 ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
919 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
922 return status;
926 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927 * Returns pci function mode
929 static enum vxge_hw_status
930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
931 struct vxge_hw_device_hw_info *hw_info)
933 u64 data0, data1 = 0, steer_ctrl = 0;
934 enum vxge_hw_status status;
936 data0 = 0;
938 status = vxge_hw_vpath_fw_api(vpath,
939 VXGE_HW_FW_API_GET_FUNC_MODE,
940 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
941 0, &data0, &data1, &steer_ctrl);
942 if (status != VXGE_HW_OK)
943 return status;
945 hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
946 return status;
950 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951 * from MAC address table.
953 static enum vxge_hw_status
954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
955 u8 *macaddr, u8 *macaddr_mask)
957 u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
958 data0 = 0, data1 = 0, steer_ctrl = 0;
959 enum vxge_hw_status status;
960 int i;
962 do {
963 status = vxge_hw_vpath_fw_api(vpath, action,
964 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
965 0, &data0, &data1, &steer_ctrl);
966 if (status != VXGE_HW_OK)
967 goto exit;
969 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
970 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
971 data1);
973 for (i = ETH_ALEN; i > 0; i--) {
974 macaddr[i - 1] = (u8) (data0 & 0xFF);
975 data0 >>= 8;
977 macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
978 data1 >>= 8;
981 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
982 data0 = 0, data1 = 0, steer_ctrl = 0;
984 } while (!is_valid_ether_addr(macaddr));
985 exit:
986 return status;
990 * vxge_hw_device_hw_info_get - Get the hw information
991 * Returns the vpath mask that has the bits set for each vpath allocated
992 * for the driver, FW version information, and the first mac address for
993 * each vpath
995 enum vxge_hw_status
996 vxge_hw_device_hw_info_get(void __iomem *bar0,
997 struct vxge_hw_device_hw_info *hw_info)
999 u32 i;
1000 u64 val64;
1001 struct vxge_hw_toc_reg __iomem *toc;
1002 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1003 struct vxge_hw_common_reg __iomem *common_reg;
1004 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1005 enum vxge_hw_status status;
1006 struct __vxge_hw_virtualpath vpath;
1008 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1010 toc = __vxge_hw_device_toc_get(bar0);
1011 if (toc == NULL) {
1012 status = VXGE_HW_ERR_CRITICAL;
1013 goto exit;
1016 val64 = readq(&toc->toc_common_pointer);
1017 common_reg = bar0 + val64;
1019 status = __vxge_hw_device_vpath_reset_in_prog_check(
1020 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
1021 if (status != VXGE_HW_OK)
1022 goto exit;
1024 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1026 val64 = readq(&common_reg->host_type_assignments);
1028 hw_info->host_type =
1029 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1031 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1032 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1033 continue;
1035 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1037 vpmgmt_reg = bar0 + val64;
1039 hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1040 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1041 hw_info->func_id) &
1042 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1044 val64 = readq(&toc->toc_mrpcim_pointer);
1046 mrpcim_reg = bar0 + val64;
1048 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1049 wmb();
1052 val64 = readq(&toc->toc_vpath_pointer[i]);
1054 spin_lock_init(&vpath.lock);
1055 vpath.vp_reg = bar0 + val64;
1056 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1058 status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1059 if (status != VXGE_HW_OK)
1060 goto exit;
1062 status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1063 if (status != VXGE_HW_OK)
1064 goto exit;
1066 status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1067 if (status != VXGE_HW_OK)
1068 goto exit;
1070 break;
1073 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1074 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1075 continue;
1077 val64 = readq(&toc->toc_vpath_pointer[i]);
1078 vpath.vp_reg = bar0 + val64;
1079 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1081 status = __vxge_hw_vpath_addr_get(&vpath,
1082 hw_info->mac_addrs[i],
1083 hw_info->mac_addr_masks[i]);
1084 if (status != VXGE_HW_OK)
1085 goto exit;
1087 exit:
1088 return status;
1092 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1094 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1096 struct __vxge_hw_device *hldev;
1097 struct list_head *p, *n;
1099 if (!blockpool)
1100 return;
1102 hldev = blockpool->hldev;
1104 list_for_each_safe(p, n, &blockpool->free_block_list) {
1105 pci_unmap_single(hldev->pdev,
1106 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1107 ((struct __vxge_hw_blockpool_entry *)p)->length,
1108 PCI_DMA_BIDIRECTIONAL);
1110 vxge_os_dma_free(hldev->pdev,
1111 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
1112 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1114 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1115 kfree(p);
1116 blockpool->pool_size--;
1119 list_for_each_safe(p, n, &blockpool->free_entry_list) {
1120 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1121 kfree((void *)p);
1124 return;
1128 * __vxge_hw_blockpool_create - Create block pool
1130 static enum vxge_hw_status
1131 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1132 struct __vxge_hw_blockpool *blockpool,
1133 u32 pool_size,
1134 u32 pool_max)
1136 u32 i;
1137 struct __vxge_hw_blockpool_entry *entry = NULL;
1138 void *memblock;
1139 dma_addr_t dma_addr;
1140 struct pci_dev *dma_handle;
1141 struct pci_dev *acc_handle;
1142 enum vxge_hw_status status = VXGE_HW_OK;
1144 if (blockpool == NULL) {
1145 status = VXGE_HW_FAIL;
1146 goto blockpool_create_exit;
1149 blockpool->hldev = hldev;
1150 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1151 blockpool->pool_size = 0;
1152 blockpool->pool_max = pool_max;
1153 blockpool->req_out = 0;
1155 INIT_LIST_HEAD(&blockpool->free_block_list);
1156 INIT_LIST_HEAD(&blockpool->free_entry_list);
1158 for (i = 0; i < pool_size + pool_max; i++) {
1159 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1160 GFP_KERNEL);
1161 if (entry == NULL) {
1162 __vxge_hw_blockpool_destroy(blockpool);
1163 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1164 goto blockpool_create_exit;
1166 list_add(&entry->item, &blockpool->free_entry_list);
1169 for (i = 0; i < pool_size; i++) {
1170 memblock = vxge_os_dma_malloc(
1171 hldev->pdev,
1172 VXGE_HW_BLOCK_SIZE,
1173 &dma_handle,
1174 &acc_handle);
1175 if (memblock == NULL) {
1176 __vxge_hw_blockpool_destroy(blockpool);
1177 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1178 goto blockpool_create_exit;
1181 dma_addr = pci_map_single(hldev->pdev, memblock,
1182 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1183 if (unlikely(pci_dma_mapping_error(hldev->pdev,
1184 dma_addr))) {
1185 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1186 __vxge_hw_blockpool_destroy(blockpool);
1187 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1188 goto blockpool_create_exit;
1191 if (!list_empty(&blockpool->free_entry_list))
1192 entry = (struct __vxge_hw_blockpool_entry *)
1193 list_first_entry(&blockpool->free_entry_list,
1194 struct __vxge_hw_blockpool_entry,
1195 item);
1197 if (entry == NULL)
1198 entry =
1199 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1200 GFP_KERNEL);
1201 if (entry != NULL) {
1202 list_del(&entry->item);
1203 entry->length = VXGE_HW_BLOCK_SIZE;
1204 entry->memblock = memblock;
1205 entry->dma_addr = dma_addr;
1206 entry->acc_handle = acc_handle;
1207 entry->dma_handle = dma_handle;
1208 list_add(&entry->item,
1209 &blockpool->free_block_list);
1210 blockpool->pool_size++;
1211 } else {
1212 __vxge_hw_blockpool_destroy(blockpool);
1213 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1214 goto blockpool_create_exit;
1218 blockpool_create_exit:
1219 return status;
1223 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1224 * Check the fifo configuration
1226 static enum vxge_hw_status
1227 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1229 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1230 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1231 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1233 return VXGE_HW_OK;
1237 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1238 * Check the vpath configuration
1240 static enum vxge_hw_status
1241 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1243 enum vxge_hw_status status;
1245 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1246 (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
1247 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1249 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1250 if (status != VXGE_HW_OK)
1251 return status;
1253 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1254 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1255 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1256 return VXGE_HW_BADCFG_VPATH_MTU;
1258 if ((vp_config->rpa_strip_vlan_tag !=
1259 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1260 (vp_config->rpa_strip_vlan_tag !=
1261 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1262 (vp_config->rpa_strip_vlan_tag !=
1263 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1264 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1266 return VXGE_HW_OK;
1270 * __vxge_hw_device_config_check - Check device configuration.
1271 * Check the device configuration
1273 static enum vxge_hw_status
1274 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1276 u32 i;
1277 enum vxge_hw_status status;
1279 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1280 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1281 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1282 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1283 return VXGE_HW_BADCFG_INTR_MODE;
1285 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1286 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1287 return VXGE_HW_BADCFG_RTS_MAC_EN;
1289 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1290 status = __vxge_hw_device_vpath_config_check(
1291 &new_config->vp_config[i]);
1292 if (status != VXGE_HW_OK)
1293 return status;
1296 return VXGE_HW_OK;
1300 * vxge_hw_device_initialize - Initialize Titan device.
1301 * Initialize Titan device. Note that all the arguments of this public API
1302 * are 'IN', including @hldev. Driver cooperates with
1303 * OS to find new Titan device, locate its PCI and memory spaces.
1305 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1306 * to enable the latter to perform Titan hardware initialization.
1308 enum vxge_hw_status
1309 vxge_hw_device_initialize(
1310 struct __vxge_hw_device **devh,
1311 struct vxge_hw_device_attr *attr,
1312 struct vxge_hw_device_config *device_config)
1314 u32 i;
1315 u32 nblocks = 0;
1316 struct __vxge_hw_device *hldev = NULL;
1317 enum vxge_hw_status status = VXGE_HW_OK;
1319 status = __vxge_hw_device_config_check(device_config);
1320 if (status != VXGE_HW_OK)
1321 goto exit;
1323 hldev = vzalloc(sizeof(struct __vxge_hw_device));
1324 if (hldev == NULL) {
1325 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1326 goto exit;
1329 hldev->magic = VXGE_HW_DEVICE_MAGIC;
1331 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1333 /* apply config */
1334 memcpy(&hldev->config, device_config,
1335 sizeof(struct vxge_hw_device_config));
1337 hldev->bar0 = attr->bar0;
1338 hldev->pdev = attr->pdev;
1340 hldev->uld_callbacks = attr->uld_callbacks;
1342 __vxge_hw_device_pci_e_init(hldev);
1344 status = __vxge_hw_device_reg_addr_get(hldev);
1345 if (status != VXGE_HW_OK) {
1346 vfree(hldev);
1347 goto exit;
1350 __vxge_hw_device_host_info_get(hldev);
1352 /* Incrementing for stats blocks */
1353 nblocks++;
1355 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1356 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1357 continue;
1359 if (device_config->vp_config[i].ring.enable ==
1360 VXGE_HW_RING_ENABLE)
1361 nblocks += device_config->vp_config[i].ring.ring_blocks;
1363 if (device_config->vp_config[i].fifo.enable ==
1364 VXGE_HW_FIFO_ENABLE)
1365 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1366 nblocks++;
1369 if (__vxge_hw_blockpool_create(hldev,
1370 &hldev->block_pool,
1371 device_config->dma_blockpool_initial + nblocks,
1372 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1374 vxge_hw_device_terminate(hldev);
1375 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1376 goto exit;
1379 status = __vxge_hw_device_initialize(hldev);
1380 if (status != VXGE_HW_OK) {
1381 vxge_hw_device_terminate(hldev);
1382 goto exit;
1385 *devh = hldev;
1386 exit:
1387 return status;
1391 * vxge_hw_device_terminate - Terminate Titan device.
1392 * Terminate HW device.
1394 void
1395 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1397 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1399 hldev->magic = VXGE_HW_DEVICE_DEAD;
1400 __vxge_hw_blockpool_destroy(&hldev->block_pool);
1401 vfree(hldev);
1405 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1406 * and offset and perform an operation
1408 static enum vxge_hw_status
1409 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1410 u32 operation, u32 offset, u64 *stat)
1412 u64 val64;
1413 enum vxge_hw_status status = VXGE_HW_OK;
1414 struct vxge_hw_vpath_reg __iomem *vp_reg;
1416 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1417 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1418 goto vpath_stats_access_exit;
1421 vp_reg = vpath->vp_reg;
1423 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1424 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1425 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1427 status = __vxge_hw_pio_mem_write64(val64,
1428 &vp_reg->xmac_stats_access_cmd,
1429 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1430 vpath->hldev->config.device_poll_millis);
1431 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1432 *stat = readq(&vp_reg->xmac_stats_access_data);
1433 else
1434 *stat = 0;
1436 vpath_stats_access_exit:
1437 return status;
1441 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1443 static enum vxge_hw_status
1444 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1445 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1447 u64 *val64;
1448 int i;
1449 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1450 enum vxge_hw_status status = VXGE_HW_OK;
1452 val64 = (u64 *)vpath_tx_stats;
1454 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1455 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1456 goto exit;
1459 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1460 status = __vxge_hw_vpath_stats_access(vpath,
1461 VXGE_HW_STATS_OP_READ,
1462 offset, val64);
1463 if (status != VXGE_HW_OK)
1464 goto exit;
1465 offset++;
1466 val64++;
1468 exit:
1469 return status;
1473 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1475 static enum vxge_hw_status
1476 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1477 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1479 u64 *val64;
1480 enum vxge_hw_status status = VXGE_HW_OK;
1481 int i;
1482 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1483 val64 = (u64 *) vpath_rx_stats;
1485 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1486 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1487 goto exit;
1489 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1490 status = __vxge_hw_vpath_stats_access(vpath,
1491 VXGE_HW_STATS_OP_READ,
1492 offset >> 3, val64);
1493 if (status != VXGE_HW_OK)
1494 goto exit;
1496 offset += 8;
1497 val64++;
1499 exit:
1500 return status;
1504 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1506 static enum vxge_hw_status
1507 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1508 struct vxge_hw_vpath_stats_hw_info *hw_stats)
1510 u64 val64;
1511 enum vxge_hw_status status = VXGE_HW_OK;
1512 struct vxge_hw_vpath_reg __iomem *vp_reg;
1514 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1515 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1516 goto exit;
1518 vp_reg = vpath->vp_reg;
1520 val64 = readq(&vp_reg->vpath_debug_stats0);
1521 hw_stats->ini_num_mwr_sent =
1522 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1524 val64 = readq(&vp_reg->vpath_debug_stats1);
1525 hw_stats->ini_num_mrd_sent =
1526 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1528 val64 = readq(&vp_reg->vpath_debug_stats2);
1529 hw_stats->ini_num_cpl_rcvd =
1530 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1532 val64 = readq(&vp_reg->vpath_debug_stats3);
1533 hw_stats->ini_num_mwr_byte_sent =
1534 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1536 val64 = readq(&vp_reg->vpath_debug_stats4);
1537 hw_stats->ini_num_cpl_byte_rcvd =
1538 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1540 val64 = readq(&vp_reg->vpath_debug_stats5);
1541 hw_stats->wrcrdtarb_xoff =
1542 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1544 val64 = readq(&vp_reg->vpath_debug_stats6);
1545 hw_stats->rdcrdtarb_xoff =
1546 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1548 val64 = readq(&vp_reg->vpath_genstats_count01);
1549 hw_stats->vpath_genstats_count0 =
1550 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1551 val64);
1553 val64 = readq(&vp_reg->vpath_genstats_count01);
1554 hw_stats->vpath_genstats_count1 =
1555 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1556 val64);
1558 val64 = readq(&vp_reg->vpath_genstats_count23);
1559 hw_stats->vpath_genstats_count2 =
1560 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1561 val64);
1563 val64 = readq(&vp_reg->vpath_genstats_count01);
1564 hw_stats->vpath_genstats_count3 =
1565 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1566 val64);
1568 val64 = readq(&vp_reg->vpath_genstats_count4);
1569 hw_stats->vpath_genstats_count4 =
1570 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1571 val64);
1573 val64 = readq(&vp_reg->vpath_genstats_count5);
1574 hw_stats->vpath_genstats_count5 =
1575 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1576 val64);
1578 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1579 if (status != VXGE_HW_OK)
1580 goto exit;
1582 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1583 if (status != VXGE_HW_OK)
1584 goto exit;
1586 VXGE_HW_VPATH_STATS_PIO_READ(
1587 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1589 hw_stats->prog_event_vnum0 =
1590 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1592 hw_stats->prog_event_vnum1 =
1593 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1595 VXGE_HW_VPATH_STATS_PIO_READ(
1596 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1598 hw_stats->prog_event_vnum2 =
1599 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1601 hw_stats->prog_event_vnum3 =
1602 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1604 val64 = readq(&vp_reg->rx_multi_cast_stats);
1605 hw_stats->rx_multi_cast_frame_discard =
1606 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1608 val64 = readq(&vp_reg->rx_frm_transferred);
1609 hw_stats->rx_frm_transferred =
1610 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1612 val64 = readq(&vp_reg->rxd_returned);
1613 hw_stats->rxd_returned =
1614 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1616 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1617 hw_stats->rx_mpa_len_fail_frms =
1618 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1619 hw_stats->rx_mpa_mrk_fail_frms =
1620 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1621 hw_stats->rx_mpa_crc_fail_frms =
1622 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1624 val64 = readq(&vp_reg->dbg_stats_rx_fau);
1625 hw_stats->rx_permitted_frms =
1626 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1627 hw_stats->rx_vp_reset_discarded_frms =
1628 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1629 hw_stats->rx_wol_frms =
1630 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1632 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1633 hw_stats->tx_vp_reset_discarded_frms =
1634 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1635 val64);
1636 exit:
1637 return status;
1641 * vxge_hw_device_stats_get - Get the device hw statistics.
1642 * Returns the vpath h/w stats for the device.
1644 enum vxge_hw_status
1645 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1646 struct vxge_hw_device_stats_hw_info *hw_stats)
1648 u32 i;
1649 enum vxge_hw_status status = VXGE_HW_OK;
1651 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1652 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1653 (hldev->virtual_paths[i].vp_open ==
1654 VXGE_HW_VP_NOT_OPEN))
1655 continue;
1657 memcpy(hldev->virtual_paths[i].hw_stats_sav,
1658 hldev->virtual_paths[i].hw_stats,
1659 sizeof(struct vxge_hw_vpath_stats_hw_info));
1661 status = __vxge_hw_vpath_stats_get(
1662 &hldev->virtual_paths[i],
1663 hldev->virtual_paths[i].hw_stats);
1666 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1667 sizeof(struct vxge_hw_device_stats_hw_info));
1669 return status;
1673 * vxge_hw_driver_stats_get - Get the device sw statistics.
1674 * Returns the vpath s/w stats for the device.
1676 enum vxge_hw_status vxge_hw_driver_stats_get(
1677 struct __vxge_hw_device *hldev,
1678 struct vxge_hw_device_stats_sw_info *sw_stats)
1680 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1681 sizeof(struct vxge_hw_device_stats_sw_info));
1683 return VXGE_HW_OK;
1687 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1688 * and offset and perform an operation
1689 * Get the statistics from the given location and offset.
1691 enum vxge_hw_status
1692 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1693 u32 operation, u32 location, u32 offset, u64 *stat)
1695 u64 val64;
1696 enum vxge_hw_status status = VXGE_HW_OK;
1698 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1699 hldev->func_id);
1700 if (status != VXGE_HW_OK)
1701 goto exit;
1703 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1704 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1705 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1706 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1708 status = __vxge_hw_pio_mem_write64(val64,
1709 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
1710 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1711 hldev->config.device_poll_millis);
1713 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1714 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1715 else
1716 *stat = 0;
1717 exit:
1718 return status;
1722 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1723 * Get the Statistics on aggregate port
1725 static enum vxge_hw_status
1726 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1727 struct vxge_hw_xmac_aggr_stats *aggr_stats)
1729 u64 *val64;
1730 int i;
1731 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1732 enum vxge_hw_status status = VXGE_HW_OK;
1734 val64 = (u64 *)aggr_stats;
1736 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1737 hldev->func_id);
1738 if (status != VXGE_HW_OK)
1739 goto exit;
1741 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1742 status = vxge_hw_mrpcim_stats_access(hldev,
1743 VXGE_HW_STATS_OP_READ,
1744 VXGE_HW_STATS_LOC_AGGR,
1745 ((offset + (104 * port)) >> 3), val64);
1746 if (status != VXGE_HW_OK)
1747 goto exit;
1749 offset += 8;
1750 val64++;
1752 exit:
1753 return status;
1757 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1758 * Get the Statistics on port
1760 static enum vxge_hw_status
1761 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1762 struct vxge_hw_xmac_port_stats *port_stats)
1764 u64 *val64;
1765 enum vxge_hw_status status = VXGE_HW_OK;
1766 int i;
1767 u32 offset = 0x0;
1768 val64 = (u64 *) port_stats;
1770 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1771 hldev->func_id);
1772 if (status != VXGE_HW_OK)
1773 goto exit;
1775 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1776 status = vxge_hw_mrpcim_stats_access(hldev,
1777 VXGE_HW_STATS_OP_READ,
1778 VXGE_HW_STATS_LOC_AGGR,
1779 ((offset + (608 * port)) >> 3), val64);
1780 if (status != VXGE_HW_OK)
1781 goto exit;
1783 offset += 8;
1784 val64++;
1787 exit:
1788 return status;
1792 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1793 * Get the XMAC Statistics
1795 enum vxge_hw_status
1796 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1797 struct vxge_hw_xmac_stats *xmac_stats)
1799 enum vxge_hw_status status = VXGE_HW_OK;
1800 u32 i;
1802 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1803 0, &xmac_stats->aggr_stats[0]);
1804 if (status != VXGE_HW_OK)
1805 goto exit;
1807 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1808 1, &xmac_stats->aggr_stats[1]);
1809 if (status != VXGE_HW_OK)
1810 goto exit;
1812 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1814 status = vxge_hw_device_xmac_port_stats_get(hldev,
1815 i, &xmac_stats->port_stats[i]);
1816 if (status != VXGE_HW_OK)
1817 goto exit;
1820 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1822 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1823 continue;
1825 status = __vxge_hw_vpath_xmac_tx_stats_get(
1826 &hldev->virtual_paths[i],
1827 &xmac_stats->vpath_tx_stats[i]);
1828 if (status != VXGE_HW_OK)
1829 goto exit;
1831 status = __vxge_hw_vpath_xmac_rx_stats_get(
1832 &hldev->virtual_paths[i],
1833 &xmac_stats->vpath_rx_stats[i]);
1834 if (status != VXGE_HW_OK)
1835 goto exit;
1837 exit:
1838 return status;
1842 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1843 * This routine is used to dynamically change the debug output
1845 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1846 enum vxge_debug_level level, u32 mask)
1848 if (hldev == NULL)
1849 return;
1851 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1852 defined(VXGE_DEBUG_ERR_MASK)
1853 hldev->debug_module_mask = mask;
1854 hldev->debug_level = level;
1855 #endif
1857 #if defined(VXGE_DEBUG_ERR_MASK)
1858 hldev->level_err = level & VXGE_ERR;
1859 #endif
1861 #if defined(VXGE_DEBUG_TRACE_MASK)
1862 hldev->level_trace = level & VXGE_TRACE;
1863 #endif
1867 * vxge_hw_device_error_level_get - Get the error level
1868 * This routine returns the current error level set
1870 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1872 #if defined(VXGE_DEBUG_ERR_MASK)
1873 if (hldev == NULL)
1874 return VXGE_ERR;
1875 else
1876 return hldev->level_err;
1877 #else
1878 return 0;
1879 #endif
1883 * vxge_hw_device_trace_level_get - Get the trace level
1884 * This routine returns the current trace level set
1886 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1888 #if defined(VXGE_DEBUG_TRACE_MASK)
1889 if (hldev == NULL)
1890 return VXGE_TRACE;
1891 else
1892 return hldev->level_trace;
1893 #else
1894 return 0;
1895 #endif
1899 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1900 * Returns the Pause frame generation and reception capability of the NIC.
1902 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1903 u32 port, u32 *tx, u32 *rx)
1905 u64 val64;
1906 enum vxge_hw_status status = VXGE_HW_OK;
1908 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1909 status = VXGE_HW_ERR_INVALID_DEVICE;
1910 goto exit;
1913 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1914 status = VXGE_HW_ERR_INVALID_PORT;
1915 goto exit;
1918 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1919 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
1920 goto exit;
1923 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1924 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1925 *tx = 1;
1926 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1927 *rx = 1;
1928 exit:
1929 return status;
1933 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1934 * It can be used to set or reset Pause frame generation or reception
1935 * support of the NIC.
1937 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1938 u32 port, u32 tx, u32 rx)
1940 u64 val64;
1941 enum vxge_hw_status status = VXGE_HW_OK;
1943 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1944 status = VXGE_HW_ERR_INVALID_DEVICE;
1945 goto exit;
1948 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1949 status = VXGE_HW_ERR_INVALID_PORT;
1950 goto exit;
1953 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1954 hldev->func_id);
1955 if (status != VXGE_HW_OK)
1956 goto exit;
1958 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1959 if (tx)
1960 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1961 else
1962 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1963 if (rx)
1964 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1965 else
1966 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1968 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1969 exit:
1970 return status;
1973 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1975 struct pci_dev *dev = hldev->pdev;
1976 u16 lnk;
1978 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1979 return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1983 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1984 * This function returns the index of memory block
1986 static inline u32
1987 __vxge_hw_ring_block_memblock_idx(u8 *block)
1989 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1993 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1994 * This function sets index to a memory block
1996 static inline void
1997 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1999 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2003 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2004 * in RxD block
2005 * Sets the next block pointer in RxD block
2007 static inline void
2008 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2010 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2014 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2015 * first block
2016 * Returns the dma address of the first RxD block
2018 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2020 struct vxge_hw_mempool_dma *dma_object;
2022 dma_object = ring->mempool->memblocks_dma_arr;
2023 vxge_assert(dma_object != NULL);
2025 return dma_object->addr;
2029 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2030 * This function returns the dma address of a given item
2032 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2033 void *item)
2035 u32 memblock_idx;
2036 void *memblock;
2037 struct vxge_hw_mempool_dma *memblock_dma_object;
2038 ptrdiff_t dma_item_offset;
2040 /* get owner memblock index */
2041 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2043 /* get owner memblock by memblock index */
2044 memblock = mempoolh->memblocks_arr[memblock_idx];
2046 /* get memblock DMA object by memblock index */
2047 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2049 /* calculate offset in the memblock of this item */
2050 dma_item_offset = (u8 *)item - (u8 *)memblock;
2052 return memblock_dma_object->addr + dma_item_offset;
2056 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2057 * This function returns the dma address of a given item
2059 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2060 struct __vxge_hw_ring *ring, u32 from,
2061 u32 to)
2063 u8 *to_item , *from_item;
2064 dma_addr_t to_dma;
2066 /* get "from" RxD block */
2067 from_item = mempoolh->items_arr[from];
2068 vxge_assert(from_item);
2070 /* get "to" RxD block */
2071 to_item = mempoolh->items_arr[to];
2072 vxge_assert(to_item);
2074 /* return address of the beginning of previous RxD block */
2075 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2077 /* set next pointer for this RxD block to point on
2078 * previous item's DMA start address */
2079 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2083 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2084 * block callback
2085 * This function is callback passed to __vxge_hw_mempool_create to create memory
2086 * pool for RxD block
2088 static void
2089 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2090 u32 memblock_index,
2091 struct vxge_hw_mempool_dma *dma_object,
2092 u32 index, u32 is_last)
2094 u32 i;
2095 void *item = mempoolh->items_arr[index];
2096 struct __vxge_hw_ring *ring =
2097 (struct __vxge_hw_ring *)mempoolh->userdata;
2099 /* format rxds array */
2100 for (i = 0; i < ring->rxds_per_block; i++) {
2101 void *rxdblock_priv;
2102 void *uld_priv;
2103 struct vxge_hw_ring_rxd_1 *rxdp;
2105 u32 reserve_index = ring->channel.reserve_ptr -
2106 (index * ring->rxds_per_block + i + 1);
2107 u32 memblock_item_idx;
2109 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2110 i * ring->rxd_size;
2112 /* Note: memblock_item_idx is index of the item within
2113 * the memblock. For instance, in case of three RxD-blocks
2114 * per memblock this value can be 0, 1 or 2. */
2115 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2116 memblock_index, item,
2117 &memblock_item_idx);
2119 rxdp = ring->channel.reserve_arr[reserve_index];
2121 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2123 /* pre-format Host_Control */
2124 rxdp->host_control = (u64)(size_t)uld_priv;
2127 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2129 if (is_last) {
2130 /* link last one with first one */
2131 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2134 if (index > 0) {
2135 /* link this RxD block with previous one */
2136 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2141 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2142 * This function replenishes the RxDs from reserve array to work array
2144 static enum vxge_hw_status
2145 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2147 void *rxd;
2148 struct __vxge_hw_channel *channel;
2149 enum vxge_hw_status status = VXGE_HW_OK;
2151 channel = &ring->channel;
2153 while (vxge_hw_channel_dtr_count(channel) > 0) {
2155 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2157 vxge_assert(status == VXGE_HW_OK);
2159 if (ring->rxd_init) {
2160 status = ring->rxd_init(rxd, channel->userdata);
2161 if (status != VXGE_HW_OK) {
2162 vxge_hw_ring_rxd_free(ring, rxd);
2163 goto exit;
2167 vxge_hw_ring_rxd_post(ring, rxd);
2169 status = VXGE_HW_OK;
2170 exit:
2171 return status;
2175 * __vxge_hw_channel_allocate - Allocate memory for channel
2176 * This function allocates required memory for the channel and various arrays
2177 * in the channel
2179 static struct __vxge_hw_channel *
2180 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2181 enum __vxge_hw_channel_type type,
2182 u32 length, u32 per_dtr_space,
2183 void *userdata)
2185 struct __vxge_hw_channel *channel;
2186 struct __vxge_hw_device *hldev;
2187 int size = 0;
2188 u32 vp_id;
2190 hldev = vph->vpath->hldev;
2191 vp_id = vph->vpath->vp_id;
2193 switch (type) {
2194 case VXGE_HW_CHANNEL_TYPE_FIFO:
2195 size = sizeof(struct __vxge_hw_fifo);
2196 break;
2197 case VXGE_HW_CHANNEL_TYPE_RING:
2198 size = sizeof(struct __vxge_hw_ring);
2199 break;
2200 default:
2201 break;
2204 channel = kzalloc(size, GFP_KERNEL);
2205 if (channel == NULL)
2206 goto exit0;
2207 INIT_LIST_HEAD(&channel->item);
2209 channel->common_reg = hldev->common_reg;
2210 channel->first_vp_id = hldev->first_vp_id;
2211 channel->type = type;
2212 channel->devh = hldev;
2213 channel->vph = vph;
2214 channel->userdata = userdata;
2215 channel->per_dtr_space = per_dtr_space;
2216 channel->length = length;
2217 channel->vp_id = vp_id;
2219 channel->work_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2220 if (channel->work_arr == NULL)
2221 goto exit1;
2223 channel->free_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2224 if (channel->free_arr == NULL)
2225 goto exit1;
2226 channel->free_ptr = length;
2228 channel->reserve_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2229 if (channel->reserve_arr == NULL)
2230 goto exit1;
2231 channel->reserve_ptr = length;
2232 channel->reserve_top = 0;
2234 channel->orig_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2235 if (channel->orig_arr == NULL)
2236 goto exit1;
2238 return channel;
2239 exit1:
2240 __vxge_hw_channel_free(channel);
2242 exit0:
2243 return NULL;
2247 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2248 * Adds a block to block pool
2250 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2251 void *block_addr,
2252 u32 length,
2253 struct pci_dev *dma_h,
2254 struct pci_dev *acc_handle)
2256 struct __vxge_hw_blockpool *blockpool;
2257 struct __vxge_hw_blockpool_entry *entry = NULL;
2258 dma_addr_t dma_addr;
2260 blockpool = &devh->block_pool;
2262 if (block_addr == NULL) {
2263 blockpool->req_out--;
2264 goto exit;
2267 dma_addr = pci_map_single(devh->pdev, block_addr, length,
2268 PCI_DMA_BIDIRECTIONAL);
2270 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2271 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2272 blockpool->req_out--;
2273 goto exit;
2276 if (!list_empty(&blockpool->free_entry_list))
2277 entry = (struct __vxge_hw_blockpool_entry *)
2278 list_first_entry(&blockpool->free_entry_list,
2279 struct __vxge_hw_blockpool_entry,
2280 item);
2282 if (entry == NULL)
2283 entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2284 else
2285 list_del(&entry->item);
2287 if (entry) {
2288 entry->length = length;
2289 entry->memblock = block_addr;
2290 entry->dma_addr = dma_addr;
2291 entry->acc_handle = acc_handle;
2292 entry->dma_handle = dma_h;
2293 list_add(&entry->item, &blockpool->free_block_list);
2294 blockpool->pool_size++;
2297 blockpool->req_out--;
2299 exit:
2300 return;
2303 static inline void
2304 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2306 gfp_t flags;
2307 void *vaddr;
2309 if (in_interrupt())
2310 flags = GFP_ATOMIC | GFP_DMA;
2311 else
2312 flags = GFP_KERNEL | GFP_DMA;
2314 vaddr = kmalloc((size), flags);
2316 vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2320 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2322 static
2323 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2325 u32 nreq = 0, i;
2327 if ((blockpool->pool_size + blockpool->req_out) <
2328 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2329 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2330 blockpool->req_out += nreq;
2333 for (i = 0; i < nreq; i++)
2334 vxge_os_dma_malloc_async(
2335 (blockpool->hldev)->pdev,
2336 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2340 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2341 * Allocates a block of memory of given size, either from block pool
2342 * or by calling vxge_os_dma_malloc()
2344 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2345 struct vxge_hw_mempool_dma *dma_object)
2347 struct __vxge_hw_blockpool_entry *entry = NULL;
2348 struct __vxge_hw_blockpool *blockpool;
2349 void *memblock = NULL;
2351 blockpool = &devh->block_pool;
2353 if (size != blockpool->block_size) {
2355 memblock = vxge_os_dma_malloc(devh->pdev, size,
2356 &dma_object->handle,
2357 &dma_object->acc_handle);
2359 if (!memblock)
2360 goto exit;
2362 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2363 PCI_DMA_BIDIRECTIONAL);
2365 if (unlikely(pci_dma_mapping_error(devh->pdev,
2366 dma_object->addr))) {
2367 vxge_os_dma_free(devh->pdev, memblock,
2368 &dma_object->acc_handle);
2369 memblock = NULL;
2370 goto exit;
2373 } else {
2375 if (!list_empty(&blockpool->free_block_list))
2376 entry = (struct __vxge_hw_blockpool_entry *)
2377 list_first_entry(&blockpool->free_block_list,
2378 struct __vxge_hw_blockpool_entry,
2379 item);
2381 if (entry != NULL) {
2382 list_del(&entry->item);
2383 dma_object->addr = entry->dma_addr;
2384 dma_object->handle = entry->dma_handle;
2385 dma_object->acc_handle = entry->acc_handle;
2386 memblock = entry->memblock;
2388 list_add(&entry->item,
2389 &blockpool->free_entry_list);
2390 blockpool->pool_size--;
2393 if (memblock != NULL)
2394 __vxge_hw_blockpool_blocks_add(blockpool);
2396 exit:
2397 return memblock;
2401 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2403 static void
2404 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2406 struct list_head *p, *n;
2408 list_for_each_safe(p, n, &blockpool->free_block_list) {
2410 if (blockpool->pool_size < blockpool->pool_max)
2411 break;
2413 pci_unmap_single(
2414 (blockpool->hldev)->pdev,
2415 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2416 ((struct __vxge_hw_blockpool_entry *)p)->length,
2417 PCI_DMA_BIDIRECTIONAL);
2419 vxge_os_dma_free(
2420 (blockpool->hldev)->pdev,
2421 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
2422 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2424 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2426 list_add(p, &blockpool->free_entry_list);
2428 blockpool->pool_size--;
2434 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2435 * __vxge_hw_blockpool_malloc
2437 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2438 void *memblock, u32 size,
2439 struct vxge_hw_mempool_dma *dma_object)
2441 struct __vxge_hw_blockpool_entry *entry = NULL;
2442 struct __vxge_hw_blockpool *blockpool;
2443 enum vxge_hw_status status = VXGE_HW_OK;
2445 blockpool = &devh->block_pool;
2447 if (size != blockpool->block_size) {
2448 pci_unmap_single(devh->pdev, dma_object->addr, size,
2449 PCI_DMA_BIDIRECTIONAL);
2450 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2451 } else {
2453 if (!list_empty(&blockpool->free_entry_list))
2454 entry = (struct __vxge_hw_blockpool_entry *)
2455 list_first_entry(&blockpool->free_entry_list,
2456 struct __vxge_hw_blockpool_entry,
2457 item);
2459 if (entry == NULL)
2460 entry = vmalloc(sizeof(
2461 struct __vxge_hw_blockpool_entry));
2462 else
2463 list_del(&entry->item);
2465 if (entry != NULL) {
2466 entry->length = size;
2467 entry->memblock = memblock;
2468 entry->dma_addr = dma_object->addr;
2469 entry->acc_handle = dma_object->acc_handle;
2470 entry->dma_handle = dma_object->handle;
2471 list_add(&entry->item,
2472 &blockpool->free_block_list);
2473 blockpool->pool_size++;
2474 status = VXGE_HW_OK;
2475 } else
2476 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2478 if (status == VXGE_HW_OK)
2479 __vxge_hw_blockpool_blocks_remove(blockpool);
2484 * vxge_hw_mempool_destroy
2486 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2488 u32 i, j;
2489 struct __vxge_hw_device *devh = mempool->devh;
2491 for (i = 0; i < mempool->memblocks_allocated; i++) {
2492 struct vxge_hw_mempool_dma *dma_object;
2494 vxge_assert(mempool->memblocks_arr[i]);
2495 vxge_assert(mempool->memblocks_dma_arr + i);
2497 dma_object = mempool->memblocks_dma_arr + i;
2499 for (j = 0; j < mempool->items_per_memblock; j++) {
2500 u32 index = i * mempool->items_per_memblock + j;
2502 /* to skip last partially filled(if any) memblock */
2503 if (index >= mempool->items_current)
2504 break;
2507 vfree(mempool->memblocks_priv_arr[i]);
2509 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2510 mempool->memblock_size, dma_object);
2513 vfree(mempool->items_arr);
2514 vfree(mempool->memblocks_dma_arr);
2515 vfree(mempool->memblocks_priv_arr);
2516 vfree(mempool->memblocks_arr);
2517 vfree(mempool);
2521 * __vxge_hw_mempool_grow
2522 * Will resize mempool up to %num_allocate value.
2524 static enum vxge_hw_status
2525 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2526 u32 *num_allocated)
2528 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2529 u32 n_items = mempool->items_per_memblock;
2530 u32 start_block_idx = mempool->memblocks_allocated;
2531 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2532 enum vxge_hw_status status = VXGE_HW_OK;
2534 *num_allocated = 0;
2536 if (end_block_idx > mempool->memblocks_max) {
2537 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2538 goto exit;
2541 for (i = start_block_idx; i < end_block_idx; i++) {
2542 u32 j;
2543 u32 is_last = ((end_block_idx - 1) == i);
2544 struct vxge_hw_mempool_dma *dma_object =
2545 mempool->memblocks_dma_arr + i;
2546 void *the_memblock;
2548 /* allocate memblock's private part. Each DMA memblock
2549 * has a space allocated for item's private usage upon
2550 * mempool's user request. Each time mempool grows, it will
2551 * allocate new memblock and its private part at once.
2552 * This helps to minimize memory usage a lot. */
2553 mempool->memblocks_priv_arr[i] =
2554 vzalloc(array_size(mempool->items_priv_size, n_items));
2555 if (mempool->memblocks_priv_arr[i] == NULL) {
2556 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2557 goto exit;
2560 /* allocate DMA-capable memblock */
2561 mempool->memblocks_arr[i] =
2562 __vxge_hw_blockpool_malloc(mempool->devh,
2563 mempool->memblock_size, dma_object);
2564 if (mempool->memblocks_arr[i] == NULL) {
2565 vfree(mempool->memblocks_priv_arr[i]);
2566 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2567 goto exit;
2570 (*num_allocated)++;
2571 mempool->memblocks_allocated++;
2573 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2575 the_memblock = mempool->memblocks_arr[i];
2577 /* fill the items hash array */
2578 for (j = 0; j < n_items; j++) {
2579 u32 index = i * n_items + j;
2581 if (first_time && index >= mempool->items_initial)
2582 break;
2584 mempool->items_arr[index] =
2585 ((char *)the_memblock + j*mempool->item_size);
2587 /* let caller to do more job on each item */
2588 if (mempool->item_func_alloc != NULL)
2589 mempool->item_func_alloc(mempool, i,
2590 dma_object, index, is_last);
2592 mempool->items_current = index + 1;
2595 if (first_time && mempool->items_current ==
2596 mempool->items_initial)
2597 break;
2599 exit:
2600 return status;
2604 * vxge_hw_mempool_create
2605 * This function will create memory pool object. Pool may grow but will
2606 * never shrink. Pool consists of number of dynamically allocated blocks
2607 * with size enough to hold %items_initial number of items. Memory is
2608 * DMA-able but client must map/unmap before interoperating with the device.
2610 static struct vxge_hw_mempool *
2611 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2612 u32 memblock_size,
2613 u32 item_size,
2614 u32 items_priv_size,
2615 u32 items_initial,
2616 u32 items_max,
2617 const struct vxge_hw_mempool_cbs *mp_callback,
2618 void *userdata)
2620 enum vxge_hw_status status = VXGE_HW_OK;
2621 u32 memblocks_to_allocate;
2622 struct vxge_hw_mempool *mempool = NULL;
2623 u32 allocated;
2625 if (memblock_size < item_size) {
2626 status = VXGE_HW_FAIL;
2627 goto exit;
2630 mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2631 if (mempool == NULL) {
2632 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2633 goto exit;
2636 mempool->devh = devh;
2637 mempool->memblock_size = memblock_size;
2638 mempool->items_max = items_max;
2639 mempool->items_initial = items_initial;
2640 mempool->item_size = item_size;
2641 mempool->items_priv_size = items_priv_size;
2642 mempool->item_func_alloc = mp_callback->item_func_alloc;
2643 mempool->userdata = userdata;
2645 mempool->memblocks_allocated = 0;
2647 mempool->items_per_memblock = memblock_size / item_size;
2649 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2650 mempool->items_per_memblock;
2652 /* allocate array of memblocks */
2653 mempool->memblocks_arr =
2654 vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2655 if (mempool->memblocks_arr == NULL) {
2656 __vxge_hw_mempool_destroy(mempool);
2657 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2658 mempool = NULL;
2659 goto exit;
2662 /* allocate array of private parts of items per memblocks */
2663 mempool->memblocks_priv_arr =
2664 vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2665 if (mempool->memblocks_priv_arr == NULL) {
2666 __vxge_hw_mempool_destroy(mempool);
2667 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2668 mempool = NULL;
2669 goto exit;
2672 /* allocate array of memblocks DMA objects */
2673 mempool->memblocks_dma_arr =
2674 vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma),
2675 mempool->memblocks_max));
2676 if (mempool->memblocks_dma_arr == NULL) {
2677 __vxge_hw_mempool_destroy(mempool);
2678 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2679 mempool = NULL;
2680 goto exit;
2683 /* allocate hash array of items */
2684 mempool->items_arr = vzalloc(array_size(sizeof(void *),
2685 mempool->items_max));
2686 if (mempool->items_arr == NULL) {
2687 __vxge_hw_mempool_destroy(mempool);
2688 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2689 mempool = NULL;
2690 goto exit;
2693 /* calculate initial number of memblocks */
2694 memblocks_to_allocate = (mempool->items_initial +
2695 mempool->items_per_memblock - 1) /
2696 mempool->items_per_memblock;
2698 /* pre-allocate the mempool */
2699 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2700 &allocated);
2701 if (status != VXGE_HW_OK) {
2702 __vxge_hw_mempool_destroy(mempool);
2703 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2704 mempool = NULL;
2705 goto exit;
2708 exit:
2709 return mempool;
2713 * __vxge_hw_ring_abort - Returns the RxD
2714 * This function terminates the RxDs of ring
2716 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2718 void *rxdh;
2719 struct __vxge_hw_channel *channel;
2721 channel = &ring->channel;
2723 for (;;) {
2724 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2726 if (rxdh == NULL)
2727 break;
2729 vxge_hw_channel_dtr_complete(channel);
2731 if (ring->rxd_term)
2732 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2733 channel->userdata);
2735 vxge_hw_channel_dtr_free(channel, rxdh);
2738 return VXGE_HW_OK;
2742 * __vxge_hw_ring_reset - Resets the ring
2743 * This function resets the ring during vpath reset operation
2745 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2747 enum vxge_hw_status status = VXGE_HW_OK;
2748 struct __vxge_hw_channel *channel;
2750 channel = &ring->channel;
2752 __vxge_hw_ring_abort(ring);
2754 status = __vxge_hw_channel_reset(channel);
2756 if (status != VXGE_HW_OK)
2757 goto exit;
2759 if (ring->rxd_init) {
2760 status = vxge_hw_ring_replenish(ring);
2761 if (status != VXGE_HW_OK)
2762 goto exit;
2764 exit:
2765 return status;
2769 * __vxge_hw_ring_delete - Removes the ring
2770 * This function freeup the memory pool and removes the ring
2772 static enum vxge_hw_status
2773 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2775 struct __vxge_hw_ring *ring = vp->vpath->ringh;
2777 __vxge_hw_ring_abort(ring);
2779 if (ring->mempool)
2780 __vxge_hw_mempool_destroy(ring->mempool);
2782 vp->vpath->ringh = NULL;
2783 __vxge_hw_channel_free(&ring->channel);
2785 return VXGE_HW_OK;
2789 * __vxge_hw_ring_create - Create a Ring
2790 * This function creates Ring and initializes it.
2792 static enum vxge_hw_status
2793 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2794 struct vxge_hw_ring_attr *attr)
2796 enum vxge_hw_status status = VXGE_HW_OK;
2797 struct __vxge_hw_ring *ring;
2798 u32 ring_length;
2799 struct vxge_hw_ring_config *config;
2800 struct __vxge_hw_device *hldev;
2801 u32 vp_id;
2802 static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2803 .item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2806 if ((vp == NULL) || (attr == NULL)) {
2807 status = VXGE_HW_FAIL;
2808 goto exit;
2811 hldev = vp->vpath->hldev;
2812 vp_id = vp->vpath->vp_id;
2814 config = &hldev->config.vp_config[vp_id].ring;
2816 ring_length = config->ring_blocks *
2817 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2819 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2820 VXGE_HW_CHANNEL_TYPE_RING,
2821 ring_length,
2822 attr->per_rxd_space,
2823 attr->userdata);
2824 if (ring == NULL) {
2825 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2826 goto exit;
2829 vp->vpath->ringh = ring;
2830 ring->vp_id = vp_id;
2831 ring->vp_reg = vp->vpath->vp_reg;
2832 ring->common_reg = hldev->common_reg;
2833 ring->stats = &vp->vpath->sw_stats->ring_stats;
2834 ring->config = config;
2835 ring->callback = attr->callback;
2836 ring->rxd_init = attr->rxd_init;
2837 ring->rxd_term = attr->rxd_term;
2838 ring->buffer_mode = config->buffer_mode;
2839 ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2840 ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2841 ring->rxds_limit = config->rxds_limit;
2843 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2844 ring->rxd_priv_size =
2845 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2846 ring->per_rxd_space = attr->per_rxd_space;
2848 ring->rxd_priv_size =
2849 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2850 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2852 /* how many RxDs can fit into one block. Depends on configured
2853 * buffer_mode. */
2854 ring->rxds_per_block =
2855 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2857 /* calculate actual RxD block private size */
2858 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2859 ring->mempool = __vxge_hw_mempool_create(hldev,
2860 VXGE_HW_BLOCK_SIZE,
2861 VXGE_HW_BLOCK_SIZE,
2862 ring->rxdblock_priv_size,
2863 ring->config->ring_blocks,
2864 ring->config->ring_blocks,
2865 &ring_mp_callback,
2866 ring);
2867 if (ring->mempool == NULL) {
2868 __vxge_hw_ring_delete(vp);
2869 return VXGE_HW_ERR_OUT_OF_MEMORY;
2872 status = __vxge_hw_channel_initialize(&ring->channel);
2873 if (status != VXGE_HW_OK) {
2874 __vxge_hw_ring_delete(vp);
2875 goto exit;
2878 /* Note:
2879 * Specifying rxd_init callback means two things:
2880 * 1) rxds need to be initialized by driver at channel-open time;
2881 * 2) rxds need to be posted at channel-open time
2882 * (that's what the initial_replenish() below does)
2883 * Currently we don't have a case when the 1) is done without the 2).
2885 if (ring->rxd_init) {
2886 status = vxge_hw_ring_replenish(ring);
2887 if (status != VXGE_HW_OK) {
2888 __vxge_hw_ring_delete(vp);
2889 goto exit;
2893 /* initial replenish will increment the counter in its post() routine,
2894 * we have to reset it */
2895 ring->stats->common_stats.usage_cnt = 0;
2896 exit:
2897 return status;
2901 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2902 * Initialize Titan device config with default values.
2904 enum vxge_hw_status
2905 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2907 u32 i;
2909 device_config->dma_blockpool_initial =
2910 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2911 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2912 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2913 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2914 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2915 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2916 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
2918 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2919 device_config->vp_config[i].vp_id = i;
2921 device_config->vp_config[i].min_bandwidth =
2922 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2924 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2926 device_config->vp_config[i].ring.ring_blocks =
2927 VXGE_HW_DEF_RING_BLOCKS;
2929 device_config->vp_config[i].ring.buffer_mode =
2930 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2932 device_config->vp_config[i].ring.scatter_mode =
2933 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2935 device_config->vp_config[i].ring.rxds_limit =
2936 VXGE_HW_DEF_RING_RXDS_LIMIT;
2938 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2940 device_config->vp_config[i].fifo.fifo_blocks =
2941 VXGE_HW_MIN_FIFO_BLOCKS;
2943 device_config->vp_config[i].fifo.max_frags =
2944 VXGE_HW_MAX_FIFO_FRAGS;
2946 device_config->vp_config[i].fifo.memblock_size =
2947 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2949 device_config->vp_config[i].fifo.alignment_size =
2950 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2952 device_config->vp_config[i].fifo.intr =
2953 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2955 device_config->vp_config[i].fifo.no_snoop_bits =
2956 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2957 device_config->vp_config[i].tti.intr_enable =
2958 VXGE_HW_TIM_INTR_DEFAULT;
2960 device_config->vp_config[i].tti.btimer_val =
2961 VXGE_HW_USE_FLASH_DEFAULT;
2963 device_config->vp_config[i].tti.timer_ac_en =
2964 VXGE_HW_USE_FLASH_DEFAULT;
2966 device_config->vp_config[i].tti.timer_ci_en =
2967 VXGE_HW_USE_FLASH_DEFAULT;
2969 device_config->vp_config[i].tti.timer_ri_en =
2970 VXGE_HW_USE_FLASH_DEFAULT;
2972 device_config->vp_config[i].tti.rtimer_val =
2973 VXGE_HW_USE_FLASH_DEFAULT;
2975 device_config->vp_config[i].tti.util_sel =
2976 VXGE_HW_USE_FLASH_DEFAULT;
2978 device_config->vp_config[i].tti.ltimer_val =
2979 VXGE_HW_USE_FLASH_DEFAULT;
2981 device_config->vp_config[i].tti.urange_a =
2982 VXGE_HW_USE_FLASH_DEFAULT;
2984 device_config->vp_config[i].tti.uec_a =
2985 VXGE_HW_USE_FLASH_DEFAULT;
2987 device_config->vp_config[i].tti.urange_b =
2988 VXGE_HW_USE_FLASH_DEFAULT;
2990 device_config->vp_config[i].tti.uec_b =
2991 VXGE_HW_USE_FLASH_DEFAULT;
2993 device_config->vp_config[i].tti.urange_c =
2994 VXGE_HW_USE_FLASH_DEFAULT;
2996 device_config->vp_config[i].tti.uec_c =
2997 VXGE_HW_USE_FLASH_DEFAULT;
2999 device_config->vp_config[i].tti.uec_d =
3000 VXGE_HW_USE_FLASH_DEFAULT;
3002 device_config->vp_config[i].rti.intr_enable =
3003 VXGE_HW_TIM_INTR_DEFAULT;
3005 device_config->vp_config[i].rti.btimer_val =
3006 VXGE_HW_USE_FLASH_DEFAULT;
3008 device_config->vp_config[i].rti.timer_ac_en =
3009 VXGE_HW_USE_FLASH_DEFAULT;
3011 device_config->vp_config[i].rti.timer_ci_en =
3012 VXGE_HW_USE_FLASH_DEFAULT;
3014 device_config->vp_config[i].rti.timer_ri_en =
3015 VXGE_HW_USE_FLASH_DEFAULT;
3017 device_config->vp_config[i].rti.rtimer_val =
3018 VXGE_HW_USE_FLASH_DEFAULT;
3020 device_config->vp_config[i].rti.util_sel =
3021 VXGE_HW_USE_FLASH_DEFAULT;
3023 device_config->vp_config[i].rti.ltimer_val =
3024 VXGE_HW_USE_FLASH_DEFAULT;
3026 device_config->vp_config[i].rti.urange_a =
3027 VXGE_HW_USE_FLASH_DEFAULT;
3029 device_config->vp_config[i].rti.uec_a =
3030 VXGE_HW_USE_FLASH_DEFAULT;
3032 device_config->vp_config[i].rti.urange_b =
3033 VXGE_HW_USE_FLASH_DEFAULT;
3035 device_config->vp_config[i].rti.uec_b =
3036 VXGE_HW_USE_FLASH_DEFAULT;
3038 device_config->vp_config[i].rti.urange_c =
3039 VXGE_HW_USE_FLASH_DEFAULT;
3041 device_config->vp_config[i].rti.uec_c =
3042 VXGE_HW_USE_FLASH_DEFAULT;
3044 device_config->vp_config[i].rti.uec_d =
3045 VXGE_HW_USE_FLASH_DEFAULT;
3047 device_config->vp_config[i].mtu =
3048 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3050 device_config->vp_config[i].rpa_strip_vlan_tag =
3051 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3054 return VXGE_HW_OK;
3058 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3059 * Set the swapper bits appropriately for the vpath.
3061 static enum vxge_hw_status
3062 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3064 #ifndef __BIG_ENDIAN
3065 u64 val64;
3067 val64 = readq(&vpath_reg->vpath_general_cfg1);
3068 wmb();
3069 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3070 writeq(val64, &vpath_reg->vpath_general_cfg1);
3071 wmb();
3072 #endif
3073 return VXGE_HW_OK;
3077 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3078 * Set the swapper bits appropriately for the vpath.
3080 static enum vxge_hw_status
3081 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3082 struct vxge_hw_vpath_reg __iomem *vpath_reg)
3084 u64 val64;
3086 val64 = readq(&legacy_reg->pifm_wr_swap_en);
3088 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3089 val64 = readq(&vpath_reg->kdfcctl_cfg0);
3090 wmb();
3092 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
3093 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
3094 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3096 writeq(val64, &vpath_reg->kdfcctl_cfg0);
3097 wmb();
3100 return VXGE_HW_OK;
3104 * vxge_hw_mgmt_reg_read - Read Titan register.
3106 enum vxge_hw_status
3107 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3108 enum vxge_hw_mgmt_reg_type type,
3109 u32 index, u32 offset, u64 *value)
3111 enum vxge_hw_status status = VXGE_HW_OK;
3113 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3114 status = VXGE_HW_ERR_INVALID_DEVICE;
3115 goto exit;
3118 switch (type) {
3119 case vxge_hw_mgmt_reg_type_legacy:
3120 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3121 status = VXGE_HW_ERR_INVALID_OFFSET;
3122 break;
3124 *value = readq((void __iomem *)hldev->legacy_reg + offset);
3125 break;
3126 case vxge_hw_mgmt_reg_type_toc:
3127 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3128 status = VXGE_HW_ERR_INVALID_OFFSET;
3129 break;
3131 *value = readq((void __iomem *)hldev->toc_reg + offset);
3132 break;
3133 case vxge_hw_mgmt_reg_type_common:
3134 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3135 status = VXGE_HW_ERR_INVALID_OFFSET;
3136 break;
3138 *value = readq((void __iomem *)hldev->common_reg + offset);
3139 break;
3140 case vxge_hw_mgmt_reg_type_mrpcim:
3141 if (!(hldev->access_rights &
3142 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3143 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3144 break;
3146 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3147 status = VXGE_HW_ERR_INVALID_OFFSET;
3148 break;
3150 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3151 break;
3152 case vxge_hw_mgmt_reg_type_srpcim:
3153 if (!(hldev->access_rights &
3154 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3155 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3156 break;
3158 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3159 status = VXGE_HW_ERR_INVALID_INDEX;
3160 break;
3162 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3163 status = VXGE_HW_ERR_INVALID_OFFSET;
3164 break;
3166 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
3167 offset);
3168 break;
3169 case vxge_hw_mgmt_reg_type_vpmgmt:
3170 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3171 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3172 status = VXGE_HW_ERR_INVALID_INDEX;
3173 break;
3175 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3176 status = VXGE_HW_ERR_INVALID_OFFSET;
3177 break;
3179 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3180 offset);
3181 break;
3182 case vxge_hw_mgmt_reg_type_vpath:
3183 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3184 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3185 status = VXGE_HW_ERR_INVALID_INDEX;
3186 break;
3188 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3189 status = VXGE_HW_ERR_INVALID_INDEX;
3190 break;
3192 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3193 status = VXGE_HW_ERR_INVALID_OFFSET;
3194 break;
3196 *value = readq((void __iomem *)hldev->vpath_reg[index] +
3197 offset);
3198 break;
3199 default:
3200 status = VXGE_HW_ERR_INVALID_TYPE;
3201 break;
3204 exit:
3205 return status;
3209 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3211 enum vxge_hw_status
3212 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3214 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
3215 int i = 0, j = 0;
3217 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3218 if (!((vpath_mask) & vxge_mBIT(i)))
3219 continue;
3220 vpmgmt_reg = hldev->vpmgmt_reg[i];
3221 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3222 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3223 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3224 return VXGE_HW_FAIL;
3227 return VXGE_HW_OK;
3230 * vxge_hw_mgmt_reg_Write - Write Titan register.
3232 enum vxge_hw_status
3233 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3234 enum vxge_hw_mgmt_reg_type type,
3235 u32 index, u32 offset, u64 value)
3237 enum vxge_hw_status status = VXGE_HW_OK;
3239 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3240 status = VXGE_HW_ERR_INVALID_DEVICE;
3241 goto exit;
3244 switch (type) {
3245 case vxge_hw_mgmt_reg_type_legacy:
3246 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3247 status = VXGE_HW_ERR_INVALID_OFFSET;
3248 break;
3250 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3251 break;
3252 case vxge_hw_mgmt_reg_type_toc:
3253 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3254 status = VXGE_HW_ERR_INVALID_OFFSET;
3255 break;
3257 writeq(value, (void __iomem *)hldev->toc_reg + offset);
3258 break;
3259 case vxge_hw_mgmt_reg_type_common:
3260 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3261 status = VXGE_HW_ERR_INVALID_OFFSET;
3262 break;
3264 writeq(value, (void __iomem *)hldev->common_reg + offset);
3265 break;
3266 case vxge_hw_mgmt_reg_type_mrpcim:
3267 if (!(hldev->access_rights &
3268 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3269 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3270 break;
3272 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3273 status = VXGE_HW_ERR_INVALID_OFFSET;
3274 break;
3276 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3277 break;
3278 case vxge_hw_mgmt_reg_type_srpcim:
3279 if (!(hldev->access_rights &
3280 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3281 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3282 break;
3284 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3285 status = VXGE_HW_ERR_INVALID_INDEX;
3286 break;
3288 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3289 status = VXGE_HW_ERR_INVALID_OFFSET;
3290 break;
3292 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3293 offset);
3295 break;
3296 case vxge_hw_mgmt_reg_type_vpmgmt:
3297 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3298 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3299 status = VXGE_HW_ERR_INVALID_INDEX;
3300 break;
3302 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3303 status = VXGE_HW_ERR_INVALID_OFFSET;
3304 break;
3306 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3307 offset);
3308 break;
3309 case vxge_hw_mgmt_reg_type_vpath:
3310 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3311 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3312 status = VXGE_HW_ERR_INVALID_INDEX;
3313 break;
3315 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3316 status = VXGE_HW_ERR_INVALID_OFFSET;
3317 break;
3319 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3320 offset);
3321 break;
3322 default:
3323 status = VXGE_HW_ERR_INVALID_TYPE;
3324 break;
3326 exit:
3327 return status;
3331 * __vxge_hw_fifo_abort - Returns the TxD
3332 * This function terminates the TxDs of fifo
3334 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3336 void *txdlh;
3338 for (;;) {
3339 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3341 if (txdlh == NULL)
3342 break;
3344 vxge_hw_channel_dtr_complete(&fifo->channel);
3346 if (fifo->txdl_term) {
3347 fifo->txdl_term(txdlh,
3348 VXGE_HW_TXDL_STATE_POSTED,
3349 fifo->channel.userdata);
3352 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3355 return VXGE_HW_OK;
3359 * __vxge_hw_fifo_reset - Resets the fifo
3360 * This function resets the fifo during vpath reset operation
3362 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3364 enum vxge_hw_status status = VXGE_HW_OK;
3366 __vxge_hw_fifo_abort(fifo);
3367 status = __vxge_hw_channel_reset(&fifo->channel);
3369 return status;
3373 * __vxge_hw_fifo_delete - Removes the FIFO
3374 * This function freeup the memory pool and removes the FIFO
3376 static enum vxge_hw_status
3377 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3379 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3381 __vxge_hw_fifo_abort(fifo);
3383 if (fifo->mempool)
3384 __vxge_hw_mempool_destroy(fifo->mempool);
3386 vp->vpath->fifoh = NULL;
3388 __vxge_hw_channel_free(&fifo->channel);
3390 return VXGE_HW_OK;
3394 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3395 * list callback
3396 * This function is callback passed to __vxge_hw_mempool_create to create memory
3397 * pool for TxD list
3399 static void
3400 __vxge_hw_fifo_mempool_item_alloc(
3401 struct vxge_hw_mempool *mempoolh,
3402 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3403 u32 index, u32 is_last)
3405 u32 memblock_item_idx;
3406 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3407 struct vxge_hw_fifo_txd *txdp =
3408 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3409 struct __vxge_hw_fifo *fifo =
3410 (struct __vxge_hw_fifo *)mempoolh->userdata;
3411 void *memblock = mempoolh->memblocks_arr[memblock_index];
3413 vxge_assert(txdp);
3415 txdp->host_control = (u64) (size_t)
3416 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3417 &memblock_item_idx);
3419 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3421 vxge_assert(txdl_priv);
3423 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3425 /* pre-format HW's TxDL's private */
3426 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3427 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3428 txdl_priv->dma_handle = dma_object->handle;
3429 txdl_priv->memblock = memblock;
3430 txdl_priv->first_txdp = txdp;
3431 txdl_priv->next_txdl_priv = NULL;
3432 txdl_priv->alloc_frags = 0;
3436 * __vxge_hw_fifo_create - Create a FIFO
3437 * This function creates FIFO and initializes it.
3439 static enum vxge_hw_status
3440 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3441 struct vxge_hw_fifo_attr *attr)
3443 enum vxge_hw_status status = VXGE_HW_OK;
3444 struct __vxge_hw_fifo *fifo;
3445 struct vxge_hw_fifo_config *config;
3446 u32 txdl_size, txdl_per_memblock;
3447 struct vxge_hw_mempool_cbs fifo_mp_callback;
3448 struct __vxge_hw_virtualpath *vpath;
3450 if ((vp == NULL) || (attr == NULL)) {
3451 status = VXGE_HW_ERR_INVALID_HANDLE;
3452 goto exit;
3454 vpath = vp->vpath;
3455 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3457 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3459 txdl_per_memblock = config->memblock_size / txdl_size;
3461 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3462 VXGE_HW_CHANNEL_TYPE_FIFO,
3463 config->fifo_blocks * txdl_per_memblock,
3464 attr->per_txdl_space, attr->userdata);
3466 if (fifo == NULL) {
3467 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3468 goto exit;
3471 vpath->fifoh = fifo;
3472 fifo->nofl_db = vpath->nofl_db;
3474 fifo->vp_id = vpath->vp_id;
3475 fifo->vp_reg = vpath->vp_reg;
3476 fifo->stats = &vpath->sw_stats->fifo_stats;
3478 fifo->config = config;
3480 /* apply "interrupts per txdl" attribute */
3481 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3482 fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3483 fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3485 if (fifo->config->intr)
3486 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3488 fifo->no_snoop_bits = config->no_snoop_bits;
3491 * FIFO memory management strategy:
3493 * TxDL split into three independent parts:
3494 * - set of TxD's
3495 * - TxD HW private part
3496 * - driver private part
3498 * Adaptative memory allocation used. i.e. Memory allocated on
3499 * demand with the size which will fit into one memory block.
3500 * One memory block may contain more than one TxDL.
3502 * During "reserve" operations more memory can be allocated on demand
3503 * for example due to FIFO full condition.
3505 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3506 * routine which will essentially stop the channel and free resources.
3509 /* TxDL common private size == TxDL private + driver private */
3510 fifo->priv_size =
3511 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3512 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
3513 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3515 fifo->per_txdl_space = attr->per_txdl_space;
3517 /* recompute txdl size to be cacheline aligned */
3518 fifo->txdl_size = txdl_size;
3519 fifo->txdl_per_memblock = txdl_per_memblock;
3521 fifo->txdl_term = attr->txdl_term;
3522 fifo->callback = attr->callback;
3524 if (fifo->txdl_per_memblock == 0) {
3525 __vxge_hw_fifo_delete(vp);
3526 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3527 goto exit;
3530 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3532 fifo->mempool =
3533 __vxge_hw_mempool_create(vpath->hldev,
3534 fifo->config->memblock_size,
3535 fifo->txdl_size,
3536 fifo->priv_size,
3537 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3538 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3539 &fifo_mp_callback,
3540 fifo);
3542 if (fifo->mempool == NULL) {
3543 __vxge_hw_fifo_delete(vp);
3544 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3545 goto exit;
3548 status = __vxge_hw_channel_initialize(&fifo->channel);
3549 if (status != VXGE_HW_OK) {
3550 __vxge_hw_fifo_delete(vp);
3551 goto exit;
3554 vxge_assert(fifo->channel.reserve_ptr);
3555 exit:
3556 return status;
3560 * __vxge_hw_vpath_pci_read - Read the content of given address
3561 * in pci config space.
3562 * Read from the vpath pci config space.
3564 static enum vxge_hw_status
3565 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3566 u32 phy_func_0, u32 offset, u32 *val)
3568 u64 val64;
3569 enum vxge_hw_status status = VXGE_HW_OK;
3570 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3572 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3574 if (phy_func_0)
3575 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3577 writeq(val64, &vp_reg->pci_config_access_cfg1);
3578 wmb();
3579 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3580 &vp_reg->pci_config_access_cfg2);
3581 wmb();
3583 status = __vxge_hw_device_register_poll(
3584 &vp_reg->pci_config_access_cfg2,
3585 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3587 if (status != VXGE_HW_OK)
3588 goto exit;
3590 val64 = readq(&vp_reg->pci_config_access_status);
3592 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3593 status = VXGE_HW_FAIL;
3594 *val = 0;
3595 } else
3596 *val = (u32)vxge_bVALn(val64, 32, 32);
3597 exit:
3598 return status;
3602 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3603 * @hldev: HW device.
3604 * @on_off: TRUE if flickering to be on, FALSE to be off
3606 * Flicker the link LED.
3608 enum vxge_hw_status
3609 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3611 struct __vxge_hw_virtualpath *vpath;
3612 u64 data0, data1 = 0, steer_ctrl = 0;
3613 enum vxge_hw_status status;
3615 if (hldev == NULL) {
3616 status = VXGE_HW_ERR_INVALID_DEVICE;
3617 goto exit;
3620 vpath = &hldev->virtual_paths[hldev->first_vp_id];
3622 data0 = on_off;
3623 status = vxge_hw_vpath_fw_api(vpath,
3624 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3625 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3626 0, &data0, &data1, &steer_ctrl);
3627 exit:
3628 return status;
3632 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3634 enum vxge_hw_status
3635 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3636 u32 action, u32 rts_table, u32 offset,
3637 u64 *data0, u64 *data1)
3639 enum vxge_hw_status status;
3640 u64 steer_ctrl = 0;
3642 if (vp == NULL) {
3643 status = VXGE_HW_ERR_INVALID_HANDLE;
3644 goto exit;
3647 if ((rts_table ==
3648 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3649 (rts_table ==
3650 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3651 (rts_table ==
3652 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3653 (rts_table ==
3654 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3655 steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3658 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3659 data0, data1, &steer_ctrl);
3660 if (status != VXGE_HW_OK)
3661 goto exit;
3663 if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3664 (rts_table !=
3665 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3666 *data1 = 0;
3667 exit:
3668 return status;
3672 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3674 enum vxge_hw_status
3675 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3676 u32 rts_table, u32 offset, u64 steer_data0,
3677 u64 steer_data1)
3679 u64 data0, data1 = 0, steer_ctrl = 0;
3680 enum vxge_hw_status status;
3682 if (vp == NULL) {
3683 status = VXGE_HW_ERR_INVALID_HANDLE;
3684 goto exit;
3687 data0 = steer_data0;
3689 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3690 (rts_table ==
3691 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3692 data1 = steer_data1;
3694 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3695 &data0, &data1, &steer_ctrl);
3696 exit:
3697 return status;
3701 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3703 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3704 struct __vxge_hw_vpath_handle *vp,
3705 enum vxge_hw_rth_algoritms algorithm,
3706 struct vxge_hw_rth_hash_types *hash_type,
3707 u16 bucket_size)
3709 u64 data0, data1;
3710 enum vxge_hw_status status = VXGE_HW_OK;
3712 if (vp == NULL) {
3713 status = VXGE_HW_ERR_INVALID_HANDLE;
3714 goto exit;
3717 status = __vxge_hw_vpath_rts_table_get(vp,
3718 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3719 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3720 0, &data0, &data1);
3721 if (status != VXGE_HW_OK)
3722 goto exit;
3724 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3725 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3727 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3728 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3729 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3731 if (hash_type->hash_type_tcpipv4_en)
3732 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3734 if (hash_type->hash_type_ipv4_en)
3735 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3737 if (hash_type->hash_type_tcpipv6_en)
3738 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3740 if (hash_type->hash_type_ipv6_en)
3741 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3743 if (hash_type->hash_type_tcpipv6ex_en)
3744 data0 |=
3745 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3747 if (hash_type->hash_type_ipv6ex_en)
3748 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3750 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3751 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3752 else
3753 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3755 status = __vxge_hw_vpath_rts_table_set(vp,
3756 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3757 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3758 0, data0, 0);
3759 exit:
3760 return status;
3763 static void
3764 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3765 u16 flag, u8 *itable)
3767 switch (flag) {
3768 case 1:
3769 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3770 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3771 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3772 itable[j]);
3773 /* fall through */
3774 case 2:
3775 *data0 |=
3776 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3777 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3778 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3779 itable[j]);
3780 /* fall through */
3781 case 3:
3782 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3783 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3784 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3785 itable[j]);
3786 /* fall through */
3787 case 4:
3788 *data1 |=
3789 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3790 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3791 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3792 itable[j]);
3793 default:
3794 return;
3798 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3800 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3801 struct __vxge_hw_vpath_handle **vpath_handles,
3802 u32 vpath_count,
3803 u8 *mtable,
3804 u8 *itable,
3805 u32 itable_size)
3807 u32 i, j, action, rts_table;
3808 u64 data0;
3809 u64 data1;
3810 u32 max_entries;
3811 enum vxge_hw_status status = VXGE_HW_OK;
3812 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3814 if (vp == NULL) {
3815 status = VXGE_HW_ERR_INVALID_HANDLE;
3816 goto exit;
3819 max_entries = (((u32)1) << itable_size);
3821 if (vp->vpath->hldev->config.rth_it_type
3822 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3823 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3824 rts_table =
3825 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3827 for (j = 0; j < max_entries; j++) {
3829 data1 = 0;
3831 data0 =
3832 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3833 itable[j]);
3835 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3836 action, rts_table, j, data0, data1);
3838 if (status != VXGE_HW_OK)
3839 goto exit;
3842 for (j = 0; j < max_entries; j++) {
3844 data1 = 0;
3846 data0 =
3847 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3848 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3849 itable[j]);
3851 status = __vxge_hw_vpath_rts_table_set(
3852 vpath_handles[mtable[itable[j]]], action,
3853 rts_table, j, data0, data1);
3855 if (status != VXGE_HW_OK)
3856 goto exit;
3858 } else {
3859 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3860 rts_table =
3861 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3862 for (i = 0; i < vpath_count; i++) {
3864 for (j = 0; j < max_entries;) {
3866 data0 = 0;
3867 data1 = 0;
3869 while (j < max_entries) {
3870 if (mtable[itable[j]] != i) {
3871 j++;
3872 continue;
3874 vxge_hw_rts_rth_data0_data1_get(j,
3875 &data0, &data1, 1, itable);
3876 j++;
3877 break;
3880 while (j < max_entries) {
3881 if (mtable[itable[j]] != i) {
3882 j++;
3883 continue;
3885 vxge_hw_rts_rth_data0_data1_get(j,
3886 &data0, &data1, 2, itable);
3887 j++;
3888 break;
3891 while (j < max_entries) {
3892 if (mtable[itable[j]] != i) {
3893 j++;
3894 continue;
3896 vxge_hw_rts_rth_data0_data1_get(j,
3897 &data0, &data1, 3, itable);
3898 j++;
3899 break;
3902 while (j < max_entries) {
3903 if (mtable[itable[j]] != i) {
3904 j++;
3905 continue;
3907 vxge_hw_rts_rth_data0_data1_get(j,
3908 &data0, &data1, 4, itable);
3909 j++;
3910 break;
3913 if (data0 != 0) {
3914 status = __vxge_hw_vpath_rts_table_set(
3915 vpath_handles[i],
3916 action, rts_table,
3917 0, data0, data1);
3919 if (status != VXGE_HW_OK)
3920 goto exit;
3925 exit:
3926 return status;
3930 * vxge_hw_vpath_check_leak - Check for memory leak
3931 * @ringh: Handle to the ring object used for receive
3933 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3934 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3935 * Returns: VXGE_HW_FAIL, if leak has occurred.
3938 enum vxge_hw_status
3939 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3941 enum vxge_hw_status status = VXGE_HW_OK;
3942 u64 rxd_new_count, rxd_spat;
3944 if (ring == NULL)
3945 return status;
3947 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3948 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3949 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3951 if (rxd_new_count >= rxd_spat)
3952 status = VXGE_HW_FAIL;
3954 return status;
3958 * __vxge_hw_vpath_mgmt_read
3959 * This routine reads the vpath_mgmt registers
3961 static enum vxge_hw_status
3962 __vxge_hw_vpath_mgmt_read(
3963 struct __vxge_hw_device *hldev,
3964 struct __vxge_hw_virtualpath *vpath)
3966 u32 i, mtu = 0, max_pyld = 0;
3967 u64 val64;
3969 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3971 val64 = readq(&vpath->vpmgmt_reg->
3972 rxmac_cfg0_port_vpmgmt_clone[i]);
3973 max_pyld =
3974 (u32)
3975 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3976 (val64);
3977 if (mtu < max_pyld)
3978 mtu = max_pyld;
3981 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3983 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3985 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3986 if (val64 & vxge_mBIT(i))
3987 vpath->vsport_number = i;
3990 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3992 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3993 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3994 else
3995 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3997 return VXGE_HW_OK;
4001 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4002 * This routine checks the vpath_rst_in_prog register to see if
4003 * adapter completed the reset process for the vpath
4005 static enum vxge_hw_status
4006 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4008 enum vxge_hw_status status;
4010 status = __vxge_hw_device_register_poll(
4011 &vpath->hldev->common_reg->vpath_rst_in_prog,
4012 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4013 1 << (16 - vpath->vp_id)),
4014 vpath->hldev->config.device_poll_millis);
4016 return status;
4020 * __vxge_hw_vpath_reset
4021 * This routine resets the vpath on the device
4023 static enum vxge_hw_status
4024 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4026 u64 val64;
4028 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4030 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4031 &hldev->common_reg->cmn_rsthdlr_cfg0);
4033 return VXGE_HW_OK;
4037 * __vxge_hw_vpath_sw_reset
4038 * This routine resets the vpath structures
4040 static enum vxge_hw_status
4041 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4043 enum vxge_hw_status status = VXGE_HW_OK;
4044 struct __vxge_hw_virtualpath *vpath;
4046 vpath = &hldev->virtual_paths[vp_id];
4048 if (vpath->ringh) {
4049 status = __vxge_hw_ring_reset(vpath->ringh);
4050 if (status != VXGE_HW_OK)
4051 goto exit;
4054 if (vpath->fifoh)
4055 status = __vxge_hw_fifo_reset(vpath->fifoh);
4056 exit:
4057 return status;
4061 * __vxge_hw_vpath_prc_configure
4062 * This routine configures the prc registers of virtual path using the config
4063 * passed
4065 static void
4066 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4068 u64 val64;
4069 struct __vxge_hw_virtualpath *vpath;
4070 struct vxge_hw_vp_config *vp_config;
4071 struct vxge_hw_vpath_reg __iomem *vp_reg;
4073 vpath = &hldev->virtual_paths[vp_id];
4074 vp_reg = vpath->vp_reg;
4075 vp_config = vpath->vp_config;
4077 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4078 return;
4080 val64 = readq(&vp_reg->prc_cfg1);
4081 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4082 writeq(val64, &vp_reg->prc_cfg1);
4084 val64 = readq(&vpath->vp_reg->prc_cfg6);
4085 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4086 writeq(val64, &vpath->vp_reg->prc_cfg6);
4088 val64 = readq(&vp_reg->prc_cfg7);
4090 if (vpath->vp_config->ring.scatter_mode !=
4091 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4093 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4095 switch (vpath->vp_config->ring.scatter_mode) {
4096 case VXGE_HW_RING_SCATTER_MODE_A:
4097 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4098 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4099 break;
4100 case VXGE_HW_RING_SCATTER_MODE_B:
4101 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4102 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4103 break;
4104 case VXGE_HW_RING_SCATTER_MODE_C:
4105 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4106 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4107 break;
4111 writeq(val64, &vp_reg->prc_cfg7);
4113 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4114 __vxge_hw_ring_first_block_address_get(
4115 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4117 val64 = readq(&vp_reg->prc_cfg4);
4118 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4119 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4121 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4122 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4124 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4125 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4126 else
4127 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4129 writeq(val64, &vp_reg->prc_cfg4);
4133 * __vxge_hw_vpath_kdfc_configure
4134 * This routine configures the kdfc registers of virtual path using the
4135 * config passed
4137 static enum vxge_hw_status
4138 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4140 u64 val64;
4141 u64 vpath_stride;
4142 enum vxge_hw_status status = VXGE_HW_OK;
4143 struct __vxge_hw_virtualpath *vpath;
4144 struct vxge_hw_vpath_reg __iomem *vp_reg;
4146 vpath = &hldev->virtual_paths[vp_id];
4147 vp_reg = vpath->vp_reg;
4148 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4150 if (status != VXGE_HW_OK)
4151 goto exit;
4153 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4155 vpath->max_kdfc_db =
4156 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4157 val64+1)/2;
4159 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4161 vpath->max_nofl_db = vpath->max_kdfc_db;
4163 if (vpath->max_nofl_db <
4164 ((vpath->vp_config->fifo.memblock_size /
4165 (vpath->vp_config->fifo.max_frags *
4166 sizeof(struct vxge_hw_fifo_txd))) *
4167 vpath->vp_config->fifo.fifo_blocks)) {
4169 return VXGE_HW_BADCFG_FIFO_BLOCKS;
4171 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4172 (vpath->max_nofl_db*2)-1);
4175 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4177 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4178 &vp_reg->kdfc_fifo_trpl_ctrl);
4180 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4182 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4183 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4185 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4186 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4187 #ifndef __BIG_ENDIAN
4188 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4189 #endif
4190 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4192 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4193 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4194 wmb();
4195 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4197 vpath->nofl_db =
4198 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
4199 (hldev->kdfc + (vp_id *
4200 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4201 vpath_stride)));
4202 exit:
4203 return status;
4207 * __vxge_hw_vpath_mac_configure
4208 * This routine configures the mac of virtual path using the config passed
4210 static enum vxge_hw_status
4211 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4213 u64 val64;
4214 struct __vxge_hw_virtualpath *vpath;
4215 struct vxge_hw_vp_config *vp_config;
4216 struct vxge_hw_vpath_reg __iomem *vp_reg;
4218 vpath = &hldev->virtual_paths[vp_id];
4219 vp_reg = vpath->vp_reg;
4220 vp_config = vpath->vp_config;
4222 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4223 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4225 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4227 val64 = readq(&vp_reg->xmac_rpa_vcfg);
4229 if (vp_config->rpa_strip_vlan_tag !=
4230 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4231 if (vp_config->rpa_strip_vlan_tag)
4232 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4233 else
4234 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4237 writeq(val64, &vp_reg->xmac_rpa_vcfg);
4238 val64 = readq(&vp_reg->rxmac_vcfg0);
4240 if (vp_config->mtu !=
4241 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4242 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4243 if ((vp_config->mtu +
4244 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4245 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4246 vp_config->mtu +
4247 VXGE_HW_MAC_HEADER_MAX_SIZE);
4248 else
4249 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4250 vpath->max_mtu);
4253 writeq(val64, &vp_reg->rxmac_vcfg0);
4255 val64 = readq(&vp_reg->rxmac_vcfg1);
4257 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4258 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4260 if (hldev->config.rth_it_type ==
4261 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4262 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4263 0x2) |
4264 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4267 writeq(val64, &vp_reg->rxmac_vcfg1);
4269 return VXGE_HW_OK;
4273 * __vxge_hw_vpath_tim_configure
4274 * This routine configures the tim registers of virtual path using the config
4275 * passed
4277 static enum vxge_hw_status
4278 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4280 u64 val64;
4281 struct __vxge_hw_virtualpath *vpath;
4282 struct vxge_hw_vpath_reg __iomem *vp_reg;
4283 struct vxge_hw_vp_config *config;
4285 vpath = &hldev->virtual_paths[vp_id];
4286 vp_reg = vpath->vp_reg;
4287 config = vpath->vp_config;
4289 writeq(0, &vp_reg->tim_dest_addr);
4290 writeq(0, &vp_reg->tim_vpath_map);
4291 writeq(0, &vp_reg->tim_bitmap);
4292 writeq(0, &vp_reg->tim_remap);
4294 if (config->ring.enable == VXGE_HW_RING_ENABLE)
4295 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4296 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4297 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4299 val64 = readq(&vp_reg->tim_pci_cfg);
4300 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4301 writeq(val64, &vp_reg->tim_pci_cfg);
4303 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4305 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4307 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4308 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4309 0x3ffffff);
4310 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4311 config->tti.btimer_val);
4314 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4316 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4317 if (config->tti.timer_ac_en)
4318 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4319 else
4320 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4323 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4324 if (config->tti.timer_ci_en)
4325 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4326 else
4327 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4330 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4331 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4332 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4333 config->tti.urange_a);
4336 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4337 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4338 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4339 config->tti.urange_b);
4342 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4343 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4344 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4345 config->tti.urange_c);
4348 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4349 vpath->tim_tti_cfg1_saved = val64;
4351 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4353 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4354 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4355 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4356 config->tti.uec_a);
4359 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4360 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4361 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4362 config->tti.uec_b);
4365 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4366 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4367 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4368 config->tti.uec_c);
4371 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4372 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4373 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4374 config->tti.uec_d);
4377 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4378 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4380 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4381 if (config->tti.timer_ri_en)
4382 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4383 else
4384 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4387 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4388 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4389 0x3ffffff);
4390 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4391 config->tti.rtimer_val);
4394 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4395 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4396 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4399 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4400 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4401 0x3ffffff);
4402 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4403 config->tti.ltimer_val);
4406 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4407 vpath->tim_tti_cfg3_saved = val64;
4410 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4412 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4414 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4415 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4416 0x3ffffff);
4417 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4418 config->rti.btimer_val);
4421 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4423 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4424 if (config->rti.timer_ac_en)
4425 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4426 else
4427 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4430 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4431 if (config->rti.timer_ci_en)
4432 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4433 else
4434 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4437 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4438 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4439 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4440 config->rti.urange_a);
4443 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4444 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4445 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4446 config->rti.urange_b);
4449 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4450 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4451 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4452 config->rti.urange_c);
4455 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4456 vpath->tim_rti_cfg1_saved = val64;
4458 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4460 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4461 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4462 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4463 config->rti.uec_a);
4466 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4467 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4468 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4469 config->rti.uec_b);
4472 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4473 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4474 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4475 config->rti.uec_c);
4478 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4479 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4480 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4481 config->rti.uec_d);
4484 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4485 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4487 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4488 if (config->rti.timer_ri_en)
4489 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4490 else
4491 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4494 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4495 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4496 0x3ffffff);
4497 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4498 config->rti.rtimer_val);
4501 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4502 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4503 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4506 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4507 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4508 0x3ffffff);
4509 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4510 config->rti.ltimer_val);
4513 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4514 vpath->tim_rti_cfg3_saved = val64;
4517 val64 = 0;
4518 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4519 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4520 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4521 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4522 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4523 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4525 val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4526 val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4527 val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4528 writeq(val64, &vp_reg->tim_wrkld_clc);
4530 return VXGE_HW_OK;
4534 * __vxge_hw_vpath_initialize
4535 * This routine is the final phase of init which initializes the
4536 * registers of the vpath using the configuration passed.
4538 static enum vxge_hw_status
4539 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4541 u64 val64;
4542 u32 val32;
4543 enum vxge_hw_status status = VXGE_HW_OK;
4544 struct __vxge_hw_virtualpath *vpath;
4545 struct vxge_hw_vpath_reg __iomem *vp_reg;
4547 vpath = &hldev->virtual_paths[vp_id];
4549 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4550 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4551 goto exit;
4553 vp_reg = vpath->vp_reg;
4555 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4556 if (status != VXGE_HW_OK)
4557 goto exit;
4559 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4560 if (status != VXGE_HW_OK)
4561 goto exit;
4563 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4564 if (status != VXGE_HW_OK)
4565 goto exit;
4567 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4568 if (status != VXGE_HW_OK)
4569 goto exit;
4571 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4573 /* Get MRRS value from device control */
4574 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4575 if (status == VXGE_HW_OK) {
4576 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4577 val64 &=
4578 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4579 val64 |=
4580 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4582 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4585 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4586 val64 |=
4587 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4588 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4590 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4591 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4593 exit:
4594 return status;
4598 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4599 * This routine closes all channels it opened and freeup memory
4601 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4603 struct __vxge_hw_virtualpath *vpath;
4605 vpath = &hldev->virtual_paths[vp_id];
4607 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4608 goto exit;
4610 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4611 vpath->hldev->tim_int_mask1, vpath->vp_id);
4612 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4614 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4615 * work after the interface is brought down.
4617 spin_lock(&vpath->lock);
4618 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4619 spin_unlock(&vpath->lock);
4621 vpath->vpmgmt_reg = NULL;
4622 vpath->nofl_db = NULL;
4623 vpath->max_mtu = 0;
4624 vpath->vsport_number = 0;
4625 vpath->max_kdfc_db = 0;
4626 vpath->max_nofl_db = 0;
4627 vpath->ringh = NULL;
4628 vpath->fifoh = NULL;
4629 memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4630 vpath->stats_block = NULL;
4631 vpath->hw_stats = NULL;
4632 vpath->hw_stats_sav = NULL;
4633 vpath->sw_stats = NULL;
4635 exit:
4636 return;
4640 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4641 * This routine is the initial phase of init which resets the vpath and
4642 * initializes the software support structures.
4644 static enum vxge_hw_status
4645 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4646 struct vxge_hw_vp_config *config)
4648 struct __vxge_hw_virtualpath *vpath;
4649 enum vxge_hw_status status = VXGE_HW_OK;
4651 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4652 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4653 goto exit;
4656 vpath = &hldev->virtual_paths[vp_id];
4658 spin_lock_init(&vpath->lock);
4659 vpath->vp_id = vp_id;
4660 vpath->vp_open = VXGE_HW_VP_OPEN;
4661 vpath->hldev = hldev;
4662 vpath->vp_config = config;
4663 vpath->vp_reg = hldev->vpath_reg[vp_id];
4664 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4666 __vxge_hw_vpath_reset(hldev, vp_id);
4668 status = __vxge_hw_vpath_reset_check(vpath);
4669 if (status != VXGE_HW_OK) {
4670 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4671 goto exit;
4674 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4675 if (status != VXGE_HW_OK) {
4676 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4677 goto exit;
4680 INIT_LIST_HEAD(&vpath->vpath_handles);
4682 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4684 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4685 hldev->tim_int_mask1, vp_id);
4687 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4688 if (status != VXGE_HW_OK)
4689 __vxge_hw_vp_terminate(hldev, vp_id);
4690 exit:
4691 return status;
4695 * vxge_hw_vpath_mtu_set - Set MTU.
4696 * Set new MTU value. Example, to use jumbo frames:
4697 * vxge_hw_vpath_mtu_set(my_device, 9600);
4699 enum vxge_hw_status
4700 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4702 u64 val64;
4703 enum vxge_hw_status status = VXGE_HW_OK;
4704 struct __vxge_hw_virtualpath *vpath;
4706 if (vp == NULL) {
4707 status = VXGE_HW_ERR_INVALID_HANDLE;
4708 goto exit;
4710 vpath = vp->vpath;
4712 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4714 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4715 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4717 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4719 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4720 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4722 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4724 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4726 exit:
4727 return status;
4731 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4732 * Enable the DMA vpath statistics. The function is to be called to re-enable
4733 * the adapter to update stats into the host memory
4735 static enum vxge_hw_status
4736 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4738 enum vxge_hw_status status = VXGE_HW_OK;
4739 struct __vxge_hw_virtualpath *vpath;
4741 vpath = vp->vpath;
4743 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4744 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4745 goto exit;
4748 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4749 sizeof(struct vxge_hw_vpath_stats_hw_info));
4751 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4752 exit:
4753 return status;
4757 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4758 * This function allocates a block from block pool or from the system
4760 static struct __vxge_hw_blockpool_entry *
4761 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4763 struct __vxge_hw_blockpool_entry *entry = NULL;
4764 struct __vxge_hw_blockpool *blockpool;
4766 blockpool = &devh->block_pool;
4768 if (size == blockpool->block_size) {
4770 if (!list_empty(&blockpool->free_block_list))
4771 entry = (struct __vxge_hw_blockpool_entry *)
4772 list_first_entry(&blockpool->free_block_list,
4773 struct __vxge_hw_blockpool_entry,
4774 item);
4776 if (entry != NULL) {
4777 list_del(&entry->item);
4778 blockpool->pool_size--;
4782 if (entry != NULL)
4783 __vxge_hw_blockpool_blocks_add(blockpool);
4785 return entry;
4789 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4790 * This function is used to open access to virtual path of an
4791 * adapter for offload, GRO operations. This function returns
4792 * synchronously.
4794 enum vxge_hw_status
4795 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4796 struct vxge_hw_vpath_attr *attr,
4797 struct __vxge_hw_vpath_handle **vpath_handle)
4799 struct __vxge_hw_virtualpath *vpath;
4800 struct __vxge_hw_vpath_handle *vp;
4801 enum vxge_hw_status status;
4803 vpath = &hldev->virtual_paths[attr->vp_id];
4805 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4806 status = VXGE_HW_ERR_INVALID_STATE;
4807 goto vpath_open_exit1;
4810 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4811 &hldev->config.vp_config[attr->vp_id]);
4812 if (status != VXGE_HW_OK)
4813 goto vpath_open_exit1;
4815 vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4816 if (vp == NULL) {
4817 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4818 goto vpath_open_exit2;
4821 vp->vpath = vpath;
4823 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4824 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4825 if (status != VXGE_HW_OK)
4826 goto vpath_open_exit6;
4829 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4830 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4831 if (status != VXGE_HW_OK)
4832 goto vpath_open_exit7;
4834 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4837 vpath->fifoh->tx_intr_num =
4838 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4839 VXGE_HW_VPATH_INTR_TX;
4841 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4842 VXGE_HW_BLOCK_SIZE);
4843 if (vpath->stats_block == NULL) {
4844 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4845 goto vpath_open_exit8;
4848 vpath->hw_stats = vpath->stats_block->memblock;
4849 memset(vpath->hw_stats, 0,
4850 sizeof(struct vxge_hw_vpath_stats_hw_info));
4852 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4853 vpath->hw_stats;
4855 vpath->hw_stats_sav =
4856 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4857 memset(vpath->hw_stats_sav, 0,
4858 sizeof(struct vxge_hw_vpath_stats_hw_info));
4860 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4862 status = vxge_hw_vpath_stats_enable(vp);
4863 if (status != VXGE_HW_OK)
4864 goto vpath_open_exit8;
4866 list_add(&vp->item, &vpath->vpath_handles);
4868 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4870 *vpath_handle = vp;
4872 attr->fifo_attr.userdata = vpath->fifoh;
4873 attr->ring_attr.userdata = vpath->ringh;
4875 return VXGE_HW_OK;
4877 vpath_open_exit8:
4878 if (vpath->ringh != NULL)
4879 __vxge_hw_ring_delete(vp);
4880 vpath_open_exit7:
4881 if (vpath->fifoh != NULL)
4882 __vxge_hw_fifo_delete(vp);
4883 vpath_open_exit6:
4884 vfree(vp);
4885 vpath_open_exit2:
4886 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4887 vpath_open_exit1:
4889 return status;
4893 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4894 * (vpath) open
4895 * @vp: Handle got from previous vpath open
4897 * This function is used to close access to virtual path opened
4898 * earlier.
4900 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4902 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4903 struct __vxge_hw_ring *ring = vpath->ringh;
4904 struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4905 u64 new_count, val64, val164;
4907 if (vdev->titan1) {
4908 new_count = readq(&vpath->vp_reg->rxdmem_size);
4909 new_count &= 0x1fff;
4910 } else
4911 new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4913 val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4915 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4916 &vpath->vp_reg->prc_rxd_doorbell);
4917 readl(&vpath->vp_reg->prc_rxd_doorbell);
4919 val164 /= 2;
4920 val64 = readq(&vpath->vp_reg->prc_cfg6);
4921 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4922 val64 &= 0x1ff;
4925 * Each RxD is of 4 qwords
4927 new_count -= (val64 + 1);
4928 val64 = min(val164, new_count) / 4;
4930 ring->rxds_limit = min(ring->rxds_limit, val64);
4931 if (ring->rxds_limit < 4)
4932 ring->rxds_limit = 4;
4936 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4937 * @devh: Hal device
4938 * @entry: Entry of block to be freed
4940 * This function frees a block from block pool
4942 static void
4943 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4944 struct __vxge_hw_blockpool_entry *entry)
4946 struct __vxge_hw_blockpool *blockpool;
4948 blockpool = &devh->block_pool;
4950 if (entry->length == blockpool->block_size) {
4951 list_add(&entry->item, &blockpool->free_block_list);
4952 blockpool->pool_size++;
4955 __vxge_hw_blockpool_blocks_remove(blockpool);
4959 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4960 * This function is used to close access to virtual path opened
4961 * earlier.
4963 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4965 struct __vxge_hw_virtualpath *vpath = NULL;
4966 struct __vxge_hw_device *devh = NULL;
4967 u32 vp_id = vp->vpath->vp_id;
4968 u32 is_empty = TRUE;
4969 enum vxge_hw_status status = VXGE_HW_OK;
4971 vpath = vp->vpath;
4972 devh = vpath->hldev;
4974 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4975 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4976 goto vpath_close_exit;
4979 list_del(&vp->item);
4981 if (!list_empty(&vpath->vpath_handles)) {
4982 list_add(&vp->item, &vpath->vpath_handles);
4983 is_empty = FALSE;
4986 if (!is_empty) {
4987 status = VXGE_HW_FAIL;
4988 goto vpath_close_exit;
4991 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4993 if (vpath->ringh != NULL)
4994 __vxge_hw_ring_delete(vp);
4996 if (vpath->fifoh != NULL)
4997 __vxge_hw_fifo_delete(vp);
4999 if (vpath->stats_block != NULL)
5000 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5002 vfree(vp);
5004 __vxge_hw_vp_terminate(devh, vp_id);
5006 vpath_close_exit:
5007 return status;
5011 * vxge_hw_vpath_reset - Resets vpath
5012 * This function is used to request a reset of vpath
5014 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5016 enum vxge_hw_status status;
5017 u32 vp_id;
5018 struct __vxge_hw_virtualpath *vpath = vp->vpath;
5020 vp_id = vpath->vp_id;
5022 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5023 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5024 goto exit;
5027 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5028 if (status == VXGE_HW_OK)
5029 vpath->sw_stats->soft_reset_cnt++;
5030 exit:
5031 return status;
5035 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5036 * This function poll's for the vpath reset completion and re initializes
5037 * the vpath.
5039 enum vxge_hw_status
5040 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5042 struct __vxge_hw_virtualpath *vpath = NULL;
5043 enum vxge_hw_status status;
5044 struct __vxge_hw_device *hldev;
5045 u32 vp_id;
5047 vp_id = vp->vpath->vp_id;
5048 vpath = vp->vpath;
5049 hldev = vpath->hldev;
5051 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5052 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5053 goto exit;
5056 status = __vxge_hw_vpath_reset_check(vpath);
5057 if (status != VXGE_HW_OK)
5058 goto exit;
5060 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5061 if (status != VXGE_HW_OK)
5062 goto exit;
5064 status = __vxge_hw_vpath_initialize(hldev, vp_id);
5065 if (status != VXGE_HW_OK)
5066 goto exit;
5068 if (vpath->ringh != NULL)
5069 __vxge_hw_vpath_prc_configure(hldev, vp_id);
5071 memset(vpath->hw_stats, 0,
5072 sizeof(struct vxge_hw_vpath_stats_hw_info));
5074 memset(vpath->hw_stats_sav, 0,
5075 sizeof(struct vxge_hw_vpath_stats_hw_info));
5077 writeq(vpath->stats_block->dma_addr,
5078 &vpath->vp_reg->stats_cfg);
5080 status = vxge_hw_vpath_stats_enable(vp);
5082 exit:
5083 return status;
5087 * vxge_hw_vpath_enable - Enable vpath.
5088 * This routine clears the vpath reset thereby enabling a vpath
5089 * to start forwarding frames and generating interrupts.
5091 void
5092 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5094 struct __vxge_hw_device *hldev;
5095 u64 val64;
5097 hldev = vp->vpath->hldev;
5099 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5100 1 << (16 - vp->vpath->vp_id));
5102 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5103 &hldev->common_reg->cmn_rsthdlr_cfg1);