2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
5 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 /***********************\
22 * PHY related functions *
23 \***********************/
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 #include <linux/delay.h>
28 #include <linux/slab.h>
29 #include <asm/unaligned.h>
39 * DOC: PHY related functions
41 * Here we handle the low-level functions related to baseband
42 * and analog frontend (RF) parts. This is by far the most complex
43 * part of the hw code so make sure you know what you are doing.
45 * Here is a list of what this is all about:
47 * - Channel setting/switching
49 * - Automatic Gain Control (AGC) calibration
51 * - Noise Floor calibration
53 * - I/Q imbalance calibration (QAM correction)
55 * - Calibration due to thermal changes (gain_F)
57 * - Spur noise mitigation
59 * - RF/PHY initialization for the various operating modes and bwmodes
63 * - TX power control per channel/rate/packet type
65 * Also have in mind we never got documentation for most of these
66 * functions, what we have comes mostly from Atheros's code, reverse
67 * engineering and patent docs/presentations etc.
76 * ath5k_hw_radio_revision() - Get the PHY Chip revision
77 * @ah: The &struct ath5k_hw
78 * @band: One of enum nl80211_band
80 * Returns the revision number of a 2GHz, 5GHz or single chip
84 ath5k_hw_radio_revision(struct ath5k_hw
*ah
, enum nl80211_band band
)
91 * Set the radio chip access register
94 case NL80211_BAND_2GHZ
:
95 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_2GHZ
, AR5K_PHY(0));
97 case NL80211_BAND_5GHZ
:
98 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
104 usleep_range(2000, 2500);
106 /* ...wait until PHY is ready and read the selected radio revision */
107 ath5k_hw_reg_write(ah
, 0x00001c16, AR5K_PHY(0x34));
109 for (i
= 0; i
< 8; i
++)
110 ath5k_hw_reg_write(ah
, 0x00010000, AR5K_PHY(0x20));
112 if (ah
->ah_version
== AR5K_AR5210
) {
113 srev
= (ath5k_hw_reg_read(ah
, AR5K_PHY(256)) >> 28) & 0xf;
114 ret
= (u16
)ath5k_hw_bitswap(srev
, 4) + 1;
116 srev
= (ath5k_hw_reg_read(ah
, AR5K_PHY(0x100)) >> 24) & 0xff;
117 ret
= (u16
)ath5k_hw_bitswap(((srev
& 0xf0) >> 4) |
118 ((srev
& 0x0f) << 4), 8);
121 /* Reset to the 5GHz mode */
122 ath5k_hw_reg_write(ah
, AR5K_PHY_SHIFT_5GHZ
, AR5K_PHY(0));
128 * ath5k_channel_ok() - Check if a channel is supported by the hw
129 * @ah: The &struct ath5k_hw
130 * @channel: The &struct ieee80211_channel
132 * Note: We don't do any regulatory domain checks here, it's just
136 ath5k_channel_ok(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
)
138 u16 freq
= channel
->center_freq
;
140 /* Check if the channel is in our supported range */
141 if (channel
->band
== NL80211_BAND_2GHZ
) {
142 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_2ghz_min
) &&
143 (freq
<= ah
->ah_capabilities
.cap_range
.range_2ghz_max
))
145 } else if (channel
->band
== NL80211_BAND_5GHZ
)
146 if ((freq
>= ah
->ah_capabilities
.cap_range
.range_5ghz_min
) &&
147 (freq
<= ah
->ah_capabilities
.cap_range
.range_5ghz_max
))
154 * ath5k_hw_chan_has_spur_noise() - Check if channel is sensitive to spur noise
155 * @ah: The &struct ath5k_hw
156 * @channel: The &struct ieee80211_channel
159 ath5k_hw_chan_has_spur_noise(struct ath5k_hw
*ah
,
160 struct ieee80211_channel
*channel
)
164 if ((ah
->ah_radio
== AR5K_RF5112
) ||
165 (ah
->ah_radio
== AR5K_RF5413
) ||
166 (ah
->ah_radio
== AR5K_RF2413
) ||
167 (ah
->ah_mac_version
== (AR5K_SREV_AR2417
>> 4)))
172 if ((channel
->center_freq
% refclk_freq
!= 0) &&
173 ((channel
->center_freq
% refclk_freq
< 10) ||
174 (channel
->center_freq
% refclk_freq
> 22)))
181 * ath5k_hw_rfb_op() - Perform an operation on the given RF Buffer
182 * @ah: The &struct ath5k_hw
183 * @rf_regs: The struct ath5k_rf_reg
185 * @reg_id: RF register ID
186 * @set: Indicate we need to swap data
188 * This is an internal function used to modify RF Banks before
189 * writing them to AR5K_RF_BUFFER. Check out rfbuffer.h for more
193 ath5k_hw_rfb_op(struct ath5k_hw
*ah
, const struct ath5k_rf_reg
*rf_regs
,
194 u32 val
, u8 reg_id
, bool set
)
196 const struct ath5k_rf_reg
*rfreg
= NULL
;
197 u8 offset
, bank
, num_bits
, col
, position
;
199 u32 mask
, data
, last_bit
, bits_shifted
, first_bit
;
205 rfb
= ah
->ah_rf_banks
;
207 for (i
= 0; i
< ah
->ah_rf_regs_count
; i
++) {
208 if (rf_regs
[i
].index
== reg_id
) {
214 if (rfb
== NULL
|| rfreg
== NULL
) {
215 ATH5K_PRINTF("Rf register not found!\n");
216 /* should not happen */
221 num_bits
= rfreg
->field
.len
;
222 first_bit
= rfreg
->field
.pos
;
223 col
= rfreg
->field
.col
;
225 /* first_bit is an offset from bank's
226 * start. Since we have all banks on
227 * the same array, we use this offset
228 * to mark each bank's start */
229 offset
= ah
->ah_offset
[bank
];
232 if (!(col
<= 3 && num_bits
<= 32 && first_bit
+ num_bits
<= 319)) {
233 ATH5K_PRINTF("invalid values at offset %u\n", offset
);
237 entry
= ((first_bit
- 1) / 8) + offset
;
238 position
= (first_bit
- 1) % 8;
241 data
= ath5k_hw_bitswap(val
, num_bits
);
243 for (bits_shifted
= 0, bits_left
= num_bits
; bits_left
> 0;
244 position
= 0, entry
++) {
246 last_bit
= (position
+ bits_left
> 8) ? 8 :
247 position
+ bits_left
;
249 mask
= (((1 << last_bit
) - 1) ^ ((1 << position
) - 1)) <<
254 rfb
[entry
] |= ((data
<< position
) << (col
* 8)) & mask
;
255 data
>>= (8 - position
);
257 data
|= (((rfb
[entry
] & mask
) >> (col
* 8)) >> position
)
259 bits_shifted
+= last_bit
- position
;
262 bits_left
-= 8 - position
;
265 data
= set
? 1 : ath5k_hw_bitswap(data
, num_bits
);
271 * ath5k_hw_write_ofdm_timings() - set OFDM timings on AR5212
272 * @ah: the &struct ath5k_hw
273 * @channel: the currently set channel upon reset
275 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
276 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_phy_init.
278 * Since delta slope is floating point we split it on its exponent and
279 * mantissa and provide these values on hw.
281 * For more infos i think this patent is related
282 * "http://www.freepatentsonline.com/7184495.html"
285 ath5k_hw_write_ofdm_timings(struct ath5k_hw
*ah
,
286 struct ieee80211_channel
*channel
)
288 /* Get exponent and mantissa and set it */
289 u32 coef_scaled
, coef_exp
, coef_man
,
290 ds_coef_exp
, ds_coef_man
, clock
;
292 BUG_ON(!(ah
->ah_version
== AR5K_AR5212
) ||
293 (channel
->hw_value
== AR5K_MODE_11B
));
296 * ALGO: coef = (5 * clock / carrier_freq) / 2
297 * we scale coef by shifting clock value by 24 for
298 * better precision since we use integers */
299 switch (ah
->ah_bwmode
) {
300 case AR5K_BWMODE_40MHZ
:
303 case AR5K_BWMODE_10MHZ
:
306 case AR5K_BWMODE_5MHZ
:
313 coef_scaled
= ((5 * (clock
<< 24)) / 2) / channel
->center_freq
;
316 * ALGO: coef_exp = 14 - highest set bit position */
317 coef_exp
= ilog2(coef_scaled
);
319 /* Doesn't make sense if it's zero*/
320 if (!coef_scaled
|| !coef_exp
)
323 /* Note: we've shifted coef_scaled by 24 */
324 coef_exp
= 14 - (coef_exp
- 24);
327 /* Get mantissa (significant digits)
328 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
329 coef_man
= coef_scaled
+
330 (1 << (24 - coef_exp
- 1));
332 /* Calculate delta slope coefficient exponent
333 * and mantissa (remove scaling) and set them on hw */
334 ds_coef_man
= coef_man
>> (24 - coef_exp
);
335 ds_coef_exp
= coef_exp
- 16;
337 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
338 AR5K_PHY_TIMING_3_DSC_MAN
, ds_coef_man
);
339 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_3
,
340 AR5K_PHY_TIMING_3_DSC_EXP
, ds_coef_exp
);
346 * ath5k_hw_phy_disable() - Disable PHY
347 * @ah: The &struct ath5k_hw
349 int ath5k_hw_phy_disable(struct ath5k_hw
*ah
)
352 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
358 * ath5k_hw_wait_for_synth() - Wait for synth to settle
359 * @ah: The &struct ath5k_hw
360 * @channel: The &struct ieee80211_channel
363 ath5k_hw_wait_for_synth(struct ath5k_hw
*ah
,
364 struct ieee80211_channel
*channel
)
367 * On 5211+ read activation -> rx delay
368 * and use it (100ns steps).
370 if (ah
->ah_version
!= AR5K_AR5210
) {
372 delay
= ath5k_hw_reg_read(ah
, AR5K_PHY_RX_DELAY
) &
374 delay
= (channel
->hw_value
== AR5K_MODE_11B
) ?
375 ((delay
<< 2) / 22) : (delay
/ 10);
376 if (ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
)
378 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
)
380 /* XXX: /2 on turbo ? Let's be safe
382 usleep_range(100 + delay
, 100 + (2 * delay
));
384 usleep_range(1000, 1500);
389 /**********************\
390 * RF Gain optimization *
391 \**********************/
394 * DOC: RF Gain optimization
396 * This code is used to optimize RF gain on different environments
397 * (temperature mostly) based on feedback from a power detector.
399 * It's only used on RF5111 and RF5112, later RF chips seem to have
400 * auto adjustment on hw -notice they have a much smaller BANK 7 and
401 * no gain optimization ladder-.
403 * For more infos check out this patent doc
404 * "http://www.freepatentsonline.com/7400691.html"
406 * This paper describes power drops as seen on the receiver due to
408 * "http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
409 * %20of%20Power%20Control.pdf"
411 * And this is the MadWiFi bug entry related to the above
412 * "http://madwifi-project.org/ticket/1659"
413 * with various measurements and diagrams
417 * ath5k_hw_rfgain_opt_init() - Initialize ah_gain during attach
418 * @ah: The &struct ath5k_hw
420 int ath5k_hw_rfgain_opt_init(struct ath5k_hw
*ah
)
422 /* Initialize the gain optimization values */
423 switch (ah
->ah_radio
) {
425 ah
->ah_gain
.g_step_idx
= rfgain_opt_5111
.go_default
;
426 ah
->ah_gain
.g_low
= 20;
427 ah
->ah_gain
.g_high
= 35;
428 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
431 ah
->ah_gain
.g_step_idx
= rfgain_opt_5112
.go_default
;
432 ah
->ah_gain
.g_low
= 20;
433 ah
->ah_gain
.g_high
= 85;
434 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
444 * ath5k_hw_request_rfgain_probe() - Request a PAPD probe packet
445 * @ah: The &struct ath5k_hw
447 * Schedules a gain probe check on the next transmitted packet.
448 * That means our next packet is going to be sent with lower
449 * tx power and a Peak to Average Power Detector (PAPD) will try
450 * to measure the gain.
452 * TODO: Force a tx packet (bypassing PCU arbitrator etc)
453 * just after we enable the probe so that we don't mess with
457 ath5k_hw_request_rfgain_probe(struct ath5k_hw
*ah
)
460 /* Skip if gain calibration is inactive or
461 * we already handle a probe request */
462 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_ACTIVE
)
465 /* Send the packet with 2dB below max power as
466 * patent doc suggest */
467 ath5k_hw_reg_write(ah
, AR5K_REG_SM(ah
->ah_txpower
.txp_ofdm
- 4,
468 AR5K_PHY_PAPD_PROBE_TXPOWER
) |
469 AR5K_PHY_PAPD_PROBE_TX_NEXT
, AR5K_PHY_PAPD_PROBE
);
471 ah
->ah_gain
.g_state
= AR5K_RFGAIN_READ_REQUESTED
;
476 * ath5k_hw_rf_gainf_corr() - Calculate Gain_F measurement correction
477 * @ah: The &struct ath5k_hw
479 * Calculate Gain_F measurement correction
480 * based on the current step for RF5112 rev. 2
483 ath5k_hw_rf_gainf_corr(struct ath5k_hw
*ah
)
486 const struct ath5k_gain_opt
*go
;
487 const struct ath5k_gain_opt_step
*g_step
;
488 const struct ath5k_rf_reg
*rf_regs
;
490 /* Only RF5112 Rev. 2 supports it */
491 if ((ah
->ah_radio
!= AR5K_RF5112
) ||
492 (ah
->ah_radio_5ghz_revision
<= AR5K_SREV_RAD_5112A
))
495 go
= &rfgain_opt_5112
;
496 rf_regs
= rf_regs_5112a
;
497 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
499 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
501 if (ah
->ah_rf_banks
== NULL
)
504 ah
->ah_gain
.g_f_corr
= 0;
506 /* No VGA (Variable Gain Amplifier) override, skip */
507 if (ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
, false) != 1)
510 /* Mix gain stepping */
511 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXGAIN_STEP
, false);
513 /* Mix gain override */
514 mix
= g_step
->gos_param
[0];
518 ah
->ah_gain
.g_f_corr
= step
* 2;
521 ah
->ah_gain
.g_f_corr
= (step
- 5) * 2;
524 ah
->ah_gain
.g_f_corr
= step
;
527 ah
->ah_gain
.g_f_corr
= 0;
531 return ah
->ah_gain
.g_f_corr
;
535 * ath5k_hw_rf_check_gainf_readback() - Validate Gain_F feedback from detector
536 * @ah: The &struct ath5k_hw
538 * Check if current gain_F measurement is in the range of our
539 * power detector windows. If we get a measurement outside range
540 * we know it's not accurate (detectors can't measure anything outside
541 * their detection window) so we must ignore it.
543 * Returns true if readback was O.K. or false on failure
546 ath5k_hw_rf_check_gainf_readback(struct ath5k_hw
*ah
)
548 const struct ath5k_rf_reg
*rf_regs
;
549 u32 step
, mix_ovr
, level
[4];
551 if (ah
->ah_rf_banks
== NULL
)
554 if (ah
->ah_radio
== AR5K_RF5111
) {
556 rf_regs
= rf_regs_5111
;
557 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
559 step
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_RFGAIN_STEP
,
563 level
[1] = (step
== 63) ? 50 : step
+ 4;
564 level
[2] = (step
!= 63) ? 64 : level
[0];
565 level
[3] = level
[2] + 50;
567 ah
->ah_gain
.g_high
= level
[3] -
568 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN
: -5);
569 ah
->ah_gain
.g_low
= level
[0] +
570 (step
== 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN
: 0);
573 rf_regs
= rf_regs_5112
;
574 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
576 mix_ovr
= ath5k_hw_rfb_op(ah
, rf_regs
, 0, AR5K_RF_MIXVGA_OVR
,
579 level
[0] = level
[2] = 0;
582 level
[1] = level
[3] = 83;
584 level
[1] = level
[3] = 107;
585 ah
->ah_gain
.g_high
= 55;
589 return (ah
->ah_gain
.g_current
>= level
[0] &&
590 ah
->ah_gain
.g_current
<= level
[1]) ||
591 (ah
->ah_gain
.g_current
>= level
[2] &&
592 ah
->ah_gain
.g_current
<= level
[3]);
596 * ath5k_hw_rf_gainf_adjust() - Perform Gain_F adjustment
597 * @ah: The &struct ath5k_hw
599 * Choose the right target gain based on current gain
600 * and RF gain optimization ladder
603 ath5k_hw_rf_gainf_adjust(struct ath5k_hw
*ah
)
605 const struct ath5k_gain_opt
*go
;
606 const struct ath5k_gain_opt_step
*g_step
;
609 switch (ah
->ah_radio
) {
611 go
= &rfgain_opt_5111
;
614 go
= &rfgain_opt_5112
;
620 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
622 if (ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_high
) {
624 /* Reached maximum */
625 if (ah
->ah_gain
.g_step_idx
== 0)
628 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
629 ah
->ah_gain
.g_target
>= ah
->ah_gain
.g_high
&&
630 ah
->ah_gain
.g_step_idx
> 0;
631 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
632 ah
->ah_gain
.g_target
-= 2 *
633 (go
->go_step
[--(ah
->ah_gain
.g_step_idx
)].gos_gain
-
640 if (ah
->ah_gain
.g_current
<= ah
->ah_gain
.g_low
) {
642 /* Reached minimum */
643 if (ah
->ah_gain
.g_step_idx
== (go
->go_steps_count
- 1))
646 for (ah
->ah_gain
.g_target
= ah
->ah_gain
.g_current
;
647 ah
->ah_gain
.g_target
<= ah
->ah_gain
.g_low
&&
648 ah
->ah_gain
.g_step_idx
< go
->go_steps_count
- 1;
649 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
])
650 ah
->ah_gain
.g_target
-= 2 *
651 (go
->go_step
[++ah
->ah_gain
.g_step_idx
].gos_gain
-
659 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
660 "ret %d, gain step %u, current gain %u, target gain %u\n",
661 ret
, ah
->ah_gain
.g_step_idx
, ah
->ah_gain
.g_current
,
662 ah
->ah_gain
.g_target
);
668 * ath5k_hw_gainf_calibrate() - Do a gain_F calibration
669 * @ah: The &struct ath5k_hw
671 * Main callback for thermal RF gain calibration engine
672 * Check for a new gain reading and schedule an adjustment
675 * Returns one of enum ath5k_rfgain codes
678 ath5k_hw_gainf_calibrate(struct ath5k_hw
*ah
)
681 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
683 if (ah
->ah_rf_banks
== NULL
||
684 ah
->ah_gain
.g_state
== AR5K_RFGAIN_INACTIVE
)
685 return AR5K_RFGAIN_INACTIVE
;
687 /* No check requested, either engine is inactive
688 * or an adjustment is already requested */
689 if (ah
->ah_gain
.g_state
!= AR5K_RFGAIN_READ_REQUESTED
)
692 /* Read the PAPD (Peak to Average Power Detector)
694 data
= ath5k_hw_reg_read(ah
, AR5K_PHY_PAPD_PROBE
);
696 /* No probe is scheduled, read gain_F measurement */
697 if (!(data
& AR5K_PHY_PAPD_PROBE_TX_NEXT
)) {
698 ah
->ah_gain
.g_current
= data
>> AR5K_PHY_PAPD_PROBE_GAINF_S
;
699 type
= AR5K_REG_MS(data
, AR5K_PHY_PAPD_PROBE_TYPE
);
701 /* If tx packet is CCK correct the gain_F measurement
702 * by cck ofdm gain delta */
703 if (type
== AR5K_PHY_PAPD_PROBE_TYPE_CCK
) {
704 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
)
705 ah
->ah_gain
.g_current
+=
706 ee
->ee_cck_ofdm_gain_delta
;
708 ah
->ah_gain
.g_current
+=
709 AR5K_GAIN_CCK_PROBE_CORR
;
712 /* Further correct gain_F measurement for
714 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
715 ath5k_hw_rf_gainf_corr(ah
);
716 ah
->ah_gain
.g_current
=
717 ah
->ah_gain
.g_current
>= ah
->ah_gain
.g_f_corr
?
718 (ah
->ah_gain
.g_current
- ah
->ah_gain
.g_f_corr
) :
722 /* Check if measurement is ok and if we need
723 * to adjust gain, schedule a gain adjustment,
724 * else switch back to the active state */
725 if (ath5k_hw_rf_check_gainf_readback(ah
) &&
726 AR5K_GAIN_CHECK_ADJUST(&ah
->ah_gain
) &&
727 ath5k_hw_rf_gainf_adjust(ah
)) {
728 ah
->ah_gain
.g_state
= AR5K_RFGAIN_NEED_CHANGE
;
730 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
735 return ah
->ah_gain
.g_state
;
739 * ath5k_hw_rfgain_init() - Write initial RF gain settings to hw
740 * @ah: The &struct ath5k_hw
741 * @band: One of enum nl80211_band
743 * Write initial RF gain table to set the RF sensitivity.
745 * NOTE: This one works on all RF chips and has nothing to do
746 * with Gain_F calibration
749 ath5k_hw_rfgain_init(struct ath5k_hw
*ah
, enum nl80211_band band
)
751 const struct ath5k_ini_rfgain
*ath5k_rfg
;
752 unsigned int i
, size
, index
;
754 switch (ah
->ah_radio
) {
756 ath5k_rfg
= rfgain_5111
;
757 size
= ARRAY_SIZE(rfgain_5111
);
760 ath5k_rfg
= rfgain_5112
;
761 size
= ARRAY_SIZE(rfgain_5112
);
764 ath5k_rfg
= rfgain_2413
;
765 size
= ARRAY_SIZE(rfgain_2413
);
768 ath5k_rfg
= rfgain_2316
;
769 size
= ARRAY_SIZE(rfgain_2316
);
772 ath5k_rfg
= rfgain_5413
;
773 size
= ARRAY_SIZE(rfgain_5413
);
777 ath5k_rfg
= rfgain_2425
;
778 size
= ARRAY_SIZE(rfgain_2425
);
784 index
= (band
== NL80211_BAND_2GHZ
) ? 1 : 0;
786 for (i
= 0; i
< size
; i
++) {
788 ath5k_hw_reg_write(ah
, ath5k_rfg
[i
].rfg_value
[index
],
789 (u32
)ath5k_rfg
[i
].rfg_register
);
796 /********************\
797 * RF Registers setup *
798 \********************/
801 * ath5k_hw_rfregs_init() - Initialize RF register settings
802 * @ah: The &struct ath5k_hw
803 * @channel: The &struct ieee80211_channel
804 * @mode: One of enum ath5k_driver_mode
806 * Setup RF registers by writing RF buffer on hw. For
807 * more infos on this, check out rfbuffer.h
810 ath5k_hw_rfregs_init(struct ath5k_hw
*ah
,
811 struct ieee80211_channel
*channel
,
814 const struct ath5k_rf_reg
*rf_regs
;
815 const struct ath5k_ini_rfbuffer
*ini_rfb
;
816 const struct ath5k_gain_opt
*go
= NULL
;
817 const struct ath5k_gain_opt_step
*g_step
;
818 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
821 int i
, obdb
= -1, bank
= -1;
823 switch (ah
->ah_radio
) {
825 rf_regs
= rf_regs_5111
;
826 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5111
);
828 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5111
);
829 go
= &rfgain_opt_5111
;
832 if (ah
->ah_radio_5ghz_revision
>= AR5K_SREV_RAD_5112A
) {
833 rf_regs
= rf_regs_5112a
;
834 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112a
);
836 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112a
);
838 rf_regs
= rf_regs_5112
;
839 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5112
);
841 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5112
);
843 go
= &rfgain_opt_5112
;
846 rf_regs
= rf_regs_2413
;
847 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2413
);
849 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2413
);
852 rf_regs
= rf_regs_2316
;
853 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2316
);
855 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2316
);
858 rf_regs
= rf_regs_5413
;
859 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_5413
);
861 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_5413
);
864 rf_regs
= rf_regs_2425
;
865 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
867 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2317
);
870 rf_regs
= rf_regs_2425
;
871 ah
->ah_rf_regs_count
= ARRAY_SIZE(rf_regs_2425
);
872 if (ah
->ah_mac_srev
< AR5K_SREV_AR2417
) {
874 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2425
);
877 ah
->ah_rf_banks_size
= ARRAY_SIZE(rfb_2417
);
884 /* If it's the first time we set RF buffer, allocate
885 * ah->ah_rf_banks based on ah->ah_rf_banks_size
887 if (ah
->ah_rf_banks
== NULL
) {
888 ah
->ah_rf_banks
= kmalloc_array(ah
->ah_rf_banks_size
,
891 if (ah
->ah_rf_banks
== NULL
) {
892 ATH5K_ERR(ah
, "out of memory\n");
897 /* Copy values to modify them */
898 rfb
= ah
->ah_rf_banks
;
900 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
901 if (ini_rfb
[i
].rfb_bank
>= AR5K_MAX_RF_BANKS
) {
902 ATH5K_ERR(ah
, "invalid bank\n");
906 /* Bank changed, write down the offset */
907 if (bank
!= ini_rfb
[i
].rfb_bank
) {
908 bank
= ini_rfb
[i
].rfb_bank
;
909 ah
->ah_offset
[bank
] = i
;
912 rfb
[i
] = ini_rfb
[i
].rfb_mode_data
[mode
];
915 /* Set Output and Driver bias current (OB/DB) */
916 if (channel
->band
== NL80211_BAND_2GHZ
) {
918 if (channel
->hw_value
== AR5K_MODE_11B
)
919 ee_mode
= AR5K_EEPROM_MODE_11B
;
921 ee_mode
= AR5K_EEPROM_MODE_11G
;
923 /* For RF511X/RF211X combination we
924 * use b_OB and b_DB parameters stored
925 * in eeprom on ee->ee_ob[ee_mode][0]
927 * For all other chips we use OB/DB for 2GHz
928 * stored in the b/g modal section just like
929 * 802.11a on ee->ee_ob[ee_mode][1] */
930 if ((ah
->ah_radio
== AR5K_RF5111
) ||
931 (ah
->ah_radio
== AR5K_RF5112
))
936 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
937 AR5K_RF_OB_2GHZ
, true);
939 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
940 AR5K_RF_DB_2GHZ
, true);
942 /* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
943 } else if ((channel
->band
== NL80211_BAND_5GHZ
) ||
944 (ah
->ah_radio
== AR5K_RF5111
)) {
946 /* For 11a, Turbo and XR we need to choose
947 * OB/DB based on frequency range */
948 ee_mode
= AR5K_EEPROM_MODE_11A
;
949 obdb
= channel
->center_freq
>= 5725 ? 3 :
950 (channel
->center_freq
>= 5500 ? 2 :
951 (channel
->center_freq
>= 5260 ? 1 :
952 (channel
->center_freq
> 4000 ? 0 : -1)));
957 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_ob
[ee_mode
][obdb
],
958 AR5K_RF_OB_5GHZ
, true);
960 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_db
[ee_mode
][obdb
],
961 AR5K_RF_DB_5GHZ
, true);
964 g_step
= &go
->go_step
[ah
->ah_gain
.g_step_idx
];
966 /* Set turbo mode (N/A on RF5413) */
967 if ((ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
) &&
968 (ah
->ah_radio
!= AR5K_RF5413
))
969 ath5k_hw_rfb_op(ah
, rf_regs
, 1, AR5K_RF_TURBO
, false);
971 /* Bank Modifications (chip-specific) */
972 if (ah
->ah_radio
== AR5K_RF5111
) {
974 /* Set gain_F settings according to current step */
975 if (channel
->hw_value
!= AR5K_MODE_11B
) {
977 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_FRAME_CTL
,
978 AR5K_PHY_FRAME_CTL_TX_CLIP
,
979 g_step
->gos_param
[0]);
981 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
982 AR5K_RF_PWD_90
, true);
984 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
985 AR5K_RF_PWD_84
, true);
987 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
988 AR5K_RF_RFGAIN_SEL
, true);
990 /* We programmed gain_F parameters, switch back
992 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
998 ath5k_hw_rfb_op(ah
, rf_regs
, !ee
->ee_xpd
[ee_mode
],
999 AR5K_RF_PWD_XPD
, true);
1001 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_x_gain
[ee_mode
],
1002 AR5K_RF_XPD_GAIN
, true);
1004 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
1005 AR5K_RF_GAIN_I
, true);
1007 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
1008 AR5K_RF_PLO_SEL
, true);
1010 /* Tweak power detectors for half/quarter rate support */
1011 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
||
1012 ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
) {
1015 ath5k_hw_rfb_op(ah
, rf_regs
, 0x1f,
1016 AR5K_RF_WAIT_S
, true);
1018 wait_i
= (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
) ?
1021 ath5k_hw_rfb_op(ah
, rf_regs
, wait_i
,
1022 AR5K_RF_WAIT_I
, true);
1023 ath5k_hw_rfb_op(ah
, rf_regs
, 3,
1024 AR5K_RF_MAX_TIME
, true);
1029 if (ah
->ah_radio
== AR5K_RF5112
) {
1031 /* Set gain_F settings according to current step */
1032 if (channel
->hw_value
!= AR5K_MODE_11B
) {
1034 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[0],
1035 AR5K_RF_MIXGAIN_OVR
, true);
1037 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[1],
1038 AR5K_RF_PWD_138
, true);
1040 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[2],
1041 AR5K_RF_PWD_137
, true);
1043 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[3],
1044 AR5K_RF_PWD_136
, true);
1046 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[4],
1047 AR5K_RF_PWD_132
, true);
1049 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[5],
1050 AR5K_RF_PWD_131
, true);
1052 ath5k_hw_rfb_op(ah
, rf_regs
, g_step
->gos_param
[6],
1053 AR5K_RF_PWD_130
, true);
1055 /* We programmed gain_F parameters, switch back
1056 * to active state */
1057 ah
->ah_gain
.g_state
= AR5K_RFGAIN_ACTIVE
;
1060 /* Bank 6/7 setup */
1062 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_xpd
[ee_mode
],
1063 AR5K_RF_XPD_SEL
, true);
1065 if (ah
->ah_radio_5ghz_revision
< AR5K_SREV_RAD_5112A
) {
1066 /* Rev. 1 supports only one xpd */
1067 ath5k_hw_rfb_op(ah
, rf_regs
,
1068 ee
->ee_x_gain
[ee_mode
],
1069 AR5K_RF_XPD_GAIN
, true);
1072 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
1073 if (ee
->ee_pd_gains
[ee_mode
] > 1) {
1074 ath5k_hw_rfb_op(ah
, rf_regs
,
1075 pdg_curve_to_idx
[0],
1076 AR5K_RF_PD_GAIN_LO
, true);
1077 ath5k_hw_rfb_op(ah
, rf_regs
,
1078 pdg_curve_to_idx
[1],
1079 AR5K_RF_PD_GAIN_HI
, true);
1081 ath5k_hw_rfb_op(ah
, rf_regs
,
1082 pdg_curve_to_idx
[0],
1083 AR5K_RF_PD_GAIN_LO
, true);
1084 ath5k_hw_rfb_op(ah
, rf_regs
,
1085 pdg_curve_to_idx
[0],
1086 AR5K_RF_PD_GAIN_HI
, true);
1089 /* Lower synth voltage on Rev 2 */
1090 if (ah
->ah_radio
== AR5K_RF5112
&&
1091 (ah
->ah_radio_5ghz_revision
& AR5K_SREV_REV
) > 0) {
1092 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1093 AR5K_RF_HIGH_VC_CP
, true);
1095 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1096 AR5K_RF_MID_VC_CP
, true);
1098 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1099 AR5K_RF_LOW_VC_CP
, true);
1101 ath5k_hw_rfb_op(ah
, rf_regs
, 2,
1102 AR5K_RF_PUSH_UP
, true);
1105 /* Decrease power consumption on 5213+ BaseBand */
1106 if (ah
->ah_phy_revision
>= AR5K_SREV_PHY_5212A
) {
1107 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1108 AR5K_RF_PAD2GND
, true);
1110 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1111 AR5K_RF_XB2_LVL
, true);
1113 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1114 AR5K_RF_XB5_LVL
, true);
1116 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1117 AR5K_RF_PWD_167
, true);
1119 ath5k_hw_rfb_op(ah
, rf_regs
, 1,
1120 AR5K_RF_PWD_166
, true);
1124 ath5k_hw_rfb_op(ah
, rf_regs
, ee
->ee_i_gain
[ee_mode
],
1125 AR5K_RF_GAIN_I
, true);
1127 /* Tweak power detector for half/quarter rates */
1128 if (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
||
1129 ah
->ah_bwmode
== AR5K_BWMODE_10MHZ
) {
1132 pd_delay
= (ah
->ah_bwmode
== AR5K_BWMODE_5MHZ
) ?
1135 ath5k_hw_rfb_op(ah
, rf_regs
, pd_delay
,
1136 AR5K_RF_PD_PERIOD_A
, true);
1137 ath5k_hw_rfb_op(ah
, rf_regs
, 0xf,
1138 AR5K_RF_PD_DELAY_A
, true);
1143 if (ah
->ah_radio
== AR5K_RF5413
&&
1144 channel
->band
== NL80211_BAND_2GHZ
) {
1146 ath5k_hw_rfb_op(ah
, rf_regs
, 1, AR5K_RF_DERBY_CHAN_SEL_MODE
,
1149 /* Set optimum value for early revisions (on pci-e chips) */
1150 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
&&
1151 ah
->ah_mac_srev
< AR5K_SREV_AR5413
)
1152 ath5k_hw_rfb_op(ah
, rf_regs
, ath5k_hw_bitswap(6, 3),
1153 AR5K_RF_PWD_ICLOBUF_2G
, true);
1157 /* Write RF banks on hw */
1158 for (i
= 0; i
< ah
->ah_rf_banks_size
; i
++) {
1160 ath5k_hw_reg_write(ah
, rfb
[i
], ini_rfb
[i
].rfb_ctrl_register
);
1167 /**************************\
1168 PHY/RF channel functions
1169 \**************************/
1172 * ath5k_hw_rf5110_chan2athchan() - Convert channel freq on RF5110
1173 * @channel: The &struct ieee80211_channel
1175 * Map channel frequency to IEEE channel number and convert it
1176 * to an internal channel value used by the RF5110 chipset.
1179 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel
*channel
)
1183 athchan
= (ath5k_hw_bitswap(
1184 (ieee80211_frequency_to_channel(
1185 channel
->center_freq
) - 24) / 2, 5)
1186 << 1) | (1 << 6) | 0x1;
1191 * ath5k_hw_rf5110_channel() - Set channel frequency on RF5110
1192 * @ah: The &struct ath5k_hw
1193 * @channel: The &struct ieee80211_channel
1196 ath5k_hw_rf5110_channel(struct ath5k_hw
*ah
,
1197 struct ieee80211_channel
*channel
)
1202 * Set the channel and wait
1204 data
= ath5k_hw_rf5110_chan2athchan(channel
);
1205 ath5k_hw_reg_write(ah
, data
, AR5K_RF_BUFFER
);
1206 ath5k_hw_reg_write(ah
, 0, AR5K_RF_BUFFER_CONTROL_0
);
1207 usleep_range(1000, 1500);
1213 * ath5k_hw_rf5111_chan2athchan() - Handle 2GHz channels on RF5111/2111
1214 * @ieee: IEEE channel number
1215 * @athchan: The &struct ath5k_athchan_2ghz
1217 * In order to enable the RF2111 frequency converter on RF5111/2111 setups
1218 * we need to add some offsets and extra flags to the data values we pass
1219 * on to the PHY. So for every 2GHz channel this function gets called
1220 * to do the conversion.
1223 ath5k_hw_rf5111_chan2athchan(unsigned int ieee
,
1224 struct ath5k_athchan_2ghz
*athchan
)
1228 /* Cast this value to catch negative channel numbers (>= -19) */
1229 channel
= (int)ieee
;
1232 * Map 2GHz IEEE channel to 5GHz Atheros channel
1234 if (channel
<= 13) {
1235 athchan
->a2_athchan
= 115 + channel
;
1236 athchan
->a2_flags
= 0x46;
1237 } else if (channel
== 14) {
1238 athchan
->a2_athchan
= 124;
1239 athchan
->a2_flags
= 0x44;
1240 } else if (channel
>= 15 && channel
<= 26) {
1241 athchan
->a2_athchan
= ((channel
- 14) * 4) + 132;
1242 athchan
->a2_flags
= 0x46;
1250 * ath5k_hw_rf5111_channel() - Set channel frequency on RF5111/2111
1251 * @ah: The &struct ath5k_hw
1252 * @channel: The &struct ieee80211_channel
1255 ath5k_hw_rf5111_channel(struct ath5k_hw
*ah
,
1256 struct ieee80211_channel
*channel
)
1258 struct ath5k_athchan_2ghz ath5k_channel_2ghz
;
1259 unsigned int ath5k_channel
=
1260 ieee80211_frequency_to_channel(channel
->center_freq
);
1261 u32 data0
, data1
, clock
;
1265 * Set the channel on the RF5111 radio
1269 if (channel
->band
== NL80211_BAND_2GHZ
) {
1270 /* Map 2GHz channel to 5GHz Atheros channel ID */
1271 ret
= ath5k_hw_rf5111_chan2athchan(
1272 ieee80211_frequency_to_channel(channel
->center_freq
),
1273 &ath5k_channel_2ghz
);
1277 ath5k_channel
= ath5k_channel_2ghz
.a2_athchan
;
1278 data0
= ((ath5k_hw_bitswap(ath5k_channel_2ghz
.a2_flags
, 8) & 0xff)
1282 if (ath5k_channel
< 145 || !(ath5k_channel
& 1)) {
1284 data1
= ((ath5k_hw_bitswap(ath5k_channel
- 24, 8) & 0xff) << 2) |
1285 (clock
<< 1) | (1 << 10) | 1;
1288 data1
= ((ath5k_hw_bitswap((ath5k_channel
- 24) / 2, 8) & 0xff)
1289 << 2) | (clock
<< 1) | (1 << 10) | 1;
1292 ath5k_hw_reg_write(ah
, (data1
& 0xff) | ((data0
& 0xff) << 8),
1294 ath5k_hw_reg_write(ah
, ((data1
>> 8) & 0xff) | (data0
& 0xff00),
1295 AR5K_RF_BUFFER_CONTROL_3
);
1301 * ath5k_hw_rf5112_channel() - Set channel frequency on 5112 and newer
1302 * @ah: The &struct ath5k_hw
1303 * @channel: The &struct ieee80211_channel
1305 * On RF5112/2112 and newer we don't need to do any conversion.
1306 * We pass the frequency value after a few modifications to the
1309 * NOTE: Make sure channel frequency given is within our range or else
1310 * we might damage the chip ! Use ath5k_channel_ok before calling this one.
1313 ath5k_hw_rf5112_channel(struct ath5k_hw
*ah
,
1314 struct ieee80211_channel
*channel
)
1316 u32 data
, data0
, data1
, data2
;
1319 data
= data0
= data1
= data2
= 0;
1320 c
= channel
->center_freq
;
1322 /* My guess based on code:
1323 * 2GHz RF has 2 synth modes, one with a Local Oscillator
1324 * at 2224Hz and one with a LO at 2192Hz. IF is 1520Hz
1325 * (3040/2). data0 is used to set the PLL divider and data1
1326 * selects synth mode. */
1328 /* Channel 14 and all frequencies with 2Hz spacing
1329 * below/above (non-standard channels) */
1330 if (!((c
- 2224) % 5)) {
1331 /* Same as (c - 2224) / 5 */
1332 data0
= ((2 * (c
- 704)) - 3040) / 10;
1334 /* Channel 1 and all frequencies with 5Hz spacing
1335 * below/above (standard channels without channel 14) */
1336 } else if (!((c
- 2192) % 5)) {
1337 /* Same as (c - 2192) / 5 */
1338 data0
= ((2 * (c
- 672)) - 3040) / 10;
1343 data0
= ath5k_hw_bitswap((data0
<< 2) & 0xff, 8);
1344 /* This is more complex, we have a single synthesizer with
1345 * 4 reference clock settings (?) based on frequency spacing
1346 * and set using data2. LO is at 4800Hz and data0 is again used
1347 * to set some divider.
1349 * NOTE: There is an old atheros presentation at Stanford
1350 * that mentions a method called dual direct conversion
1351 * with 1GHz sliding IF for RF5110. Maybe that's what we
1352 * have here, or an updated version. */
1353 } else if ((c
% 5) != 2 || c
> 5435) {
1354 if (!(c
% 20) && c
>= 5120) {
1355 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
1356 data2
= ath5k_hw_bitswap(3, 2);
1357 } else if (!(c
% 10)) {
1358 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
1359 data2
= ath5k_hw_bitswap(2, 2);
1360 } else if (!(c
% 5)) {
1361 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
1362 data2
= ath5k_hw_bitswap(1, 2);
1366 data0
= ath5k_hw_bitswap((10 * (c
- 2 - 4800)) / 25 + 1, 8);
1367 data2
= ath5k_hw_bitswap(0, 2);
1370 data
= (data0
<< 4) | (data1
<< 1) | (data2
<< 2) | 0x1001;
1372 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1373 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1379 * ath5k_hw_rf2425_channel() - Set channel frequency on RF2425
1380 * @ah: The &struct ath5k_hw
1381 * @channel: The &struct ieee80211_channel
1383 * AR2425/2417 have a different 2GHz RF so code changes
1384 * a little bit from RF5112.
1387 ath5k_hw_rf2425_channel(struct ath5k_hw
*ah
,
1388 struct ieee80211_channel
*channel
)
1390 u32 data
, data0
, data2
;
1393 data
= data0
= data2
= 0;
1394 c
= channel
->center_freq
;
1397 data0
= ath5k_hw_bitswap((c
- 2272), 8);
1400 } else if ((c
% 5) != 2 || c
> 5435) {
1401 if (!(c
% 20) && c
< 5120)
1402 data0
= ath5k_hw_bitswap(((c
- 4800) / 20 << 2), 8);
1404 data0
= ath5k_hw_bitswap(((c
- 4800) / 10 << 1), 8);
1406 data0
= ath5k_hw_bitswap((c
- 4800) / 5, 8);
1409 data2
= ath5k_hw_bitswap(1, 2);
1411 data0
= ath5k_hw_bitswap((10 * (c
- 2 - 4800)) / 25 + 1, 8);
1412 data2
= ath5k_hw_bitswap(0, 2);
1415 data
= (data0
<< 4) | data2
<< 2 | 0x1001;
1417 ath5k_hw_reg_write(ah
, data
& 0xff, AR5K_RF_BUFFER
);
1418 ath5k_hw_reg_write(ah
, (data
>> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5
);
1424 * ath5k_hw_channel() - Set a channel on the radio chip
1425 * @ah: The &struct ath5k_hw
1426 * @channel: The &struct ieee80211_channel
1428 * This is the main function called to set a channel on the
1429 * radio chip based on the radio chip version.
1432 ath5k_hw_channel(struct ath5k_hw
*ah
,
1433 struct ieee80211_channel
*channel
)
1437 * Check bounds supported by the PHY (we don't care about regulatory
1438 * restrictions at this point).
1440 if (!ath5k_channel_ok(ah
, channel
)) {
1442 "channel frequency (%u MHz) out of supported "
1444 channel
->center_freq
);
1449 * Set the channel and wait
1451 switch (ah
->ah_radio
) {
1453 ret
= ath5k_hw_rf5110_channel(ah
, channel
);
1456 ret
= ath5k_hw_rf5111_channel(ah
, channel
);
1460 ret
= ath5k_hw_rf2425_channel(ah
, channel
);
1463 ret
= ath5k_hw_rf5112_channel(ah
, channel
);
1470 /* Set JAPAN setting for channel 14 */
1471 if (channel
->center_freq
== 2484) {
1472 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1473 AR5K_PHY_CCKTXCTL_JAPAN
);
1475 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_CCKTXCTL
,
1476 AR5K_PHY_CCKTXCTL_WORLD
);
1479 ah
->ah_current_channel
= channel
;
1490 * DOC: PHY Calibration routines
1492 * Noise floor calibration: When we tell the hardware to
1493 * perform a noise floor calibration by setting the
1494 * AR5K_PHY_AGCCTL_NF bit on AR5K_PHY_AGCCTL, it will periodically
1495 * sample-and-hold the minimum noise level seen at the antennas.
1496 * This value is then stored in a ring buffer of recently measured
1497 * noise floor values so we have a moving window of the last few
1498 * samples. The median of the values in the history is then loaded
1499 * into the hardware for its own use for RSSI and CCA measurements.
1500 * This type of calibration doesn't interfere with traffic.
1502 * AGC calibration: When we tell the hardware to perform
1503 * an AGC (Automatic Gain Control) calibration by setting the
1504 * AR5K_PHY_AGCCTL_CAL, hw disconnects the antennas and does
1505 * a calibration on the DC offsets of ADCs. During this period
1506 * rx/tx gets disabled so we have to deal with it on the driver
1509 * I/Q calibration: When we tell the hardware to perform
1510 * an I/Q calibration, it tries to correct I/Q imbalance and
1511 * fix QAM constellation by sampling data from rxed frames.
1512 * It doesn't interfere with traffic.
1514 * For more infos on AGC and I/Q calibration check out patent doc
1519 * ath5k_hw_read_measured_noise_floor() - Read measured NF from hw
1520 * @ah: The &struct ath5k_hw
1523 ath5k_hw_read_measured_noise_floor(struct ath5k_hw
*ah
)
1527 val
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
);
1528 return sign_extend32(AR5K_REG_MS(val
, AR5K_PHY_NF_MINCCA_PWR
), 8);
1532 * ath5k_hw_init_nfcal_hist() - Initialize NF calibration history buffer
1533 * @ah: The &struct ath5k_hw
1536 ath5k_hw_init_nfcal_hist(struct ath5k_hw
*ah
)
1540 ah
->ah_nfcal_hist
.index
= 0;
1541 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
; i
++)
1542 ah
->ah_nfcal_hist
.nfval
[i
] = AR5K_TUNE_CCA_MAX_GOOD_VALUE
;
1546 * ath5k_hw_update_nfcal_hist() - Update NF calibration history buffer
1547 * @ah: The &struct ath5k_hw
1548 * @noise_floor: The NF we got from hw
1550 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw
*ah
, s16 noise_floor
)
1552 struct ath5k_nfcal_hist
*hist
= &ah
->ah_nfcal_hist
;
1553 hist
->index
= (hist
->index
+ 1) & (ATH5K_NF_CAL_HIST_MAX
- 1);
1554 hist
->nfval
[hist
->index
] = noise_floor
;
1558 * ath5k_hw_get_median_noise_floor() - Get median NF from history buffer
1559 * @ah: The &struct ath5k_hw
1562 ath5k_hw_get_median_noise_floor(struct ath5k_hw
*ah
)
1564 s16 sort
[ATH5K_NF_CAL_HIST_MAX
];
1568 memcpy(sort
, ah
->ah_nfcal_hist
.nfval
, sizeof(sort
));
1569 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
- 1; i
++) {
1570 for (j
= 1; j
< ATH5K_NF_CAL_HIST_MAX
- i
; j
++) {
1571 if (sort
[j
] > sort
[j
- 1]) {
1573 sort
[j
] = sort
[j
- 1];
1578 for (i
= 0; i
< ATH5K_NF_CAL_HIST_MAX
; i
++) {
1579 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1580 "cal %d:%d\n", i
, sort
[i
]);
1582 return sort
[(ATH5K_NF_CAL_HIST_MAX
- 1) / 2];
1586 * ath5k_hw_update_noise_floor() - Update NF on hardware
1587 * @ah: The &struct ath5k_hw
1589 * This is the main function we call to perform a NF calibration,
1590 * it reads NF from hardware, calculates the median and updates
1594 ath5k_hw_update_noise_floor(struct ath5k_hw
*ah
)
1596 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1601 /* keep last value if calibration hasn't completed */
1602 if (ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCTL
) & AR5K_PHY_AGCCTL_NF
) {
1603 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1604 "NF did not complete in calibration window\n");
1609 ah
->ah_cal_mask
|= AR5K_CALIBRATION_NF
;
1611 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, ah
->ah_current_channel
);
1613 /* completed NF calibration, test threshold */
1614 nf
= ath5k_hw_read_measured_noise_floor(ah
);
1615 threshold
= ee
->ee_noise_floor_thr
[ee_mode
];
1617 if (nf
> threshold
) {
1618 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1619 "noise floor failure detected; "
1620 "read %d, threshold %d\n",
1623 nf
= AR5K_TUNE_CCA_MAX_GOOD_VALUE
;
1626 ath5k_hw_update_nfcal_hist(ah
, nf
);
1627 nf
= ath5k_hw_get_median_noise_floor(ah
);
1629 /* load noise floor (in .5 dBm) so the hardware will use it */
1630 val
= ath5k_hw_reg_read(ah
, AR5K_PHY_NF
) & ~AR5K_PHY_NF_M
;
1631 val
|= (nf
* 2) & AR5K_PHY_NF_M
;
1632 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_NF
);
1634 AR5K_REG_MASKED_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_NF
,
1635 ~(AR5K_PHY_AGCCTL_NF_EN
| AR5K_PHY_AGCCTL_NF_NOUPDATE
));
1637 ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_NF
,
1641 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1642 * so that we're not capped by the median we just loaded.
1643 * This will be used as the initial value for the next noise
1644 * floor calibration.
1646 val
= (val
& ~AR5K_PHY_NF_M
) | ((-50 * 2) & AR5K_PHY_NF_M
);
1647 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_NF
);
1648 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
1649 AR5K_PHY_AGCCTL_NF_EN
|
1650 AR5K_PHY_AGCCTL_NF_NOUPDATE
|
1651 AR5K_PHY_AGCCTL_NF
);
1653 ah
->ah_noise_floor
= nf
;
1655 ah
->ah_cal_mask
&= ~AR5K_CALIBRATION_NF
;
1657 ATH5K_DBG(ah
, ATH5K_DEBUG_CALIBRATE
,
1658 "noise floor calibrated: %d\n", nf
);
1662 * ath5k_hw_rf5110_calibrate() - Perform a PHY calibration on RF5110
1663 * @ah: The &struct ath5k_hw
1664 * @channel: The &struct ieee80211_channel
1666 * Do a complete PHY calibration (AGC + NF + I/Q) on RF5110
1669 ath5k_hw_rf5110_calibrate(struct ath5k_hw
*ah
,
1670 struct ieee80211_channel
*channel
)
1672 u32 phy_sig
, phy_agc
, phy_sat
, beacon
;
1675 if (!(ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
))
1679 * Disable beacons and RX/TX queues, wait
1681 AR5K_REG_ENABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1682 AR5K_DIAG_SW_DIS_TX_5210
| AR5K_DIAG_SW_DIS_RX_5210
);
1683 beacon
= ath5k_hw_reg_read(ah
, AR5K_BEACON_5210
);
1684 ath5k_hw_reg_write(ah
, beacon
& ~AR5K_BEACON_ENABLE
, AR5K_BEACON_5210
);
1686 usleep_range(2000, 2500);
1689 * Set the channel (with AGC turned off)
1691 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1693 ret
= ath5k_hw_channel(ah
, channel
);
1696 * Activate PHY and wait
1698 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
1699 usleep_range(1000, 1500);
1701 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1707 * Calibrate the radio chip
1710 /* Remember normal state */
1711 phy_sig
= ath5k_hw_reg_read(ah
, AR5K_PHY_SIG
);
1712 phy_agc
= ath5k_hw_reg_read(ah
, AR5K_PHY_AGCCOARSE
);
1713 phy_sat
= ath5k_hw_reg_read(ah
, AR5K_PHY_ADCSAT
);
1715 /* Update radio registers */
1716 ath5k_hw_reg_write(ah
, (phy_sig
& ~(AR5K_PHY_SIG_FIRPWR
)) |
1717 AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR
), AR5K_PHY_SIG
);
1719 ath5k_hw_reg_write(ah
, (phy_agc
& ~(AR5K_PHY_AGCCOARSE_HI
|
1720 AR5K_PHY_AGCCOARSE_LO
)) |
1721 AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI
) |
1722 AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO
), AR5K_PHY_AGCCOARSE
);
1724 ath5k_hw_reg_write(ah
, (phy_sat
& ~(AR5K_PHY_ADCSAT_ICNT
|
1725 AR5K_PHY_ADCSAT_THR
)) |
1726 AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT
) |
1727 AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR
), AR5K_PHY_ADCSAT
);
1731 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1733 ath5k_hw_reg_write(ah
, AR5K_PHY_RFSTG_DISABLE
, AR5K_PHY_RFSTG
);
1734 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGC
, AR5K_PHY_AGC_DISABLE
);
1736 usleep_range(1000, 1500);
1739 * Enable calibration and wait until completion
1741 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
, AR5K_PHY_AGCCTL_CAL
);
1743 ret
= ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
1744 AR5K_PHY_AGCCTL_CAL
, 0, false);
1746 /* Reset to normal state */
1747 ath5k_hw_reg_write(ah
, phy_sig
, AR5K_PHY_SIG
);
1748 ath5k_hw_reg_write(ah
, phy_agc
, AR5K_PHY_AGCCOARSE
);
1749 ath5k_hw_reg_write(ah
, phy_sat
, AR5K_PHY_ADCSAT
);
1752 ATH5K_ERR(ah
, "calibration timeout (%uMHz)\n",
1753 channel
->center_freq
);
1758 * Re-enable RX/TX and beacons
1760 AR5K_REG_DISABLE_BITS(ah
, AR5K_DIAG_SW_5210
,
1761 AR5K_DIAG_SW_DIS_TX_5210
| AR5K_DIAG_SW_DIS_RX_5210
);
1762 ath5k_hw_reg_write(ah
, beacon
, AR5K_BEACON_5210
);
1768 * ath5k_hw_rf511x_iq_calibrate() - Perform I/Q calibration on RF5111 and newer
1769 * @ah: The &struct ath5k_hw
1772 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw
*ah
)
1775 s32 iq_corr
, i_coff
, i_coffd
, q_coff
, q_coffd
;
1778 /* Skip if I/Q calibration is not needed or if it's still running */
1779 if (!ah
->ah_iq_cal_needed
)
1781 else if (ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) & AR5K_PHY_IQ_RUN
) {
1782 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1783 "I/Q calibration still running");
1787 /* Calibration has finished, get the results and re-run */
1789 /* Work around for empty results which can apparently happen on 5212:
1790 * Read registers up to 10 times until we get both i_pr and q_pwr */
1791 for (i
= 0; i
<= 10; i
++) {
1792 iq_corr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_CORR
);
1793 i_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_I
);
1794 q_pwr
= ath5k_hw_reg_read(ah
, AR5K_PHY_IQRES_CAL_PWR_Q
);
1795 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1796 "iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr
, i_pwr
, q_pwr
);
1801 i_coffd
= ((i_pwr
>> 1) + (q_pwr
>> 1)) >> 7;
1803 if (ah
->ah_version
== AR5K_AR5211
)
1804 q_coffd
= q_pwr
>> 6;
1806 q_coffd
= q_pwr
>> 7;
1808 /* In case i_coffd became zero, cancel calibration
1809 * not only it's too small, it'll also result a divide
1810 * by zero later on. */
1811 if (i_coffd
== 0 || q_coffd
< 2)
1814 /* Protect against loss of sign bits */
1816 i_coff
= (-iq_corr
) / i_coffd
;
1817 i_coff
= clamp(i_coff
, -32, 31); /* signed 6 bit */
1819 if (ah
->ah_version
== AR5K_AR5211
)
1820 q_coff
= (i_pwr
/ q_coffd
) - 64;
1822 q_coff
= (i_pwr
/ q_coffd
) - 128;
1823 q_coff
= clamp(q_coff
, -16, 15); /* signed 5 bit */
1825 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1826 "new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1827 i_coff
, q_coff
, i_coffd
, q_coffd
);
1829 /* Commit new I/Q values (set enable bit last to match HAL sources) */
1830 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_Q_I_COFF
, i_coff
);
1831 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_Q_Q_COFF
, q_coff
);
1832 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_CORR_ENABLE
);
1834 /* Re-enable calibration -if we don't we'll commit
1835 * the same values again and again */
1836 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
1837 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
1838 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
, AR5K_PHY_IQ_RUN
);
1844 * ath5k_hw_phy_calibrate() - Perform a PHY calibration
1845 * @ah: The &struct ath5k_hw
1846 * @channel: The &struct ieee80211_channel
1848 * The main function we call from above to perform
1849 * a short or full PHY calibration based on RF chip
1850 * and current channel
1853 ath5k_hw_phy_calibrate(struct ath5k_hw
*ah
,
1854 struct ieee80211_channel
*channel
)
1858 if (ah
->ah_radio
== AR5K_RF5110
)
1859 return ath5k_hw_rf5110_calibrate(ah
, channel
);
1861 ret
= ath5k_hw_rf511x_iq_calibrate(ah
);
1863 ATH5K_DBG_UNLIMIT(ah
, ATH5K_DEBUG_CALIBRATE
,
1864 "No I/Q correction performed (%uMHz)\n",
1865 channel
->center_freq
);
1867 /* Happens all the time if there is not much
1868 * traffic, consider it normal behaviour. */
1872 /* On full calibration request a PAPD probe for
1873 * gainf calibration if needed */
1874 if ((ah
->ah_cal_mask
& AR5K_CALIBRATION_FULL
) &&
1875 (ah
->ah_radio
== AR5K_RF5111
||
1876 ah
->ah_radio
== AR5K_RF5112
) &&
1877 channel
->hw_value
!= AR5K_MODE_11B
)
1878 ath5k_hw_request_rfgain_probe(ah
);
1880 /* Update noise floor */
1881 if (!(ah
->ah_cal_mask
& AR5K_CALIBRATION_NF
))
1882 ath5k_hw_update_noise_floor(ah
);
1888 /***************************\
1889 * Spur mitigation functions *
1890 \***************************/
1893 * ath5k_hw_set_spur_mitigation_filter() - Configure SPUR filter
1894 * @ah: The &struct ath5k_hw
1895 * @channel: The &struct ieee80211_channel
1897 * This function gets called during PHY initialization to
1898 * configure the spur filter for the given channel. Spur is noise
1899 * generated due to "reflection" effects, for more information on this
1900 * method check out patent US7643810
1903 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw
*ah
,
1904 struct ieee80211_channel
*channel
)
1906 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
1907 u32 mag_mask
[4] = {0, 0, 0, 0};
1908 u32 pilot_mask
[2] = {0, 0};
1909 /* Note: fbin values are scaled up by 2 */
1910 u16 spur_chan_fbin
, chan_fbin
, symbol_width
, spur_detection_window
;
1911 s32 spur_delta_phase
, spur_freq_sigma_delta
;
1912 s32 spur_offset
, num_symbols_x16
;
1913 u8 num_symbol_offsets
, i
, freq_band
;
1915 /* Convert current frequency to fbin value (the same way channels
1916 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1917 * up by 2 so we can compare it later */
1918 if (channel
->band
== NL80211_BAND_2GHZ
) {
1919 chan_fbin
= (channel
->center_freq
- 2300) * 10;
1920 freq_band
= AR5K_EEPROM_BAND_2GHZ
;
1922 chan_fbin
= (channel
->center_freq
- 4900) * 10;
1923 freq_band
= AR5K_EEPROM_BAND_5GHZ
;
1926 /* Check if any spur_chan_fbin from EEPROM is
1927 * within our current channel's spur detection range */
1928 spur_chan_fbin
= AR5K_EEPROM_NO_SPUR
;
1929 spur_detection_window
= AR5K_SPUR_CHAN_WIDTH
;
1930 /* XXX: Half/Quarter channels ?*/
1931 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
1932 spur_detection_window
*= 2;
1934 for (i
= 0; i
< AR5K_EEPROM_N_SPUR_CHANS
; i
++) {
1935 spur_chan_fbin
= ee
->ee_spur_chans
[i
][freq_band
];
1937 /* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1938 * so it's zero if we got nothing from EEPROM */
1939 if (spur_chan_fbin
== AR5K_EEPROM_NO_SPUR
) {
1940 spur_chan_fbin
&= AR5K_EEPROM_SPUR_CHAN_MASK
;
1944 if ((chan_fbin
- spur_detection_window
<=
1945 (spur_chan_fbin
& AR5K_EEPROM_SPUR_CHAN_MASK
)) &&
1946 (chan_fbin
+ spur_detection_window
>=
1947 (spur_chan_fbin
& AR5K_EEPROM_SPUR_CHAN_MASK
))) {
1948 spur_chan_fbin
&= AR5K_EEPROM_SPUR_CHAN_MASK
;
1953 /* We need to enable spur filter for this channel */
1954 if (spur_chan_fbin
) {
1955 spur_offset
= spur_chan_fbin
- chan_fbin
;
1958 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1959 * spur_delta_phase -> spur_offset / chip_freq << 11
1960 * Note: Both values have 100Hz resolution
1962 switch (ah
->ah_bwmode
) {
1963 case AR5K_BWMODE_40MHZ
:
1964 /* Both sample_freq and chip_freq are 80MHz */
1965 spur_delta_phase
= (spur_offset
<< 16) / 25;
1966 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1967 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
* 2;
1969 case AR5K_BWMODE_10MHZ
:
1970 /* Both sample_freq and chip_freq are 20MHz (?) */
1971 spur_delta_phase
= (spur_offset
<< 18) / 25;
1972 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1973 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
/ 2;
1975 case AR5K_BWMODE_5MHZ
:
1976 /* Both sample_freq and chip_freq are 10MHz (?) */
1977 spur_delta_phase
= (spur_offset
<< 19) / 25;
1978 spur_freq_sigma_delta
= (spur_delta_phase
>> 10);
1979 symbol_width
= AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
/ 4;
1982 if (channel
->band
== NL80211_BAND_5GHZ
) {
1983 /* Both sample_freq and chip_freq are 40MHz */
1984 spur_delta_phase
= (spur_offset
<< 17) / 25;
1985 spur_freq_sigma_delta
=
1986 (spur_delta_phase
>> 10);
1988 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
;
1990 /* sample_freq -> 40MHz chip_freq -> 44MHz
1991 * (for b compatibility) */
1992 spur_delta_phase
= (spur_offset
<< 17) / 25;
1993 spur_freq_sigma_delta
=
1994 (spur_offset
<< 8) / 55;
1996 AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz
;
2001 /* Calculate pilot and magnitude masks */
2003 /* Scale up spur_offset by 1000 to switch to 100HZ resolution
2004 * and divide by symbol_width to find how many symbols we have
2005 * Note: number of symbols is scaled up by 16 */
2006 num_symbols_x16
= ((spur_offset
* 1000) << 4) / symbol_width
;
2008 /* Spur is on a symbol if num_symbols_x16 % 16 is zero */
2009 if (!(num_symbols_x16
& 0xF))
2011 num_symbol_offsets
= 3;
2014 num_symbol_offsets
= 4;
2016 for (i
= 0; i
< num_symbol_offsets
; i
++) {
2018 /* Calculate pilot mask */
2020 (num_symbols_x16
/ 16) + i
+ 25;
2022 /* Pilot magnitude mask seems to be a way to
2023 * declare the boundaries for our detection
2024 * window or something, it's 2 for the middle
2025 * value(s) where the symbol is expected to be
2026 * and 1 on the boundary values */
2028 (i
== 0 || i
== (num_symbol_offsets
- 1))
2031 if (curr_sym_off
>= 0 && curr_sym_off
<= 32) {
2032 if (curr_sym_off
<= 25)
2033 pilot_mask
[0] |= 1 << curr_sym_off
;
2034 else if (curr_sym_off
>= 27)
2035 pilot_mask
[0] |= 1 << (curr_sym_off
- 1);
2036 } else if (curr_sym_off
>= 33 && curr_sym_off
<= 52)
2037 pilot_mask
[1] |= 1 << (curr_sym_off
- 33);
2039 /* Calculate magnitude mask (for viterbi decoder) */
2040 if (curr_sym_off
>= -1 && curr_sym_off
<= 14)
2042 plt_mag_map
<< (curr_sym_off
+ 1) * 2;
2043 else if (curr_sym_off
>= 15 && curr_sym_off
<= 30)
2045 plt_mag_map
<< (curr_sym_off
- 15) * 2;
2046 else if (curr_sym_off
>= 31 && curr_sym_off
<= 46)
2048 plt_mag_map
<< (curr_sym_off
- 31) * 2;
2049 else if (curr_sym_off
>= 47 && curr_sym_off
<= 53)
2051 plt_mag_map
<< (curr_sym_off
- 47) * 2;
2055 /* Write settings on hw to enable spur filter */
2056 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2057 AR5K_PHY_BIN_MASK_CTL_RATE
, 0xff);
2058 /* XXX: Self correlator also ? */
2059 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
2060 AR5K_PHY_IQ_PILOT_MASK_EN
|
2061 AR5K_PHY_IQ_CHAN_MASK_EN
|
2062 AR5K_PHY_IQ_SPUR_FILT_EN
);
2064 /* Set delta phase and freq sigma delta */
2065 ath5k_hw_reg_write(ah
,
2066 AR5K_REG_SM(spur_delta_phase
,
2067 AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE
) |
2068 AR5K_REG_SM(spur_freq_sigma_delta
,
2069 AR5K_PHY_TIMING_11_SPUR_FREQ_SD
) |
2070 AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC
,
2071 AR5K_PHY_TIMING_11
);
2073 /* Write pilot masks */
2074 ath5k_hw_reg_write(ah
, pilot_mask
[0], AR5K_PHY_TIMING_7
);
2075 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_8
,
2076 AR5K_PHY_TIMING_8_PILOT_MASK_2
,
2079 ath5k_hw_reg_write(ah
, pilot_mask
[0], AR5K_PHY_TIMING_9
);
2080 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_10
,
2081 AR5K_PHY_TIMING_10_PILOT_MASK_2
,
2084 /* Write magnitude masks */
2085 ath5k_hw_reg_write(ah
, mag_mask
[0], AR5K_PHY_BIN_MASK_1
);
2086 ath5k_hw_reg_write(ah
, mag_mask
[1], AR5K_PHY_BIN_MASK_2
);
2087 ath5k_hw_reg_write(ah
, mag_mask
[2], AR5K_PHY_BIN_MASK_3
);
2088 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2089 AR5K_PHY_BIN_MASK_CTL_MASK_4
,
2092 ath5k_hw_reg_write(ah
, mag_mask
[0], AR5K_PHY_BIN_MASK2_1
);
2093 ath5k_hw_reg_write(ah
, mag_mask
[1], AR5K_PHY_BIN_MASK2_2
);
2094 ath5k_hw_reg_write(ah
, mag_mask
[2], AR5K_PHY_BIN_MASK2_3
);
2095 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK2_4
,
2096 AR5K_PHY_BIN_MASK2_4_MASK_4
,
2099 } else if (ath5k_hw_reg_read(ah
, AR5K_PHY_IQ
) &
2100 AR5K_PHY_IQ_SPUR_FILT_EN
) {
2101 /* Clean up spur mitigation settings and disable filter */
2102 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2103 AR5K_PHY_BIN_MASK_CTL_RATE
, 0);
2104 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_IQ
,
2105 AR5K_PHY_IQ_PILOT_MASK_EN
|
2106 AR5K_PHY_IQ_CHAN_MASK_EN
|
2107 AR5K_PHY_IQ_SPUR_FILT_EN
);
2108 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_11
);
2110 /* Clear pilot masks */
2111 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_7
);
2112 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_8
,
2113 AR5K_PHY_TIMING_8_PILOT_MASK_2
,
2116 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_TIMING_9
);
2117 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_TIMING_10
,
2118 AR5K_PHY_TIMING_10_PILOT_MASK_2
,
2121 /* Clear magnitude masks */
2122 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_1
);
2123 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_2
);
2124 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK_3
);
2125 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK_CTL
,
2126 AR5K_PHY_BIN_MASK_CTL_MASK_4
,
2129 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_1
);
2130 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_2
);
2131 ath5k_hw_reg_write(ah
, 0, AR5K_PHY_BIN_MASK2_3
);
2132 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_BIN_MASK2_4
,
2133 AR5K_PHY_BIN_MASK2_4_MASK_4
,
2144 * DOC: Antenna control
2146 * Hw supports up to 14 antennas ! I haven't found any card that implements
2147 * that. The maximum number of antennas I've seen is up to 4 (2 for 2GHz and 2
2148 * for 5GHz). Antenna 1 (MAIN) should be omnidirectional, 2 (AUX)
2149 * omnidirectional or sectorial and antennas 3-14 sectorial (or directional).
2151 * We can have a single antenna for RX and multiple antennas for TX.
2152 * RX antenna is our "default" antenna (usually antenna 1) set on
2153 * DEFAULT_ANTENNA register and TX antenna is set on each TX control descriptor
2154 * (0 for automatic selection, 1 - 14 antenna number).
2156 * We can let hw do all the work doing fast antenna diversity for both
2157 * tx and rx or we can do things manually. Here are the options we have
2158 * (all are bits of STA_ID1 register):
2160 * AR5K_STA_ID1_DEFAULT_ANTENNA -> When 0 is set as the TX antenna on TX
2161 * control descriptor, use the default antenna to transmit or else use the last
2162 * antenna on which we received an ACK.
2164 * AR5K_STA_ID1_DESC_ANTENNA -> Update default antenna after each TX frame to
2165 * the antenna on which we got the ACK for that frame.
2167 * AR5K_STA_ID1_RTS_DEF_ANTENNA -> Use default antenna for RTS or else use the
2168 * one on the TX descriptor.
2170 * AR5K_STA_ID1_SELFGEN_DEF_ANT -> Use default antenna for self generated frames
2171 * (ACKs etc), or else use current antenna (the one we just used for TX).
2173 * Using the above we support the following scenarios:
2175 * AR5K_ANTMODE_DEFAULT -> Hw handles antenna diversity etc automatically
2177 * AR5K_ANTMODE_FIXED_A -> Only antenna A (MAIN) is present
2179 * AR5K_ANTMODE_FIXED_B -> Only antenna B (AUX) is present
2181 * AR5K_ANTMODE_SINGLE_AP -> Sta locked on a single ap
2183 * AR5K_ANTMODE_SECTOR_AP -> AP with tx antenna set on tx desc
2185 * AR5K_ANTMODE_SECTOR_STA -> STA with tx antenna set on tx desc
2187 * AR5K_ANTMODE_DEBUG Debug mode -A -> Rx, B-> Tx-
2189 * Also note that when setting antenna to F on tx descriptor card inverts
2190 * current tx antenna.
2194 * ath5k_hw_set_def_antenna() - Set default rx antenna on AR5211/5212 and newer
2195 * @ah: The &struct ath5k_hw
2196 * @ant: Antenna number
2199 ath5k_hw_set_def_antenna(struct ath5k_hw
*ah
, u8 ant
)
2201 if (ah
->ah_version
!= AR5K_AR5210
)
2202 ath5k_hw_reg_write(ah
, ant
& 0x7, AR5K_DEFAULT_ANTENNA
);
2206 * ath5k_hw_set_fast_div() - Enable/disable fast rx antenna diversity
2207 * @ah: The &struct ath5k_hw
2208 * @ee_mode: One of enum ath5k_driver_mode
2209 * @enable: True to enable, false to disable
2212 ath5k_hw_set_fast_div(struct ath5k_hw
*ah
, u8 ee_mode
, bool enable
)
2215 case AR5K_EEPROM_MODE_11G
:
2216 /* XXX: This is set to
2217 * disabled on initvals !!! */
2218 case AR5K_EEPROM_MODE_11A
:
2220 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2221 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2223 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2224 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2226 case AR5K_EEPROM_MODE_11B
:
2227 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
2228 AR5K_PHY_AGCCTL_OFDM_DIV_DIS
);
2235 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RESTART
,
2236 AR5K_PHY_RESTART_DIV_GC
, 4);
2238 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_FAST_ANT_DIV
,
2239 AR5K_PHY_FAST_ANT_DIV_EN
);
2241 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_RESTART
,
2242 AR5K_PHY_RESTART_DIV_GC
, 0);
2244 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_FAST_ANT_DIV
,
2245 AR5K_PHY_FAST_ANT_DIV_EN
);
2250 * ath5k_hw_set_antenna_switch() - Set up antenna switch table
2251 * @ah: The &struct ath5k_hw
2252 * @ee_mode: One of enum ath5k_driver_mode
2254 * Switch table comes from EEPROM and includes information on controlling
2255 * the 2 antenna RX attenuators
2258 ath5k_hw_set_antenna_switch(struct ath5k_hw
*ah
, u8 ee_mode
)
2263 * In case a fixed antenna was set as default
2264 * use the same switch table twice.
2266 if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_A
)
2267 ant0
= ant1
= AR5K_ANT_SWTABLE_A
;
2268 else if (ah
->ah_ant_mode
== AR5K_ANTMODE_FIXED_B
)
2269 ant0
= ant1
= AR5K_ANT_SWTABLE_B
;
2271 ant0
= AR5K_ANT_SWTABLE_A
;
2272 ant1
= AR5K_ANT_SWTABLE_B
;
2275 /* Set antenna idle switch table */
2276 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_ANT_CTL
,
2277 AR5K_PHY_ANT_CTL_SWTABLE_IDLE
,
2278 (ah
->ah_ant_ctl
[ee_mode
][AR5K_ANT_CTL
] |
2279 AR5K_PHY_ANT_CTL_TXRX_EN
));
2281 /* Set antenna switch tables */
2282 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant0
],
2283 AR5K_PHY_ANT_SWITCH_TABLE_0
);
2284 ath5k_hw_reg_write(ah
, ah
->ah_ant_ctl
[ee_mode
][ant1
],
2285 AR5K_PHY_ANT_SWITCH_TABLE_1
);
2289 * ath5k_hw_set_antenna_mode() - Set antenna operating mode
2290 * @ah: The &struct ath5k_hw
2291 * @ant_mode: One of enum ath5k_ant_mode
2294 ath5k_hw_set_antenna_mode(struct ath5k_hw
*ah
, u8 ant_mode
)
2296 struct ieee80211_channel
*channel
= ah
->ah_current_channel
;
2297 bool use_def_for_tx
, update_def_on_tx
, use_def_for_rts
, fast_div
;
2298 bool use_def_for_sg
;
2303 /* if channel is not initialized yet we can't set the antennas
2304 * so just store the mode. it will be set on the next reset */
2305 if (channel
== NULL
) {
2306 ah
->ah_ant_mode
= ant_mode
;
2310 def_ant
= ah
->ah_def_ant
;
2312 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, channel
);
2315 case AR5K_ANTMODE_DEFAULT
:
2317 use_def_for_tx
= false;
2318 update_def_on_tx
= false;
2319 use_def_for_rts
= false;
2320 use_def_for_sg
= false;
2323 case AR5K_ANTMODE_FIXED_A
:
2326 use_def_for_tx
= true;
2327 update_def_on_tx
= false;
2328 use_def_for_rts
= true;
2329 use_def_for_sg
= true;
2332 case AR5K_ANTMODE_FIXED_B
:
2335 use_def_for_tx
= true;
2336 update_def_on_tx
= false;
2337 use_def_for_rts
= true;
2338 use_def_for_sg
= true;
2341 case AR5K_ANTMODE_SINGLE_AP
:
2342 def_ant
= 1; /* updated on tx */
2344 use_def_for_tx
= true;
2345 update_def_on_tx
= true;
2346 use_def_for_rts
= true;
2347 use_def_for_sg
= true;
2350 case AR5K_ANTMODE_SECTOR_AP
:
2351 tx_ant
= 1; /* variable */
2352 use_def_for_tx
= false;
2353 update_def_on_tx
= false;
2354 use_def_for_rts
= true;
2355 use_def_for_sg
= false;
2358 case AR5K_ANTMODE_SECTOR_STA
:
2359 tx_ant
= 1; /* variable */
2360 use_def_for_tx
= true;
2361 update_def_on_tx
= false;
2362 use_def_for_rts
= true;
2363 use_def_for_sg
= false;
2366 case AR5K_ANTMODE_DEBUG
:
2369 use_def_for_tx
= false;
2370 update_def_on_tx
= false;
2371 use_def_for_rts
= false;
2372 use_def_for_sg
= false;
2379 ah
->ah_tx_ant
= tx_ant
;
2380 ah
->ah_ant_mode
= ant_mode
;
2381 ah
->ah_def_ant
= def_ant
;
2383 sta_id1
|= use_def_for_tx
? AR5K_STA_ID1_DEFAULT_ANTENNA
: 0;
2384 sta_id1
|= update_def_on_tx
? AR5K_STA_ID1_DESC_ANTENNA
: 0;
2385 sta_id1
|= use_def_for_rts
? AR5K_STA_ID1_RTS_DEF_ANTENNA
: 0;
2386 sta_id1
|= use_def_for_sg
? AR5K_STA_ID1_SELFGEN_DEF_ANT
: 0;
2388 AR5K_REG_DISABLE_BITS(ah
, AR5K_STA_ID1
, AR5K_STA_ID1_ANTENNA_SETTINGS
);
2391 AR5K_REG_ENABLE_BITS(ah
, AR5K_STA_ID1
, sta_id1
);
2393 ath5k_hw_set_antenna_switch(ah
, ee_mode
);
2394 /* Note: set diversity before default antenna
2395 * because it won't work correctly */
2396 ath5k_hw_set_fast_div(ah
, ee_mode
, fast_div
);
2397 ath5k_hw_set_def_antenna(ah
, def_ant
);
2410 * ath5k_get_interpolated_value() - Get interpolated Y val between two points
2411 * @target: X value of the middle point
2412 * @x_left: X value of the left point
2413 * @x_right: X value of the right point
2414 * @y_left: Y value of the left point
2415 * @y_right: Y value of the right point
2418 ath5k_get_interpolated_value(s16 target
, s16 x_left
, s16 x_right
,
2419 s16 y_left
, s16 y_right
)
2423 /* Avoid divide by zero and skip interpolation
2424 * if we have the same point */
2425 if ((x_left
== x_right
) || (y_left
== y_right
))
2429 * Since we use ints and not fps, we need to scale up in
2430 * order to get a sane ratio value (or else we 'll eg. get
2431 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
2432 * to have some accuracy both for 0.5 and 0.25 steps.
2434 ratio
= ((100 * y_right
- 100 * y_left
) / (x_right
- x_left
));
2436 /* Now scale down to be in range */
2437 result
= y_left
+ (ratio
* (target
- x_left
) / 100);
2443 * ath5k_get_linear_pcdac_min() - Find vertical boundary (min pwr) for the
2444 * linear PCDAC curve
2445 * @stepL: Left array with y values (pcdac steps)
2446 * @stepR: Right array with y values (pcdac steps)
2447 * @pwrL: Left array with x values (power steps)
2448 * @pwrR: Right array with x values (power steps)
2450 * Since we have the top of the curve and we draw the line below
2451 * until we reach 1 (1 pcdac step) we need to know which point
2452 * (x value) that is so that we don't go below x axis and have negative
2453 * pcdac values when creating the curve, or fill the table with zeros.
2456 ath5k_get_linear_pcdac_min(const u8
*stepL
, const u8
*stepR
,
2457 const s16
*pwrL
, const s16
*pwrR
)
2460 s16 min_pwrL
, min_pwrR
;
2463 /* Some vendors write the same pcdac value twice !!! */
2464 if (stepL
[0] == stepL
[1] || stepR
[0] == stepR
[1])
2465 return max(pwrL
[0], pwrR
[0]);
2467 if (pwrL
[0] == pwrL
[1])
2473 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
2475 stepL
[0], stepL
[1]);
2481 if (pwrR
[0] == pwrR
[1])
2487 tmp
= (s8
) ath5k_get_interpolated_value(pwr_i
,
2489 stepR
[0], stepR
[1]);
2495 /* Keep the right boundary so that it works for both curves */
2496 return max(min_pwrL
, min_pwrR
);
2500 * ath5k_create_power_curve() - Create a Power to PDADC or PCDAC curve
2501 * @pmin: Minimum power value (xmin)
2502 * @pmax: Maximum power value (xmax)
2503 * @pwr: Array of power steps (x values)
2504 * @vpd: Array of matching PCDAC/PDADC steps (y values)
2505 * @num_points: Number of provided points
2506 * @vpd_table: Array to fill with the full PCDAC/PDADC values (y values)
2507 * @type: One of enum ath5k_powertable_type (eeprom.h)
2509 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2510 * Power to PCDAC curve.
2512 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2513 * steps (offsets) on y axis. Power can go up to 31.5dB and max
2514 * PCDAC/PDADC step for each curve is 64 but we can write more than
2515 * one curves on hw so we can go up to 128 (which is the max step we
2516 * can write on the final table).
2518 * We write y values (PCDAC/PDADC steps) on hw.
2521 ath5k_create_power_curve(s16 pmin
, s16 pmax
,
2522 const s16
*pwr
, const u8
*vpd
,
2524 u8
*vpd_table
, u8 type
)
2526 u8 idx
[2] = { 0, 1 };
2527 s16 pwr_i
= 2 * pmin
;
2533 /* We want the whole line, so adjust boundaries
2534 * to cover the entire power range. Note that
2535 * power values are already 0.25dB so no need
2536 * to multiply pwr_i by 2 */
2537 if (type
== AR5K_PWRTABLE_LINEAR_PCDAC
) {
2543 /* Find surrounding turning points (TPs)
2544 * and interpolate between them */
2545 for (i
= 0; (i
<= (u16
) (pmax
- pmin
)) &&
2546 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
2548 /* We passed the right TP, move to the next set of TPs
2549 * if we pass the last TP, extrapolate above using the last
2550 * two TPs for ratio */
2551 if ((pwr_i
> pwr
[idx
[1]]) && (idx
[1] < num_points
- 1)) {
2556 vpd_table
[i
] = (u8
) ath5k_get_interpolated_value(pwr_i
,
2557 pwr
[idx
[0]], pwr
[idx
[1]],
2558 vpd
[idx
[0]], vpd
[idx
[1]]);
2560 /* Increase by 0.5dB
2561 * (0.25 dB units) */
2567 * ath5k_get_chan_pcal_surrounding_piers() - Get surrounding calibration piers
2568 * for a given channel.
2569 * @ah: The &struct ath5k_hw
2570 * @channel: The &struct ieee80211_channel
2571 * @pcinfo_l: The &struct ath5k_chan_pcal_info to put the left cal. pier
2572 * @pcinfo_r: The &struct ath5k_chan_pcal_info to put the right cal. pier
2574 * Get the surrounding per-channel power calibration piers
2575 * for a given frequency so that we can interpolate between
2576 * them and come up with an appropriate dataset for our current
2580 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw
*ah
,
2581 struct ieee80211_channel
*channel
,
2582 struct ath5k_chan_pcal_info
**pcinfo_l
,
2583 struct ath5k_chan_pcal_info
**pcinfo_r
)
2585 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2586 struct ath5k_chan_pcal_info
*pcinfo
;
2589 u32 target
= channel
->center_freq
;
2594 switch (channel
->hw_value
) {
2595 case AR5K_EEPROM_MODE_11A
:
2596 pcinfo
= ee
->ee_pwr_cal_a
;
2597 mode
= AR5K_EEPROM_MODE_11A
;
2599 case AR5K_EEPROM_MODE_11B
:
2600 pcinfo
= ee
->ee_pwr_cal_b
;
2601 mode
= AR5K_EEPROM_MODE_11B
;
2603 case AR5K_EEPROM_MODE_11G
:
2605 pcinfo
= ee
->ee_pwr_cal_g
;
2606 mode
= AR5K_EEPROM_MODE_11G
;
2609 max
= ee
->ee_n_piers
[mode
] - 1;
2611 /* Frequency is below our calibrated
2612 * range. Use the lowest power curve
2614 if (target
< pcinfo
[0].freq
) {
2619 /* Frequency is above our calibrated
2620 * range. Use the highest power curve
2622 if (target
> pcinfo
[max
].freq
) {
2623 idx_l
= idx_r
= max
;
2627 /* Frequency is inside our calibrated
2628 * channel range. Pick the surrounding
2629 * calibration piers so that we can
2631 for (i
= 0; i
<= max
; i
++) {
2633 /* Frequency matches one of our calibration
2634 * piers, no need to interpolate, just use
2635 * that calibration pier */
2636 if (pcinfo
[i
].freq
== target
) {
2641 /* We found a calibration pier that's above
2642 * frequency, use this pier and the previous
2643 * one to interpolate */
2644 if (target
< pcinfo
[i
].freq
) {
2652 *pcinfo_l
= &pcinfo
[idx_l
];
2653 *pcinfo_r
= &pcinfo
[idx_r
];
2657 * ath5k_get_rate_pcal_data() - Get the interpolated per-rate power
2659 * @ah: The &struct ath5k_hw *ah,
2660 * @channel: The &struct ieee80211_channel
2661 * @rates: The &struct ath5k_rate_pcal_info to fill
2663 * Get the surrounding per-rate power calibration data
2664 * for a given frequency and interpolate between power
2665 * values to set max target power supported by hw for
2666 * each rate on this frequency.
2669 ath5k_get_rate_pcal_data(struct ath5k_hw
*ah
,
2670 struct ieee80211_channel
*channel
,
2671 struct ath5k_rate_pcal_info
*rates
)
2673 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2674 struct ath5k_rate_pcal_info
*rpinfo
;
2677 u32 target
= channel
->center_freq
;
2682 switch (channel
->hw_value
) {
2684 rpinfo
= ee
->ee_rate_tpwr_a
;
2685 mode
= AR5K_EEPROM_MODE_11A
;
2688 rpinfo
= ee
->ee_rate_tpwr_b
;
2689 mode
= AR5K_EEPROM_MODE_11B
;
2693 rpinfo
= ee
->ee_rate_tpwr_g
;
2694 mode
= AR5K_EEPROM_MODE_11G
;
2697 max
= ee
->ee_rate_target_pwr_num
[mode
] - 1;
2699 /* Get the surrounding calibration
2700 * piers - same as above */
2701 if (target
< rpinfo
[0].freq
) {
2706 if (target
> rpinfo
[max
].freq
) {
2707 idx_l
= idx_r
= max
;
2711 for (i
= 0; i
<= max
; i
++) {
2713 if (rpinfo
[i
].freq
== target
) {
2718 if (target
< rpinfo
[i
].freq
) {
2726 /* Now interpolate power value, based on the frequency */
2727 rates
->freq
= target
;
2729 rates
->target_power_6to24
=
2730 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2732 rpinfo
[idx_l
].target_power_6to24
,
2733 rpinfo
[idx_r
].target_power_6to24
);
2735 rates
->target_power_36
=
2736 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2738 rpinfo
[idx_l
].target_power_36
,
2739 rpinfo
[idx_r
].target_power_36
);
2741 rates
->target_power_48
=
2742 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2744 rpinfo
[idx_l
].target_power_48
,
2745 rpinfo
[idx_r
].target_power_48
);
2747 rates
->target_power_54
=
2748 ath5k_get_interpolated_value(target
, rpinfo
[idx_l
].freq
,
2750 rpinfo
[idx_l
].target_power_54
,
2751 rpinfo
[idx_r
].target_power_54
);
2755 * ath5k_get_max_ctl_power() - Get max edge power for a given frequency
2756 * @ah: the &struct ath5k_hw
2757 * @channel: The &struct ieee80211_channel
2759 * Get the max edge power for this channel if
2760 * we have such data from EEPROM's Conformance Test
2761 * Limits (CTL), and limit max power if needed.
2764 ath5k_get_max_ctl_power(struct ath5k_hw
*ah
,
2765 struct ieee80211_channel
*channel
)
2767 struct ath_regulatory
*regulatory
= ath5k_hw_regulatory(ah
);
2768 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
2769 struct ath5k_edge_power
*rep
= ee
->ee_ctl_pwr
;
2770 u8
*ctl_val
= ee
->ee_ctl
;
2771 s16 max_chan_pwr
= ah
->ah_txpower
.txp_max_pwr
/ 4;
2776 u32 target
= channel
->center_freq
;
2778 ctl_mode
= ath_regd_get_band_ctl(regulatory
, channel
->band
);
2780 switch (channel
->hw_value
) {
2782 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
2783 ctl_mode
|= AR5K_CTL_TURBO
;
2785 ctl_mode
|= AR5K_CTL_11A
;
2788 if (ah
->ah_bwmode
== AR5K_BWMODE_40MHZ
)
2789 ctl_mode
|= AR5K_CTL_TURBOG
;
2791 ctl_mode
|= AR5K_CTL_11G
;
2794 ctl_mode
|= AR5K_CTL_11B
;
2800 for (i
= 0; i
< ee
->ee_ctls
; i
++) {
2801 if (ctl_val
[i
] == ctl_mode
) {
2807 /* If we have a CTL dataset available grab it and find the
2808 * edge power for our frequency */
2809 if (ctl_idx
== 0xFF)
2812 /* Edge powers are sorted by frequency from lower
2813 * to higher. Each CTL corresponds to 8 edge power
2815 rep_idx
= ctl_idx
* AR5K_EEPROM_N_EDGES
;
2817 /* Don't do boundaries check because we
2818 * might have more that one bands defined
2821 /* Get the edge power that's closer to our
2823 for (i
= 0; i
< AR5K_EEPROM_N_EDGES
; i
++) {
2825 if (target
<= rep
[rep_idx
].freq
)
2826 edge_pwr
= (s16
) rep
[rep_idx
].edge
;
2830 ah
->ah_txpower
.txp_max_pwr
= 4 * min(edge_pwr
, max_chan_pwr
);
2835 * Power to PCDAC table functions
2839 * DOC: Power to PCDAC table functions
2841 * For RF5111 we have an XPD -eXternal Power Detector- curve
2842 * for each calibrated channel. Each curve has 0,5dB Power steps
2843 * on x axis and PCDAC steps (offsets) on y axis and looks like an
2844 * exponential function. To recreate the curve we read 11 points
2845 * from eeprom (eeprom.c) and interpolate here.
2847 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
2848 * for each calibrated channel on 0, -6, -12 and -18dBm but we only
2849 * use the higher (3) and the lower (0) curves. Each curve again has 0.5dB
2850 * power steps on x axis and PCDAC steps on y axis and looks like a
2851 * linear function. To recreate the curve and pass the power values
2852 * on hw, we get 4 points for xpd 0 (lower gain -> max power)
2853 * and 3 points for xpd 3 (higher gain -> lower power) from eeprom (eeprom.c)
2854 * and interpolate here.
2856 * For a given channel we get the calibrated points (piers) for it or
2857 * -if we don't have calibration data for this specific channel- from the
2858 * available surrounding channels we have calibration data for, after we do a
2859 * linear interpolation between them. Then since we have our calibrated points
2860 * for this channel, we do again a linear interpolation between them to get the
2863 * We finally write the Y values of the curve(s) (the PCDAC values) on hw
2867 * ath5k_fill_pwr_to_pcdac_table() - Fill Power to PCDAC table on RF5111
2868 * @ah: The &struct ath5k_hw
2869 * @table_min: Minimum power (x min)
2870 * @table_max: Maximum power (x max)
2872 * No further processing is needed for RF5111, the only thing we have to
2873 * do is fill the values below and above calibration range since eeprom data
2874 * may not cover the entire PCDAC table.
2877 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw
*ah
, s16
* table_min
,
2880 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2881 u8
*pcdac_tmp
= ah
->ah_txpower
.tmpL
[0];
2882 u8 pcdac_0
, pcdac_n
, pcdac_i
, pwr_idx
, i
;
2883 s16 min_pwr
, max_pwr
;
2885 /* Get table boundaries */
2886 min_pwr
= table_min
[0];
2887 pcdac_0
= pcdac_tmp
[0];
2889 max_pwr
= table_max
[0];
2890 pcdac_n
= pcdac_tmp
[table_max
[0] - table_min
[0]];
2892 /* Extrapolate below minimum using pcdac_0 */
2894 for (i
= 0; i
< min_pwr
; i
++)
2895 pcdac_out
[pcdac_i
++] = pcdac_0
;
2897 /* Copy values from pcdac_tmp */
2899 for (i
= 0; pwr_idx
<= max_pwr
&&
2900 pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
; i
++) {
2901 pcdac_out
[pcdac_i
++] = pcdac_tmp
[i
];
2905 /* Extrapolate above maximum */
2906 while (pcdac_i
< AR5K_EEPROM_POWER_TABLE_SIZE
)
2907 pcdac_out
[pcdac_i
++] = pcdac_n
;
2912 * ath5k_combine_linear_pcdac_curves() - Combine available PCDAC Curves
2913 * @ah: The &struct ath5k_hw
2914 * @table_min: Minimum power (x min)
2915 * @table_max: Maximum power (x max)
2916 * @pdcurves: Number of pd curves
2918 * Combine available XPD Curves and fill Linear Power to PCDAC table on RF5112
2919 * RFX112 can have up to 2 curves (one for low txpower range and one for
2920 * higher txpower range). We need to put them both on pcdac_out and place
2921 * them in the correct location. In case we only have one curve available
2922 * just fit it on pcdac_out (it's supposed to cover the entire range of
2923 * available pwr levels since it's always the higher power curve). Extrapolate
2924 * below and above final table if needed.
2927 ath5k_combine_linear_pcdac_curves(struct ath5k_hw
*ah
, s16
* table_min
,
2928 s16
*table_max
, u8 pdcurves
)
2930 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
2937 s16 mid_pwr_idx
= 0;
2938 /* Edge flag turns on the 7nth bit on the PCDAC
2939 * to declare the higher power curve (force values
2940 * to be greater than 64). If we only have one curve
2941 * we don't need to set this, if we have 2 curves and
2942 * fill the table backwards this can also be used to
2943 * switch from higher power curve to lower power curve */
2947 /* When we have only one curve available
2948 * that's the higher power curve. If we have
2949 * two curves the first is the high power curve
2950 * and the next is the low power curve. */
2952 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1];
2953 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
2954 mid_pwr_idx
= table_max
[1] - table_min
[1] - 1;
2955 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
2957 /* If table size goes beyond 31.5dB, keep the
2958 * upper 31.5dB range when setting tx power.
2959 * Note: 126 = 31.5 dB in quarter dB steps */
2960 if (table_max
[0] - table_min
[1] > 126)
2961 min_pwr_idx
= table_max
[0] - 126;
2963 min_pwr_idx
= table_min
[1];
2965 /* Since we fill table backwards
2966 * start from high power curve */
2967 pcdac_tmp
= pcdac_high_pwr
;
2971 pcdac_low_pwr
= ah
->ah_txpower
.tmpL
[1]; /* Zeroed */
2972 pcdac_high_pwr
= ah
->ah_txpower
.tmpL
[0];
2973 min_pwr_idx
= table_min
[0];
2974 max_pwr_idx
= (table_max
[0] - table_min
[0]) / 2;
2975 pcdac_tmp
= pcdac_high_pwr
;
2979 /* This is used when setting tx power*/
2980 ah
->ah_txpower
.txp_min_idx
= min_pwr_idx
/ 2;
2982 /* Fill Power to PCDAC table backwards */
2984 for (i
= 63; i
>= 0; i
--) {
2985 /* Entering lower power range, reset
2986 * edge flag and set pcdac_tmp to lower
2988 if (edge_flag
== 0x40 &&
2989 (2 * pwr
<= (table_max
[1] - table_min
[0]) || pwr
== 0)) {
2991 pcdac_tmp
= pcdac_low_pwr
;
2992 pwr
= mid_pwr_idx
/ 2;
2995 /* Don't go below 1, extrapolate below if we have
2996 * already switched to the lower power curve -or
2997 * we only have one curve and edge_flag is zero
2999 if (pcdac_tmp
[pwr
] < 1 && (edge_flag
== 0x00)) {
3001 pcdac_out
[i
] = pcdac_out
[i
+ 1];
3007 pcdac_out
[i
] = pcdac_tmp
[pwr
] | edge_flag
;
3009 /* Extrapolate above if pcdac is greater than
3010 * 126 -this can happen because we OR pcdac_out
3011 * value with edge_flag on high power curve */
3012 if (pcdac_out
[i
] > 126)
3015 /* Decrease by a 0.5dB step */
3021 * ath5k_write_pcdac_table() - Write the PCDAC values on hw
3022 * @ah: The &struct ath5k_hw
3025 ath5k_write_pcdac_table(struct ath5k_hw
*ah
)
3027 u8
*pcdac_out
= ah
->ah_txpower
.txp_pd_table
;
3031 * Write TX power values
3033 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
3034 ath5k_hw_reg_write(ah
,
3035 (((pcdac_out
[2 * i
+ 0] << 8 | 0xff) & 0xffff) << 0) |
3036 (((pcdac_out
[2 * i
+ 1] << 8 | 0xff) & 0xffff) << 16),
3037 AR5K_PHY_PCDAC_TXPOWER(i
));
3043 * Power to PDADC table functions
3047 * DOC: Power to PDADC table functions
3049 * For RF2413 and later we have a Power to PDADC table (Power Detector)
3050 * instead of a PCDAC (Power Control) and 4 pd gain curves for each
3051 * calibrated channel. Each curve has power on x axis in 0.5 db steps and
3052 * PDADC steps on y axis and looks like an exponential function like the
3055 * To recreate the curves we read the points from eeprom (eeprom.c)
3056 * and interpolate here. Note that in most cases only 2 (higher and lower)
3057 * curves are used (like RF5112) but vendors have the opportunity to include
3058 * all 4 curves on eeprom. The final curve (higher power) has an extra
3059 * point for better accuracy like RF5112.
3061 * The process is similar to what we do above for RF5111/5112
3065 * ath5k_combine_pwr_to_pdadc_curves() - Combine the various PDADC curves
3066 * @ah: The &struct ath5k_hw
3067 * @pwr_min: Minimum power (x min)
3068 * @pwr_max: Maximum power (x max)
3069 * @pdcurves: Number of available curves
3071 * Combine the various pd curves and create the final Power to PDADC table
3072 * We can have up to 4 pd curves, we need to do a similar process
3073 * as we do for RF5112. This time we don't have an edge_flag but we
3074 * set the gain boundaries on a separate register.
3077 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw
*ah
,
3078 s16
*pwr_min
, s16
*pwr_max
, u8 pdcurves
)
3080 u8 gain_boundaries
[AR5K_EEPROM_N_PD_GAINS
];
3081 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
3084 u8 pdadc_i
, pdadc_n
, pwr_step
, pdg
, max_idx
, table_size
;
3087 /* Note: Register value is initialized on initvals
3088 * there is no feedback from hw.
3089 * XXX: What about pd_gain_overlap from EEPROM ? */
3090 pd_gain_overlap
= (u8
) ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG5
) &
3091 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
;
3093 /* Create final PDADC table */
3094 for (pdg
= 0, pdadc_i
= 0; pdg
< pdcurves
; pdg
++) {
3095 pdadc_tmp
= ah
->ah_txpower
.tmpL
[pdg
];
3097 if (pdg
== pdcurves
- 1)
3098 /* 2 dB boundary stretch for last
3099 * (higher power) curve */
3100 gain_boundaries
[pdg
] = pwr_max
[pdg
] + 4;
3102 /* Set gain boundary in the middle
3103 * between this curve and the next one */
3104 gain_boundaries
[pdg
] =
3105 (pwr_max
[pdg
] + pwr_min
[pdg
+ 1]) / 2;
3107 /* Sanity check in case our 2 db stretch got out of
3109 if (gain_boundaries
[pdg
] > AR5K_TUNE_MAX_TXPOWER
)
3110 gain_boundaries
[pdg
] = AR5K_TUNE_MAX_TXPOWER
;
3112 /* For the first curve (lower power)
3113 * start from 0 dB */
3117 /* For the other curves use the gain overlap */
3118 pdadc_0
= (gain_boundaries
[pdg
- 1] - pwr_min
[pdg
]) -
3121 /* Force each power step to be at least 0.5 dB */
3122 if ((pdadc_tmp
[1] - pdadc_tmp
[0]) > 1)
3123 pwr_step
= pdadc_tmp
[1] - pdadc_tmp
[0];
3127 /* If pdadc_0 is negative, we need to extrapolate
3128 * below this pdgain by a number of pwr_steps */
3129 while ((pdadc_0
< 0) && (pdadc_i
< 128)) {
3130 s16 tmp
= pdadc_tmp
[0] + pdadc_0
* pwr_step
;
3131 pdadc_out
[pdadc_i
++] = (tmp
< 0) ? 0 : (u8
) tmp
;
3135 /* Set last pwr level, using gain boundaries */
3136 pdadc_n
= gain_boundaries
[pdg
] + pd_gain_overlap
- pwr_min
[pdg
];
3137 /* Limit it to be inside pwr range */
3138 table_size
= pwr_max
[pdg
] - pwr_min
[pdg
];
3139 max_idx
= (pdadc_n
< table_size
) ? pdadc_n
: table_size
;
3141 /* Fill pdadc_out table */
3142 while (pdadc_0
< max_idx
&& pdadc_i
< 128)
3143 pdadc_out
[pdadc_i
++] = pdadc_tmp
[pdadc_0
++];
3145 /* Need to extrapolate above this pdgain? */
3146 if (pdadc_n
<= max_idx
)
3149 /* Force each power step to be at least 0.5 dB */
3150 if ((pdadc_tmp
[table_size
- 1] - pdadc_tmp
[table_size
- 2]) > 1)
3151 pwr_step
= pdadc_tmp
[table_size
- 1] -
3152 pdadc_tmp
[table_size
- 2];
3156 /* Extrapolate above */
3157 while ((pdadc_0
< (s16
) pdadc_n
) &&
3158 (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2)) {
3159 s16 tmp
= pdadc_tmp
[table_size
- 1] +
3160 (pdadc_0
- max_idx
) * pwr_step
;
3161 pdadc_out
[pdadc_i
++] = (tmp
> 127) ? 127 : (u8
) tmp
;
3166 while (pdg
< AR5K_EEPROM_N_PD_GAINS
) {
3167 gain_boundaries
[pdg
] = gain_boundaries
[pdg
- 1];
3171 while (pdadc_i
< AR5K_EEPROM_POWER_TABLE_SIZE
* 2) {
3172 pdadc_out
[pdadc_i
] = pdadc_out
[pdadc_i
- 1];
3176 /* Set gain boundaries */
3177 ath5k_hw_reg_write(ah
,
3178 AR5K_REG_SM(pd_gain_overlap
,
3179 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP
) |
3180 AR5K_REG_SM(gain_boundaries
[0],
3181 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1
) |
3182 AR5K_REG_SM(gain_boundaries
[1],
3183 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2
) |
3184 AR5K_REG_SM(gain_boundaries
[2],
3185 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3
) |
3186 AR5K_REG_SM(gain_boundaries
[3],
3187 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4
),
3190 /* Used for setting rate power table */
3191 ah
->ah_txpower
.txp_min_idx
= pwr_min
[0];
3196 * ath5k_write_pwr_to_pdadc_table() - Write the PDADC values on hw
3197 * @ah: The &struct ath5k_hw
3198 * @ee_mode: One of enum ath5k_driver_mode
3201 ath5k_write_pwr_to_pdadc_table(struct ath5k_hw
*ah
, u8 ee_mode
)
3203 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
3204 u8
*pdadc_out
= ah
->ah_txpower
.txp_pd_table
;
3205 u8
*pdg_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
3206 u8 pdcurves
= ee
->ee_pd_gains
[ee_mode
];
3210 /* Select the right pdgain curves */
3212 /* Clear current settings */
3213 reg
= ath5k_hw_reg_read(ah
, AR5K_PHY_TPC_RG1
);
3214 reg
&= ~(AR5K_PHY_TPC_RG1_PDGAIN_1
|
3215 AR5K_PHY_TPC_RG1_PDGAIN_2
|
3216 AR5K_PHY_TPC_RG1_PDGAIN_3
|
3217 AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
3220 * Use pd_gains curve from eeprom
3222 * This overrides the default setting from initvals
3223 * in case some vendors (e.g. Zcomax) don't use the default
3224 * curves. If we don't honor their settings we 'll get a
3225 * 5dB (1 * gain overlap ?) drop.
3227 reg
|= AR5K_REG_SM(pdcurves
, AR5K_PHY_TPC_RG1_NUM_PD_GAIN
);
3231 reg
|= AR5K_REG_SM(pdg_to_idx
[2], AR5K_PHY_TPC_RG1_PDGAIN_3
);
3234 reg
|= AR5K_REG_SM(pdg_to_idx
[1], AR5K_PHY_TPC_RG1_PDGAIN_2
);
3237 reg
|= AR5K_REG_SM(pdg_to_idx
[0], AR5K_PHY_TPC_RG1_PDGAIN_1
);
3240 ath5k_hw_reg_write(ah
, reg
, AR5K_PHY_TPC_RG1
);
3243 * Write TX power values
3245 for (i
= 0; i
< (AR5K_EEPROM_POWER_TABLE_SIZE
/ 2); i
++) {
3246 u32 val
= get_unaligned_le32(&pdadc_out
[4 * i
]);
3247 ath5k_hw_reg_write(ah
, val
, AR5K_PHY_PDADC_TXPOWER(i
));
3253 * Common code for PCDAC/PDADC tables
3257 * ath5k_setup_channel_powertable() - Set up power table for this channel
3258 * @ah: The &struct ath5k_hw
3259 * @channel: The &struct ieee80211_channel
3260 * @ee_mode: One of enum ath5k_driver_mode
3261 * @type: One of enum ath5k_powertable_type (eeprom.h)
3263 * This is the main function that uses all of the above
3264 * to set PCDAC/PDADC table on hw for the current channel.
3265 * This table is used for tx power calibration on the baseband,
3266 * without it we get weird tx power levels and in some cases
3267 * distorted spectral mask
3270 ath5k_setup_channel_powertable(struct ath5k_hw
*ah
,
3271 struct ieee80211_channel
*channel
,
3272 u8 ee_mode
, u8 type
)
3274 struct ath5k_pdgain_info
*pdg_L
, *pdg_R
;
3275 struct ath5k_chan_pcal_info
*pcinfo_L
;
3276 struct ath5k_chan_pcal_info
*pcinfo_R
;
3277 struct ath5k_eeprom_info
*ee
= &ah
->ah_capabilities
.cap_eeprom
;
3278 u8
*pdg_curve_to_idx
= ee
->ee_pdc_to_idx
[ee_mode
];
3279 s16 table_min
[AR5K_EEPROM_N_PD_GAINS
];
3280 s16 table_max
[AR5K_EEPROM_N_PD_GAINS
];
3283 u32 target
= channel
->center_freq
;
3286 /* Get surrounding freq piers for this channel */
3287 ath5k_get_chan_pcal_surrounding_piers(ah
, channel
,
3291 /* Loop over pd gain curves on
3292 * surrounding freq piers by index */
3293 for (pdg
= 0; pdg
< ee
->ee_pd_gains
[ee_mode
]; pdg
++) {
3295 /* Fill curves in reverse order
3296 * from lower power (max gain)
3297 * to higher power. Use curve -> idx
3298 * backmapping we did on eeprom init */
3299 u8 idx
= pdg_curve_to_idx
[pdg
];
3301 /* Grab the needed curves by index */
3302 pdg_L
= &pcinfo_L
->pd_curves
[idx
];
3303 pdg_R
= &pcinfo_R
->pd_curves
[idx
];
3305 /* Initialize the temp tables */
3306 tmpL
= ah
->ah_txpower
.tmpL
[pdg
];
3307 tmpR
= ah
->ah_txpower
.tmpR
[pdg
];
3309 /* Set curve's x boundaries and create
3310 * curves so that they cover the same
3311 * range (if we don't do that one table
3312 * will have values on some range and the
3313 * other one won't have any so interpolation
3315 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
3316 pdg_R
->pd_pwr
[0]) / 2;
3318 table_max
[pdg
] = max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
3319 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]) / 2;
3321 /* Now create the curves on surrounding channels
3322 * and interpolate if needed to get the final
3323 * curve for this gain on this channel */
3325 case AR5K_PWRTABLE_LINEAR_PCDAC
:
3326 /* Override min/max so that we don't loose
3327 * accuracy (don't divide by 2) */
3328 table_min
[pdg
] = min(pdg_L
->pd_pwr
[0],
3332 max(pdg_L
->pd_pwr
[pdg_L
->pd_points
- 1],
3333 pdg_R
->pd_pwr
[pdg_R
->pd_points
- 1]);
3335 /* Override minimum so that we don't get
3336 * out of bounds while extrapolating
3337 * below. Don't do this when we have 2
3338 * curves and we are on the high power curve
3339 * because table_min is ok in this case */
3340 if (!(ee
->ee_pd_gains
[ee_mode
] > 1 && pdg
== 0)) {
3343 ath5k_get_linear_pcdac_min(pdg_L
->pd_step
,
3348 /* Don't go too low because we will
3349 * miss the upper part of the curve.
3350 * Note: 126 = 31.5dB (max power supported)
3351 * in 0.25dB units */
3352 if (table_max
[pdg
] - table_min
[pdg
] > 126)
3353 table_min
[pdg
] = table_max
[pdg
] - 126;
3357 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
3358 case AR5K_PWRTABLE_PWR_TO_PDADC
:
3360 ath5k_create_power_curve(table_min
[pdg
],
3364 pdg_L
->pd_points
, tmpL
, type
);
3366 /* We are in a calibration
3367 * pier, no need to interpolate
3368 * between freq piers */
3369 if (pcinfo_L
== pcinfo_R
)
3372 ath5k_create_power_curve(table_min
[pdg
],
3376 pdg_R
->pd_points
, tmpR
, type
);
3382 /* Interpolate between curves
3383 * of surrounding freq piers to
3384 * get the final curve for this
3385 * pd gain. Re-use tmpL for interpolation
3387 for (i
= 0; (i
< (u16
) (table_max
[pdg
] - table_min
[pdg
])) &&
3388 (i
< AR5K_EEPROM_POWER_TABLE_SIZE
); i
++) {
3389 tmpL
[i
] = (u8
) ath5k_get_interpolated_value(target
,
3390 (s16
) pcinfo_L
->freq
,
3391 (s16
) pcinfo_R
->freq
,
3397 /* Now we have a set of curves for this
3398 * channel on tmpL (x range is table_max - table_min
3399 * and y values are tmpL[pdg][]) sorted in the same
3400 * order as EEPROM (because we've used the backmapping).
3401 * So for RF5112 it's from higher power to lower power
3402 * and for RF2413 it's from lower power to higher power.
3403 * For RF5111 we only have one curve. */
3405 /* Fill min and max power levels for this
3406 * channel by interpolating the values on
3407 * surrounding channels to complete the dataset */
3408 ah
->ah_txpower
.txp_min_pwr
= ath5k_get_interpolated_value(target
,
3409 (s16
) pcinfo_L
->freq
,
3410 (s16
) pcinfo_R
->freq
,
3411 pcinfo_L
->min_pwr
, pcinfo_R
->min_pwr
);
3413 ah
->ah_txpower
.txp_max_pwr
= ath5k_get_interpolated_value(target
,
3414 (s16
) pcinfo_L
->freq
,
3415 (s16
) pcinfo_R
->freq
,
3416 pcinfo_L
->max_pwr
, pcinfo_R
->max_pwr
);
3418 /* Fill PCDAC/PDADC table */
3420 case AR5K_PWRTABLE_LINEAR_PCDAC
:
3421 /* For RF5112 we can have one or two curves
3422 * and each curve covers a certain power lvl
3423 * range so we need to do some more processing */
3424 ath5k_combine_linear_pcdac_curves(ah
, table_min
, table_max
,
3425 ee
->ee_pd_gains
[ee_mode
]);
3427 /* Set txp.offset so that we can
3428 * match max power value with max
3430 ah
->ah_txpower
.txp_offset
= 64 - (table_max
[0] / 2);
3432 case AR5K_PWRTABLE_PWR_TO_PCDAC
:
3433 /* We are done for RF5111 since it has only
3434 * one curve, just fit the curve on the table */
3435 ath5k_fill_pwr_to_pcdac_table(ah
, table_min
, table_max
);
3437 /* No rate powertable adjustment for RF5111 */
3438 ah
->ah_txpower
.txp_min_idx
= 0;
3439 ah
->ah_txpower
.txp_offset
= 0;
3441 case AR5K_PWRTABLE_PWR_TO_PDADC
:
3442 /* Set PDADC boundaries and fill
3443 * final PDADC table */
3444 ath5k_combine_pwr_to_pdadc_curves(ah
, table_min
, table_max
,
3445 ee
->ee_pd_gains
[ee_mode
]);
3447 /* Set txp.offset, note that table_min
3448 * can be negative */
3449 ah
->ah_txpower
.txp_offset
= table_min
[0];
3455 ah
->ah_txpower
.txp_setup
= true;
3461 * ath5k_write_channel_powertable() - Set power table for current channel on hw
3462 * @ah: The &struct ath5k_hw
3463 * @ee_mode: One of enum ath5k_driver_mode
3464 * @type: One of enum ath5k_powertable_type (eeprom.h)
3467 ath5k_write_channel_powertable(struct ath5k_hw
*ah
, u8 ee_mode
, u8 type
)
3469 if (type
== AR5K_PWRTABLE_PWR_TO_PDADC
)
3470 ath5k_write_pwr_to_pdadc_table(ah
, ee_mode
);
3472 ath5k_write_pcdac_table(ah
);
3477 * DOC: Per-rate tx power setting
3479 * This is the code that sets the desired tx power limit (below
3480 * maximum) on hw for each rate (we also have TPC that sets
3481 * power per packet type). We do that by providing an index on the
3482 * PCDAC/PDADC table we set up above, for each rate.
3484 * For now we only limit txpower based on maximum tx power
3485 * supported by hw (what's inside rate_info) + conformance test
3486 * limits. We need to limit this even more, based on regulatory domain
3487 * etc to be safe. Normally this is done from above so we don't care
3488 * here, all we care is that the tx power we set will be O.K.
3489 * for the hw (e.g. won't create noise on PA etc).
3491 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps -
3492 * x values) and is indexed as follows:
3493 * rates[0] - rates[7] -> OFDM rates
3494 * rates[8] - rates[14] -> CCK rates
3495 * rates[15] -> XR rates (they all have the same power)
3499 * ath5k_setup_rate_powertable() - Set up rate power table for a given tx power
3500 * @ah: The &struct ath5k_hw
3501 * @max_pwr: The maximum tx power requested in 0.5dB steps
3502 * @rate_info: The &struct ath5k_rate_pcal_info to fill
3503 * @ee_mode: One of enum ath5k_driver_mode
3506 ath5k_setup_rate_powertable(struct ath5k_hw
*ah
, u16 max_pwr
,
3507 struct ath5k_rate_pcal_info
*rate_info
,
3512 s16 rate_idx_scaled
= 0;
3514 /* max_pwr is power level we got from driver/user in 0.5dB
3515 * units, switch to 0.25dB units so we can compare */
3517 max_pwr
= min(max_pwr
, (u16
) ah
->ah_txpower
.txp_max_pwr
) / 2;
3519 /* apply rate limits */
3520 rates
= ah
->ah_txpower
.txp_rates_power_table
;
3522 /* OFDM rates 6 to 24Mb/s */
3523 for (i
= 0; i
< 5; i
++)
3524 rates
[i
] = min(max_pwr
, rate_info
->target_power_6to24
);
3526 /* Rest OFDM rates */
3527 rates
[5] = min(rates
[0], rate_info
->target_power_36
);
3528 rates
[6] = min(rates
[0], rate_info
->target_power_48
);
3529 rates
[7] = min(rates
[0], rate_info
->target_power_54
);
3533 rates
[8] = min(rates
[0], rate_info
->target_power_6to24
);
3535 rates
[9] = min(rates
[0], rate_info
->target_power_36
);
3537 rates
[10] = min(rates
[0], rate_info
->target_power_36
);
3539 rates
[11] = min(rates
[0], rate_info
->target_power_48
);
3541 rates
[12] = min(rates
[0], rate_info
->target_power_48
);
3543 rates
[13] = min(rates
[0], rate_info
->target_power_54
);
3545 rates
[14] = min(rates
[0], rate_info
->target_power_54
);
3548 rates
[15] = min(rates
[0], rate_info
->target_power_6to24
);
3550 /* CCK rates have different peak to average ratio
3551 * so we have to tweak their power so that gainf
3552 * correction works ok. For this we use OFDM to
3553 * CCK delta from eeprom */
3554 if ((ee_mode
== AR5K_EEPROM_MODE_11G
) &&
3555 (ah
->ah_phy_revision
< AR5K_SREV_PHY_5212A
))
3556 for (i
= 8; i
<= 15; i
++)
3557 rates
[i
] -= ah
->ah_txpower
.txp_cck_ofdm_gainf_delta
;
3559 /* Save min/max and current tx power for this channel
3562 * Note: We use rates[0] for current tx power because
3563 * it covers most of the rates, in most cases. It's our
3564 * tx power limit and what the user expects to see. */
3565 ah
->ah_txpower
.txp_min_pwr
= 2 * rates
[7];
3566 ah
->ah_txpower
.txp_cur_pwr
= 2 * rates
[0];
3568 /* Set max txpower for correct OFDM operation on all rates
3569 * -that is the txpower for 54Mbit-, it's used for the PAPD
3570 * gain probe and it's in 0.5dB units */
3571 ah
->ah_txpower
.txp_ofdm
= rates
[7];
3573 /* Now that we have all rates setup use table offset to
3574 * match the power range set by user with the power indices
3575 * on PCDAC/PDADC table */
3576 for (i
= 0; i
< 16; i
++) {
3577 rate_idx_scaled
= rates
[i
] + ah
->ah_txpower
.txp_offset
;
3578 /* Don't get out of bounds */
3579 if (rate_idx_scaled
> 63)
3580 rate_idx_scaled
= 63;
3581 if (rate_idx_scaled
< 0)
3582 rate_idx_scaled
= 0;
3583 rates
[i
] = rate_idx_scaled
;
3589 * ath5k_hw_txpower() - Set transmission power limit for a given channel
3590 * @ah: The &struct ath5k_hw
3591 * @channel: The &struct ieee80211_channel
3592 * @txpower: Requested tx power in 0.5dB steps
3594 * Combines all of the above to set the requested tx power limit
3598 ath5k_hw_txpower(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
,
3601 struct ath5k_rate_pcal_info rate_info
;
3602 struct ieee80211_channel
*curr_channel
= ah
->ah_current_channel
;
3607 if (txpower
> AR5K_TUNE_MAX_TXPOWER
) {
3608 ATH5K_ERR(ah
, "invalid tx power: %u\n", txpower
);
3612 ee_mode
= ath5k_eeprom_mode_from_channel(ah
, channel
);
3614 /* Initialize TX power table */
3615 switch (ah
->ah_radio
) {
3620 type
= AR5K_PWRTABLE_PWR_TO_PCDAC
;
3623 type
= AR5K_PWRTABLE_LINEAR_PCDAC
;
3630 type
= AR5K_PWRTABLE_PWR_TO_PDADC
;
3637 * If we don't change channel/mode skip tx powertable calculation
3638 * and use the cached one.
3640 if (!ah
->ah_txpower
.txp_setup
||
3641 (channel
->hw_value
!= curr_channel
->hw_value
) ||
3642 (channel
->center_freq
!= curr_channel
->center_freq
)) {
3643 /* Reset TX power values but preserve requested
3644 * tx power from above */
3645 int requested_txpower
= ah
->ah_txpower
.txp_requested
;
3647 memset(&ah
->ah_txpower
, 0, sizeof(ah
->ah_txpower
));
3649 /* Restore TPC setting and requested tx power */
3650 ah
->ah_txpower
.txp_tpc
= AR5K_TUNE_TPC_TXPOWER
;
3652 ah
->ah_txpower
.txp_requested
= requested_txpower
;
3654 /* Calculate the powertable */
3655 ret
= ath5k_setup_channel_powertable(ah
, channel
,
3661 /* Write table on hw */
3662 ath5k_write_channel_powertable(ah
, ee_mode
, type
);
3664 /* Limit max power if we have a CTL available */
3665 ath5k_get_max_ctl_power(ah
, channel
);
3667 /* FIXME: Antenna reduction stuff */
3669 /* FIXME: Limit power on turbo modes */
3671 /* FIXME: TPC scale reduction */
3673 /* Get surrounding channels for per-rate power table
3675 ath5k_get_rate_pcal_data(ah
, channel
, &rate_info
);
3677 /* Setup rate power table */
3678 ath5k_setup_rate_powertable(ah
, txpower
, &rate_info
, ee_mode
);
3680 /* Write rate power table on hw */
3681 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(3, 24) |
3682 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3683 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1
);
3685 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_OFDM(7, 24) |
3686 AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3687 AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2
);
3689 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(10, 24) |
3690 AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3691 AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3
);
3693 ath5k_hw_reg_write(ah
, AR5K_TXPOWER_CCK(14, 24) |
3694 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3695 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4
);
3697 /* FIXME: TPC support */
3698 if (ah
->ah_txpower
.txp_tpc
) {
3699 ath5k_hw_reg_write(ah
, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE
|
3700 AR5K_TUNE_MAX_TXPOWER
, AR5K_PHY_TXPOWER_RATE_MAX
);
3702 ath5k_hw_reg_write(ah
,
3703 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_ACK
) |
3704 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CTS
) |
3705 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER
, AR5K_TPC_CHIRP
),
3708 ath5k_hw_reg_write(ah
, AR5K_TUNE_MAX_TXPOWER
,
3709 AR5K_PHY_TXPOWER_RATE_MAX
);
3716 * ath5k_hw_set_txpower_limit() - Set txpower limit for the current channel
3717 * @ah: The &struct ath5k_hw
3718 * @txpower: The requested tx power limit in 0.5dB steps
3720 * This function provides access to ath5k_hw_txpower to the driver in
3721 * case user or an application changes it while PHY is running.
3724 ath5k_hw_set_txpower_limit(struct ath5k_hw
*ah
, u8 txpower
)
3726 ATH5K_DBG(ah
, ATH5K_DEBUG_TXPOWER
,
3727 "changing txpower to %d\n", txpower
);
3729 return ath5k_hw_txpower(ah
, ah
->ah_current_channel
, txpower
);
3738 * ath5k_hw_phy_init() - Initialize PHY
3739 * @ah: The &struct ath5k_hw
3740 * @channel: The @struct ieee80211_channel
3741 * @mode: One of enum ath5k_driver_mode
3742 * @fast: Try a fast channel switch instead
3744 * This is the main function used during reset to initialize PHY
3745 * or do a fast channel change if possible.
3747 * NOTE: Do not call this one from the driver, it assumes PHY is in a
3748 * warm reset state !
3751 ath5k_hw_phy_init(struct ath5k_hw
*ah
, struct ieee80211_channel
*channel
,
3754 struct ieee80211_channel
*curr_channel
;
3760 * Sanity check for fast flag
3761 * Don't try fast channel change when changing modulation
3762 * mode/band. We check for chip compatibility on
3765 curr_channel
= ah
->ah_current_channel
;
3766 if (fast
&& (channel
->hw_value
!= curr_channel
->hw_value
))
3770 * On fast channel change we only set the synth parameters
3771 * while PHY is running, enable calibration and skip the rest.
3774 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_RFBUS_REQ
,
3775 AR5K_PHY_RFBUS_REQ_REQUEST
);
3776 for (i
= 0; i
< 100; i
++) {
3777 if (ath5k_hw_reg_read(ah
, AR5K_PHY_RFBUS_GRANT
))
3785 /* Set channel and wait for synth */
3786 ret
= ath5k_hw_channel(ah
, channel
);
3790 ath5k_hw_wait_for_synth(ah
, channel
);
3796 * Note: We need to do that before we set
3797 * RF buffer settings on 5211/5212+ so that we
3798 * properly set curve indices.
3800 ret
= ath5k_hw_txpower(ah
, channel
, ah
->ah_txpower
.txp_requested
?
3801 ah
->ah_txpower
.txp_requested
* 2 :
3802 AR5K_TUNE_MAX_TXPOWER
);
3806 /* Write OFDM timings on 5212*/
3807 if (ah
->ah_version
== AR5K_AR5212
&&
3808 channel
->hw_value
!= AR5K_MODE_11B
) {
3810 ret
= ath5k_hw_write_ofdm_timings(ah
, channel
);
3814 /* Spur info is available only from EEPROM versions
3815 * greater than 5.3, but the EEPROM routines will use
3816 * static values for older versions */
3817 if (ah
->ah_mac_srev
>= AR5K_SREV_AR5424
)
3818 ath5k_hw_set_spur_mitigation_filter(ah
,
3822 /* If we used fast channel switching
3823 * we are done, release RF bus and
3824 * fire up NF calibration.
3826 * Note: Only NF calibration due to
3827 * channel change, not AGC calibration
3828 * since AGC is still running !
3832 * Release RF Bus grant
3834 AR5K_REG_DISABLE_BITS(ah
, AR5K_PHY_RFBUS_REQ
,
3835 AR5K_PHY_RFBUS_REQ_REQUEST
);
3838 * Start NF calibration
3840 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
3841 AR5K_PHY_AGCCTL_NF
);
3847 * For 5210 we do all initialization using
3848 * initvals, so we don't have to modify
3849 * any settings (5210 also only supports
3852 if (ah
->ah_version
!= AR5K_AR5210
) {
3855 * Write initial RF gain settings
3856 * This should work for both 5111/5112
3858 ret
= ath5k_hw_rfgain_init(ah
, channel
->band
);
3862 usleep_range(1000, 1500);
3867 ret
= ath5k_hw_rfregs_init(ah
, channel
, mode
);
3871 /*Enable/disable 802.11b mode on 5111
3872 (enable 2111 frequency converter + CCK)*/
3873 if (ah
->ah_radio
== AR5K_RF5111
) {
3874 if (mode
== AR5K_MODE_11B
)
3875 AR5K_REG_ENABLE_BITS(ah
, AR5K_TXCFG
,
3878 AR5K_REG_DISABLE_BITS(ah
, AR5K_TXCFG
,
3882 } else if (ah
->ah_version
== AR5K_AR5210
) {
3883 usleep_range(1000, 1500);
3884 /* Disable phy and wait */
3885 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_DISABLE
, AR5K_PHY_ACT
);
3886 usleep_range(1000, 1500);
3889 /* Set channel on PHY */
3890 ret
= ath5k_hw_channel(ah
, channel
);
3895 * Enable the PHY and wait until completion
3896 * This includes BaseBand and Synthesizer
3899 ath5k_hw_reg_write(ah
, AR5K_PHY_ACT_ENABLE
, AR5K_PHY_ACT
);
3901 ath5k_hw_wait_for_synth(ah
, channel
);
3904 * Perform ADC test to see if baseband is ready
3905 * Set tx hold and check adc test register
3907 phy_tst1
= ath5k_hw_reg_read(ah
, AR5K_PHY_TST1
);
3908 ath5k_hw_reg_write(ah
, AR5K_PHY_TST1_TXHOLD
, AR5K_PHY_TST1
);
3909 for (i
= 0; i
<= 20; i
++) {
3910 if (!(ath5k_hw_reg_read(ah
, AR5K_PHY_ADC_TEST
) & 0x10))
3912 usleep_range(200, 250);
3914 ath5k_hw_reg_write(ah
, phy_tst1
, AR5K_PHY_TST1
);
3917 * Start automatic gain control calibration
3919 * During AGC calibration RX path is re-routed to
3920 * a power detector so we don't receive anything.
3922 * This method is used to calibrate some static offsets
3923 * used together with on-the fly I/Q calibration (the
3924 * one performed via ath5k_hw_phy_calibrate), which doesn't
3925 * interrupt rx path.
3927 * While rx path is re-routed to the power detector we also
3928 * start a noise floor calibration to measure the
3929 * card's noise floor (the noise we measure when we are not
3930 * transmitting or receiving anything).
3932 * If we are in a noisy environment, AGC calibration may time
3933 * out and/or noise floor calibration might timeout.
3935 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_AGCCTL
,
3936 AR5K_PHY_AGCCTL_CAL
| AR5K_PHY_AGCCTL_NF
);
3938 /* At the same time start I/Q calibration for QAM constellation
3939 * -no need for CCK- */
3940 ah
->ah_iq_cal_needed
= false;
3941 if (!(mode
== AR5K_MODE_11B
)) {
3942 ah
->ah_iq_cal_needed
= true;
3943 AR5K_REG_WRITE_BITS(ah
, AR5K_PHY_IQ
,
3944 AR5K_PHY_IQ_CAL_NUM_LOG_MAX
, 15);
3945 AR5K_REG_ENABLE_BITS(ah
, AR5K_PHY_IQ
,
3949 /* Wait for gain calibration to finish (we check for I/Q calibration
3950 * during ath5k_phy_calibrate) */
3951 if (ath5k_hw_register_timeout(ah
, AR5K_PHY_AGCCTL
,
3952 AR5K_PHY_AGCCTL_CAL
, 0, false)) {
3953 ATH5K_ERR(ah
, "gain calibration timeout (%uMHz)\n",
3954 channel
->center_freq
);
3957 /* Restore antenna mode */
3958 ath5k_hw_set_antenna_mode(ah
, ah
->ah_ant_mode
);