1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
10 * vxge-traffic.h: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #ifndef VXGE_TRAFFIC_H
15 #define VXGE_TRAFFIC_H
18 #include "vxge-version.h"
20 #define VXGE_HW_DTR_MAX_T_CODE 16
21 #define VXGE_HW_ALL_FOXES 0xFFFFFFFFFFFFFFFFULL
22 #define VXGE_HW_INTR_MASK_ALL 0xFFFFFFFFFFFFFFFFULL
23 #define VXGE_HW_MAX_VIRTUAL_PATHS 17
25 #define VXGE_HW_MAC_MAX_MAC_PORT_ID 2
27 #define VXGE_HW_DEFAULT_32 0xffffffff
29 #define VXGE_HW_HEADER_802_2_SIZE 3
30 #define VXGE_HW_HEADER_SNAP_SIZE 5
31 #define VXGE_HW_HEADER_VLAN_SIZE 4
32 #define VXGE_HW_MAC_HEADER_MAX_SIZE \
34 VXGE_HW_HEADER_802_2_SIZE + \
35 VXGE_HW_HEADER_VLAN_SIZE + \
36 VXGE_HW_HEADER_SNAP_SIZE)
38 /* 32bit alignments */
39 #define VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN 2
40 #define VXGE_HW_HEADER_802_2_SNAP_ALIGN 2
41 #define VXGE_HW_HEADER_802_2_ALIGN 3
42 #define VXGE_HW_HEADER_SNAP_ALIGN 1
44 #define VXGE_HW_L3_CKSUM_OK 0xFFFF
45 #define VXGE_HW_L4_CKSUM_OK 0xFFFF
47 /* Forward declarations */
48 struct __vxge_hw_device
;
49 struct __vxge_hw_vpath_handle
;
50 struct vxge_hw_vp_config
;
51 struct __vxge_hw_virtualpath
;
52 struct __vxge_hw_channel
;
53 struct __vxge_hw_fifo
;
54 struct __vxge_hw_ring
;
55 struct vxge_hw_ring_attr
;
56 struct vxge_hw_mempool
;
68 #define VXGE_HW_EVENT_BASE 0
69 #define VXGE_LL_EVENT_BASE 100
72 * enum vxge_hw_event- Enumerates slow-path HW events.
73 * @VXGE_HW_EVENT_UNKNOWN: Unknown (and invalid) event.
74 * @VXGE_HW_EVENT_SERR: Serious vpath hardware error event.
75 * @VXGE_HW_EVENT_ECCERR: vpath ECC error event.
76 * @VXGE_HW_EVENT_VPATH_ERR: Error local to the respective vpath
77 * @VXGE_HW_EVENT_FIFO_ERR: FIFO Doorbell fifo error.
78 * @VXGE_HW_EVENT_SRPCIM_SERR: srpcim hardware error event.
79 * @VXGE_HW_EVENT_MRPCIM_SERR: mrpcim hardware error event.
80 * @VXGE_HW_EVENT_MRPCIM_ECCERR: mrpcim ecc error event.
81 * @VXGE_HW_EVENT_RESET_START: Privileged entity is starting device reset
82 * @VXGE_HW_EVENT_RESET_COMPLETE: Device reset has been completed
83 * @VXGE_HW_EVENT_SLOT_FREEZE: Slot-freeze event. Driver tries to distinguish
84 * slot-freeze from the rest critical events (e.g. ECC) when it is
85 * impossible to PIO read "through" the bus, i.e. when getting all-foxes.
87 * enum vxge_hw_event enumerates slow-path HW eventis.
89 * See also: struct vxge_hw_uld_cbs{}, vxge_uld_link_up_f{},
90 * vxge_uld_link_down_f{}.
93 VXGE_HW_EVENT_UNKNOWN
= 0,
95 VXGE_HW_EVENT_RESET_START
= VXGE_HW_EVENT_BASE
+ 1,
96 VXGE_HW_EVENT_RESET_COMPLETE
= VXGE_HW_EVENT_BASE
+ 2,
97 VXGE_HW_EVENT_LINK_DOWN
= VXGE_HW_EVENT_BASE
+ 3,
98 VXGE_HW_EVENT_LINK_UP
= VXGE_HW_EVENT_BASE
+ 4,
99 VXGE_HW_EVENT_ALARM_CLEARED
= VXGE_HW_EVENT_BASE
+ 5,
100 VXGE_HW_EVENT_ECCERR
= VXGE_HW_EVENT_BASE
+ 6,
101 VXGE_HW_EVENT_MRPCIM_ECCERR
= VXGE_HW_EVENT_BASE
+ 7,
102 VXGE_HW_EVENT_FIFO_ERR
= VXGE_HW_EVENT_BASE
+ 8,
103 VXGE_HW_EVENT_VPATH_ERR
= VXGE_HW_EVENT_BASE
+ 9,
104 VXGE_HW_EVENT_CRITICAL_ERR
= VXGE_HW_EVENT_BASE
+ 10,
105 VXGE_HW_EVENT_SERR
= VXGE_HW_EVENT_BASE
+ 11,
106 VXGE_HW_EVENT_SRPCIM_SERR
= VXGE_HW_EVENT_BASE
+ 12,
107 VXGE_HW_EVENT_MRPCIM_SERR
= VXGE_HW_EVENT_BASE
+ 13,
108 VXGE_HW_EVENT_SLOT_FREEZE
= VXGE_HW_EVENT_BASE
+ 14,
111 #define VXGE_HW_SET_LEVEL(a, b) (((a) > (b)) ? (a) : (b))
114 * struct vxge_hw_mempool_dma - Represents DMA objects passed to the
117 struct vxge_hw_mempool_dma
{
119 struct pci_dev
*handle
;
120 struct pci_dev
*acc_handle
;
124 * vxge_hw_mempool_item_f - Mempool item alloc/free callback
125 * @mempoolh: Memory pool handle.
126 * @memblock: Address of memory block
127 * @memblock_index: Index of memory block
128 * @item: Item that gets allocated or freed.
129 * @index: Item's index in the memory pool.
130 * @is_last: True, if this item is the last one in the pool; false - otherwise.
131 * userdata: Per-pool user context.
133 * Memory pool allocation/deallocation callback.
137 * struct vxge_hw_mempool - Memory pool.
139 struct vxge_hw_mempool
{
141 void (*item_func_alloc
)(
142 struct vxge_hw_mempool
*mempoolh
,
144 struct vxge_hw_mempool_dma
*dma_object
,
149 void **memblocks_arr
;
150 void **memblocks_priv_arr
;
151 struct vxge_hw_mempool_dma
*memblocks_dma_arr
;
152 struct __vxge_hw_device
*devh
;
155 u32 memblocks_allocated
;
160 u32 items_per_memblock
;
165 #define VXGE_HW_MAX_INTR_PER_VP 4
166 #define VXGE_HW_VPATH_INTR_TX 0
167 #define VXGE_HW_VPATH_INTR_RX 1
168 #define VXGE_HW_VPATH_INTR_EINTA 2
169 #define VXGE_HW_VPATH_INTR_BMAP 3
171 #define VXGE_HW_BLOCK_SIZE 4096
174 * struct vxge_hw_tim_intr_config - Titan Tim interrupt configuration.
175 * @intr_enable: Set to 1, if interrupt is enabled.
176 * @btimer_val: Boundary Timer Initialization value in units of 272 ns.
177 * @timer_ac_en: Timer Automatic Cancel. 1 : Automatic Canceling Enable: when
178 * asserted, other interrupt-generating entities will cancel the
179 * scheduled timer interrupt.
180 * @timer_ci_en: Timer Continuous Interrupt. 1 : Continuous Interrupting Enable:
181 * When asserted, an interrupt will be generated every time the
182 * boundary timer expires, even if no traffic has been transmitted
184 * @timer_ri_en: Timer Consecutive (Re-) Interrupt 1 : Consecutive
185 * (Re-) Interrupt Enable: When asserted, an interrupt will be
186 * generated the next time the timer expires, even if no traffic has
187 * been transmitted on this interrupt. (This will only happen once
188 * each time that this value is written to the TIM.) This bit is
189 * cleared by H/W at the end of the current-timer-interval when
190 * the interrupt is triggered.
191 * @rtimer_val: Restriction Timer Initialization value in units of 272 ns.
192 * @util_sel: Utilization Selector. Selects which of the workload approximations
193 * to use (e.g. legacy Tx utilization, Tx/Rx utilization, host
194 * specified utilization etc.), selects one of
195 * the 17 host configured values.
200 * 17-Legacy Tx network utilization, provided by TPA
201 * 18-Legacy Rx network utilization, provided by FAU
202 * 19-Average of legacy Rx and Tx utilization calculated from link
203 * utilization values.
204 * 20-31-Invalid configurations
205 * 32-Host utilization for Virtual Path 0
206 * 33-Host utilization for Virtual Path 1
208 * 48-Host utilization for Virtual Path 17
209 * 49-Legacy Tx network utilization, provided by TPA
210 * 50-Legacy Rx network utilization, provided by FAU
211 * 51-Average of legacy Rx and Tx utilization calculated from
212 * link utilization values.
213 * 52-63-Invalid configurations
214 * @ltimer_val: Latency Timer Initialization Value in units of 272 ns.
215 * @txd_cnt_en: TxD Return Event Count Enable. This configuration bit when set
216 * to 1 enables counting of TxD0 returns (signalled by PCC's),
217 * towards utilization event count values.
218 * @urange_a: Defines the upper limit (in percent) for this utilization range
219 * to be active. This range is considered active
220 * if 0 = UTIL = URNG_A
221 * and the UEC_A field (below) is non-zero.
222 * @uec_a: Utilization Event Count A. If this range is active, the adapter will
223 * wait until UEC_A events have occurred on the interrupt before
224 * generating an interrupt.
225 * @urange_b: Link utilization range B.
226 * @uec_b: Utilization Event Count B.
227 * @urange_c: Link utilization range C.
228 * @uec_c: Utilization Event Count C.
229 * @urange_d: Link utilization range D.
230 * @uec_d: Utilization Event Count D.
231 * Traffic Interrupt Controller Module interrupt configuration.
233 struct vxge_hw_tim_intr_config
{
236 #define VXGE_HW_TIM_INTR_ENABLE 1
237 #define VXGE_HW_TIM_INTR_DISABLE 0
238 #define VXGE_HW_TIM_INTR_DEFAULT 0
241 #define VXGE_HW_MIN_TIM_BTIMER_VAL 0
242 #define VXGE_HW_MAX_TIM_BTIMER_VAL 67108864
243 #define VXGE_HW_USE_FLASH_DEFAULT (~0)
246 #define VXGE_HW_TIM_TIMER_AC_ENABLE 1
247 #define VXGE_HW_TIM_TIMER_AC_DISABLE 0
250 #define VXGE_HW_TIM_TIMER_CI_ENABLE 1
251 #define VXGE_HW_TIM_TIMER_CI_DISABLE 0
254 #define VXGE_HW_TIM_TIMER_RI_ENABLE 1
255 #define VXGE_HW_TIM_TIMER_RI_DISABLE 0
258 #define VXGE_HW_MIN_TIM_RTIMER_VAL 0
259 #define VXGE_HW_MAX_TIM_RTIMER_VAL 67108864
262 #define VXGE_HW_TIM_UTIL_SEL_LEGACY_TX_NET_UTIL 17
263 #define VXGE_HW_TIM_UTIL_SEL_LEGACY_RX_NET_UTIL 18
264 #define VXGE_HW_TIM_UTIL_SEL_LEGACY_TX_RX_AVE_NET_UTIL 19
265 #define VXGE_HW_TIM_UTIL_SEL_PER_VPATH 63
268 #define VXGE_HW_MIN_TIM_LTIMER_VAL 0
269 #define VXGE_HW_MAX_TIM_LTIMER_VAL 67108864
271 /* Line utilization interrupts */
273 #define VXGE_HW_MIN_TIM_URANGE_A 0
274 #define VXGE_HW_MAX_TIM_URANGE_A 100
277 #define VXGE_HW_MIN_TIM_UEC_A 0
278 #define VXGE_HW_MAX_TIM_UEC_A 65535
281 #define VXGE_HW_MIN_TIM_URANGE_B 0
282 #define VXGE_HW_MAX_TIM_URANGE_B 100
285 #define VXGE_HW_MIN_TIM_UEC_B 0
286 #define VXGE_HW_MAX_TIM_UEC_B 65535
289 #define VXGE_HW_MIN_TIM_URANGE_C 0
290 #define VXGE_HW_MAX_TIM_URANGE_C 100
293 #define VXGE_HW_MIN_TIM_UEC_C 0
294 #define VXGE_HW_MAX_TIM_UEC_C 65535
297 #define VXGE_HW_MIN_TIM_UEC_D 0
298 #define VXGE_HW_MAX_TIM_UEC_D 65535
301 #define VXGE_HW_STATS_OP_READ 0
302 #define VXGE_HW_STATS_OP_CLEAR_STAT 1
303 #define VXGE_HW_STATS_OP_CLEAR_ALL_VPATH_STATS 2
304 #define VXGE_HW_STATS_OP_CLEAR_ALL_STATS_OF_LOC 2
305 #define VXGE_HW_STATS_OP_CLEAR_ALL_STATS 3
307 #define VXGE_HW_STATS_LOC_AGGR 17
308 #define VXGE_HW_STATS_AGGRn_OFFSET 0x00720
310 #define VXGE_HW_STATS_VPATH_TX_OFFSET 0x0
311 #define VXGE_HW_STATS_VPATH_RX_OFFSET 0x00090
313 #define VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET (0x001d0 >> 3)
314 #define VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(bits) \
315 vxge_bVALn(bits, 0, 32)
317 #define VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(bits) \
318 vxge_bVALn(bits, 32, 32)
320 #define VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET (0x001d8 >> 3)
321 #define VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(bits) \
322 vxge_bVALn(bits, 0, 32)
324 #define VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(bits) \
325 vxge_bVALn(bits, 32, 32)
328 * struct vxge_hw_xmac_aggr_stats - Per-Aggregator XMAC Statistics
330 * @tx_frms: Count of data frames transmitted on this Aggregator on all
331 * its Aggregation ports. Does not include LACPDUs or Marker PDUs.
332 * However, does include frames discarded by the Distribution
334 * @tx_data_octets: Count of data and padding octets of frames transmitted
335 * on this Aggregator on all its Aggregation ports. Does not include
336 * octets of LACPDUs or Marker PDUs. However, does include octets of
337 * frames discarded by the Distribution function.
338 * @tx_mcast_frms: Count of data frames transmitted (to a group destination
339 * address other than the broadcast address) on this Aggregator on
340 * all its Aggregation ports. Does not include LACPDUs or Marker
341 * PDUs. However, does include frames discarded by the Distribution
343 * @tx_bcast_frms: Count of broadcast data frames transmitted on this Aggregator
344 * on all its Aggregation ports. Does not include LACPDUs or Marker
345 * PDUs. However, does include frames discarded by the Distribution
347 * @tx_discarded_frms: Count of data frames to be transmitted on this Aggregator
348 * that are discarded by the Distribution function. This occurs when
349 * conversation are allocated to different ports and have to be
350 * flushed on old ports
351 * @tx_errored_frms: Count of data frames transmitted on this Aggregator that
352 * experience transmission errors on its Aggregation ports.
353 * @rx_frms: Count of data frames received on this Aggregator on all its
354 * Aggregation ports. Does not include LACPDUs or Marker PDUs.
355 * Also, does not include frames discarded by the Collection
357 * @rx_data_octets: Count of data and padding octets of frames received on this
358 * Aggregator on all its Aggregation ports. Does not include octets
359 * of LACPDUs or Marker PDUs. Also, does not include
361 * discarded by the Collection function.
362 * @rx_mcast_frms: Count of data frames received (from a group destination
363 * address other than the broadcast address) on this Aggregator on
364 * all its Aggregation ports. Does not include LACPDUs or Marker
365 * PDUs. Also, does not include frames discarded by the Collection
367 * @rx_bcast_frms: Count of broadcast data frames received on this Aggregator on
368 * all its Aggregation ports. Does not include LACPDUs or Marker
369 * PDUs. Also, does not include frames discarded by the Collection
371 * @rx_discarded_frms: Count of data frames received on this Aggregator that are
372 * discarded by the Collection function because the Collection
373 * function was disabled on the port which the frames are received.
374 * @rx_errored_frms: Count of data frames received on this Aggregator that are
375 * discarded by its Aggregation ports, or are discarded by the
376 * Collection function of the Aggregator, or that are discarded by
377 * the Aggregator due to detection of an illegal Slow Protocols PDU.
378 * @rx_unknown_slow_proto_frms: Count of data frames received on this Aggregator
379 * that are discarded by its Aggregation ports due to detection of
380 * an unknown Slow Protocols PDU.
382 * Per aggregator XMAC RX statistics.
384 struct vxge_hw_xmac_aggr_stats
{
385 /*0x000*/ u64 tx_frms
;
386 /*0x008*/ u64 tx_data_octets
;
387 /*0x010*/ u64 tx_mcast_frms
;
388 /*0x018*/ u64 tx_bcast_frms
;
389 /*0x020*/ u64 tx_discarded_frms
;
390 /*0x028*/ u64 tx_errored_frms
;
391 /*0x030*/ u64 rx_frms
;
392 /*0x038*/ u64 rx_data_octets
;
393 /*0x040*/ u64 rx_mcast_frms
;
394 /*0x048*/ u64 rx_bcast_frms
;
395 /*0x050*/ u64 rx_discarded_frms
;
396 /*0x058*/ u64 rx_errored_frms
;
397 /*0x060*/ u64 rx_unknown_slow_proto_frms
;
401 * struct vxge_hw_xmac_port_stats - XMAC Port Statistics
403 * @tx_ttl_frms: Count of successfully transmitted MAC frames
404 * @tx_ttl_octets: Count of total octets of transmitted frames, not including
405 * framing characters (i.e. less framing bits). To determine the
406 * total octets of transmitted frames, including framing characters,
407 * multiply PORTn_TX_TTL_FRMS by 8 and add it to this stat (unless
408 * otherwise configured, this stat only counts frames that have
409 * 8 bytes of preamble for each frame). This stat can be configured
410 * (see XMAC_STATS_GLOBAL_CFG.TTL_FRMS_HANDLING) to count everything
411 * including the preamble octets.
412 * @tx_data_octets: Count of data and padding octets of successfully transmitted
414 * @tx_mcast_frms: Count of successfully transmitted frames to a group address
415 * other than the broadcast address.
416 * @tx_bcast_frms: Count of successfully transmitted frames to the broadcast
418 * @tx_ucast_frms: Count of transmitted frames containing a unicast address.
419 * Includes discarded frames that are not sent to the network.
420 * @tx_tagged_frms: Count of transmitted frames containing a VLAN tag.
421 * @tx_vld_ip: Count of transmitted IP datagrams that are passed to the network.
422 * @tx_vld_ip_octets: Count of total octets of transmitted IP datagrams that
423 * are passed to the network.
424 * @tx_icmp: Count of transmitted ICMP messages. Includes messages not sent
425 * due to problems within ICMP.
426 * @tx_tcp: Count of transmitted TCP segments. Does not include segments
427 * containing retransmitted octets.
428 * @tx_rst_tcp: Count of transmitted TCP segments containing the RST flag.
429 * @tx_udp: Count of transmitted UDP datagrams.
430 * @tx_parse_error: Increments when the TPA is unable to parse a packet. This
431 * generally occurs when a packet is corrupt somehow, including
432 * packets that have IP version mismatches, invalid Layer 2 control
433 * fields, etc. L3/L4 checksums are not offloaded, but the packet
434 * is still be transmitted.
435 * @tx_unknown_protocol: Increments when the TPA encounters an unknown
436 * protocol, such as a new IPv6 extension header, or an unsupported
437 * Routing Type. The packet still has a checksum calculated but it
439 * @tx_pause_ctrl_frms: Count of MAC PAUSE control frames that are transmitted.
440 * Since, the only control frames supported by this device are
441 * PAUSE frames, this register is a count of all transmitted MAC
443 * @tx_marker_pdu_frms: Count of Marker PDUs transmitted
444 * on this Aggregation port.
445 * @tx_lacpdu_frms: Count of LACPDUs transmitted on this Aggregation port.
446 * @tx_drop_ip: Count of transmitted IP datagrams that could not be passed to
447 * the network. Increments because of:
448 * 1) An internal processing error
449 * (such as an uncorrectable ECC error). 2) A frame parsing error
450 * during IP checksum calculation.
451 * @tx_marker_resp_pdu_frms: Count of Marker Response PDUs transmitted on this
453 * @tx_xgmii_char2_match: Maintains a count of the number of transmitted XGMII
454 * characters that match a pattern that is programmable through
455 * register XMAC_STATS_TX_XGMII_CHAR_PORTn. By default, the pattern
456 * is set to /T/ (i.e. the terminate character), thus the statistic
457 * tracks the number of transmitted Terminate characters.
458 * @tx_xgmii_char1_match: Maintains a count of the number of transmitted XGMII
459 * characters that match a pattern that is programmable through
460 * register XMAC_STATS_TX_XGMII_CHAR_PORTn. By default, the pattern
461 * is set to /S/ (i.e. the start character),
462 * thus the statistic tracks
463 * the number of transmitted Start characters.
464 * @tx_xgmii_column2_match: Maintains a count of the number of transmitted XGMII
465 * columns that match a pattern that is programmable through register
466 * XMAC_STATS_TX_XGMII_COLUMN2_PORTn. By default, the pattern is set
467 * to 4 x /E/ (i.e. a column containing all error characters), thus
468 * the statistic tracks the number of Error columns transmitted at
469 * any time. If XMAC_STATS_TX_XGMII_BEHAV_COLUMN2_PORTn.NEAR_COL1 is
470 * set to 1, then this stat increments when COLUMN2 is found within
471 * 'n' clocks after COLUMN1. Here, 'n' is defined by
472 * XMAC_STATS_TX_XGMII_BEHAV_COLUMN2_PORTn.NUM_COL (if 'n' is set
473 * to 0, then it means to search anywhere for COLUMN2).
474 * @tx_xgmii_column1_match: Maintains a count of the number of transmitted XGMII
475 * columns that match a pattern that is programmable through register
476 * XMAC_STATS_TX_XGMII_COLUMN1_PORTn. By default, the pattern is set
477 * to 4 x /I/ (i.e. a column containing all idle characters),
478 * thus the statistic tracks the number of transmitted Idle columns.
479 * @tx_any_err_frms: Count of transmitted frames containing any error that
480 * prevents them from being passed to the network. Increments if
481 * there is an ECC while reading the frame out of the transmit
482 * buffer. Also increments if the transmit protocol assist (TPA)
483 * block determines that the frame should not be sent.
484 * @tx_drop_frms: Count of frames that could not be sent for no other reason
485 * than internal MAC processing. Increments once whenever the
486 * transmit buffer is flushed (due to an ECC error on a memory
488 * @rx_ttl_frms: Count of total received MAC frames, including frames received
489 * with frame-too-long, FCS, or length errors. This stat can be
490 * configured (see XMAC_STATS_GLOBAL_CFG.TTL_FRMS_HANDLING) to count
491 * everything, even "frames" as small one byte of preamble.
492 * @rx_vld_frms: Count of successfully received MAC frames. Does not include
493 * frames received with frame-too-long, FCS, or length errors.
494 * @rx_offload_frms: Count of offloaded received frames that are passed to
496 * @rx_ttl_octets: Count of total octets of received frames, not including
497 * framing characters (i.e. less framing bits). To determine the
498 * total octets of received frames, including framing characters,
499 * multiply PORTn_RX_TTL_FRMS by 8 and add it to this stat (unless
500 * otherwise configured, this stat only counts frames that have 8
501 * bytes of preamble for each frame). This stat can be configured
502 * (see XMAC_STATS_GLOBAL_CFG.TTL_FRMS_HANDLING) to count everything,
503 * even the preamble octets of "frames" as small one byte of preamble
504 * @rx_data_octets: Count of data and padding octets of successfully received
505 * frames. Does not include frames received with frame-too-long,
506 * FCS, or length errors.
507 * @rx_offload_octets: Count of total octets, not including framing
508 * characters, of offloaded received frames that are passed
510 * @rx_vld_mcast_frms: Count of successfully received MAC frames containing a
511 * nonbroadcast group address. Does not include frames received
512 * with frame-too-long, FCS, or length errors.
513 * @rx_vld_bcast_frms: Count of successfully received MAC frames containing
514 * the broadcast group address. Does not include frames received
515 * with frame-too-long, FCS, or length errors.
516 * @rx_accepted_ucast_frms: Count of successfully received frames containing
517 * a unicast address. Only includes frames that are passed to
519 * @rx_accepted_nucast_frms: Count of successfully received frames containing
520 * a non-unicast (broadcast or multicast) address. Only includes
521 * frames that are passed to the system. Could include, for instance,
522 * non-unicast frames that contain FCS errors if the MAC_ERROR_CFG
523 * register is set to pass FCS-errored frames to the host.
524 * @rx_tagged_frms: Count of received frames containing a VLAN tag.
525 * @rx_long_frms: Count of received frames that are longer than RX_MAX_PYLD_LEN
526 * + 18 bytes (+ 22 bytes if VLAN-tagged).
527 * @rx_usized_frms: Count of received frames of length (including FCS, but not
528 * framing bits) less than 64 octets, that are otherwise well-formed.
529 * In other words, counts runts.
530 * @rx_osized_frms: Count of received frames of length (including FCS, but not
531 * framing bits) more than 1518 octets, that are otherwise
532 * well-formed. Note: If register XMAC_STATS_GLOBAL_CFG.VLAN_HANDLING
533 * is set to 1, then "more than 1518 octets" becomes "more than 1518
534 * (1522 if VLAN-tagged) octets".
535 * @rx_frag_frms: Count of received frames of length (including FCS, but not
536 * framing bits) less than 64 octets that had bad FCS. In other
537 * words, counts fragments.
538 * @rx_jabber_frms: Count of received frames of length (including FCS, but not
539 * framing bits) more than 1518 octets that had bad FCS. In other
540 * words, counts jabbers. Note: If register
541 * XMAC_STATS_GLOBAL_CFG.VLAN_HANDLING is set to 1, then "more than
542 * 1518 octets" becomes "more than 1518 (1522 if VLAN-tagged)
544 * @rx_ttl_64_frms: Count of total received MAC frames with length (including
545 * FCS, but not framing bits) of exactly 64 octets. Includes frames
546 * received with frame-too-long, FCS, or length errors.
547 * @rx_ttl_65_127_frms: Count of total received MAC frames with length
548 * (including FCS, but not framing bits) of between 65 and 127
549 * octets inclusive. Includes frames received with frame-too-long,
550 * FCS, or length errors.
551 * @rx_ttl_128_255_frms: Count of total received MAC frames with length
552 * (including FCS, but not framing bits) of between 128 and 255
553 * octets inclusive. Includes frames received with frame-too-long,
554 * FCS, or length errors.
555 * @rx_ttl_256_511_frms: Count of total received MAC frames with length
556 * (including FCS, but not framing bits) of between 256 and 511
557 * octets inclusive. Includes frames received with frame-too-long,
558 * FCS, or length errors.
559 * @rx_ttl_512_1023_frms: Count of total received MAC frames with length
560 * (including FCS, but not framing bits) of between 512 and 1023
561 * octets inclusive. Includes frames received with frame-too-long,
562 * FCS, or length errors.
563 * @rx_ttl_1024_1518_frms: Count of total received MAC frames with length
564 * (including FCS, but not framing bits) of between 1024 and 1518
565 * octets inclusive. Includes frames received with frame-too-long,
566 * FCS, or length errors.
567 * @rx_ttl_1519_4095_frms: Count of total received MAC frames with length
568 * (including FCS, but not framing bits) of between 1519 and 4095
569 * octets inclusive. Includes frames received with frame-too-long,
570 * FCS, or length errors.
571 * @rx_ttl_4096_8191_frms: Count of total received MAC frames with length
572 * (including FCS, but not framing bits) of between 4096 and 8191
573 * octets inclusive. Includes frames received with frame-too-long,
574 * FCS, or length errors.
575 * @rx_ttl_8192_max_frms: Count of total received MAC frames with length
576 * (including FCS, but not framing bits) of between 8192 and
577 * RX_MAX_PYLD_LEN+18 octets inclusive. Includes frames received
578 * with frame-too-long, FCS, or length errors.
579 * @rx_ttl_gt_max_frms: Count of total received MAC frames with length
580 * (including FCS, but not framing bits) exceeding
581 * RX_MAX_PYLD_LEN+18 (+22 bytes if VLAN-tagged) octets inclusive.
582 * Includes frames received with frame-too-long,
583 * FCS, or length errors.
584 * @rx_ip: Count of received IP datagrams. Includes errored IP datagrams.
585 * @rx_accepted_ip: Count of received IP datagrams that
586 * are passed to the system.
587 * @rx_ip_octets: Count of number of octets in received IP datagrams. Includes
588 * errored IP datagrams.
589 * @rx_err_ip: Count of received IP datagrams containing errors. For example,
591 * @rx_icmp: Count of received ICMP messages. Includes errored ICMP messages.
592 * @rx_tcp: Count of received TCP segments. Includes errored TCP segments.
593 * Note: This stat contains a count of all received TCP segments,
594 * regardless of whether or not they pertain to an established
596 * @rx_udp: Count of received UDP datagrams.
597 * @rx_err_tcp: Count of received TCP segments containing errors. For example,
599 * @rx_pause_count: Count of number of pause quanta that the MAC has been in
600 * the paused state. Recall, one pause quantum equates to 512
602 * @rx_pause_ctrl_frms: Count of received MAC PAUSE control frames.
603 * @rx_unsup_ctrl_frms: Count of received MAC control frames that do not
604 * contain the PAUSE opcode. The sum of RX_PAUSE_CTRL_FRMS and
605 * this register is a count of all received MAC control frames.
606 * Note: This stat may be configured to count all layer 2 errors
607 * (i.e. length errors and FCS errors).
608 * @rx_fcs_err_frms: Count of received MAC frames that do not pass FCS. Does
609 * not include frames received with frame-too-long or
610 * frame-too-short error.
611 * @rx_in_rng_len_err_frms: Count of received frames with a length/type field
612 * value between 46 (42 for VLAN-tagged frames) and 1500 (also 1500
613 * for VLAN-tagged frames), inclusive, that does not match the
614 * number of data octets (including pad) received. Also contains
615 * a count of received frames with a length/type field less than
616 * 46 (42 for VLAN-tagged frames) and the number of data octets
617 * (including pad) received is greater than 46 (42 for VLAN-tagged
619 * @rx_out_rng_len_err_frms: Count of received frames with length/type field
620 * between 1501 and 1535 decimal, inclusive.
621 * @rx_drop_frms: Count of received frames that could not be passed to the host.
622 * See PORTn_RX_L2_MGMT_DISCARD, PORTn_RX_RPA_DISCARD,
623 * PORTn_RX_TRASH_DISCARD, PORTn_RX_RTS_DISCARD, PORTn_RX_RED_DISCARD
624 * for a list of reasons. Because the RMAC drops one frame at a time,
625 * this stat also indicates the number of drop events.
626 * @rx_discarded_frms: Count of received frames containing
627 * any error that prevents
628 * them from being passed to the system. See PORTn_RX_FCS_DISCARD,
629 * PORTn_RX_LEN_DISCARD, and PORTn_RX_SWITCH_DISCARD for a list of
631 * @rx_drop_ip: Count of received IP datagrams that could not be passed to the
632 * host. See PORTn_RX_DROP_FRMS for a list of reasons.
633 * @rx_drop_udp: Count of received UDP datagrams that are not delivered to the
634 * host. See PORTn_RX_DROP_FRMS for a list of reasons.
635 * @rx_marker_pdu_frms: Count of valid Marker PDUs received on this Aggregation
637 * @rx_lacpdu_frms: Count of valid LACPDUs received on this Aggregation port.
638 * @rx_unknown_pdu_frms: Count of received frames (on this Aggregation port)
639 * that carry the Slow Protocols EtherType, but contain an unknown
640 * PDU. Or frames that contain the Slow Protocols group MAC address,
641 * but do not carry the Slow Protocols EtherType.
642 * @rx_marker_resp_pdu_frms: Count of valid Marker Response PDUs received on
643 * this Aggregation port.
644 * @rx_fcs_discard: Count of received frames that are discarded because the
646 * @rx_illegal_pdu_frms: Count of received frames (on this Aggregation port)
647 * that carry the Slow Protocols EtherType, but contain a badly
648 * formed PDU. Or frames that carry the Slow Protocols EtherType,
649 * but contain an illegal value of Protocol Subtype.
650 * @rx_switch_discard: Count of received frames that are discarded by the
651 * internal switch because they did not have an entry in the
652 * Filtering Database. This includes frames that had an invalid
653 * destination MAC address or VLAN ID. It also includes frames are
654 * discarded because they did not satisfy the length requirements
655 * of the target VPATH.
656 * @rx_len_discard: Count of received frames that are discarded because of an
657 * invalid frame length (includes fragments, oversized frames and
658 * mismatch between frame length and length/type field). This stat
660 * (see XMAC_STATS_GLOBAL_CFG.LEN_DISCARD_HANDLING).
661 * @rx_rpa_discard: Count of received frames that were discarded because the
662 * receive protocol assist (RPA) discovered and error in the frame
663 * or was unable to parse the frame.
664 * @rx_l2_mgmt_discard: Count of Layer 2 management frames (eg. pause frames,
665 * Link Aggregation Control Protocol (LACP) frames, etc.) that are
667 * @rx_rts_discard: Count of received frames that are discarded by the receive
668 * traffic steering (RTS) logic. Includes those frame discarded
669 * because the SSC response contradicted the switch table, because
670 * the SSC timed out, or because the target queue could not fit the
672 * @rx_trash_discard: Count of received frames that are discarded because
673 * receive traffic steering (RTS) steered the frame to the trash
675 * @rx_buff_full_discard: Count of received frames that are discarded because
676 * internal buffers are full. Includes frames discarded because the
677 * RTS logic is waiting for an SSC lookup that has no timeout bound.
678 * Also, includes frames that are dropped because the MAC2FAU buffer
679 * is nearly full -- this can happen if the external receive buffer
680 * is full and the receive path is backing up.
681 * @rx_red_discard: Count of received frames that are discarded because of RED
682 * (Random Early Discard).
683 * @rx_xgmii_ctrl_err_cnt: Maintains a count of unexpected or misplaced control
684 * characters occurring between times of normal data transmission
685 * (i.e. not included in RX_XGMII_DATA_ERR_CNT). This counter is
686 * incremented when either -
687 * 1) The Reconciliation Sublayer (RS) is expecting one control
688 * character and gets another (i.e. is expecting a Start
689 * character, but gets another control character).
690 * 2) Start control character is not in lane 0
691 * Only increments the count by one for each XGMII column.
692 * @rx_xgmii_data_err_cnt: Maintains a count of unexpected control characters
693 * during normal data transmission. If the Reconciliation Sublayer
694 * (RS) receives a control character, other than a terminate control
695 * character, during receipt of data octets then this register is
696 * incremented. Also increments if the start frame delimiter is not
697 * found in the correct location. Only increments the count by one
698 * for each XGMII column.
699 * @rx_xgmii_char1_match: Maintains a count of the number of XGMII characters
700 * that match a pattern that is programmable through register
701 * XMAC_STATS_RX_XGMII_CHAR_PORTn. By default, the pattern is set
702 * to /E/ (i.e. the error character), thus the statistic tracks the
703 * number of Error characters received at any time.
704 * @rx_xgmii_err_sym: Count of the number of symbol errors in the received
705 * XGMII data (i.e. PHY indicates "Receive Error" on the XGMII).
706 * Only includes symbol errors that are observed between the XGMII
707 * Start Frame Delimiter and End Frame Delimiter, inclusive. And
708 * only increments the count by one for each frame.
709 * @rx_xgmii_column1_match: Maintains a count of the number of XGMII columns
710 * that match a pattern that is programmable through register
711 * XMAC_STATS_RX_XGMII_COLUMN1_PORTn. By default, the pattern is set
712 * to 4 x /E/ (i.e. a column containing all error characters), thus
713 * the statistic tracks the number of Error columns received at any
715 * @rx_xgmii_char2_match: Maintains a count of the number of XGMII characters
716 * that match a pattern that is programmable through register
717 * XMAC_STATS_RX_XGMII_CHAR_PORTn. By default, the pattern is set
718 * to /E/ (i.e. the error character), thus the statistic tracks the
719 * number of Error characters received at any time.
720 * @rx_local_fault: Maintains a count of the number of times that link
721 * transitioned from "up" to "down" due to a local fault.
722 * @rx_xgmii_column2_match: Maintains a count of the number of XGMII columns
723 * that match a pattern that is programmable through register
724 * XMAC_STATS_RX_XGMII_COLUMN2_PORTn. By default, the pattern is set
725 * to 4 x /E/ (i.e. a column containing all error characters), thus
726 * the statistic tracks the number of Error columns received at any
727 * time. If XMAC_STATS_RX_XGMII_BEHAV_COLUMN2_PORTn.NEAR_COL1 is set
728 * to 1, then this stat increments when COLUMN2 is found within 'n'
729 * clocks after COLUMN1. Here, 'n' is defined by
730 * XMAC_STATS_RX_XGMII_BEHAV_COLUMN2_PORTn.NUM_COL (if 'n' is set to
731 * 0, then it means to search anywhere for COLUMN2).
732 * @rx_jettison: Count of received frames that are jettisoned because internal
734 * @rx_remote_fault: Maintains a count of the number of times that link
735 * transitioned from "up" to "down" due to a remote fault.
737 * XMAC Port Statistics.
739 struct vxge_hw_xmac_port_stats
{
740 /*0x000*/ u64 tx_ttl_frms
;
741 /*0x008*/ u64 tx_ttl_octets
;
742 /*0x010*/ u64 tx_data_octets
;
743 /*0x018*/ u64 tx_mcast_frms
;
744 /*0x020*/ u64 tx_bcast_frms
;
745 /*0x028*/ u64 tx_ucast_frms
;
746 /*0x030*/ u64 tx_tagged_frms
;
747 /*0x038*/ u64 tx_vld_ip
;
748 /*0x040*/ u64 tx_vld_ip_octets
;
749 /*0x048*/ u64 tx_icmp
;
750 /*0x050*/ u64 tx_tcp
;
751 /*0x058*/ u64 tx_rst_tcp
;
752 /*0x060*/ u64 tx_udp
;
753 /*0x068*/ u32 tx_parse_error
;
754 /*0x06c*/ u32 tx_unknown_protocol
;
755 /*0x070*/ u64 tx_pause_ctrl_frms
;
756 /*0x078*/ u32 tx_marker_pdu_frms
;
757 /*0x07c*/ u32 tx_lacpdu_frms
;
758 /*0x080*/ u32 tx_drop_ip
;
759 /*0x084*/ u32 tx_marker_resp_pdu_frms
;
760 /*0x088*/ u32 tx_xgmii_char2_match
;
761 /*0x08c*/ u32 tx_xgmii_char1_match
;
762 /*0x090*/ u32 tx_xgmii_column2_match
;
763 /*0x094*/ u32 tx_xgmii_column1_match
;
764 /*0x098*/ u32 unused1
;
765 /*0x09c*/ u16 tx_any_err_frms
;
766 /*0x09e*/ u16 tx_drop_frms
;
767 /*0x0a0*/ u64 rx_ttl_frms
;
768 /*0x0a8*/ u64 rx_vld_frms
;
769 /*0x0b0*/ u64 rx_offload_frms
;
770 /*0x0b8*/ u64 rx_ttl_octets
;
771 /*0x0c0*/ u64 rx_data_octets
;
772 /*0x0c8*/ u64 rx_offload_octets
;
773 /*0x0d0*/ u64 rx_vld_mcast_frms
;
774 /*0x0d8*/ u64 rx_vld_bcast_frms
;
775 /*0x0e0*/ u64 rx_accepted_ucast_frms
;
776 /*0x0e8*/ u64 rx_accepted_nucast_frms
;
777 /*0x0f0*/ u64 rx_tagged_frms
;
778 /*0x0f8*/ u64 rx_long_frms
;
779 /*0x100*/ u64 rx_usized_frms
;
780 /*0x108*/ u64 rx_osized_frms
;
781 /*0x110*/ u64 rx_frag_frms
;
782 /*0x118*/ u64 rx_jabber_frms
;
783 /*0x120*/ u64 rx_ttl_64_frms
;
784 /*0x128*/ u64 rx_ttl_65_127_frms
;
785 /*0x130*/ u64 rx_ttl_128_255_frms
;
786 /*0x138*/ u64 rx_ttl_256_511_frms
;
787 /*0x140*/ u64 rx_ttl_512_1023_frms
;
788 /*0x148*/ u64 rx_ttl_1024_1518_frms
;
789 /*0x150*/ u64 rx_ttl_1519_4095_frms
;
790 /*0x158*/ u64 rx_ttl_4096_8191_frms
;
791 /*0x160*/ u64 rx_ttl_8192_max_frms
;
792 /*0x168*/ u64 rx_ttl_gt_max_frms
;
794 /*0x178*/ u64 rx_accepted_ip
;
795 /*0x180*/ u64 rx_ip_octets
;
796 /*0x188*/ u64 rx_err_ip
;
797 /*0x190*/ u64 rx_icmp
;
798 /*0x198*/ u64 rx_tcp
;
799 /*0x1a0*/ u64 rx_udp
;
800 /*0x1a8*/ u64 rx_err_tcp
;
801 /*0x1b0*/ u64 rx_pause_count
;
802 /*0x1b8*/ u64 rx_pause_ctrl_frms
;
803 /*0x1c0*/ u64 rx_unsup_ctrl_frms
;
804 /*0x1c8*/ u64 rx_fcs_err_frms
;
805 /*0x1d0*/ u64 rx_in_rng_len_err_frms
;
806 /*0x1d8*/ u64 rx_out_rng_len_err_frms
;
807 /*0x1e0*/ u64 rx_drop_frms
;
808 /*0x1e8*/ u64 rx_discarded_frms
;
809 /*0x1f0*/ u64 rx_drop_ip
;
810 /*0x1f8*/ u64 rx_drop_udp
;
811 /*0x200*/ u32 rx_marker_pdu_frms
;
812 /*0x204*/ u32 rx_lacpdu_frms
;
813 /*0x208*/ u32 rx_unknown_pdu_frms
;
814 /*0x20c*/ u32 rx_marker_resp_pdu_frms
;
815 /*0x210*/ u32 rx_fcs_discard
;
816 /*0x214*/ u32 rx_illegal_pdu_frms
;
817 /*0x218*/ u32 rx_switch_discard
;
818 /*0x21c*/ u32 rx_len_discard
;
819 /*0x220*/ u32 rx_rpa_discard
;
820 /*0x224*/ u32 rx_l2_mgmt_discard
;
821 /*0x228*/ u32 rx_rts_discard
;
822 /*0x22c*/ u32 rx_trash_discard
;
823 /*0x230*/ u32 rx_buff_full_discard
;
824 /*0x234*/ u32 rx_red_discard
;
825 /*0x238*/ u32 rx_xgmii_ctrl_err_cnt
;
826 /*0x23c*/ u32 rx_xgmii_data_err_cnt
;
827 /*0x240*/ u32 rx_xgmii_char1_match
;
828 /*0x244*/ u32 rx_xgmii_err_sym
;
829 /*0x248*/ u32 rx_xgmii_column1_match
;
830 /*0x24c*/ u32 rx_xgmii_char2_match
;
831 /*0x250*/ u32 rx_local_fault
;
832 /*0x254*/ u32 rx_xgmii_column2_match
;
833 /*0x258*/ u32 rx_jettison
;
834 /*0x25c*/ u32 rx_remote_fault
;
838 * struct vxge_hw_xmac_vpath_tx_stats - XMAC Vpath Tx Statistics
840 * @tx_ttl_eth_frms: Count of successfully transmitted MAC frames.
841 * @tx_ttl_eth_octets: Count of total octets of transmitted frames,
842 * not including framing characters (i.e. less framing bits).
843 * To determine the total octets of transmitted frames, including
844 * framing characters, multiply TX_TTL_ETH_FRMS by 8 and add it to
845 * this stat (the device always prepends 8 bytes of preamble for
847 * @tx_data_octets: Count of data and padding octets of successfully transmitted
849 * @tx_mcast_frms: Count of successfully transmitted frames to a group address
850 * other than the broadcast address.
851 * @tx_bcast_frms: Count of successfully transmitted frames to the broadcast
853 * @tx_ucast_frms: Count of transmitted frames containing a unicast address.
854 * Includes discarded frames that are not sent to the network.
855 * @tx_tagged_frms: Count of transmitted frames containing a VLAN tag.
856 * @tx_vld_ip: Count of transmitted IP datagrams that are passed to the network.
857 * @tx_vld_ip_octets: Count of total octets of transmitted IP datagrams that
858 * are passed to the network.
859 * @tx_icmp: Count of transmitted ICMP messages. Includes messages not sent due
860 * to problems within ICMP.
861 * @tx_tcp: Count of transmitted TCP segments. Does not include segments
862 * containing retransmitted octets.
863 * @tx_rst_tcp: Count of transmitted TCP segments containing the RST flag.
864 * @tx_udp: Count of transmitted UDP datagrams.
865 * @tx_unknown_protocol: Increments when the TPA encounters an unknown protocol,
866 * such as a new IPv6 extension header, or an unsupported Routing
867 * Type. The packet still has a checksum calculated but it may be
869 * @tx_lost_ip: Count of transmitted IP datagrams that could not be passed
870 * to the network. Increments because of: 1) An internal processing
871 * error (such as an uncorrectable ECC error). 2) A frame parsing
872 * error during IP checksum calculation.
873 * @tx_parse_error: Increments when the TPA is unable to parse a packet. This
874 * generally occurs when a packet is corrupt somehow, including
875 * packets that have IP version mismatches, invalid Layer 2 control
876 * fields, etc. L3/L4 checksums are not offloaded, but the packet
877 * is still be transmitted.
878 * @tx_tcp_offload: For frames belonging to offloaded sessions only, a count
879 * of transmitted TCP segments. Does not include segments containing
880 * retransmitted octets.
881 * @tx_retx_tcp_offload: For frames belonging to offloaded sessions only, the
882 * total number of segments retransmitted. Retransmitted segments
883 * that are sourced by the host are counted by the host.
884 * @tx_lost_ip_offload: For frames belonging to offloaded sessions only, a count
885 * of transmitted IP datagrams that could not be passed to the
888 * XMAC Vpath TX Statistics.
890 struct vxge_hw_xmac_vpath_tx_stats
{
892 u64 tx_ttl_eth_octets
;
899 u64 tx_vld_ip_octets
;
904 u32 tx_unknown_protocol
;
909 u64 tx_retx_tcp_offload
;
910 u64 tx_lost_ip_offload
;
914 * struct vxge_hw_xmac_vpath_rx_stats - XMAC Vpath RX Statistics
916 * @rx_ttl_eth_frms: Count of successfully received MAC frames.
917 * @rx_vld_frms: Count of successfully received MAC frames. Does not include
918 * frames received with frame-too-long, FCS, or length errors.
919 * @rx_offload_frms: Count of offloaded received frames that are passed to
921 * @rx_ttl_eth_octets: Count of total octets of received frames, not including
922 * framing characters (i.e. less framing bits). Only counts octets
923 * of frames that are at least 14 bytes (18 bytes for VLAN-tagged)
924 * before FCS. To determine the total octets of received frames,
925 * including framing characters, multiply RX_TTL_ETH_FRMS by 8 and
926 * add it to this stat (the stat RX_TTL_ETH_FRMS only counts frames
927 * that have the required 8 bytes of preamble).
928 * @rx_data_octets: Count of data and padding octets of successfully received
929 * frames. Does not include frames received with frame-too-long,
930 * FCS, or length errors.
931 * @rx_offload_octets: Count of total octets, not including framing characters,
932 * of offloaded received frames that are passed to the host.
933 * @rx_vld_mcast_frms: Count of successfully received MAC frames containing a
934 * nonbroadcast group address. Does not include frames received with
935 * frame-too-long, FCS, or length errors.
936 * @rx_vld_bcast_frms: Count of successfully received MAC frames containing the
937 * broadcast group address. Does not include frames received with
938 * frame-too-long, FCS, or length errors.
939 * @rx_accepted_ucast_frms: Count of successfully received frames containing
940 * a unicast address. Only includes frames that are passed to the
942 * @rx_accepted_nucast_frms: Count of successfully received frames containing
943 * a non-unicast (broadcast or multicast) address. Only includes
944 * frames that are passed to the system. Could include, for instance,
945 * non-unicast frames that contain FCS errors if the MAC_ERROR_CFG
946 * register is set to pass FCS-errored frames to the host.
947 * @rx_tagged_frms: Count of received frames containing a VLAN tag.
948 * @rx_long_frms: Count of received frames that are longer than RX_MAX_PYLD_LEN
949 * + 18 bytes (+ 22 bytes if VLAN-tagged).
950 * @rx_usized_frms: Count of received frames of length (including FCS, but not
951 * framing bits) less than 64 octets, that are otherwise well-formed.
952 * In other words, counts runts.
953 * @rx_osized_frms: Count of received frames of length (including FCS, but not
954 * framing bits) more than 1518 octets, that are otherwise
956 * @rx_frag_frms: Count of received frames of length (including FCS, but not
957 * framing bits) less than 64 octets that had bad FCS.
958 * In other words, counts fragments.
959 * @rx_jabber_frms: Count of received frames of length (including FCS, but not
960 * framing bits) more than 1518 octets that had bad FCS. In other
961 * words, counts jabbers.
962 * @rx_ttl_64_frms: Count of total received MAC frames with length (including
963 * FCS, but not framing bits) of exactly 64 octets. Includes frames
964 * received with frame-too-long, FCS, or length errors.
965 * @rx_ttl_65_127_frms: Count of total received MAC frames
966 * with length (including
967 * FCS, but not framing bits) of between 65 and 127 octets inclusive.
968 * Includes frames received with frame-too-long, FCS,
970 * @rx_ttl_128_255_frms: Count of total received MAC frames with length
971 * (including FCS, but not framing bits)
972 * of between 128 and 255 octets
973 * inclusive. Includes frames received with frame-too-long, FCS,
975 * @rx_ttl_256_511_frms: Count of total received MAC frames with length
976 * (including FCS, but not framing bits)
977 * of between 256 and 511 octets
978 * inclusive. Includes frames received with frame-too-long, FCS, or
980 * @rx_ttl_512_1023_frms: Count of total received MAC frames with length
981 * (including FCS, but not framing bits) of between 512 and 1023
982 * octets inclusive. Includes frames received with frame-too-long,
983 * FCS, or length errors.
984 * @rx_ttl_1024_1518_frms: Count of total received MAC frames with length
985 * (including FCS, but not framing bits) of between 1024 and 1518
986 * octets inclusive. Includes frames received with frame-too-long,
987 * FCS, or length errors.
988 * @rx_ttl_1519_4095_frms: Count of total received MAC frames with length
989 * (including FCS, but not framing bits) of between 1519 and 4095
990 * octets inclusive. Includes frames received with frame-too-long,
991 * FCS, or length errors.
992 * @rx_ttl_4096_8191_frms: Count of total received MAC frames with length
993 * (including FCS, but not framing bits) of between 4096 and 8191
994 * octets inclusive. Includes frames received with frame-too-long,
995 * FCS, or length errors.
996 * @rx_ttl_8192_max_frms: Count of total received MAC frames with length
997 * (including FCS, but not framing bits) of between 8192 and
998 * RX_MAX_PYLD_LEN+18 octets inclusive. Includes frames received
999 * with frame-too-long, FCS, or length errors.
1000 * @rx_ttl_gt_max_frms: Count of total received MAC frames with length
1001 * (including FCS, but not framing bits) exceeding RX_MAX_PYLD_LEN+18
1002 * (+22 bytes if VLAN-tagged) octets inclusive. Includes frames
1003 * received with frame-too-long, FCS, or length errors.
1004 * @rx_ip: Count of received IP datagrams. Includes errored IP datagrams.
1005 * @rx_accepted_ip: Count of received IP datagrams that
1006 * are passed to the system.
1007 * @rx_ip_octets: Count of number of octets in received IP datagrams.
1008 * Includes errored IP datagrams.
1009 * @rx_err_ip: Count of received IP datagrams containing errors. For example,
1011 * @rx_icmp: Count of received ICMP messages. Includes errored ICMP messages.
1012 * @rx_tcp: Count of received TCP segments. Includes errored TCP segments.
1013 * Note: This stat contains a count of all received TCP segments,
1014 * regardless of whether or not they pertain to an established
1016 * @rx_udp: Count of received UDP datagrams.
1017 * @rx_err_tcp: Count of received TCP segments containing errors. For example,
1019 * @rx_lost_frms: Count of received frames that could not be passed to the host.
1020 * See RX_QUEUE_FULL_DISCARD and RX_RED_DISCARD
1021 * for a list of reasons.
1022 * @rx_lost_ip: Count of received IP datagrams that could not be passed to
1023 * the host. See RX_LOST_FRMS for a list of reasons.
1024 * @rx_lost_ip_offload: For frames belonging to offloaded sessions only, a count
1025 * of received IP datagrams that could not be passed to the host.
1026 * See RX_LOST_FRMS for a list of reasons.
1027 * @rx_various_discard: Count of received frames that are discarded because
1028 * the target receive queue is full.
1029 * @rx_sleep_discard: Count of received frames that are discarded because the
1030 * target VPATH is asleep (a Wake-on-LAN magic packet can be used
1031 * to awaken the VPATH).
1032 * @rx_red_discard: Count of received frames that are discarded because of RED
1033 * (Random Early Discard).
1034 * @rx_queue_full_discard: Count of received frames that are discarded because
1035 * the target receive queue is full.
1036 * @rx_mpa_ok_frms: Count of received frames that pass the MPA checks.
1038 * XMAC Vpath RX Statistics.
1040 struct vxge_hw_xmac_vpath_rx_stats
{
1041 u64 rx_ttl_eth_frms
;
1043 u64 rx_offload_frms
;
1044 u64 rx_ttl_eth_octets
;
1046 u64 rx_offload_octets
;
1047 u64 rx_vld_mcast_frms
;
1048 u64 rx_vld_bcast_frms
;
1049 u64 rx_accepted_ucast_frms
;
1050 u64 rx_accepted_nucast_frms
;
1058 u64 rx_ttl_65_127_frms
;
1059 u64 rx_ttl_128_255_frms
;
1060 u64 rx_ttl_256_511_frms
;
1061 u64 rx_ttl_512_1023_frms
;
1062 u64 rx_ttl_1024_1518_frms
;
1063 u64 rx_ttl_1519_4095_frms
;
1064 u64 rx_ttl_4096_8191_frms
;
1065 u64 rx_ttl_8192_max_frms
;
1066 u64 rx_ttl_gt_max_frms
;
1077 u64 rx_lost_ip_offload
;
1078 u16 rx_various_discard
;
1079 u16 rx_sleep_discard
;
1081 u16 rx_queue_full_discard
;
1086 * struct vxge_hw_xmac_stats - XMAC Statistics
1088 * @aggr_stats: Statistics on aggregate port(port 0, port 1)
1089 * @port_stats: Staticstics on ports(wire 0, wire 1, lag)
1090 * @vpath_tx_stats: Per vpath XMAC TX stats
1091 * @vpath_rx_stats: Per vpath XMAC RX stats
1095 struct vxge_hw_xmac_stats
{
1096 struct vxge_hw_xmac_aggr_stats
1097 aggr_stats
[VXGE_HW_MAC_MAX_MAC_PORT_ID
];
1098 struct vxge_hw_xmac_port_stats
1099 port_stats
[VXGE_HW_MAC_MAX_MAC_PORT_ID
+1];
1100 struct vxge_hw_xmac_vpath_tx_stats
1101 vpath_tx_stats
[VXGE_HW_MAX_VIRTUAL_PATHS
];
1102 struct vxge_hw_xmac_vpath_rx_stats
1103 vpath_rx_stats
[VXGE_HW_MAX_VIRTUAL_PATHS
];
1107 * struct vxge_hw_vpath_stats_hw_info - Titan vpath hardware statistics.
1108 * @ini_num_mwr_sent: The number of PCI memory writes initiated by the PIC block
1109 * for the given VPATH
1110 * @ini_num_mrd_sent: The number of PCI memory reads initiated by the PIC block
1111 * @ini_num_cpl_rcvd: The number of PCI read completions received by the
1113 * @ini_num_mwr_byte_sent: The number of PCI memory write bytes sent by the PIC
1115 * @ini_num_cpl_byte_rcvd: The number of PCI read completion bytes received by
1117 * @wrcrdtarb_xoff: TBD
1118 * @rdcrdtarb_xoff: TBD
1119 * @vpath_genstats_count0: TBD
1120 * @vpath_genstats_count1: TBD
1121 * @vpath_genstats_count2: TBD
1122 * @vpath_genstats_count3: TBD
1123 * @vpath_genstats_count4: TBD
1124 * @vpath_gennstats_count5: TBD
1125 * @tx_stats: Transmit stats
1126 * @rx_stats: Receive stats
1127 * @prog_event_vnum1: Programmable statistic. Increments when internal logic
1128 * detects a certain event. See register
1129 * XMAC_STATS_CFG.EVENT_VNUM1_CFG for more information.
1130 * @prog_event_vnum0: Programmable statistic. Increments when internal logic
1131 * detects a certain event. See register
1132 * XMAC_STATS_CFG.EVENT_VNUM0_CFG for more information.
1133 * @prog_event_vnum3: Programmable statistic. Increments when internal logic
1134 * detects a certain event. See register
1135 * XMAC_STATS_CFG.EVENT_VNUM3_CFG for more information.
1136 * @prog_event_vnum2: Programmable statistic. Increments when internal logic
1137 * detects a certain event. See register
1138 * XMAC_STATS_CFG.EVENT_VNUM2_CFG for more information.
1139 * @rx_multi_cast_frame_discard: TBD
1140 * @rx_frm_transferred: TBD
1141 * @rxd_returned: TBD
1142 * @rx_mpa_len_fail_frms: Count of received frames
1143 * that fail the MPA length check
1144 * @rx_mpa_mrk_fail_frms: Count of received frames
1145 * that fail the MPA marker check
1146 * @rx_mpa_crc_fail_frms: Count of received frames that fail the MPA CRC check
1147 * @rx_permitted_frms: Count of frames that pass through the FAU and on to the
1148 * frame buffer (and subsequently to the host).
1149 * @rx_vp_reset_discarded_frms: Count of receive frames that are discarded
1150 * because the VPATH is in reset
1151 * @rx_wol_frms: Count of received "magic packet" frames. Stat increments
1152 * whenever the received frame matches the VPATH's Wake-on-LAN
1154 * @tx_vp_reset_discarded_frms: Count of transmit frames that are discarded
1155 * because the VPATH is in reset. Includes frames that are discarded
1156 * because the current VPIN does not match that VPIN of the frame
1158 * Titan vpath hardware statistics.
1160 struct vxge_hw_vpath_stats_hw_info
{
1161 /*0x000*/ u32 ini_num_mwr_sent
;
1162 /*0x004*/ u32 unused1
;
1163 /*0x008*/ u32 ini_num_mrd_sent
;
1164 /*0x00c*/ u32 unused2
;
1165 /*0x010*/ u32 ini_num_cpl_rcvd
;
1166 /*0x014*/ u32 unused3
;
1167 /*0x018*/ u64 ini_num_mwr_byte_sent
;
1168 /*0x020*/ u64 ini_num_cpl_byte_rcvd
;
1169 /*0x028*/ u32 wrcrdtarb_xoff
;
1170 /*0x02c*/ u32 unused4
;
1171 /*0x030*/ u32 rdcrdtarb_xoff
;
1172 /*0x034*/ u32 unused5
;
1173 /*0x038*/ u32 vpath_genstats_count0
;
1174 /*0x03c*/ u32 vpath_genstats_count1
;
1175 /*0x040*/ u32 vpath_genstats_count2
;
1176 /*0x044*/ u32 vpath_genstats_count3
;
1177 /*0x048*/ u32 vpath_genstats_count4
;
1178 /*0x04c*/ u32 unused6
;
1179 /*0x050*/ u32 vpath_genstats_count5
;
1180 /*0x054*/ u32 unused7
;
1181 /*0x058*/ struct vxge_hw_xmac_vpath_tx_stats tx_stats
;
1182 /*0x0e8*/ struct vxge_hw_xmac_vpath_rx_stats rx_stats
;
1183 /*0x220*/ u64 unused9
;
1184 /*0x228*/ u32 prog_event_vnum1
;
1185 /*0x22c*/ u32 prog_event_vnum0
;
1186 /*0x230*/ u32 prog_event_vnum3
;
1187 /*0x234*/ u32 prog_event_vnum2
;
1188 /*0x238*/ u16 rx_multi_cast_frame_discard
;
1189 /*0x23a*/ u8 unused10
[6];
1190 /*0x240*/ u32 rx_frm_transferred
;
1191 /*0x244*/ u32 unused11
;
1192 /*0x248*/ u16 rxd_returned
;
1193 /*0x24a*/ u8 unused12
[6];
1194 /*0x252*/ u16 rx_mpa_len_fail_frms
;
1195 /*0x254*/ u16 rx_mpa_mrk_fail_frms
;
1196 /*0x256*/ u16 rx_mpa_crc_fail_frms
;
1197 /*0x258*/ u16 rx_permitted_frms
;
1198 /*0x25c*/ u64 rx_vp_reset_discarded_frms
;
1199 /*0x25e*/ u64 rx_wol_frms
;
1200 /*0x260*/ u64 tx_vp_reset_discarded_frms
;
1205 * struct vxge_hw_device_stats_mrpcim_info - Titan mrpcim hardware statistics.
1206 * @pic.ini_rd_drop 0x0000 4 Number of DMA reads initiated
1207 * by the adapter that were discarded because the VPATH is out of service
1208 * @pic.ini_wr_drop 0x0004 4 Number of DMA writes initiated by the
1209 * adapter that were discared because the VPATH is out of service
1210 * @pic.wrcrdtarb_ph_crdt_depleted[vplane0] 0x0008 4 Number of times
1211 * the posted header credits for upstream PCI writes were depleted
1212 * @pic.wrcrdtarb_ph_crdt_depleted[vplane1] 0x0010 4 Number of times
1213 * the posted header credits for upstream PCI writes were depleted
1214 * @pic.wrcrdtarb_ph_crdt_depleted[vplane2] 0x0018 4 Number of times
1215 * the posted header credits for upstream PCI writes were depleted
1216 * @pic.wrcrdtarb_ph_crdt_depleted[vplane3] 0x0020 4 Number of times
1217 * the posted header credits for upstream PCI writes were depleted
1218 * @pic.wrcrdtarb_ph_crdt_depleted[vplane4] 0x0028 4 Number of times
1219 * the posted header credits for upstream PCI writes were depleted
1220 * @pic.wrcrdtarb_ph_crdt_depleted[vplane5] 0x0030 4 Number of times
1221 * the posted header credits for upstream PCI writes were depleted
1222 * @pic.wrcrdtarb_ph_crdt_depleted[vplane6] 0x0038 4 Number of times
1223 * the posted header credits for upstream PCI writes were depleted
1224 * @pic.wrcrdtarb_ph_crdt_depleted[vplane7] 0x0040 4 Number of times
1225 * the posted header credits for upstream PCI writes were depleted
1226 * @pic.wrcrdtarb_ph_crdt_depleted[vplane8] 0x0048 4 Number of times
1227 * the posted header credits for upstream PCI writes were depleted
1228 * @pic.wrcrdtarb_ph_crdt_depleted[vplane9] 0x0050 4 Number of times
1229 * the posted header credits for upstream PCI writes were depleted
1230 * @pic.wrcrdtarb_ph_crdt_depleted[vplane10] 0x0058 4 Number of times
1231 * the posted header credits for upstream PCI writes were depleted
1232 * @pic.wrcrdtarb_ph_crdt_depleted[vplane11] 0x0060 4 Number of times
1233 * the posted header credits for upstream PCI writes were depleted
1234 * @pic.wrcrdtarb_ph_crdt_depleted[vplane12] 0x0068 4 Number of times
1235 * the posted header credits for upstream PCI writes were depleted
1236 * @pic.wrcrdtarb_ph_crdt_depleted[vplane13] 0x0070 4 Number of times
1237 * the posted header credits for upstream PCI writes were depleted
1238 * @pic.wrcrdtarb_ph_crdt_depleted[vplane14] 0x0078 4 Number of times
1239 * the posted header credits for upstream PCI writes were depleted
1240 * @pic.wrcrdtarb_ph_crdt_depleted[vplane15] 0x0080 4 Number of times
1241 * the posted header credits for upstream PCI writes were depleted
1242 * @pic.wrcrdtarb_ph_crdt_depleted[vplane16] 0x0088 4 Number of times
1243 * the posted header credits for upstream PCI writes were depleted
1244 * @pic.wrcrdtarb_pd_crdt_depleted[vplane0] 0x0090 4 Number of times
1245 * the posted data credits for upstream PCI writes were depleted
1246 * @pic.wrcrdtarb_pd_crdt_depleted[vplane1] 0x0098 4 Number of times
1247 * the posted data credits for upstream PCI writes were depleted
1248 * @pic.wrcrdtarb_pd_crdt_depleted[vplane2] 0x00a0 4 Number of times
1249 * the posted data credits for upstream PCI writes were depleted
1250 * @pic.wrcrdtarb_pd_crdt_depleted[vplane3] 0x00a8 4 Number of times
1251 * the posted data credits for upstream PCI writes were depleted
1252 * @pic.wrcrdtarb_pd_crdt_depleted[vplane4] 0x00b0 4 Number of times
1253 * the posted data credits for upstream PCI writes were depleted
1254 * @pic.wrcrdtarb_pd_crdt_depleted[vplane5] 0x00b8 4 Number of times
1255 * the posted data credits for upstream PCI writes were depleted
1256 * @pic.wrcrdtarb_pd_crdt_depleted[vplane6] 0x00c0 4 Number of times
1257 * the posted data credits for upstream PCI writes were depleted
1258 * @pic.wrcrdtarb_pd_crdt_depleted[vplane7] 0x00c8 4 Number of times
1259 * the posted data credits for upstream PCI writes were depleted
1260 * @pic.wrcrdtarb_pd_crdt_depleted[vplane8] 0x00d0 4 Number of times
1261 * the posted data credits for upstream PCI writes were depleted
1262 * @pic.wrcrdtarb_pd_crdt_depleted[vplane9] 0x00d8 4 Number of times
1263 * the posted data credits for upstream PCI writes were depleted
1264 * @pic.wrcrdtarb_pd_crdt_depleted[vplane10] 0x00e0 4 Number of times
1265 * the posted data credits for upstream PCI writes were depleted
1266 * @pic.wrcrdtarb_pd_crdt_depleted[vplane11] 0x00e8 4 Number of times
1267 * the posted data credits for upstream PCI writes were depleted
1268 * @pic.wrcrdtarb_pd_crdt_depleted[vplane12] 0x00f0 4 Number of times
1269 * the posted data credits for upstream PCI writes were depleted
1270 * @pic.wrcrdtarb_pd_crdt_depleted[vplane13] 0x00f8 4 Number of times
1271 * the posted data credits for upstream PCI writes were depleted
1272 * @pic.wrcrdtarb_pd_crdt_depleted[vplane14] 0x0100 4 Number of times
1273 * the posted data credits for upstream PCI writes were depleted
1274 * @pic.wrcrdtarb_pd_crdt_depleted[vplane15] 0x0108 4 Number of times
1275 * the posted data credits for upstream PCI writes were depleted
1276 * @pic.wrcrdtarb_pd_crdt_depleted[vplane16] 0x0110 4 Number of times
1277 * the posted data credits for upstream PCI writes were depleted
1278 * @pic.rdcrdtarb_nph_crdt_depleted[vplane0] 0x0118 4 Number of times
1279 * the non-posted header credits for upstream PCI reads were depleted
1280 * @pic.rdcrdtarb_nph_crdt_depleted[vplane1] 0x0120 4 Number of times
1281 * the non-posted header credits for upstream PCI reads were depleted
1282 * @pic.rdcrdtarb_nph_crdt_depleted[vplane2] 0x0128 4 Number of times
1283 * the non-posted header credits for upstream PCI reads were depleted
1284 * @pic.rdcrdtarb_nph_crdt_depleted[vplane3] 0x0130 4 Number of times
1285 * the non-posted header credits for upstream PCI reads were depleted
1286 * @pic.rdcrdtarb_nph_crdt_depleted[vplane4] 0x0138 4 Number of times
1287 * the non-posted header credits for upstream PCI reads were depleted
1288 * @pic.rdcrdtarb_nph_crdt_depleted[vplane5] 0x0140 4 Number of times
1289 * the non-posted header credits for upstream PCI reads were depleted
1290 * @pic.rdcrdtarb_nph_crdt_depleted[vplane6] 0x0148 4 Number of times
1291 * the non-posted header credits for upstream PCI reads were depleted
1292 * @pic.rdcrdtarb_nph_crdt_depleted[vplane7] 0x0150 4 Number of times
1293 * the non-posted header credits for upstream PCI reads were depleted
1294 * @pic.rdcrdtarb_nph_crdt_depleted[vplane8] 0x0158 4 Number of times
1295 * the non-posted header credits for upstream PCI reads were depleted
1296 * @pic.rdcrdtarb_nph_crdt_depleted[vplane9] 0x0160 4 Number of times
1297 * the non-posted header credits for upstream PCI reads were depleted
1298 * @pic.rdcrdtarb_nph_crdt_depleted[vplane10] 0x0168 4 Number of times
1299 * the non-posted header credits for upstream PCI reads were depleted
1300 * @pic.rdcrdtarb_nph_crdt_depleted[vplane11] 0x0170 4 Number of times
1301 * the non-posted header credits for upstream PCI reads were depleted
1302 * @pic.rdcrdtarb_nph_crdt_depleted[vplane12] 0x0178 4 Number of times
1303 * the non-posted header credits for upstream PCI reads were depleted
1304 * @pic.rdcrdtarb_nph_crdt_depleted[vplane13] 0x0180 4 Number of times
1305 * the non-posted header credits for upstream PCI reads were depleted
1306 * @pic.rdcrdtarb_nph_crdt_depleted[vplane14] 0x0188 4 Number of times
1307 * the non-posted header credits for upstream PCI reads were depleted
1308 * @pic.rdcrdtarb_nph_crdt_depleted[vplane15] 0x0190 4 Number of times
1309 * the non-posted header credits for upstream PCI reads were depleted
1310 * @pic.rdcrdtarb_nph_crdt_depleted[vplane16] 0x0198 4 Number of times
1311 * the non-posted header credits for upstream PCI reads were depleted
1312 * @pic.ini_rd_vpin_drop 0x01a0 4 Number of DMA reads initiated by
1313 * the adapter that were discarded because the VPATH instance number does
1315 * @pic.ini_wr_vpin_drop 0x01a4 4 Number of DMA writes initiated
1316 * by the adapter that were discarded because the VPATH instance number
1318 * @pic.genstats_count0 0x01a8 4 Configurable statistic #1. Refer
1319 * to the GENSTATS0_CFG for information on configuring this statistic
1320 * @pic.genstats_count1 0x01ac 4 Configurable statistic #2. Refer
1321 * to the GENSTATS1_CFG for information on configuring this statistic
1322 * @pic.genstats_count2 0x01b0 4 Configurable statistic #3. Refer
1323 * to the GENSTATS2_CFG for information on configuring this statistic
1324 * @pic.genstats_count3 0x01b4 4 Configurable statistic #4. Refer
1325 * to the GENSTATS3_CFG for information on configuring this statistic
1326 * @pic.genstats_count4 0x01b8 4 Configurable statistic #5. Refer
1327 * to the GENSTATS4_CFG for information on configuring this statistic
1328 * @pic.genstats_count5 0x01c0 4 Configurable statistic #6. Refer
1329 * to the GENSTATS5_CFG for information on configuring this statistic
1330 * @pci.rstdrop_cpl 0x01c8 4
1331 * @pci.rstdrop_msg 0x01cc 4
1332 * @pci.rstdrop_client1 0x01d0 4
1333 * @pci.rstdrop_client0 0x01d4 4
1334 * @pci.rstdrop_client2 0x01d8 4
1335 * @pci.depl_cplh[vplane0] 0x01e2 2 Number of times completion
1336 * header credits were depleted
1337 * @pci.depl_nph[vplane0] 0x01e4 2 Number of times non posted
1338 * header credits were depleted
1339 * @pci.depl_ph[vplane0] 0x01e6 2 Number of times the posted
1340 * header credits were depleted
1341 * @pci.depl_cplh[vplane1] 0x01ea 2
1342 * @pci.depl_nph[vplane1] 0x01ec 2
1343 * @pci.depl_ph[vplane1] 0x01ee 2
1344 * @pci.depl_cplh[vplane2] 0x01f2 2
1345 * @pci.depl_nph[vplane2] 0x01f4 2
1346 * @pci.depl_ph[vplane2] 0x01f6 2
1347 * @pci.depl_cplh[vplane3] 0x01fa 2
1348 * @pci.depl_nph[vplane3] 0x01fc 2
1349 * @pci.depl_ph[vplane3] 0x01fe 2
1350 * @pci.depl_cplh[vplane4] 0x0202 2
1351 * @pci.depl_nph[vplane4] 0x0204 2
1352 * @pci.depl_ph[vplane4] 0x0206 2
1353 * @pci.depl_cplh[vplane5] 0x020a 2
1354 * @pci.depl_nph[vplane5] 0x020c 2
1355 * @pci.depl_ph[vplane5] 0x020e 2
1356 * @pci.depl_cplh[vplane6] 0x0212 2
1357 * @pci.depl_nph[vplane6] 0x0214 2
1358 * @pci.depl_ph[vplane6] 0x0216 2
1359 * @pci.depl_cplh[vplane7] 0x021a 2
1360 * @pci.depl_nph[vplane7] 0x021c 2
1361 * @pci.depl_ph[vplane7] 0x021e 2
1362 * @pci.depl_cplh[vplane8] 0x0222 2
1363 * @pci.depl_nph[vplane8] 0x0224 2
1364 * @pci.depl_ph[vplane8] 0x0226 2
1365 * @pci.depl_cplh[vplane9] 0x022a 2
1366 * @pci.depl_nph[vplane9] 0x022c 2
1367 * @pci.depl_ph[vplane9] 0x022e 2
1368 * @pci.depl_cplh[vplane10] 0x0232 2
1369 * @pci.depl_nph[vplane10] 0x0234 2
1370 * @pci.depl_ph[vplane10] 0x0236 2
1371 * @pci.depl_cplh[vplane11] 0x023a 2
1372 * @pci.depl_nph[vplane11] 0x023c 2
1373 * @pci.depl_ph[vplane11] 0x023e 2
1374 * @pci.depl_cplh[vplane12] 0x0242 2
1375 * @pci.depl_nph[vplane12] 0x0244 2
1376 * @pci.depl_ph[vplane12] 0x0246 2
1377 * @pci.depl_cplh[vplane13] 0x024a 2
1378 * @pci.depl_nph[vplane13] 0x024c 2
1379 * @pci.depl_ph[vplane13] 0x024e 2
1380 * @pci.depl_cplh[vplane14] 0x0252 2
1381 * @pci.depl_nph[vplane14] 0x0254 2
1382 * @pci.depl_ph[vplane14] 0x0256 2
1383 * @pci.depl_cplh[vplane15] 0x025a 2
1384 * @pci.depl_nph[vplane15] 0x025c 2
1385 * @pci.depl_ph[vplane15] 0x025e 2
1386 * @pci.depl_cplh[vplane16] 0x0262 2
1387 * @pci.depl_nph[vplane16] 0x0264 2
1388 * @pci.depl_ph[vplane16] 0x0266 2
1389 * @pci.depl_cpld[vplane0] 0x026a 2 Number of times completion data
1390 * credits were depleted
1391 * @pci.depl_npd[vplane0] 0x026c 2 Number of times non posted data
1392 * credits were depleted
1393 * @pci.depl_pd[vplane0] 0x026e 2 Number of times the posted data
1394 * credits were depleted
1395 * @pci.depl_cpld[vplane1] 0x0272 2
1396 * @pci.depl_npd[vplane1] 0x0274 2
1397 * @pci.depl_pd[vplane1] 0x0276 2
1398 * @pci.depl_cpld[vplane2] 0x027a 2
1399 * @pci.depl_npd[vplane2] 0x027c 2
1400 * @pci.depl_pd[vplane2] 0x027e 2
1401 * @pci.depl_cpld[vplane3] 0x0282 2
1402 * @pci.depl_npd[vplane3] 0x0284 2
1403 * @pci.depl_pd[vplane3] 0x0286 2
1404 * @pci.depl_cpld[vplane4] 0x028a 2
1405 * @pci.depl_npd[vplane4] 0x028c 2
1406 * @pci.depl_pd[vplane4] 0x028e 2
1407 * @pci.depl_cpld[vplane5] 0x0292 2
1408 * @pci.depl_npd[vplane5] 0x0294 2
1409 * @pci.depl_pd[vplane5] 0x0296 2
1410 * @pci.depl_cpld[vplane6] 0x029a 2
1411 * @pci.depl_npd[vplane6] 0x029c 2
1412 * @pci.depl_pd[vplane6] 0x029e 2
1413 * @pci.depl_cpld[vplane7] 0x02a2 2
1414 * @pci.depl_npd[vplane7] 0x02a4 2
1415 * @pci.depl_pd[vplane7] 0x02a6 2
1416 * @pci.depl_cpld[vplane8] 0x02aa 2
1417 * @pci.depl_npd[vplane8] 0x02ac 2
1418 * @pci.depl_pd[vplane8] 0x02ae 2
1419 * @pci.depl_cpld[vplane9] 0x02b2 2
1420 * @pci.depl_npd[vplane9] 0x02b4 2
1421 * @pci.depl_pd[vplane9] 0x02b6 2
1422 * @pci.depl_cpld[vplane10] 0x02ba 2
1423 * @pci.depl_npd[vplane10] 0x02bc 2
1424 * @pci.depl_pd[vplane10] 0x02be 2
1425 * @pci.depl_cpld[vplane11] 0x02c2 2
1426 * @pci.depl_npd[vplane11] 0x02c4 2
1427 * @pci.depl_pd[vplane11] 0x02c6 2
1428 * @pci.depl_cpld[vplane12] 0x02ca 2
1429 * @pci.depl_npd[vplane12] 0x02cc 2
1430 * @pci.depl_pd[vplane12] 0x02ce 2
1431 * @pci.depl_cpld[vplane13] 0x02d2 2
1432 * @pci.depl_npd[vplane13] 0x02d4 2
1433 * @pci.depl_pd[vplane13] 0x02d6 2
1434 * @pci.depl_cpld[vplane14] 0x02da 2
1435 * @pci.depl_npd[vplane14] 0x02dc 2
1436 * @pci.depl_pd[vplane14] 0x02de 2
1437 * @pci.depl_cpld[vplane15] 0x02e2 2
1438 * @pci.depl_npd[vplane15] 0x02e4 2
1439 * @pci.depl_pd[vplane15] 0x02e6 2
1440 * @pci.depl_cpld[vplane16] 0x02ea 2
1441 * @pci.depl_npd[vplane16] 0x02ec 2
1442 * @pci.depl_pd[vplane16] 0x02ee 2
1445 * @xgmac.global_prog_event_gnum0 0x0ae0 8 Programmable statistic.
1446 * Increments when internal logic detects a certain event. See register
1447 * XMAC_STATS_GLOBAL_CFG.EVENT_GNUM0_CFG for more information.
1448 * @xgmac.global_prog_event_gnum1 0x0ae8 8 Programmable statistic.
1449 * Increments when internal logic detects a certain event. See register
1450 * XMAC_STATS_GLOBAL_CFG.EVENT_GNUM1_CFG for more information.
1451 * @xgmac.orp_lro_events 0x0af8 8
1452 * @xgmac.orp_bs_events 0x0b00 8
1453 * @xgmac.orp_iwarp_events 0x0b08 8
1454 * @xgmac.tx_permitted_frms 0x0b14 4
1455 * @xgmac.port2_tx_any_frms 0x0b1d 1
1456 * @xgmac.port1_tx_any_frms 0x0b1e 1
1457 * @xgmac.port0_tx_any_frms 0x0b1f 1
1458 * @xgmac.port2_rx_any_frms 0x0b25 1
1459 * @xgmac.port1_rx_any_frms 0x0b26 1
1460 * @xgmac.port0_rx_any_frms 0x0b27 1
1462 * Titan mrpcim hardware statistics.
1464 struct vxge_hw_device_stats_mrpcim_info
{
1465 /*0x0000*/ u32 pic_ini_rd_drop
;
1466 /*0x0004*/ u32 pic_ini_wr_drop
;
1468 /*0x0000*/ u32 pic_wrcrdtarb_ph_crdt_depleted
;
1469 /*0x0004*/ u32 unused1
;
1470 } pic_wrcrdtarb_ph_crdt_depleted_vplane
[17];
1472 /*0x0000*/ u32 pic_wrcrdtarb_pd_crdt_depleted
;
1473 /*0x0004*/ u32 unused2
;
1474 } pic_wrcrdtarb_pd_crdt_depleted_vplane
[17];
1476 /*0x0000*/ u32 pic_rdcrdtarb_nph_crdt_depleted
;
1477 /*0x0004*/ u32 unused3
;
1478 } pic_rdcrdtarb_nph_crdt_depleted_vplane
[17];
1479 /*0x01a0*/ u32 pic_ini_rd_vpin_drop
;
1480 /*0x01a4*/ u32 pic_ini_wr_vpin_drop
;
1481 /*0x01a8*/ u32 pic_genstats_count0
;
1482 /*0x01ac*/ u32 pic_genstats_count1
;
1483 /*0x01b0*/ u32 pic_genstats_count2
;
1484 /*0x01b4*/ u32 pic_genstats_count3
;
1485 /*0x01b8*/ u32 pic_genstats_count4
;
1486 /*0x01bc*/ u32 unused4
;
1487 /*0x01c0*/ u32 pic_genstats_count5
;
1488 /*0x01c4*/ u32 unused5
;
1489 /*0x01c8*/ u32 pci_rstdrop_cpl
;
1490 /*0x01cc*/ u32 pci_rstdrop_msg
;
1491 /*0x01d0*/ u32 pci_rstdrop_client1
;
1492 /*0x01d4*/ u32 pci_rstdrop_client0
;
1493 /*0x01d8*/ u32 pci_rstdrop_client2
;
1494 /*0x01dc*/ u32 unused6
;
1496 /*0x0000*/ u16 unused7
;
1497 /*0x0002*/ u16 pci_depl_cplh
;
1498 /*0x0004*/ u16 pci_depl_nph
;
1499 /*0x0006*/ u16 pci_depl_ph
;
1500 } pci_depl_h_vplane
[17];
1502 /*0x0000*/ u16 unused8
;
1503 /*0x0002*/ u16 pci_depl_cpld
;
1504 /*0x0004*/ u16 pci_depl_npd
;
1505 /*0x0006*/ u16 pci_depl_pd
;
1506 } pci_depl_d_vplane
[17];
1507 /*0x02f0*/ struct vxge_hw_xmac_port_stats xgmac_port
[3];
1508 /*0x0a10*/ struct vxge_hw_xmac_aggr_stats xgmac_aggr
[2];
1509 /*0x0ae0*/ u64 xgmac_global_prog_event_gnum0
;
1510 /*0x0ae8*/ u64 xgmac_global_prog_event_gnum1
;
1511 /*0x0af0*/ u64 unused7
;
1512 /*0x0af8*/ u64 unused8
;
1513 /*0x0b00*/ u64 unused9
;
1514 /*0x0b08*/ u64 unused10
;
1515 /*0x0b10*/ u32 unused11
;
1516 /*0x0b14*/ u32 xgmac_tx_permitted_frms
;
1517 /*0x0b18*/ u32 unused12
;
1518 /*0x0b1c*/ u8 unused13
;
1519 /*0x0b1d*/ u8 xgmac_port2_tx_any_frms
;
1520 /*0x0b1e*/ u8 xgmac_port1_tx_any_frms
;
1521 /*0x0b1f*/ u8 xgmac_port0_tx_any_frms
;
1522 /*0x0b20*/ u32 unused14
;
1523 /*0x0b24*/ u8 unused15
;
1524 /*0x0b25*/ u8 xgmac_port2_rx_any_frms
;
1525 /*0x0b26*/ u8 xgmac_port1_rx_any_frms
;
1526 /*0x0b27*/ u8 xgmac_port0_rx_any_frms
;
1530 * struct vxge_hw_device_stats_hw_info - Titan hardware statistics.
1531 * @vpath_info: VPath statistics
1532 * @vpath_info_sav: Vpath statistics saved
1534 * Titan hardware statistics.
1536 struct vxge_hw_device_stats_hw_info
{
1537 struct vxge_hw_vpath_stats_hw_info
1538 *vpath_info
[VXGE_HW_MAX_VIRTUAL_PATHS
];
1539 struct vxge_hw_vpath_stats_hw_info
1540 vpath_info_sav
[VXGE_HW_MAX_VIRTUAL_PATHS
];
1544 * struct vxge_hw_vpath_stats_sw_common_info - HW common
1545 * statistics for queues.
1546 * @full_cnt: Number of times the queue was full
1547 * @usage_cnt: usage count.
1548 * @usage_max: Maximum usage
1549 * @reserve_free_swaps_cnt: Reserve/free swap counter. Internal usage.
1550 * @total_compl_cnt: Total descriptor completion count.
1553 * See also: struct vxge_hw_vpath_stats_sw_fifo_info{},
1554 * struct vxge_hw_vpath_stats_sw_ring_info{},
1556 struct vxge_hw_vpath_stats_sw_common_info
{
1560 u32 reserve_free_swaps_cnt
;
1561 u32 total_compl_cnt
;
1565 * struct vxge_hw_vpath_stats_sw_fifo_info - HW fifo statistics
1566 * @common_stats: Common counters for all queues
1567 * @total_posts: Total number of postings on the queue.
1568 * @total_buffers: Total number of buffers posted.
1569 * @txd_t_code_err_cnt: Array of transmit transfer codes. The position
1570 * (index) in this array reflects the transfer code type, for instance
1571 * 0xA - "loss of link".
1572 * Value txd_t_code_err_cnt[i] reflects the
1573 * number of times the corresponding transfer code was encountered.
1576 * See also: struct vxge_hw_vpath_stats_sw_common_info{},
1577 * struct vxge_hw_vpath_stats_sw_ring_info{},
1579 struct vxge_hw_vpath_stats_sw_fifo_info
{
1580 struct vxge_hw_vpath_stats_sw_common_info common_stats
;
1583 u32 txd_t_code_err_cnt
[VXGE_HW_DTR_MAX_T_CODE
];
1587 * struct vxge_hw_vpath_stats_sw_ring_info - HW ring statistics
1588 * @common_stats: Common counters for all queues
1589 * @rxd_t_code_err_cnt: Array of receive transfer codes. The position
1590 * (index) in this array reflects the transfer code type,
1592 * 0x7 - for "invalid receive buffer size", or 0x8 - for ECC.
1593 * Value rxd_t_code_err_cnt[i] reflects the
1594 * number of times the corresponding transfer code was encountered.
1597 * See also: struct vxge_hw_vpath_stats_sw_common_info{},
1598 * struct vxge_hw_vpath_stats_sw_fifo_info{},
1600 struct vxge_hw_vpath_stats_sw_ring_info
{
1601 struct vxge_hw_vpath_stats_sw_common_info common_stats
;
1602 u32 rxd_t_code_err_cnt
[VXGE_HW_DTR_MAX_T_CODE
];
1607 * struct vxge_hw_vpath_stats_sw_err - HW vpath error statistics
1609 * @network_sustained_fault:
1610 * @network_sustained_ok:
1611 * @kdfcctl_fifo0_overwrite:
1612 * @kdfcctl_fifo0_poison:
1613 * @kdfcctl_fifo0_dma_error:
1614 * @dblgen_fifo0_overflow:
1615 * @statsb_pif_chain_error:
1616 * @statsb_drop_timeout:
1617 * @target_illegal_access:
1620 * @prc_rxdcm_sc_err:
1621 * @prc_rxdcm_sc_abort:
1622 * @prc_quanta_size_err:
1624 * HW vpath error statistics
1626 struct vxge_hw_vpath_stats_sw_err
{
1628 u32 network_sustained_fault
;
1629 u32 network_sustained_ok
;
1630 u32 kdfcctl_fifo0_overwrite
;
1631 u32 kdfcctl_fifo0_poison
;
1632 u32 kdfcctl_fifo0_dma_error
;
1633 u32 dblgen_fifo0_overflow
;
1634 u32 statsb_pif_chain_error
;
1635 u32 statsb_drop_timeout
;
1636 u32 target_illegal_access
;
1639 u32 prc_rxdcm_sc_err
;
1640 u32 prc_rxdcm_sc_abort
;
1641 u32 prc_quanta_size_err
;
1645 * struct vxge_hw_vpath_stats_sw_info - HW vpath sw statistics
1646 * @soft_reset_cnt: Number of times soft reset is done on this vpath.
1647 * @error_stats: error counters for the vpath
1648 * @ring_stats: counters for ring belonging to the vpath
1649 * @fifo_stats: counters for fifo belonging to the vpath
1651 * HW vpath sw statistics
1652 * See also: struct vxge_hw_device_info{} }.
1654 struct vxge_hw_vpath_stats_sw_info
{
1656 struct vxge_hw_vpath_stats_sw_err error_stats
;
1657 struct vxge_hw_vpath_stats_sw_ring_info ring_stats
;
1658 struct vxge_hw_vpath_stats_sw_fifo_info fifo_stats
;
1662 * struct vxge_hw_device_stats_sw_info - HW own per-device statistics.
1664 * @not_traffic_intr_cnt: Number of times the host was interrupted
1665 * without new completions.
1666 * "Non-traffic interrupt counter".
1667 * @traffic_intr_cnt: Number of traffic interrupts for the device.
1668 * @total_intr_cnt: Total number of traffic interrupts for the device.
1669 * @total_intr_cnt == @traffic_intr_cnt +
1670 * @not_traffic_intr_cnt
1671 * @soft_reset_cnt: Number of times soft reset is done on this device.
1672 * @vpath_info: please see struct vxge_hw_vpath_stats_sw_info{}
1673 * HW per-device statistics.
1675 struct vxge_hw_device_stats_sw_info
{
1676 u32 not_traffic_intr_cnt
;
1677 u32 traffic_intr_cnt
;
1680 struct vxge_hw_vpath_stats_sw_info
1681 vpath_info
[VXGE_HW_MAX_VIRTUAL_PATHS
];
1685 * struct vxge_hw_device_stats_sw_err - HW device error statistics.
1686 * @vpath_alarms: Number of vpath alarms
1688 * HW Device error stats
1690 struct vxge_hw_device_stats_sw_err
{
1695 * struct vxge_hw_device_stats - Contains HW per-device statistics,
1697 * @devh: HW device handle.
1698 * @dma_addr: DMA address of the %hw_info. Given to device to fill-in the stats.
1699 * @hw_info_dmah: DMA handle used to map hw statistics onto the device memory
1701 * @hw_info_dma_acch: One more DMA handle used subsequently to free the
1702 * DMA object. Note that this and the previous handle have
1703 * physical meaning for Solaris; on Windows and Linux the
1704 * corresponding value will be simply pointer to PCI device.
1706 * @hw_dev_info_stats: Titan statistics maintained by the hardware.
1707 * @sw_dev_info_stats: HW's "soft" device informational statistics, e.g. number
1708 * of completions per interrupt.
1709 * @sw_dev_err_stats: HW's "soft" device error statistics.
1711 * Structure-container of HW per-device statistics. Note that per-channel
1712 * statistics are kept in separate structures under HW's fifo and ring
1715 struct vxge_hw_device_stats
{
1717 struct __vxge_hw_device
*devh
;
1719 /* HW device hardware statistics */
1720 struct vxge_hw_device_stats_hw_info hw_dev_info_stats
;
1722 /* HW device "soft" stats */
1723 struct vxge_hw_device_stats_sw_err sw_dev_err_stats
;
1724 struct vxge_hw_device_stats_sw_info sw_dev_info_stats
;
1728 enum vxge_hw_status
vxge_hw_device_hw_stats_enable(
1729 struct __vxge_hw_device
*devh
);
1731 enum vxge_hw_status
vxge_hw_device_stats_get(
1732 struct __vxge_hw_device
*devh
,
1733 struct vxge_hw_device_stats_hw_info
*hw_stats
);
1735 enum vxge_hw_status
vxge_hw_driver_stats_get(
1736 struct __vxge_hw_device
*devh
,
1737 struct vxge_hw_device_stats_sw_info
*sw_stats
);
1739 enum vxge_hw_status
vxge_hw_mrpcim_stats_enable(struct __vxge_hw_device
*devh
);
1741 enum vxge_hw_status
vxge_hw_mrpcim_stats_disable(struct __vxge_hw_device
*devh
);
1744 vxge_hw_mrpcim_stats_access(
1745 struct __vxge_hw_device
*devh
,
1752 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device
*devh
,
1753 struct vxge_hw_xmac_stats
*xmac_stats
);
1756 * enum enum vxge_hw_mgmt_reg_type - Register types.
1758 * @vxge_hw_mgmt_reg_type_legacy: Legacy registers
1759 * @vxge_hw_mgmt_reg_type_toc: TOC Registers
1760 * @vxge_hw_mgmt_reg_type_common: Common Registers
1761 * @vxge_hw_mgmt_reg_type_mrpcim: mrpcim registers
1762 * @vxge_hw_mgmt_reg_type_srpcim: srpcim registers
1763 * @vxge_hw_mgmt_reg_type_vpmgmt: vpath management registers
1764 * @vxge_hw_mgmt_reg_type_vpath: vpath registers
1766 * Register type enumaration
1768 enum vxge_hw_mgmt_reg_type
{
1769 vxge_hw_mgmt_reg_type_legacy
= 0,
1770 vxge_hw_mgmt_reg_type_toc
= 1,
1771 vxge_hw_mgmt_reg_type_common
= 2,
1772 vxge_hw_mgmt_reg_type_mrpcim
= 3,
1773 vxge_hw_mgmt_reg_type_srpcim
= 4,
1774 vxge_hw_mgmt_reg_type_vpmgmt
= 5,
1775 vxge_hw_mgmt_reg_type_vpath
= 6
1779 vxge_hw_mgmt_reg_read(struct __vxge_hw_device
*devh
,
1780 enum vxge_hw_mgmt_reg_type type
,
1786 vxge_hw_mgmt_reg_write(struct __vxge_hw_device
*devh
,
1787 enum vxge_hw_mgmt_reg_type type
,
1793 * enum enum vxge_hw_rxd_state - Descriptor (RXD) state.
1794 * @VXGE_HW_RXD_STATE_NONE: Invalid state.
1795 * @VXGE_HW_RXD_STATE_AVAIL: Descriptor is available for reservation.
1796 * @VXGE_HW_RXD_STATE_POSTED: Descriptor is posted for processing by the
1798 * @VXGE_HW_RXD_STATE_FREED: Descriptor is free and can be reused for
1799 * filling-in and posting later.
1801 * Titan/HW descriptor states.
1804 enum vxge_hw_rxd_state
{
1805 VXGE_HW_RXD_STATE_NONE
= 0,
1806 VXGE_HW_RXD_STATE_AVAIL
= 1,
1807 VXGE_HW_RXD_STATE_POSTED
= 2,
1808 VXGE_HW_RXD_STATE_FREED
= 3
1812 * struct vxge_hw_ring_rxd_info - Extended information associated with a
1813 * completed ring descriptor.
1814 * @syn_flag: SYN flag
1816 * @fast_path_eligible: Fast Path Eligible flag
1817 * @l3_cksum: in L3 checksum is valid
1818 * @l3_cksum: Result of IP checksum check (by Titan hardware).
1819 * This field containing VXGE_HW_L3_CKSUM_OK would mean that
1820 * the checksum is correct, otherwise - the datagram is
1822 * @l4_cksum: in L4 checksum is valid
1823 * @l4_cksum: Result of TCP/UDP checksum check (by Titan hardware).
1824 * This field containing VXGE_HW_L4_CKSUM_OK would mean that
1825 * the checksum is correct. Otherwise - the packet is
1827 * @frame: Zero or more of enum vxge_hw_frame_type flags.
1828 * See enum vxge_hw_frame_type{}.
1829 * @proto: zero or more of enum vxge_hw_frame_proto flags. Reporting bits for
1830 * various higher-layer protocols, including (but note restricted to)
1831 * TCP and UDP. See enum vxge_hw_frame_proto{}.
1832 * @is_vlan: If vlan tag is valid
1833 * @vlan: VLAN tag extracted from the received frame.
1834 * @rth_bucket: RTH bucket
1835 * @rth_it_hit: Set, If RTH hash value calculated by the Titan hardware
1836 * has a matching entry in the Indirection table.
1837 * @rth_spdm_hit: Set, If RTH hash value calculated by the Titan hardware
1838 * has a matching entry in the Socket Pair Direct Match table.
1839 * @rth_hash_type: RTH hash code of the function used to calculate the hash.
1840 * @rth_value: Receive Traffic Hashing(RTH) hash value. Produced by Titan
1841 * hardware if RTH is enabled.
1843 struct vxge_hw_ring_rxd_info
{
1846 u32 fast_path_eligible
;
1862 * enum vxge_hw_ring_tcode - Transfer codes returned by adapter
1863 * @VXGE_HW_RING_T_CODE_OK: Transfer ok.
1864 * @VXGE_HW_RING_T_CODE_L3_CKSUM_MISMATCH: Layer 3 checksum presentation
1865 * configuration mismatch.
1866 * @VXGE_HW_RING_T_CODE_L4_CKSUM_MISMATCH: Layer 4 checksum presentation
1867 * configuration mismatch.
1868 * @VXGE_HW_RING_T_CODE_L3_L4_CKSUM_MISMATCH: Layer 3 and Layer 4 checksum
1869 * presentation configuration mismatch.
1870 * @VXGE_HW_RING_T_CODE_L3_PKT_ERR: Layer 3 error unparseable packet,
1871 * such as unknown IPv6 header.
1872 * @VXGE_HW_RING_T_CODE_L2_FRM_ERR: Layer 2 error frame integrity
1873 * error, such as FCS or ECC).
1874 * @VXGE_HW_RING_T_CODE_BUF_SIZE_ERR: Buffer size error the RxD buffer(
1875 * s) were not appropriately sized and data loss occurred.
1876 * @VXGE_HW_RING_T_CODE_INT_ECC_ERR: Internal ECC error RxD corrupted.
1877 * @VXGE_HW_RING_T_CODE_BENIGN_OVFLOW: Benign overflow the contents of
1878 * Segment1 exceeded the capacity of Buffer1 and the remainder
1879 * was placed in Buffer2. Segment2 now starts in Buffer3.
1880 * No data loss or errors occurred.
1881 * @VXGE_HW_RING_T_CODE_ZERO_LEN_BUFF: Buffer size 0 one of the RxDs
1882 * assigned buffers has a size of 0 bytes.
1883 * @VXGE_HW_RING_T_CODE_FRM_DROP: Frame dropped either due to
1884 * VPath Reset or because of a VPIN mismatch.
1885 * @VXGE_HW_RING_T_CODE_UNUSED: Unused
1886 * @VXGE_HW_RING_T_CODE_MULTI_ERR: Multiple errors more than one
1887 * transfer code condition occurred.
1889 * Transfer codes returned by adapter.
1891 enum vxge_hw_ring_tcode
{
1892 VXGE_HW_RING_T_CODE_OK
= 0x0,
1893 VXGE_HW_RING_T_CODE_L3_CKSUM_MISMATCH
= 0x1,
1894 VXGE_HW_RING_T_CODE_L4_CKSUM_MISMATCH
= 0x2,
1895 VXGE_HW_RING_T_CODE_L3_L4_CKSUM_MISMATCH
= 0x3,
1896 VXGE_HW_RING_T_CODE_L3_PKT_ERR
= 0x5,
1897 VXGE_HW_RING_T_CODE_L2_FRM_ERR
= 0x6,
1898 VXGE_HW_RING_T_CODE_BUF_SIZE_ERR
= 0x7,
1899 VXGE_HW_RING_T_CODE_INT_ECC_ERR
= 0x8,
1900 VXGE_HW_RING_T_CODE_BENIGN_OVFLOW
= 0x9,
1901 VXGE_HW_RING_T_CODE_ZERO_LEN_BUFF
= 0xA,
1902 VXGE_HW_RING_T_CODE_FRM_DROP
= 0xC,
1903 VXGE_HW_RING_T_CODE_UNUSED
= 0xE,
1904 VXGE_HW_RING_T_CODE_MULTI_ERR
= 0xF
1907 enum vxge_hw_status
vxge_hw_ring_rxd_reserve(
1908 struct __vxge_hw_ring
*ring_handle
,
1912 vxge_hw_ring_rxd_pre_post(
1913 struct __vxge_hw_ring
*ring_handle
,
1917 vxge_hw_ring_rxd_post_post(
1918 struct __vxge_hw_ring
*ring_handle
,
1922 vxge_hw_ring_rxd_post_post_wmb(
1923 struct __vxge_hw_ring
*ring_handle
,
1926 void vxge_hw_ring_rxd_post(
1927 struct __vxge_hw_ring
*ring_handle
,
1930 enum vxge_hw_status
vxge_hw_ring_rxd_next_completed(
1931 struct __vxge_hw_ring
*ring_handle
,
1935 enum vxge_hw_status
vxge_hw_ring_handle_tcode(
1936 struct __vxge_hw_ring
*ring_handle
,
1940 void vxge_hw_ring_rxd_free(
1941 struct __vxge_hw_ring
*ring_handle
,
1945 * enum enum vxge_hw_frame_proto - Higher-layer ethernet protocols.
1946 * @VXGE_HW_FRAME_PROTO_VLAN_TAGGED: VLAN.
1947 * @VXGE_HW_FRAME_PROTO_IPV4: IPv4.
1948 * @VXGE_HW_FRAME_PROTO_IPV6: IPv6.
1949 * @VXGE_HW_FRAME_PROTO_IP_FRAG: IP fragmented.
1950 * @VXGE_HW_FRAME_PROTO_TCP: TCP.
1951 * @VXGE_HW_FRAME_PROTO_UDP: UDP.
1952 * @VXGE_HW_FRAME_PROTO_TCP_OR_UDP: TCP or UDP.
1954 * Higher layer ethernet protocols and options.
1956 enum vxge_hw_frame_proto
{
1957 VXGE_HW_FRAME_PROTO_VLAN_TAGGED
= 0x80,
1958 VXGE_HW_FRAME_PROTO_IPV4
= 0x10,
1959 VXGE_HW_FRAME_PROTO_IPV6
= 0x08,
1960 VXGE_HW_FRAME_PROTO_IP_FRAG
= 0x04,
1961 VXGE_HW_FRAME_PROTO_TCP
= 0x02,
1962 VXGE_HW_FRAME_PROTO_UDP
= 0x01,
1963 VXGE_HW_FRAME_PROTO_TCP_OR_UDP
= (VXGE_HW_FRAME_PROTO_TCP
| \
1964 VXGE_HW_FRAME_PROTO_UDP
)
1968 * enum enum vxge_hw_fifo_gather_code - Gather codes used in fifo TxD
1969 * @VXGE_HW_FIFO_GATHER_CODE_FIRST: First TxDL
1970 * @VXGE_HW_FIFO_GATHER_CODE_MIDDLE: Middle TxDL
1971 * @VXGE_HW_FIFO_GATHER_CODE_LAST: Last TxDL
1972 * @VXGE_HW_FIFO_GATHER_CODE_FIRST_LAST: First and Last TxDL.
1974 * These gather codes are used to indicate the position of a TxD in a TxD list
1976 enum vxge_hw_fifo_gather_code
{
1977 VXGE_HW_FIFO_GATHER_CODE_FIRST
= 0x2,
1978 VXGE_HW_FIFO_GATHER_CODE_MIDDLE
= 0x0,
1979 VXGE_HW_FIFO_GATHER_CODE_LAST
= 0x1,
1980 VXGE_HW_FIFO_GATHER_CODE_FIRST_LAST
= 0x3
1984 * enum enum vxge_hw_fifo_tcode - tcodes used in fifo
1985 * @VXGE_HW_FIFO_T_CODE_OK: Transfer OK
1986 * @VXGE_HW_FIFO_T_CODE_PCI_READ_CORRUPT: PCI read transaction (either TxD or
1987 * frame data) returned with corrupt data.
1988 * @VXGE_HW_FIFO_T_CODE_PCI_READ_FAIL:PCI read transaction was returned
1990 * @VXGE_HW_FIFO_T_CODE_INVALID_MSS: The host attempted to send either a
1991 * frame or LSO MSS that was too long (>9800B).
1992 * @VXGE_HW_FIFO_T_CODE_LSO_ERROR: Error detected during TCP/UDP Large Send
1993 * Offload operation, due to improper header template,
1994 * unsupported protocol, etc.
1995 * @VXGE_HW_FIFO_T_CODE_UNUSED: Unused
1996 * @VXGE_HW_FIFO_T_CODE_MULTI_ERROR: Set to 1 by the adapter if multiple
1997 * data buffer transfer errors are encountered (see below).
1998 * Otherwise it is set to 0.
2000 * These tcodes are returned in various API for TxD status
2002 enum vxge_hw_fifo_tcode
{
2003 VXGE_HW_FIFO_T_CODE_OK
= 0x0,
2004 VXGE_HW_FIFO_T_CODE_PCI_READ_CORRUPT
= 0x1,
2005 VXGE_HW_FIFO_T_CODE_PCI_READ_FAIL
= 0x2,
2006 VXGE_HW_FIFO_T_CODE_INVALID_MSS
= 0x3,
2007 VXGE_HW_FIFO_T_CODE_LSO_ERROR
= 0x4,
2008 VXGE_HW_FIFO_T_CODE_UNUSED
= 0x7,
2009 VXGE_HW_FIFO_T_CODE_MULTI_ERROR
= 0x8
2012 enum vxge_hw_status
vxge_hw_fifo_txdl_reserve(
2013 struct __vxge_hw_fifo
*fifoh
,
2017 void vxge_hw_fifo_txdl_buffer_set(
2018 struct __vxge_hw_fifo
*fifo_handle
,
2021 dma_addr_t dma_pointer
,
2024 void vxge_hw_fifo_txdl_post(
2025 struct __vxge_hw_fifo
*fifo_handle
,
2028 u32
vxge_hw_fifo_free_txdl_count_get(
2029 struct __vxge_hw_fifo
*fifo_handle
);
2031 enum vxge_hw_status
vxge_hw_fifo_txdl_next_completed(
2032 struct __vxge_hw_fifo
*fifoh
,
2034 enum vxge_hw_fifo_tcode
*t_code
);
2036 enum vxge_hw_status
vxge_hw_fifo_handle_tcode(
2037 struct __vxge_hw_fifo
*fifoh
,
2039 enum vxge_hw_fifo_tcode t_code
);
2041 void vxge_hw_fifo_txdl_free(
2042 struct __vxge_hw_fifo
*fifoh
,
2049 #define VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET (VXGE_HW_BLOCK_SIZE-8)
2050 #define VXGE_HW_RING_MEMBLOCK_IDX_OFFSET (VXGE_HW_BLOCK_SIZE-16)
2053 * struct __vxge_hw_ring_rxd_priv - Receive descriptor HW-private data.
2054 * @dma_addr: DMA (mapped) address of _this_ descriptor.
2055 * @dma_handle: DMA handle used to map the descriptor onto device.
2056 * @dma_offset: Descriptor's offset in the memory block. HW allocates
2057 * descriptors in memory blocks of %VXGE_HW_BLOCK_SIZE
2058 * bytes. Each memblock is contiguous DMA-able memory. Each
2059 * memblock contains 1 or more 4KB RxD blocks visible to the
2061 * @dma_object: DMA address and handle of the memory block that contains
2062 * the descriptor. This member is used only in the "checked"
2063 * version of the HW (to enforce certain assertions);
2064 * otherwise it gets compiled out.
2065 * @allocated: True if the descriptor is reserved, 0 otherwise. Internal usage.
2067 * Per-receive decsriptor HW-private data. HW uses the space to keep DMA
2068 * information associated with the descriptor. Note that driver can ask HW
2069 * to allocate additional per-descriptor space for its own (driver-specific)
2072 struct __vxge_hw_ring_rxd_priv
{
2073 dma_addr_t dma_addr
;
2074 struct pci_dev
*dma_handle
;
2075 ptrdiff_t dma_offset
;
2076 #ifdef VXGE_DEBUG_ASSERT
2077 struct vxge_hw_mempool_dma
*dma_object
;
2081 struct vxge_hw_mempool_cbs
{
2082 void (*item_func_alloc
)(
2083 struct vxge_hw_mempool
*mempoolh
,
2085 struct vxge_hw_mempool_dma
*dma_object
,
2090 #define VXGE_HW_VIRTUAL_PATH_HANDLE(vpath) \
2091 ((struct __vxge_hw_vpath_handle *)(vpath)->vpath_handles.next)
2094 __vxge_hw_vpath_rts_table_get(
2095 struct __vxge_hw_vpath_handle
*vpath_handle
,
2103 __vxge_hw_vpath_rts_table_set(
2104 struct __vxge_hw_vpath_handle
*vpath_handle
,
2112 __vxge_hw_vpath_enable(
2113 struct __vxge_hw_device
*devh
,
2116 void vxge_hw_device_intr_enable(
2117 struct __vxge_hw_device
*devh
);
2119 u32
vxge_hw_device_set_intr_type(struct __vxge_hw_device
*devh
, u32 intr_mode
);
2121 void vxge_hw_device_intr_disable(
2122 struct __vxge_hw_device
*devh
);
2124 void vxge_hw_device_mask_all(
2125 struct __vxge_hw_device
*devh
);
2127 void vxge_hw_device_unmask_all(
2128 struct __vxge_hw_device
*devh
);
2130 enum vxge_hw_status
vxge_hw_device_begin_irq(
2131 struct __vxge_hw_device
*devh
,
2135 void vxge_hw_device_clear_tx_rx(
2136 struct __vxge_hw_device
*devh
);
2142 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring
*ring
);
2144 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo
*fifo
);
2146 u32
vxge_hw_vpath_id(
2147 struct __vxge_hw_vpath_handle
*vpath_handle
);
2149 enum vxge_hw_vpath_mac_addr_add_mode
{
2150 VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE
= 0,
2151 VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE
= 1,
2152 VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE
= 2
2156 vxge_hw_vpath_mac_addr_add(
2157 struct __vxge_hw_vpath_handle
*vpath_handle
,
2160 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode
);
2163 vxge_hw_vpath_mac_addr_get(
2164 struct __vxge_hw_vpath_handle
*vpath_handle
,
2169 vxge_hw_vpath_mac_addr_get_next(
2170 struct __vxge_hw_vpath_handle
*vpath_handle
,
2175 vxge_hw_vpath_mac_addr_delete(
2176 struct __vxge_hw_vpath_handle
*vpath_handle
,
2181 vxge_hw_vpath_vid_add(
2182 struct __vxge_hw_vpath_handle
*vpath_handle
,
2186 vxge_hw_vpath_vid_delete(
2187 struct __vxge_hw_vpath_handle
*vpath_handle
,
2191 vxge_hw_vpath_etype_add(
2192 struct __vxge_hw_vpath_handle
*vpath_handle
,
2196 vxge_hw_vpath_etype_get(
2197 struct __vxge_hw_vpath_handle
*vpath_handle
,
2201 vxge_hw_vpath_etype_get_next(
2202 struct __vxge_hw_vpath_handle
*vpath_handle
,
2206 vxge_hw_vpath_etype_delete(
2207 struct __vxge_hw_vpath_handle
*vpath_handle
,
2210 enum vxge_hw_status
vxge_hw_vpath_promisc_enable(
2211 struct __vxge_hw_vpath_handle
*vpath_handle
);
2213 enum vxge_hw_status
vxge_hw_vpath_promisc_disable(
2214 struct __vxge_hw_vpath_handle
*vpath_handle
);
2216 enum vxge_hw_status
vxge_hw_vpath_bcast_enable(
2217 struct __vxge_hw_vpath_handle
*vpath_handle
);
2219 enum vxge_hw_status
vxge_hw_vpath_mcast_enable(
2220 struct __vxge_hw_vpath_handle
*vpath_handle
);
2222 enum vxge_hw_status
vxge_hw_vpath_mcast_disable(
2223 struct __vxge_hw_vpath_handle
*vpath_handle
);
2225 enum vxge_hw_status
vxge_hw_vpath_poll_rx(
2226 struct __vxge_hw_ring
*ringh
);
2228 enum vxge_hw_status
vxge_hw_vpath_poll_tx(
2229 struct __vxge_hw_fifo
*fifoh
,
2230 struct sk_buff
***skb_ptr
, int nr_skb
, int *more
);
2232 enum vxge_hw_status
vxge_hw_vpath_alarm_process(
2233 struct __vxge_hw_vpath_handle
*vpath_handle
,
2237 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle
*vpath_handle
,
2238 int *tim_msix_id
, int alarm_msix_id
);
2241 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle
*vpath_handle
,
2244 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle
*vp
, int msix_id
);
2246 void vxge_hw_device_flush_io(struct __vxge_hw_device
*devh
);
2249 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle
*vpath_handle
,
2252 enum vxge_hw_status
vxge_hw_vpath_intr_enable(
2253 struct __vxge_hw_vpath_handle
*vpath_handle
);
2255 enum vxge_hw_status
vxge_hw_vpath_intr_disable(
2256 struct __vxge_hw_vpath_handle
*vpath_handle
);
2258 void vxge_hw_vpath_inta_mask_tx_rx(
2259 struct __vxge_hw_vpath_handle
*vpath_handle
);
2261 void vxge_hw_vpath_inta_unmask_tx_rx(
2262 struct __vxge_hw_vpath_handle
*vpath_handle
);
2265 vxge_hw_channel_msix_mask(struct __vxge_hw_channel
*channelh
, int msix_id
);
2268 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel
*channelh
, int msix_id
);
2271 vxge_hw_channel_msix_clear(struct __vxge_hw_channel
*channelh
, int msix_id
);
2274 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel
*channel
,
2278 vxge_hw_channel_dtr_complete(struct __vxge_hw_channel
*channel
);
2281 vxge_hw_channel_dtr_free(struct __vxge_hw_channel
*channel
, void *dtrh
);
2284 vxge_hw_channel_dtr_count(struct __vxge_hw_channel
*channel
);
2286 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo
*fifo
);
2288 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring
*ring
);