2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
33 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
);
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
40 static void ath9k_hw_set_clockrate(struct ath_hw
*ah
)
42 struct ath_common
*common
= ath9k_hw_common(ah
);
43 struct ath9k_channel
*chan
= ah
->curchan
;
44 unsigned int clockrate
;
46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
))
49 else if (!chan
) /* should really check for CCK instead */
50 clockrate
= ATH9K_CLOCK_RATE_CCK
;
51 else if (IS_CHAN_2GHZ(chan
))
52 clockrate
= ATH9K_CLOCK_RATE_2GHZ_OFDM
;
53 else if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_FASTCLOCK
)
54 clockrate
= ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM
;
56 clockrate
= ATH9K_CLOCK_RATE_5GHZ_OFDM
;
59 if (IS_CHAN_HT40(chan
))
61 if (IS_CHAN_HALF_RATE(chan
))
63 if (IS_CHAN_QUARTER_RATE(chan
))
67 common
->clockrate
= clockrate
;
70 static u32
ath9k_hw_mac_to_clks(struct ath_hw
*ah
, u32 usecs
)
72 struct ath_common
*common
= ath9k_hw_common(ah
);
74 return usecs
* common
->clockrate
;
77 bool ath9k_hw_wait(struct ath_hw
*ah
, u32 reg
, u32 mask
, u32 val
, u32 timeout
)
81 BUG_ON(timeout
< AH_TIME_QUANTUM
);
83 for (i
= 0; i
< (timeout
/ AH_TIME_QUANTUM
); i
++) {
84 if ((REG_READ(ah
, reg
) & mask
) == val
)
87 udelay(AH_TIME_QUANTUM
);
90 ath_dbg(ath9k_hw_common(ah
), ANY
,
91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 timeout
, reg
, REG_READ(ah
, reg
), mask
, val
);
96 EXPORT_SYMBOL(ath9k_hw_wait
);
98 void ath9k_hw_synth_delay(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
103 if (IS_CHAN_HALF_RATE(chan
))
105 else if (IS_CHAN_QUARTER_RATE(chan
))
108 udelay(hw_delay
+ BASE_ACTIVATE_DELAY
);
111 void ath9k_hw_write_array(struct ath_hw
*ah
, const struct ar5416IniArray
*array
,
112 int column
, unsigned int *writecnt
)
116 ENABLE_REGWRITE_BUFFER(ah
);
117 for (r
= 0; r
< array
->ia_rows
; r
++) {
118 REG_WRITE(ah
, INI_RA(array
, r
, 0),
119 INI_RA(array
, r
, column
));
122 REGWRITE_BUFFER_FLUSH(ah
);
125 void ath9k_hw_read_array(struct ath_hw
*ah
, u32 array
[][2], int size
)
127 u32
*tmp_reg_list
, *tmp_data
;
130 tmp_reg_list
= kmalloc_array(size
, sizeof(u32
), GFP_KERNEL
);
132 dev_err(ah
->dev
, "%s: tmp_reg_list: alloc filed\n", __func__
);
136 tmp_data
= kmalloc_array(size
, sizeof(u32
), GFP_KERNEL
);
138 dev_err(ah
->dev
, "%s tmp_data: alloc filed\n", __func__
);
142 for (i
= 0; i
< size
; i
++)
143 tmp_reg_list
[i
] = array
[i
][0];
145 REG_READ_MULTI(ah
, tmp_reg_list
, tmp_data
, size
);
147 for (i
= 0; i
< size
; i
++)
148 array
[i
][1] = tmp_data
[i
];
155 u32
ath9k_hw_reverse_bits(u32 val
, u32 n
)
160 for (i
= 0, retval
= 0; i
< n
; i
++) {
161 retval
= (retval
<< 1) | (val
& 1);
167 u16
ath9k_hw_computetxtime(struct ath_hw
*ah
,
169 u32 frameLen
, u16 rateix
,
172 u32 bitsPerSymbol
, numBits
, numSymbols
, phyTime
, txTime
;
178 case WLAN_RC_PHY_CCK
:
179 phyTime
= CCK_PREAMBLE_BITS
+ CCK_PLCP_BITS
;
182 numBits
= frameLen
<< 3;
183 txTime
= CCK_SIFS_TIME
+ phyTime
+ ((numBits
* 1000) / kbps
);
185 case WLAN_RC_PHY_OFDM
:
186 if (ah
->curchan
&& IS_CHAN_QUARTER_RATE(ah
->curchan
)) {
188 ((kbps
>> 2) * OFDM_SYMBOL_TIME_QUARTER
) / 1000;
189 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
190 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
191 txTime
= OFDM_SIFS_TIME_QUARTER
192 + OFDM_PREAMBLE_TIME_QUARTER
193 + (numSymbols
* OFDM_SYMBOL_TIME_QUARTER
);
194 } else if (ah
->curchan
&&
195 IS_CHAN_HALF_RATE(ah
->curchan
)) {
197 ((kbps
>> 1) * OFDM_SYMBOL_TIME_HALF
) / 1000;
198 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
199 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
200 txTime
= OFDM_SIFS_TIME_HALF
+
201 OFDM_PREAMBLE_TIME_HALF
202 + (numSymbols
* OFDM_SYMBOL_TIME_HALF
);
204 bitsPerSymbol
= (kbps
* OFDM_SYMBOL_TIME
) / 1000;
205 numBits
= OFDM_PLCP_BITS
+ (frameLen
<< 3);
206 numSymbols
= DIV_ROUND_UP(numBits
, bitsPerSymbol
);
207 txTime
= OFDM_SIFS_TIME
+ OFDM_PREAMBLE_TIME
208 + (numSymbols
* OFDM_SYMBOL_TIME
);
212 ath_err(ath9k_hw_common(ah
),
213 "Unknown phy %u (rate ix %u)\n", phy
, rateix
);
220 EXPORT_SYMBOL(ath9k_hw_computetxtime
);
222 void ath9k_hw_get_channel_centers(struct ath_hw
*ah
,
223 struct ath9k_channel
*chan
,
224 struct chan_centers
*centers
)
228 if (!IS_CHAN_HT40(chan
)) {
229 centers
->ctl_center
= centers
->ext_center
=
230 centers
->synth_center
= chan
->channel
;
234 if (IS_CHAN_HT40PLUS(chan
)) {
235 centers
->synth_center
=
236 chan
->channel
+ HT40_CHANNEL_CENTER_SHIFT
;
239 centers
->synth_center
=
240 chan
->channel
- HT40_CHANNEL_CENTER_SHIFT
;
244 centers
->ctl_center
=
245 centers
->synth_center
- (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
246 /* 25 MHz spacing is supported by hw but not on upper layers */
247 centers
->ext_center
=
248 centers
->synth_center
+ (extoff
* HT40_CHANNEL_CENTER_SHIFT
);
255 static bool ath9k_hw_read_revisions(struct ath_hw
*ah
)
260 if (ah
->get_mac_revision
)
261 ah
->hw_version
.macRev
= ah
->get_mac_revision();
263 switch (ah
->hw_version
.devid
) {
264 case AR5416_AR9100_DEVID
:
265 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9100
;
267 case AR9300_DEVID_AR9330
:
268 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9330
;
269 if (!ah
->get_mac_revision
) {
270 val
= REG_READ(ah
, AR_SREV
);
271 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
274 case AR9300_DEVID_AR9340
:
275 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9340
;
277 case AR9300_DEVID_QCA955X
:
278 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9550
;
280 case AR9300_DEVID_AR953X
:
281 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9531
;
283 case AR9300_DEVID_QCA956X
:
284 ah
->hw_version
.macVersion
= AR_SREV_VERSION_9561
;
288 srev
= REG_READ(ah
, AR_SREV
);
291 ath_err(ath9k_hw_common(ah
),
292 "Failed to read SREV register");
296 val
= srev
& AR_SREV_ID
;
300 ah
->hw_version
.macVersion
=
301 (val
& AR_SREV_VERSION2
) >> AR_SREV_TYPE2_S
;
302 ah
->hw_version
.macRev
= MS(val
, AR_SREV_REVISION2
);
304 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
305 ah
->is_pciexpress
= true;
307 ah
->is_pciexpress
= (val
&
308 AR_SREV_TYPE2_HOST_MODE
) ? 0 : 1;
310 if (!AR_SREV_9100(ah
))
311 ah
->hw_version
.macVersion
= MS(val
, AR_SREV_VERSION
);
313 ah
->hw_version
.macRev
= val
& AR_SREV_REVISION
;
315 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCIE
)
316 ah
->is_pciexpress
= true;
322 /************************************/
323 /* HW Attach, Detach, Init Routines */
324 /************************************/
326 static void ath9k_hw_disablepcie(struct ath_hw
*ah
)
328 if (!AR_SREV_5416(ah
))
331 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x9248fc00);
332 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x24924924);
333 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x28000029);
334 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x57160824);
335 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x25980579);
336 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x00000000);
337 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x1aaabe40);
338 REG_WRITE(ah
, AR_PCIE_SERDES
, 0xbe105554);
339 REG_WRITE(ah
, AR_PCIE_SERDES
, 0x000e1007);
341 REG_WRITE(ah
, AR_PCIE_SERDES2
, 0x00000000);
344 /* This should work for all families including legacy */
345 static bool ath9k_hw_chip_test(struct ath_hw
*ah
)
347 struct ath_common
*common
= ath9k_hw_common(ah
);
348 u32 regAddr
[2] = { AR_STA_ID0
};
350 static const u32 patternData
[4] = {
351 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
355 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
357 regAddr
[1] = AR_PHY_BASE
+ (8 << 2);
361 for (i
= 0; i
< loop_max
; i
++) {
362 u32 addr
= regAddr
[i
];
365 regHold
[i
] = REG_READ(ah
, addr
);
366 for (j
= 0; j
< 0x100; j
++) {
367 wrData
= (j
<< 16) | j
;
368 REG_WRITE(ah
, addr
, wrData
);
369 rdData
= REG_READ(ah
, addr
);
370 if (rdData
!= wrData
) {
372 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
373 addr
, wrData
, rdData
);
377 for (j
= 0; j
< 4; j
++) {
378 wrData
= patternData
[j
];
379 REG_WRITE(ah
, addr
, wrData
);
380 rdData
= REG_READ(ah
, addr
);
381 if (wrData
!= rdData
) {
383 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
384 addr
, wrData
, rdData
);
388 REG_WRITE(ah
, regAddr
[i
], regHold
[i
]);
395 static void ath9k_hw_init_config(struct ath_hw
*ah
)
397 struct ath_common
*common
= ath9k_hw_common(ah
);
399 ah
->config
.dma_beacon_response_time
= 1;
400 ah
->config
.sw_beacon_response_time
= 6;
401 ah
->config
.cwm_ignore_extcca
= false;
402 ah
->config
.analog_shiftreg
= 1;
404 ah
->config
.rx_intr_mitigation
= true;
406 if (AR_SREV_9300_20_OR_LATER(ah
)) {
407 ah
->config
.rimt_last
= 500;
408 ah
->config
.rimt_first
= 2000;
410 ah
->config
.rimt_last
= 250;
411 ah
->config
.rimt_first
= 700;
414 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
))
415 ah
->config
.pll_pwrsave
= 7;
418 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420 * This means we use it for all AR5416 devices, and the few
421 * minor PCI AR9280 devices out there.
423 * Serialization is required because these devices do not handle
424 * well the case of two concurrent reads/writes due to the latency
425 * involved. During one read/write another read/write can be issued
426 * on another CPU while the previous read/write may still be working
427 * on our hardware, if we hit this case the hardware poops in a loop.
428 * We prevent this by serializing reads and writes.
430 * This issue is not present on PCI-Express devices or pre-AR5416
431 * devices (legacy, 802.11abg).
433 if (num_possible_cpus() > 1)
434 ah
->config
.serialize_regmode
= SER_REG_MODE_AUTO
;
436 if (NR_CPUS
> 1 && ah
->config
.serialize_regmode
== SER_REG_MODE_AUTO
) {
437 if (ah
->hw_version
.macVersion
== AR_SREV_VERSION_5416_PCI
||
438 ((AR_SREV_9160(ah
) || AR_SREV_9280(ah
) || AR_SREV_9287(ah
)) &&
439 !ah
->is_pciexpress
)) {
440 ah
->config
.serialize_regmode
= SER_REG_MODE_ON
;
442 ah
->config
.serialize_regmode
= SER_REG_MODE_OFF
;
446 ath_dbg(common
, RESET
, "serialize_regmode is %d\n",
447 ah
->config
.serialize_regmode
);
449 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
450 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
>> 1;
452 ah
->config
.max_txtrig_level
= MAX_TX_FIFO_THRESHOLD
;
455 static void ath9k_hw_init_defaults(struct ath_hw
*ah
)
457 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
459 regulatory
->country_code
= CTRY_DEFAULT
;
460 regulatory
->power_limit
= MAX_COMBINED_POWER
;
462 ah
->hw_version
.magic
= AR5416_MAGIC
;
463 ah
->hw_version
.subvendorid
= 0;
465 ah
->sta_id1_defaults
= AR_STA_ID1_CRPT_MIC_ENABLE
|
466 AR_STA_ID1_MCAST_KSRCH
;
467 if (AR_SREV_9100(ah
))
468 ah
->sta_id1_defaults
|= AR_STA_ID1_AR9100_BA_FIX
;
471 ah
->globaltxtimeout
= (u32
) -1;
472 ah
->power_mode
= ATH9K_PM_UNDEFINED
;
473 ah
->htc_reset_init
= true;
475 ah
->tpc_enabled
= false;
477 ah
->ani_function
= ATH9K_ANI_ALL
;
478 if (!AR_SREV_9300_20_OR_LATER(ah
))
479 ah
->ani_function
&= ~ATH9K_ANI_MRC_CCK
;
481 if (AR_SREV_9285(ah
) || AR_SREV_9271(ah
))
482 ah
->tx_trig_level
= (AR_FTRIG_256B
>> AR_FTRIG_S
);
484 ah
->tx_trig_level
= (AR_FTRIG_512B
>> AR_FTRIG_S
);
487 static void ath9k_hw_init_macaddr(struct ath_hw
*ah
)
489 struct ath_common
*common
= ath9k_hw_common(ah
);
492 static const u32 EEP_MAC
[] = { EEP_MAC_LSW
, EEP_MAC_MID
, EEP_MAC_MSW
};
494 /* MAC address may already be loaded via ath9k_platform_data */
495 if (is_valid_ether_addr(common
->macaddr
))
498 for (i
= 0; i
< 3; i
++) {
499 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_MAC
[i
]);
500 common
->macaddr
[2 * i
] = eeval
>> 8;
501 common
->macaddr
[2 * i
+ 1] = eeval
& 0xff;
504 if (is_valid_ether_addr(common
->macaddr
))
507 ath_err(common
, "eeprom contains invalid mac address: %pM\n",
510 eth_random_addr(common
->macaddr
);
511 ath_err(common
, "random mac address will be used: %pM\n",
517 static int ath9k_hw_post_init(struct ath_hw
*ah
)
519 struct ath_common
*common
= ath9k_hw_common(ah
);
522 if (common
->bus_ops
->ath_bus_type
!= ATH_USB
) {
523 if (!ath9k_hw_chip_test(ah
))
527 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
528 ecode
= ar9002_hw_rf_claim(ah
);
533 ecode
= ath9k_hw_eeprom_init(ah
);
537 ath_dbg(ath9k_hw_common(ah
), CONFIG
, "Eeprom VER: %d, REV: %d\n",
538 ah
->eep_ops
->get_eeprom_ver(ah
),
539 ah
->eep_ops
->get_eeprom_rev(ah
));
541 ath9k_hw_ani_init(ah
);
544 * EEPROM needs to be initialized before we do this.
545 * This is required for regulatory compliance.
547 if (AR_SREV_9300_20_OR_LATER(ah
)) {
548 u16 regdmn
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
549 if ((regdmn
& 0xF0) == CTL_FCC
) {
550 ah
->nf_2g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ
;
551 ah
->nf_5g
.max
= AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ
;
558 static int ath9k_hw_attach_ops(struct ath_hw
*ah
)
560 if (!AR_SREV_9300_20_OR_LATER(ah
))
561 return ar9002_hw_attach_ops(ah
);
563 ar9003_hw_attach_ops(ah
);
567 /* Called for all hardware families */
568 static int __ath9k_hw_init(struct ath_hw
*ah
)
570 struct ath_common
*common
= ath9k_hw_common(ah
);
573 if (!ath9k_hw_read_revisions(ah
)) {
574 ath_err(common
, "Could not read hardware revisions");
578 switch (ah
->hw_version
.macVersion
) {
579 case AR_SREV_VERSION_5416_PCI
:
580 case AR_SREV_VERSION_5416_PCIE
:
581 case AR_SREV_VERSION_9160
:
582 case AR_SREV_VERSION_9100
:
583 case AR_SREV_VERSION_9280
:
584 case AR_SREV_VERSION_9285
:
585 case AR_SREV_VERSION_9287
:
586 case AR_SREV_VERSION_9271
:
587 case AR_SREV_VERSION_9300
:
588 case AR_SREV_VERSION_9330
:
589 case AR_SREV_VERSION_9485
:
590 case AR_SREV_VERSION_9340
:
591 case AR_SREV_VERSION_9462
:
592 case AR_SREV_VERSION_9550
:
593 case AR_SREV_VERSION_9565
:
594 case AR_SREV_VERSION_9531
:
595 case AR_SREV_VERSION_9561
:
599 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
600 ah
->hw_version
.macVersion
, ah
->hw_version
.macRev
);
605 * Read back AR_WA into a permanent copy and set bits 14 and 17.
606 * We need to do this to avoid RMW of this register. We cannot
607 * read the reg when chip is asleep.
609 if (AR_SREV_9300_20_OR_LATER(ah
)) {
610 ah
->WARegVal
= REG_READ(ah
, AR_WA
);
611 ah
->WARegVal
|= (AR_WA_D3_L1_DISABLE
|
612 AR_WA_ASPM_TIMER_BASED_DISABLE
);
615 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
616 ath_err(common
, "Couldn't reset chip\n");
620 if (AR_SREV_9565(ah
)) {
621 ah
->WARegVal
|= AR_WA_BIT22
;
622 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
625 ath9k_hw_init_defaults(ah
);
626 ath9k_hw_init_config(ah
);
628 r
= ath9k_hw_attach_ops(ah
);
632 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
)) {
633 ath_err(common
, "Couldn't wakeup chip\n");
637 if (AR_SREV_9271(ah
) || AR_SREV_9100(ah
) || AR_SREV_9340(ah
) ||
638 AR_SREV_9330(ah
) || AR_SREV_9550(ah
))
639 ah
->is_pciexpress
= false;
641 ah
->hw_version
.phyRev
= REG_READ(ah
, AR_PHY_CHIP_ID
);
642 ath9k_hw_init_cal_settings(ah
);
644 if (!ah
->is_pciexpress
)
645 ath9k_hw_disablepcie(ah
);
647 r
= ath9k_hw_post_init(ah
);
651 ath9k_hw_init_mode_gain_regs(ah
);
652 r
= ath9k_hw_fill_cap_info(ah
);
656 ath9k_hw_init_macaddr(ah
);
657 ath9k_hw_init_hang_checks(ah
);
659 common
->state
= ATH_HW_INITIALIZED
;
664 int ath9k_hw_init(struct ath_hw
*ah
)
667 struct ath_common
*common
= ath9k_hw_common(ah
);
669 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
670 switch (ah
->hw_version
.devid
) {
671 case AR5416_DEVID_PCI
:
672 case AR5416_DEVID_PCIE
:
673 case AR5416_AR9100_DEVID
:
674 case AR9160_DEVID_PCI
:
675 case AR9280_DEVID_PCI
:
676 case AR9280_DEVID_PCIE
:
677 case AR9285_DEVID_PCIE
:
678 case AR9287_DEVID_PCI
:
679 case AR9287_DEVID_PCIE
:
680 case AR2427_DEVID_PCIE
:
681 case AR9300_DEVID_PCIE
:
682 case AR9300_DEVID_AR9485_PCIE
:
683 case AR9300_DEVID_AR9330
:
684 case AR9300_DEVID_AR9340
:
685 case AR9300_DEVID_QCA955X
:
686 case AR9300_DEVID_AR9580
:
687 case AR9300_DEVID_AR9462
:
688 case AR9485_DEVID_AR1111
:
689 case AR9300_DEVID_AR9565
:
690 case AR9300_DEVID_AR953X
:
691 case AR9300_DEVID_QCA956X
:
694 if (common
->bus_ops
->ath_bus_type
== ATH_USB
)
696 ath_err(common
, "Hardware device ID 0x%04x not supported\n",
697 ah
->hw_version
.devid
);
701 ret
= __ath9k_hw_init(ah
);
704 "Unable to initialize hardware; initialization status: %d\n",
713 EXPORT_SYMBOL(ath9k_hw_init
);
715 static void ath9k_hw_init_qos(struct ath_hw
*ah
)
717 ENABLE_REGWRITE_BUFFER(ah
);
719 REG_WRITE(ah
, AR_MIC_QOS_CONTROL
, 0x100aa);
720 REG_WRITE(ah
, AR_MIC_QOS_SELECT
, 0x3210);
722 REG_WRITE(ah
, AR_QOS_NO_ACK
,
723 SM(2, AR_QOS_NO_ACK_TWO_BIT
) |
724 SM(5, AR_QOS_NO_ACK_BIT_OFF
) |
725 SM(0, AR_QOS_NO_ACK_BYTE_OFF
));
727 REG_WRITE(ah
, AR_TXOP_X
, AR_TXOP_X_VAL
);
728 REG_WRITE(ah
, AR_TXOP_0_3
, 0xFFFFFFFF);
729 REG_WRITE(ah
, AR_TXOP_4_7
, 0xFFFFFFFF);
730 REG_WRITE(ah
, AR_TXOP_8_11
, 0xFFFFFFFF);
731 REG_WRITE(ah
, AR_TXOP_12_15
, 0xFFFFFFFF);
733 REGWRITE_BUFFER_FLUSH(ah
);
736 u32
ar9003_get_pll_sqsum_dvc(struct ath_hw
*ah
)
738 struct ath_common
*common
= ath9k_hw_common(ah
);
741 REG_CLR_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
743 REG_SET_BIT(ah
, PLL3
, PLL3_DO_MEAS_MASK
);
745 while ((REG_READ(ah
, PLL4
) & PLL4_MEAS_DONE
) == 0) {
749 if (WARN_ON_ONCE(i
>= 100)) {
750 ath_err(common
, "PLL4 measurement not done\n");
757 return (REG_READ(ah
, PLL3
) & SQSUM_DVC_MASK
) >> 3;
759 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc
);
761 static void ath9k_hw_init_pll(struct ath_hw
*ah
,
762 struct ath9k_channel
*chan
)
766 pll
= ath9k_hw_compute_pll_control(ah
, chan
);
768 if (AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
769 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
770 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
771 AR_CH0_BB_DPLL2_PLL_PWD
, 0x1);
772 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
773 AR_CH0_DPLL2_KD
, 0x40);
774 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
775 AR_CH0_DPLL2_KI
, 0x4);
777 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
778 AR_CH0_BB_DPLL1_REFDIV
, 0x5);
779 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
780 AR_CH0_BB_DPLL1_NINI
, 0x58);
781 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL1
,
782 AR_CH0_BB_DPLL1_NFRAC
, 0x0);
784 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
785 AR_CH0_BB_DPLL2_OUTDIV
, 0x1);
786 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
787 AR_CH0_BB_DPLL2_LOCAL_PLL
, 0x1);
788 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
789 AR_CH0_BB_DPLL2_EN_NEGTRIG
, 0x1);
791 /* program BB PLL phase_shift to 0x6 */
792 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
793 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x6);
795 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
,
796 AR_CH0_BB_DPLL2_PLL_PWD
, 0x0);
798 } else if (AR_SREV_9330(ah
)) {
799 u32 ddr_dpll2
, pll_control2
, kd
;
801 if (ah
->is_clk_25mhz
) {
802 ddr_dpll2
= 0x18e82f01;
803 pll_control2
= 0xe04a3d;
806 ddr_dpll2
= 0x19e82f01;
807 pll_control2
= 0x886666;
811 /* program DDR PLL ki and kd value */
812 REG_WRITE(ah
, AR_CH0_DDR_DPLL2
, ddr_dpll2
);
814 /* program DDR PLL phase_shift */
815 REG_RMW_FIELD(ah
, AR_CH0_DDR_DPLL3
,
816 AR_CH0_DPLL3_PHASE_SHIFT
, 0x1);
818 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
,
819 pll
| AR_RTC_9300_PLL_BYPASS
);
822 /* program refdiv, nint, frac to RTC register */
823 REG_WRITE(ah
, AR_RTC_PLL_CONTROL2
, pll_control2
);
825 /* program BB PLL kd and ki value */
826 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KD
, kd
);
827 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL2
, AR_CH0_DPLL2_KI
, 0x06);
829 /* program BB PLL phase_shift */
830 REG_RMW_FIELD(ah
, AR_CH0_BB_DPLL3
,
831 AR_CH0_BB_DPLL3_PHASE_SHIFT
, 0x1);
832 } else if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
834 u32 regval
, pll2_divint
, pll2_divfrac
, refdiv
;
836 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
,
837 pll
| AR_RTC_9300_SOC_PLL_BYPASS
);
840 REG_SET_BIT(ah
, AR_PHY_PLL_MODE
, 0x1 << 16);
843 if (ah
->is_clk_25mhz
) {
844 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
846 pll2_divfrac
= 0xa3d2;
850 pll2_divfrac
= 0x1eb85;
854 if (AR_SREV_9340(ah
)) {
860 pll2_divfrac
= (AR_SREV_9531(ah
) ||
867 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
868 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
869 regval
|= (0x1 << 22);
871 regval
|= (0x1 << 16);
872 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
875 REG_WRITE(ah
, AR_PHY_PLL_CONTROL
, (refdiv
<< 27) |
876 (pll2_divint
<< 18) | pll2_divfrac
);
879 regval
= REG_READ(ah
, AR_PHY_PLL_MODE
);
880 if (AR_SREV_9340(ah
))
881 regval
= (regval
& 0x80071fff) |
886 else if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
)) {
887 regval
= (regval
& 0x01c00fff) |
893 if (AR_SREV_9531(ah
))
894 regval
|= (0x6 << 12);
896 regval
= (regval
& 0x80071fff) |
901 REG_WRITE(ah
, AR_PHY_PLL_MODE
, regval
);
903 if (AR_SREV_9531(ah
) || AR_SREV_9561(ah
))
904 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
905 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xffbfffff);
907 REG_WRITE(ah
, AR_PHY_PLL_MODE
,
908 REG_READ(ah
, AR_PHY_PLL_MODE
) & 0xfffeffff);
913 if (AR_SREV_9565(ah
))
915 REG_WRITE(ah
, AR_RTC_PLL_CONTROL
, pll
);
917 if (AR_SREV_9485(ah
) || AR_SREV_9340(ah
) || AR_SREV_9330(ah
) ||
921 /* Switch the core clock for ar9271 to 117Mhz */
922 if (AR_SREV_9271(ah
)) {
924 REG_WRITE(ah
, 0x50040, 0x304);
927 udelay(RTC_PLL_SETTLE_DELAY
);
929 REG_WRITE(ah
, AR_RTC_SLEEP_CLK
, AR_RTC_FORCE_DERIVED_CLK
);
932 static void ath9k_hw_init_interrupt_masks(struct ath_hw
*ah
,
933 enum nl80211_iftype opmode
)
935 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
936 u32 imr_reg
= AR_IMR_TXERR
|
943 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
945 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
947 if (AR_SREV_9300_20_OR_LATER(ah
)) {
948 imr_reg
|= AR_IMR_RXOK_HP
;
949 if (ah
->config
.rx_intr_mitigation
) {
950 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
951 msi_cfg
|= AR_INTCFG_MSI_RXINTM
| AR_INTCFG_MSI_RXMINTR
;
953 imr_reg
|= AR_IMR_RXOK_LP
;
954 msi_cfg
|= AR_INTCFG_MSI_RXOK
;
957 if (ah
->config
.rx_intr_mitigation
) {
958 imr_reg
|= AR_IMR_RXINTM
| AR_IMR_RXMINTR
;
959 msi_cfg
|= AR_INTCFG_MSI_RXINTM
| AR_INTCFG_MSI_RXMINTR
;
961 imr_reg
|= AR_IMR_RXOK
;
962 msi_cfg
|= AR_INTCFG_MSI_RXOK
;
966 if (ah
->config
.tx_intr_mitigation
) {
967 imr_reg
|= AR_IMR_TXINTM
| AR_IMR_TXMINTR
;
968 msi_cfg
|= AR_INTCFG_MSI_TXINTM
| AR_INTCFG_MSI_TXMINTR
;
970 imr_reg
|= AR_IMR_TXOK
;
971 msi_cfg
|= AR_INTCFG_MSI_TXOK
;
974 ENABLE_REGWRITE_BUFFER(ah
);
976 REG_WRITE(ah
, AR_IMR
, imr_reg
);
977 ah
->imrs2_reg
|= AR_IMR_S2_GTT
;
978 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
980 if (ah
->msi_enabled
) {
981 ah
->msi_reg
= REG_READ(ah
, AR_PCIE_MSI
);
982 ah
->msi_reg
|= AR_PCIE_MSI_HW_DBI_WR_EN
;
983 ah
->msi_reg
&= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64
;
984 REG_WRITE(ah
, AR_INTCFG
, msi_cfg
);
985 ath_dbg(ath9k_hw_common(ah
), ANY
,
986 "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
987 REG_READ(ah
, AR_INTCFG
), msi_cfg
);
990 if (!AR_SREV_9100(ah
)) {
991 REG_WRITE(ah
, AR_INTR_SYNC_CAUSE
, 0xFFFFFFFF);
992 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
993 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, 0);
996 REGWRITE_BUFFER_FLUSH(ah
);
998 if (AR_SREV_9300_20_OR_LATER(ah
)) {
999 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
1000 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, 0);
1001 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_ENABLE
, 0);
1002 REG_WRITE(ah
, AR_INTR_PRIO_SYNC_MASK
, 0);
1006 static void ath9k_hw_set_sifs_time(struct ath_hw
*ah
, u32 us
)
1008 u32 val
= ath9k_hw_mac_to_clks(ah
, us
- 2);
1009 val
= min(val
, (u32
) 0xFFFF);
1010 REG_WRITE(ah
, AR_D_GBL_IFS_SIFS
, val
);
1013 void ath9k_hw_setslottime(struct ath_hw
*ah
, u32 us
)
1015 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1016 val
= min(val
, (u32
) 0xFFFF);
1017 REG_WRITE(ah
, AR_D_GBL_IFS_SLOT
, val
);
1020 void ath9k_hw_set_ack_timeout(struct ath_hw
*ah
, u32 us
)
1022 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1023 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_ACK
));
1024 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_ACK
, val
);
1027 void ath9k_hw_set_cts_timeout(struct ath_hw
*ah
, u32 us
)
1029 u32 val
= ath9k_hw_mac_to_clks(ah
, us
);
1030 val
= min(val
, (u32
) MS(0xFFFFFFFF, AR_TIME_OUT_CTS
));
1031 REG_RMW_FIELD(ah
, AR_TIME_OUT
, AR_TIME_OUT_CTS
, val
);
1034 static bool ath9k_hw_set_global_txtimeout(struct ath_hw
*ah
, u32 tu
)
1037 ath_dbg(ath9k_hw_common(ah
), XMIT
, "bad global tx timeout %u\n",
1039 ah
->globaltxtimeout
= (u32
) -1;
1042 REG_RMW_FIELD(ah
, AR_GTXTO
, AR_GTXTO_TIMEOUT_LIMIT
, tu
);
1043 ah
->globaltxtimeout
= tu
;
1048 void ath9k_hw_init_global_settings(struct ath_hw
*ah
)
1050 struct ath_common
*common
= ath9k_hw_common(ah
);
1051 const struct ath9k_channel
*chan
= ah
->curchan
;
1052 int acktimeout
, ctstimeout
, ack_offset
= 0;
1055 int rx_lat
= 0, tx_lat
= 0, eifs
= 0, ack_shift
= 0;
1058 ath_dbg(ath9k_hw_common(ah
), RESET
, "ah->misc_mode 0x%x\n",
1064 if (ah
->misc_mode
!= 0)
1065 REG_SET_BIT(ah
, AR_PCU_MISC
, ah
->misc_mode
);
1067 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1073 if (IS_CHAN_5GHZ(chan
))
1078 if (IS_CHAN_HALF_RATE(chan
)) {
1082 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1089 } else if (IS_CHAN_QUARTER_RATE(chan
)) {
1091 rx_lat
= (rx_lat
* 4) - 1;
1093 if (IS_CHAN_A_FAST_CLOCK(ah
, chan
))
1101 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
1102 eifs
= AR_D_GBL_IFS_EIFS_ASYNC_FIFO
;
1103 reg
= AR_USEC_ASYNC_FIFO
;
1105 eifs
= REG_READ(ah
, AR_D_GBL_IFS_EIFS
)/
1107 reg
= REG_READ(ah
, AR_USEC
);
1109 rx_lat
= MS(reg
, AR_USEC_RX_LAT
);
1110 tx_lat
= MS(reg
, AR_USEC_TX_LAT
);
1112 slottime
= ah
->slottime
;
1115 /* As defined by IEEE 802.11-2007 17.3.8.6 */
1116 slottime
+= 3 * ah
->coverage_class
;
1117 acktimeout
= slottime
+ sifstime
+ ack_offset
;
1118 ctstimeout
= acktimeout
;
1121 * Workaround for early ACK timeouts, add an offset to match the
1122 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1123 * This was initially only meant to work around an issue with delayed
1124 * BA frames in some implementations, but it has been found to fix ACK
1125 * timeout issues in other cases as well.
1127 if (IS_CHAN_2GHZ(chan
) &&
1128 !IS_CHAN_HALF_RATE(chan
) && !IS_CHAN_QUARTER_RATE(chan
)) {
1129 acktimeout
+= 64 - sifstime
- ah
->slottime
;
1130 ctstimeout
+= 48 - sifstime
- ah
->slottime
;
1133 if (ah
->dynack
.enabled
) {
1134 acktimeout
= ah
->dynack
.ackto
;
1135 ctstimeout
= acktimeout
;
1136 slottime
= (acktimeout
- 3) / 2;
1138 ah
->dynack
.ackto
= acktimeout
;
1141 ath9k_hw_set_sifs_time(ah
, sifstime
);
1142 ath9k_hw_setslottime(ah
, slottime
);
1143 ath9k_hw_set_ack_timeout(ah
, acktimeout
);
1144 ath9k_hw_set_cts_timeout(ah
, ctstimeout
);
1145 if (ah
->globaltxtimeout
!= (u32
) -1)
1146 ath9k_hw_set_global_txtimeout(ah
, ah
->globaltxtimeout
);
1148 REG_WRITE(ah
, AR_D_GBL_IFS_EIFS
, ath9k_hw_mac_to_clks(ah
, eifs
));
1149 REG_RMW(ah
, AR_USEC
,
1150 (common
->clockrate
- 1) |
1151 SM(rx_lat
, AR_USEC_RX_LAT
) |
1152 SM(tx_lat
, AR_USEC_TX_LAT
),
1153 AR_USEC_TX_LAT
| AR_USEC_RX_LAT
| AR_USEC_USEC
);
1155 if (IS_CHAN_HALF_RATE(chan
) || IS_CHAN_QUARTER_RATE(chan
))
1156 REG_RMW(ah
, AR_TXSIFS
,
1157 sifstime
| SM(ack_shift
, AR_TXSIFS_ACK_SHIFT
),
1158 (AR_TXSIFS_TIME
| AR_TXSIFS_ACK_SHIFT
));
1160 EXPORT_SYMBOL(ath9k_hw_init_global_settings
);
1162 void ath9k_hw_deinit(struct ath_hw
*ah
)
1164 struct ath_common
*common
= ath9k_hw_common(ah
);
1166 if (common
->state
< ATH_HW_INITIALIZED
)
1169 ath9k_hw_setpower(ah
, ATH9K_PM_FULL_SLEEP
);
1171 EXPORT_SYMBOL(ath9k_hw_deinit
);
1177 u32
ath9k_regd_get_ctl(struct ath_regulatory
*reg
, struct ath9k_channel
*chan
)
1179 u32 ctl
= ath_regd_get_band_ctl(reg
, chan
->chan
->band
);
1181 if (IS_CHAN_2GHZ(chan
))
1189 /****************************************/
1190 /* Reset and Channel Switching Routines */
1191 /****************************************/
1193 static inline void ath9k_hw_set_dma(struct ath_hw
*ah
)
1195 struct ath_common
*common
= ath9k_hw_common(ah
);
1198 ENABLE_REGWRITE_BUFFER(ah
);
1201 * set AHB_MODE not to do cacheline prefetches
1203 if (!AR_SREV_9300_20_OR_LATER(ah
))
1204 REG_SET_BIT(ah
, AR_AHB_MODE
, AR_AHB_PREFETCH_RD_EN
);
1207 * let mac dma reads be in 128 byte chunks
1209 REG_RMW(ah
, AR_TXCFG
, AR_TXCFG_DMASZ_128B
, AR_TXCFG_DMASZ_MASK
);
1211 REGWRITE_BUFFER_FLUSH(ah
);
1214 * Restore TX Trigger Level to its pre-reset value.
1215 * The initial value depends on whether aggregation is enabled, and is
1216 * adjusted whenever underruns are detected.
1218 if (!AR_SREV_9300_20_OR_LATER(ah
))
1219 REG_RMW_FIELD(ah
, AR_TXCFG
, AR_FTRIG
, ah
->tx_trig_level
);
1221 ENABLE_REGWRITE_BUFFER(ah
);
1224 * let mac dma writes be in 128 byte chunks
1226 REG_RMW(ah
, AR_RXCFG
, AR_RXCFG_DMASZ_128B
, AR_RXCFG_DMASZ_MASK
);
1229 * Setup receive FIFO threshold to hold off TX activities
1231 REG_WRITE(ah
, AR_RXFIFO_CFG
, 0x200);
1233 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1234 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_HP
, 0x1);
1235 REG_RMW_FIELD(ah
, AR_RXBP_THRESH
, AR_RXBP_THRESH_LP
, 0x1);
1237 ath9k_hw_set_rx_bufsize(ah
, common
->rx_bufsize
-
1238 ah
->caps
.rx_status_len
);
1242 * reduce the number of usable entries in PCU TXBUF to avoid
1243 * wrap around issues.
1245 if (AR_SREV_9285(ah
)) {
1246 /* For AR9285 the number of Fifos are reduced to half.
1247 * So set the usable tx buf size also to half to
1248 * avoid data/delimiter underruns
1250 txbuf_size
= AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE
;
1251 } else if (AR_SREV_9340_13_OR_LATER(ah
)) {
1252 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1253 txbuf_size
= AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE
;
1255 txbuf_size
= AR_PCU_TXBUF_CTRL_USABLE_SIZE
;
1258 if (!AR_SREV_9271(ah
))
1259 REG_WRITE(ah
, AR_PCU_TXBUF_CTRL
, txbuf_size
);
1261 REGWRITE_BUFFER_FLUSH(ah
);
1263 if (AR_SREV_9300_20_OR_LATER(ah
))
1264 ath9k_hw_reset_txstatus_ring(ah
);
1267 static void ath9k_hw_set_operating_mode(struct ath_hw
*ah
, int opmode
)
1269 u32 mask
= AR_STA_ID1_STA_AP
| AR_STA_ID1_ADHOC
;
1270 u32 set
= AR_STA_ID1_KSRCH_MODE
;
1272 ENABLE_REG_RMW_BUFFER(ah
);
1274 case NL80211_IFTYPE_ADHOC
:
1275 if (!AR_SREV_9340_13(ah
)) {
1276 set
|= AR_STA_ID1_ADHOC
;
1277 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1281 case NL80211_IFTYPE_OCB
:
1282 case NL80211_IFTYPE_MESH_POINT
:
1283 case NL80211_IFTYPE_AP
:
1284 set
|= AR_STA_ID1_STA_AP
;
1286 case NL80211_IFTYPE_STATION
:
1287 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_AP_ADHOC_INDICATION
);
1290 if (!ah
->is_monitoring
)
1294 REG_RMW(ah
, AR_STA_ID1
, set
, mask
);
1295 REG_RMW_BUFFER_FLUSH(ah
);
1298 void ath9k_hw_get_delta_slope_vals(struct ath_hw
*ah
, u32 coef_scaled
,
1299 u32
*coef_mantissa
, u32
*coef_exponent
)
1301 u32 coef_exp
, coef_man
;
1303 for (coef_exp
= 31; coef_exp
> 0; coef_exp
--)
1304 if ((coef_scaled
>> coef_exp
) & 0x1)
1307 coef_exp
= 14 - (coef_exp
- COEF_SCALE_S
);
1309 coef_man
= coef_scaled
+ (1 << (COEF_SCALE_S
- coef_exp
- 1));
1311 *coef_mantissa
= coef_man
>> (COEF_SCALE_S
- coef_exp
);
1312 *coef_exponent
= coef_exp
- 16;
1316 * call external reset function to reset WMAC if:
1317 * - doing a cold reset
1318 * - we have pending frames in the TX queues.
1320 static bool ath9k_hw_ar9330_reset_war(struct ath_hw
*ah
, int type
)
1324 for (i
= 0; i
< AR_NUM_QCU
; i
++) {
1325 npend
= ath9k_hw_numtxpending(ah
, i
);
1330 if (ah
->external_reset
&&
1331 (npend
|| type
== ATH9K_RESET_COLD
)) {
1334 ath_dbg(ath9k_hw_common(ah
), RESET
,
1335 "reset MAC via external reset\n");
1337 reset_err
= ah
->external_reset();
1339 ath_err(ath9k_hw_common(ah
),
1340 "External reset failed, err=%d\n",
1345 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1351 static bool ath9k_hw_set_reset(struct ath_hw
*ah
, int type
)
1356 if (AR_SREV_9100(ah
)) {
1357 REG_RMW_FIELD(ah
, AR_RTC_DERIVED_CLK
,
1358 AR_RTC_DERIVED_CLK_PERIOD
, 1);
1359 (void)REG_READ(ah
, AR_RTC_DERIVED_CLK
);
1362 ENABLE_REGWRITE_BUFFER(ah
);
1364 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1365 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1369 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1370 AR_RTC_FORCE_WAKE_ON_INT
);
1372 if (AR_SREV_9100(ah
)) {
1373 rst_flags
= AR_RTC_RC_MAC_WARM
| AR_RTC_RC_MAC_COLD
|
1374 AR_RTC_RC_COLD_RESET
| AR_RTC_RC_WARM_RESET
;
1376 tmpReg
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
1377 if (AR_SREV_9340(ah
))
1378 tmpReg
&= AR9340_INTR_SYNC_LOCAL_TIMEOUT
;
1380 tmpReg
&= AR_INTR_SYNC_LOCAL_TIMEOUT
|
1381 AR_INTR_SYNC_RADM_CPL_TIMEOUT
;
1385 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
1388 if (!AR_SREV_9300_20_OR_LATER(ah
))
1390 REG_WRITE(ah
, AR_RC
, val
);
1392 } else if (!AR_SREV_9300_20_OR_LATER(ah
))
1393 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1395 rst_flags
= AR_RTC_RC_MAC_WARM
;
1396 if (type
== ATH9K_RESET_COLD
)
1397 rst_flags
|= AR_RTC_RC_MAC_COLD
;
1400 if (AR_SREV_9330(ah
)) {
1401 if (!ath9k_hw_ar9330_reset_war(ah
, type
))
1405 if (ath9k_hw_mci_is_enabled(ah
))
1406 ar9003_mci_check_gpm_offset(ah
);
1408 /* DMA HALT added to resolve ar9300 and ar9580 bus error during
1411 if (AR_SREV_9300(ah
) || AR_SREV_9580(ah
)) {
1412 REG_SET_BIT(ah
, AR_CFG
, AR_CFG_HALT_REQ
);
1413 ath9k_hw_wait(ah
, AR_CFG
, AR_CFG_HALT_ACK
, AR_CFG_HALT_ACK
,
1414 20 * AH_WAIT_TIMEOUT
);
1415 REG_CLR_BIT(ah
, AR_CFG
, AR_CFG_HALT_REQ
);
1418 REG_WRITE(ah
, AR_RTC_RC
, rst_flags
);
1420 REGWRITE_BUFFER_FLUSH(ah
);
1422 if (AR_SREV_9300_20_OR_LATER(ah
))
1424 else if (AR_SREV_9100(ah
))
1429 REG_WRITE(ah
, AR_RTC_RC
, 0);
1430 if (!ath9k_hw_wait(ah
, AR_RTC_RC
, AR_RTC_RC_M
, 0, AH_WAIT_TIMEOUT
)) {
1431 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC stuck in MAC reset\n");
1435 if (!AR_SREV_9100(ah
))
1436 REG_WRITE(ah
, AR_RC
, 0);
1438 if (AR_SREV_9100(ah
))
1444 static bool ath9k_hw_set_reset_power_on(struct ath_hw
*ah
)
1446 ENABLE_REGWRITE_BUFFER(ah
);
1448 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1449 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1453 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
|
1454 AR_RTC_FORCE_WAKE_ON_INT
);
1456 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1457 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
);
1459 REG_WRITE(ah
, AR_RTC_RESET
, 0);
1461 REGWRITE_BUFFER_FLUSH(ah
);
1465 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
1466 REG_WRITE(ah
, AR_RC
, 0);
1468 REG_WRITE(ah
, AR_RTC_RESET
, 1);
1470 if (!ath9k_hw_wait(ah
,
1475 ath_dbg(ath9k_hw_common(ah
), RESET
, "RTC not waking up\n");
1479 return ath9k_hw_set_reset(ah
, ATH9K_RESET_WARM
);
1482 static bool ath9k_hw_set_reset_reg(struct ath_hw
*ah
, u32 type
)
1486 if (AR_SREV_9300_20_OR_LATER(ah
)) {
1487 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
1491 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
1492 AR_RTC_FORCE_WAKE_EN
| AR_RTC_FORCE_WAKE_ON_INT
);
1494 if (!ah
->reset_power_on
)
1495 type
= ATH9K_RESET_POWER_ON
;
1498 case ATH9K_RESET_POWER_ON
:
1499 ret
= ath9k_hw_set_reset_power_on(ah
);
1501 ah
->reset_power_on
= true;
1503 case ATH9K_RESET_WARM
:
1504 case ATH9K_RESET_COLD
:
1505 ret
= ath9k_hw_set_reset(ah
, type
);
1514 static bool ath9k_hw_chip_reset(struct ath_hw
*ah
,
1515 struct ath9k_channel
*chan
)
1517 int reset_type
= ATH9K_RESET_WARM
;
1519 if (AR_SREV_9280(ah
)) {
1520 if (ah
->eep_ops
->get_eeprom(ah
, EEP_OL_PWRCTRL
))
1521 reset_type
= ATH9K_RESET_POWER_ON
;
1523 reset_type
= ATH9K_RESET_COLD
;
1524 } else if (ah
->chip_fullsleep
|| REG_READ(ah
, AR_Q_TXE
) ||
1525 (REG_READ(ah
, AR_CR
) & AR_CR_RXE
))
1526 reset_type
= ATH9K_RESET_COLD
;
1528 if (!ath9k_hw_set_reset_reg(ah
, reset_type
))
1531 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1534 ah
->chip_fullsleep
= false;
1536 if (AR_SREV_9330(ah
))
1537 ar9003_hw_internal_regulator_apply(ah
);
1538 ath9k_hw_init_pll(ah
, chan
);
1543 static bool ath9k_hw_channel_change(struct ath_hw
*ah
,
1544 struct ath9k_channel
*chan
)
1546 struct ath_common
*common
= ath9k_hw_common(ah
);
1547 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1548 bool band_switch
= false, mode_diff
= false;
1549 u8 ini_reloaded
= 0;
1553 if (pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) {
1554 u32 flags_diff
= chan
->channelFlags
^ ah
->curchan
->channelFlags
;
1555 band_switch
= !!(flags_diff
& CHANNEL_5GHZ
);
1556 mode_diff
= !!(flags_diff
& ~CHANNEL_HT
);
1559 for (qnum
= 0; qnum
< AR_NUM_QCU
; qnum
++) {
1560 if (ath9k_hw_numtxpending(ah
, qnum
)) {
1561 ath_dbg(common
, QUEUE
,
1562 "Transmit frames pending on queue %d\n", qnum
);
1567 if (!ath9k_hw_rfbus_req(ah
)) {
1568 ath_err(common
, "Could not kill baseband RX\n");
1572 if (band_switch
|| mode_diff
) {
1573 ath9k_hw_mark_phy_inactive(ah
);
1577 ath9k_hw_init_pll(ah
, chan
);
1579 if (ath9k_hw_fast_chan_change(ah
, chan
, &ini_reloaded
)) {
1580 ath_err(common
, "Failed to do fast channel change\n");
1585 ath9k_hw_set_channel_regs(ah
, chan
);
1587 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1589 ath_err(common
, "Failed to set channel\n");
1592 ath9k_hw_set_clockrate(ah
);
1593 ath9k_hw_apply_txpower(ah
, chan
, false);
1595 ath9k_hw_set_delta_slope(ah
, chan
);
1596 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1598 if (band_switch
|| ini_reloaded
)
1599 ah
->eep_ops
->set_board_values(ah
, chan
);
1601 ath9k_hw_init_bb(ah
, chan
);
1602 ath9k_hw_rfbus_done(ah
);
1604 if (band_switch
|| ini_reloaded
) {
1605 ah
->ah_flags
|= AH_FASTCC
;
1606 ath9k_hw_init_cal(ah
, chan
);
1607 ah
->ah_flags
&= ~AH_FASTCC
;
1613 static void ath9k_hw_apply_gpio_override(struct ath_hw
*ah
)
1615 u32 gpio_mask
= ah
->gpio_mask
;
1618 for (i
= 0; gpio_mask
; i
++, gpio_mask
>>= 1) {
1619 if (!(gpio_mask
& 1))
1622 ath9k_hw_gpio_request_out(ah
, i
, NULL
,
1623 AR_GPIO_OUTPUT_MUX_AS_OUTPUT
);
1624 ath9k_hw_set_gpio(ah
, i
, !!(ah
->gpio_val
& BIT(i
)));
1625 ath9k_hw_gpio_free(ah
, i
);
1629 void ath9k_hw_check_nav(struct ath_hw
*ah
)
1631 struct ath_common
*common
= ath9k_hw_common(ah
);
1634 val
= REG_READ(ah
, AR_NAV
);
1635 if (val
!= 0xdeadbeef && val
> 0x7fff) {
1636 ath_dbg(common
, BSTUCK
, "Abnormal NAV: 0x%x\n", val
);
1637 REG_WRITE(ah
, AR_NAV
, 0);
1640 EXPORT_SYMBOL(ath9k_hw_check_nav
);
1642 bool ath9k_hw_check_alive(struct ath_hw
*ah
)
1647 /* Check if chip failed to wake up */
1648 if (REG_READ(ah
, AR_CFG
) == 0xdeadbeef)
1651 if (AR_SREV_9300(ah
))
1652 return !ath9k_hw_detect_mac_hang(ah
);
1654 if (AR_SREV_9285_12_OR_LATER(ah
))
1657 last_val
= REG_READ(ah
, AR_OBS_BUS_1
);
1659 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
1660 if (reg
!= last_val
)
1665 if ((reg
& 0x7E7FFFEF) == 0x00702400)
1668 switch (reg
& 0x7E000B00) {
1676 } while (count
-- > 0);
1680 EXPORT_SYMBOL(ath9k_hw_check_alive
);
1682 static void ath9k_hw_init_mfp(struct ath_hw
*ah
)
1684 /* Setup MFP options for CCMP */
1685 if (AR_SREV_9280_20_OR_LATER(ah
)) {
1686 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1687 * frames when constructing CCMP AAD. */
1688 REG_RMW_FIELD(ah
, AR_AES_MUTE_MASK1
, AR_AES_MUTE_MASK1_FC_MGMT
,
1690 if (AR_SREV_9271(ah
) || AR_DEVID_7010(ah
))
1691 ah
->sw_mgmt_crypto_tx
= true;
1693 ah
->sw_mgmt_crypto_tx
= false;
1694 ah
->sw_mgmt_crypto_rx
= false;
1695 } else if (AR_SREV_9160_10_OR_LATER(ah
)) {
1696 /* Disable hardware crypto for management frames */
1697 REG_CLR_BIT(ah
, AR_PCU_MISC_MODE2
,
1698 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE
);
1699 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
1700 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT
);
1701 ah
->sw_mgmt_crypto_tx
= true;
1702 ah
->sw_mgmt_crypto_rx
= true;
1704 ah
->sw_mgmt_crypto_tx
= true;
1705 ah
->sw_mgmt_crypto_rx
= true;
1709 static void ath9k_hw_reset_opmode(struct ath_hw
*ah
,
1710 u32 macStaId1
, u32 saveDefAntenna
)
1712 struct ath_common
*common
= ath9k_hw_common(ah
);
1714 ENABLE_REGWRITE_BUFFER(ah
);
1716 REG_RMW(ah
, AR_STA_ID1
, macStaId1
1717 | AR_STA_ID1_RTS_USE_DEF
1718 | ah
->sta_id1_defaults
,
1719 ~AR_STA_ID1_SADH_MASK
);
1720 ath_hw_setbssidmask(common
);
1721 REG_WRITE(ah
, AR_DEF_ANTENNA
, saveDefAntenna
);
1722 ath9k_hw_write_associd(ah
);
1723 REG_WRITE(ah
, AR_ISR
, ~0);
1724 REG_WRITE(ah
, AR_RSSI_THR
, INIT_RSSI_THR
);
1726 REGWRITE_BUFFER_FLUSH(ah
);
1728 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
1731 static void ath9k_hw_init_queues(struct ath_hw
*ah
)
1735 ENABLE_REGWRITE_BUFFER(ah
);
1737 for (i
= 0; i
< AR_NUM_DCU
; i
++)
1738 REG_WRITE(ah
, AR_DQCUMASK(i
), 1 << i
);
1740 REGWRITE_BUFFER_FLUSH(ah
);
1743 for (i
= 0; i
< ATH9K_NUM_TX_QUEUES
; i
++)
1744 ath9k_hw_resettxqueue(ah
, i
);
1748 * For big endian systems turn on swapping for descriptors
1750 static void ath9k_hw_init_desc(struct ath_hw
*ah
)
1752 struct ath_common
*common
= ath9k_hw_common(ah
);
1754 if (AR_SREV_9100(ah
)) {
1756 mask
= REG_READ(ah
, AR_CFG
);
1757 if (mask
& (AR_CFG_SWRB
| AR_CFG_SWTB
| AR_CFG_SWRG
)) {
1758 ath_dbg(common
, RESET
, "CFG Byte Swap Set 0x%x\n",
1761 mask
= INIT_CONFIG_STATUS
| AR_CFG_SWRB
| AR_CFG_SWTB
;
1762 REG_WRITE(ah
, AR_CFG
, mask
);
1763 ath_dbg(common
, RESET
, "Setting CFG 0x%x\n",
1764 REG_READ(ah
, AR_CFG
));
1767 if (common
->bus_ops
->ath_bus_type
== ATH_USB
) {
1768 /* Configure AR9271 target WLAN */
1769 if (AR_SREV_9271(ah
))
1770 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
);
1772 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1775 else if (AR_SREV_9330(ah
) || AR_SREV_9340(ah
) ||
1776 AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
1778 REG_RMW(ah
, AR_CFG
, AR_CFG_SWRB
| AR_CFG_SWTB
, 0);
1780 REG_WRITE(ah
, AR_CFG
, AR_CFG_SWTD
| AR_CFG_SWRD
);
1786 * Fast channel change:
1787 * (Change synthesizer based on channel freq without resetting chip)
1789 static int ath9k_hw_do_fastcc(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
1791 struct ath_common
*common
= ath9k_hw_common(ah
);
1792 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
1795 if (AR_SREV_9280(ah
) && common
->bus_ops
->ath_bus_type
== ATH_PCI
)
1798 if (ah
->chip_fullsleep
)
1804 if (chan
->channel
== ah
->curchan
->channel
)
1807 if ((ah
->curchan
->channelFlags
| chan
->channelFlags
) &
1808 (CHANNEL_HALF
| CHANNEL_QUARTER
))
1812 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1814 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_FCC_BAND_SWITCH
) &&
1815 ((chan
->channelFlags
^ ah
->curchan
->channelFlags
) & ~CHANNEL_HT
))
1818 if (!ath9k_hw_check_alive(ah
))
1822 * For AR9462, make sure that calibration data for
1823 * re-using are present.
1825 if (AR_SREV_9462(ah
) && (ah
->caldata
&&
1826 (!test_bit(TXIQCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1827 !test_bit(TXCLCAL_DONE
, &ah
->caldata
->cal_flags
) ||
1828 !test_bit(RTT_DONE
, &ah
->caldata
->cal_flags
))))
1831 ath_dbg(common
, RESET
, "FastChannelChange for %d -> %d\n",
1832 ah
->curchan
->channel
, chan
->channel
);
1834 ret
= ath9k_hw_channel_change(ah
, chan
);
1838 if (ath9k_hw_mci_is_enabled(ah
))
1839 ar9003_mci_2g5g_switch(ah
, false);
1841 ath9k_hw_loadnf(ah
, ah
->curchan
);
1842 ath9k_hw_start_nfcal(ah
, true);
1844 if (AR_SREV_9271(ah
))
1845 ar9002_hw_load_ani_reg(ah
, chan
);
1852 u32
ath9k_hw_get_tsf_offset(struct timespec64
*last
, struct timespec64
*cur
)
1854 struct timespec64 ts
;
1858 ktime_get_raw_ts64(&ts
);
1862 usec
= cur
->tv_sec
* 1000000ULL + cur
->tv_nsec
/ 1000;
1863 usec
-= last
->tv_sec
* 1000000ULL + last
->tv_nsec
/ 1000;
1867 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset
);
1869 int ath9k_hw_reset(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
1870 struct ath9k_hw_cal_data
*caldata
, bool fastcc
)
1872 struct ath_common
*common
= ath9k_hw_common(ah
);
1876 struct timespec64 tsf_ts
;
1880 bool start_mci_reset
= false;
1881 bool save_fullsleep
= ah
->chip_fullsleep
;
1883 if (ath9k_hw_mci_is_enabled(ah
)) {
1884 start_mci_reset
= ar9003_mci_start_reset(ah
, chan
);
1885 if (start_mci_reset
)
1889 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
1892 if (ah
->curchan
&& !ah
->chip_fullsleep
)
1893 ath9k_hw_getnf(ah
, ah
->curchan
);
1895 ah
->caldata
= caldata
;
1896 if (caldata
&& (chan
->channel
!= caldata
->channel
||
1897 chan
->channelFlags
!= caldata
->channelFlags
)) {
1898 /* Operating channel changed, reset channel calibration data */
1899 memset(caldata
, 0, sizeof(*caldata
));
1900 ath9k_init_nfcal_hist_buffer(ah
, chan
);
1901 } else if (caldata
) {
1902 clear_bit(PAPRD_PACKET_SENT
, &caldata
->cal_flags
);
1904 ah
->noise
= ath9k_hw_getchan_noise(ah
, chan
, chan
->noisefloor
);
1907 r
= ath9k_hw_do_fastcc(ah
, chan
);
1912 if (ath9k_hw_mci_is_enabled(ah
))
1913 ar9003_mci_stop_bt(ah
, save_fullsleep
);
1915 saveDefAntenna
= REG_READ(ah
, AR_DEF_ANTENNA
);
1916 if (saveDefAntenna
== 0)
1919 macStaId1
= REG_READ(ah
, AR_STA_ID1
) & AR_STA_ID1_BASE_RATE_11B
;
1921 /* Save TSF before chip reset, a cold reset clears it */
1922 ktime_get_raw_ts64(&tsf_ts
);
1923 tsf
= ath9k_hw_gettsf64(ah
);
1925 saveLedState
= REG_READ(ah
, AR_CFG_LED
) &
1926 (AR_CFG_LED_ASSOC_CTL
| AR_CFG_LED_MODE_SEL
|
1927 AR_CFG_LED_BLINK_THRESH_SEL
| AR_CFG_LED_BLINK_SLOW
);
1929 ath9k_hw_mark_phy_inactive(ah
);
1931 ah
->paprd_table_write_done
= false;
1933 /* Only required on the first reset */
1934 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1936 AR9271_RESET_POWER_DOWN_CONTROL
,
1937 AR9271_RADIO_RF_RST
);
1941 if (!ath9k_hw_chip_reset(ah
, chan
)) {
1942 ath_err(common
, "Chip reset failed\n");
1946 /* Only required on the first reset */
1947 if (AR_SREV_9271(ah
) && ah
->htc_reset_init
) {
1948 ah
->htc_reset_init
= false;
1950 AR9271_RESET_POWER_DOWN_CONTROL
,
1951 AR9271_GATE_MAC_CTL
);
1956 tsf_offset
= ath9k_hw_get_tsf_offset(&tsf_ts
, NULL
);
1957 ath9k_hw_settsf64(ah
, tsf
+ tsf_offset
);
1959 if (AR_SREV_9280_20_OR_LATER(ah
))
1960 REG_SET_BIT(ah
, AR_GPIO_INPUT_EN_VAL
, AR_GPIO_JTAG_DISABLE
);
1962 if (!AR_SREV_9300_20_OR_LATER(ah
))
1963 ar9002_hw_enable_async_fifo(ah
);
1965 r
= ath9k_hw_process_ini(ah
, chan
);
1969 ath9k_hw_set_rfmode(ah
, chan
);
1971 if (ath9k_hw_mci_is_enabled(ah
))
1972 ar9003_mci_reset(ah
, false, IS_CHAN_2GHZ(chan
), save_fullsleep
);
1975 * Some AR91xx SoC devices frequently fail to accept TSF writes
1976 * right after the chip reset. When that happens, write a new
1977 * value after the initvals have been applied.
1979 if (AR_SREV_9100(ah
) && (ath9k_hw_gettsf64(ah
) < tsf
)) {
1980 tsf_offset
= ath9k_hw_get_tsf_offset(&tsf_ts
, NULL
);
1981 ath9k_hw_settsf64(ah
, tsf
+ tsf_offset
);
1984 ath9k_hw_init_mfp(ah
);
1986 ath9k_hw_set_delta_slope(ah
, chan
);
1987 ath9k_hw_spur_mitigate_freq(ah
, chan
);
1988 ah
->eep_ops
->set_board_values(ah
, chan
);
1990 ath9k_hw_reset_opmode(ah
, macStaId1
, saveDefAntenna
);
1992 r
= ath9k_hw_rf_set_freq(ah
, chan
);
1996 ath9k_hw_set_clockrate(ah
);
1998 ath9k_hw_init_queues(ah
);
1999 ath9k_hw_init_interrupt_masks(ah
, ah
->opmode
);
2000 ath9k_hw_ani_cache_ini_regs(ah
);
2001 ath9k_hw_init_qos(ah
);
2003 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_RFSILENT
)
2004 ath9k_hw_gpio_request_in(ah
, ah
->rfkill_gpio
, "ath9k-rfkill");
2006 ath9k_hw_init_global_settings(ah
);
2008 if (AR_SREV_9287(ah
) && AR_SREV_9287_13_OR_LATER(ah
)) {
2009 REG_SET_BIT(ah
, AR_MAC_PCU_LOGIC_ANALYZER
,
2010 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768
);
2011 REG_RMW_FIELD(ah
, AR_AHB_MODE
, AR_AHB_CUSTOM_BURST_EN
,
2012 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL
);
2013 REG_SET_BIT(ah
, AR_PCU_MISC_MODE2
,
2014 AR_PCU_MISC_MODE2_ENABLE_AGGWEP
);
2017 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PRESERVE_SEQNUM
);
2019 ath9k_hw_set_dma(ah
);
2021 if (!ath9k_hw_mci_is_enabled(ah
))
2022 REG_WRITE(ah
, AR_OBS
, 8);
2024 ENABLE_REG_RMW_BUFFER(ah
);
2025 if (ah
->config
.rx_intr_mitigation
) {
2026 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_LAST
, ah
->config
.rimt_last
);
2027 REG_RMW_FIELD(ah
, AR_RIMT
, AR_RIMT_FIRST
, ah
->config
.rimt_first
);
2030 if (ah
->config
.tx_intr_mitigation
) {
2031 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_LAST
, 300);
2032 REG_RMW_FIELD(ah
, AR_TIMT
, AR_TIMT_FIRST
, 750);
2034 REG_RMW_BUFFER_FLUSH(ah
);
2036 ath9k_hw_init_bb(ah
, chan
);
2039 clear_bit(TXIQCAL_DONE
, &caldata
->cal_flags
);
2040 clear_bit(TXCLCAL_DONE
, &caldata
->cal_flags
);
2042 if (!ath9k_hw_init_cal(ah
, chan
))
2045 if (ath9k_hw_mci_is_enabled(ah
) && ar9003_mci_end_reset(ah
, chan
, caldata
))
2048 ENABLE_REGWRITE_BUFFER(ah
);
2050 ath9k_hw_restore_chainmask(ah
);
2051 REG_WRITE(ah
, AR_CFG_LED
, saveLedState
| AR_CFG_SCLK_32KHZ
);
2053 REGWRITE_BUFFER_FLUSH(ah
);
2055 ath9k_hw_gen_timer_start_tsf2(ah
);
2057 ath9k_hw_init_desc(ah
);
2059 if (ath9k_hw_btcoex_is_enabled(ah
))
2060 ath9k_hw_btcoex_enable(ah
);
2062 if (ath9k_hw_mci_is_enabled(ah
))
2063 ar9003_mci_check_bt(ah
);
2065 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2066 ath9k_hw_loadnf(ah
, chan
);
2067 ath9k_hw_start_nfcal(ah
, true);
2070 if (AR_SREV_9300_20_OR_LATER(ah
))
2071 ar9003_hw_bb_watchdog_config(ah
);
2073 if (ah
->config
.hw_hang_checks
& HW_PHYRESTART_CLC_WAR
)
2074 ar9003_hw_disable_phy_restart(ah
);
2076 ath9k_hw_apply_gpio_override(ah
);
2078 if (AR_SREV_9565(ah
) && common
->bt_ant_diversity
)
2079 REG_SET_BIT(ah
, AR_BTCOEX_WL_LNADIV
, AR_BTCOEX_WL_LNADIV_FORCE_ON
);
2081 if (ah
->hw
->conf
.radar_enabled
) {
2082 /* set HW specific DFS configuration */
2083 ah
->radar_conf
.ext_channel
= IS_CHAN_HT40(chan
);
2084 ath9k_hw_set_radar_params(ah
);
2089 EXPORT_SYMBOL(ath9k_hw_reset
);
2091 /******************************/
2092 /* Power Management (Chipset) */
2093 /******************************/
2096 * Notify Power Mgt is disabled in self-generated frames.
2097 * If requested, force chip to sleep.
2099 static void ath9k_set_power_sleep(struct ath_hw
*ah
)
2101 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2103 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2104 REG_CLR_BIT(ah
, AR_TIMER_MODE
, 0xff);
2105 REG_CLR_BIT(ah
, AR_NDP2_TIMER_MODE
, 0xff);
2106 REG_CLR_BIT(ah
, AR_SLP32_INC
, 0xfffff);
2107 /* xxx Required for WLAN only case ? */
2108 REG_WRITE(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
, 0);
2113 * Clear the RTC force wake bit to allow the
2114 * mac to go to sleep.
2116 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2118 if (ath9k_hw_mci_is_enabled(ah
))
2121 if (!AR_SREV_9100(ah
) && !AR_SREV_9300_20_OR_LATER(ah
))
2122 REG_WRITE(ah
, AR_RC
, AR_RC_AHB
| AR_RC_HOSTIF
);
2124 /* Shutdown chip. Active low */
2125 if (!AR_SREV_5416(ah
) && !AR_SREV_9271(ah
)) {
2126 REG_CLR_BIT(ah
, AR_RTC_RESET
, AR_RTC_RESET_EN
);
2130 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2131 if (AR_SREV_9300_20_OR_LATER(ah
))
2132 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2136 * Notify Power Management is enabled in self-generating
2137 * frames. If request, set power mode of chip to
2138 * auto/normal. Duration in units of 128us (1/8 TU).
2140 static void ath9k_set_power_network_sleep(struct ath_hw
*ah
)
2142 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2144 REG_SET_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2146 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
2147 /* Set WakeOnInterrupt bit; clear ForceWake bit */
2148 REG_WRITE(ah
, AR_RTC_FORCE_WAKE
,
2149 AR_RTC_FORCE_WAKE_ON_INT
);
2152 /* When chip goes into network sleep, it could be waken
2153 * up by MCI_INT interrupt caused by BT's HW messages
2154 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2155 * rate (~100us). This will cause chip to leave and
2156 * re-enter network sleep mode frequently, which in
2157 * consequence will have WLAN MCI HW to generate lots of
2158 * SYS_WAKING and SYS_SLEEPING messages which will make
2159 * BT CPU to busy to process.
2161 if (ath9k_hw_mci_is_enabled(ah
))
2162 REG_CLR_BIT(ah
, AR_MCI_INTERRUPT_RX_MSG_EN
,
2163 AR_MCI_INTERRUPT_RX_HW_MSG_MASK
);
2165 * Clear the RTC force wake bit to allow the
2166 * mac to go to sleep.
2168 REG_CLR_BIT(ah
, AR_RTC_FORCE_WAKE
, AR_RTC_FORCE_WAKE_EN
);
2170 if (ath9k_hw_mci_is_enabled(ah
))
2174 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2175 if (AR_SREV_9300_20_OR_LATER(ah
))
2176 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
& ~AR_WA_D3_L1_DISABLE
);
2179 static bool ath9k_hw_set_power_awake(struct ath_hw
*ah
)
2184 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2185 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2186 REG_WRITE(ah
, AR_WA
, ah
->WARegVal
);
2190 if ((REG_READ(ah
, AR_RTC_STATUS
) &
2191 AR_RTC_STATUS_M
) == AR_RTC_STATUS_SHUTDOWN
) {
2192 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_POWER_ON
)) {
2195 if (!AR_SREV_9300_20_OR_LATER(ah
))
2196 ath9k_hw_init_pll(ah
, NULL
);
2198 if (AR_SREV_9100(ah
))
2199 REG_SET_BIT(ah
, AR_RTC_RESET
,
2202 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2203 AR_RTC_FORCE_WAKE_EN
);
2204 if (AR_SREV_9100(ah
))
2209 for (i
= POWER_UP_TIME
/ 50; i
> 0; i
--) {
2210 val
= REG_READ(ah
, AR_RTC_STATUS
) & AR_RTC_STATUS_M
;
2211 if (val
== AR_RTC_STATUS_ON
)
2214 REG_SET_BIT(ah
, AR_RTC_FORCE_WAKE
,
2215 AR_RTC_FORCE_WAKE_EN
);
2218 ath_err(ath9k_hw_common(ah
),
2219 "Failed to wakeup in %uus\n",
2220 POWER_UP_TIME
/ 20);
2224 if (ath9k_hw_mci_is_enabled(ah
))
2225 ar9003_mci_set_power_awake(ah
);
2227 REG_CLR_BIT(ah
, AR_STA_ID1
, AR_STA_ID1_PWR_SAV
);
2232 bool ath9k_hw_setpower(struct ath_hw
*ah
, enum ath9k_power_mode mode
)
2234 struct ath_common
*common
= ath9k_hw_common(ah
);
2236 static const char *modes
[] = {
2243 if (ah
->power_mode
== mode
)
2246 ath_dbg(common
, RESET
, "%s -> %s\n",
2247 modes
[ah
->power_mode
], modes
[mode
]);
2250 case ATH9K_PM_AWAKE
:
2251 status
= ath9k_hw_set_power_awake(ah
);
2253 case ATH9K_PM_FULL_SLEEP
:
2254 if (ath9k_hw_mci_is_enabled(ah
))
2255 ar9003_mci_set_full_sleep(ah
);
2257 ath9k_set_power_sleep(ah
);
2258 ah
->chip_fullsleep
= true;
2260 case ATH9K_PM_NETWORK_SLEEP
:
2261 ath9k_set_power_network_sleep(ah
);
2264 ath_err(common
, "Unknown power mode %u\n", mode
);
2267 ah
->power_mode
= mode
;
2270 * XXX: If this warning never comes up after a while then
2271 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2272 * ath9k_hw_setpower() return type void.
2275 if (!(ah
->ah_flags
& AH_UNPLUGGED
))
2276 ATH_DBG_WARN_ON_ONCE(!status
);
2280 EXPORT_SYMBOL(ath9k_hw_setpower
);
2282 /*******************/
2283 /* Beacon Handling */
2284 /*******************/
2286 void ath9k_hw_beaconinit(struct ath_hw
*ah
, u32 next_beacon
, u32 beacon_period
)
2290 ENABLE_REGWRITE_BUFFER(ah
);
2292 switch (ah
->opmode
) {
2293 case NL80211_IFTYPE_ADHOC
:
2294 REG_SET_BIT(ah
, AR_TXCFG
,
2295 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY
);
2297 case NL80211_IFTYPE_MESH_POINT
:
2298 case NL80211_IFTYPE_AP
:
2299 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, next_beacon
);
2300 REG_WRITE(ah
, AR_NEXT_DMA_BEACON_ALERT
, next_beacon
-
2301 TU_TO_USEC(ah
->config
.dma_beacon_response_time
));
2302 REG_WRITE(ah
, AR_NEXT_SWBA
, next_beacon
-
2303 TU_TO_USEC(ah
->config
.sw_beacon_response_time
));
2305 AR_TBTT_TIMER_EN
| AR_DBA_TIMER_EN
| AR_SWBA_TIMER_EN
;
2308 ath_dbg(ath9k_hw_common(ah
), BEACON
,
2309 "%s: unsupported opmode: %d\n", __func__
, ah
->opmode
);
2314 REG_WRITE(ah
, AR_BEACON_PERIOD
, beacon_period
);
2315 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, beacon_period
);
2316 REG_WRITE(ah
, AR_SWBA_PERIOD
, beacon_period
);
2318 REGWRITE_BUFFER_FLUSH(ah
);
2320 REG_SET_BIT(ah
, AR_TIMER_MODE
, flags
);
2322 EXPORT_SYMBOL(ath9k_hw_beaconinit
);
2324 void ath9k_hw_set_sta_beacon_timers(struct ath_hw
*ah
,
2325 const struct ath9k_beacon_state
*bs
)
2327 u32 nextTbtt
, beaconintval
, dtimperiod
, beacontimeout
;
2328 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2329 struct ath_common
*common
= ath9k_hw_common(ah
);
2331 ENABLE_REGWRITE_BUFFER(ah
);
2333 REG_WRITE(ah
, AR_NEXT_TBTT_TIMER
, bs
->bs_nexttbtt
);
2334 REG_WRITE(ah
, AR_BEACON_PERIOD
, bs
->bs_intval
);
2335 REG_WRITE(ah
, AR_DMA_BEACON_PERIOD
, bs
->bs_intval
);
2337 REGWRITE_BUFFER_FLUSH(ah
);
2339 REG_RMW_FIELD(ah
, AR_RSSI_THR
,
2340 AR_RSSI_THR_BM_THR
, bs
->bs_bmissthreshold
);
2342 beaconintval
= bs
->bs_intval
;
2344 if (bs
->bs_sleepduration
> beaconintval
)
2345 beaconintval
= bs
->bs_sleepduration
;
2347 dtimperiod
= bs
->bs_dtimperiod
;
2348 if (bs
->bs_sleepduration
> dtimperiod
)
2349 dtimperiod
= bs
->bs_sleepduration
;
2351 if (beaconintval
== dtimperiod
)
2352 nextTbtt
= bs
->bs_nextdtim
;
2354 nextTbtt
= bs
->bs_nexttbtt
;
2356 ath_dbg(common
, BEACON
, "next DTIM %u\n", bs
->bs_nextdtim
);
2357 ath_dbg(common
, BEACON
, "next beacon %u\n", nextTbtt
);
2358 ath_dbg(common
, BEACON
, "beacon period %u\n", beaconintval
);
2359 ath_dbg(common
, BEACON
, "DTIM period %u\n", dtimperiod
);
2361 ENABLE_REGWRITE_BUFFER(ah
);
2363 REG_WRITE(ah
, AR_NEXT_DTIM
, bs
->bs_nextdtim
- SLEEP_SLOP
);
2364 REG_WRITE(ah
, AR_NEXT_TIM
, nextTbtt
- SLEEP_SLOP
);
2366 REG_WRITE(ah
, AR_SLEEP1
,
2367 SM((CAB_TIMEOUT_VAL
<< 3), AR_SLEEP1_CAB_TIMEOUT
)
2368 | AR_SLEEP1_ASSUME_DTIM
);
2370 if (pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)
2371 beacontimeout
= (BEACON_TIMEOUT_VAL
<< 3);
2373 beacontimeout
= MIN_BEACON_TIMEOUT_VAL
;
2375 REG_WRITE(ah
, AR_SLEEP2
,
2376 SM(beacontimeout
, AR_SLEEP2_BEACON_TIMEOUT
));
2378 REG_WRITE(ah
, AR_TIM_PERIOD
, beaconintval
);
2379 REG_WRITE(ah
, AR_DTIM_PERIOD
, dtimperiod
);
2381 REGWRITE_BUFFER_FLUSH(ah
);
2383 REG_SET_BIT(ah
, AR_TIMER_MODE
,
2384 AR_TBTT_TIMER_EN
| AR_TIM_TIMER_EN
|
2387 /* TSF Out of Range Threshold */
2388 REG_WRITE(ah
, AR_TSFOOR_THRESHOLD
, bs
->bs_tsfoor_threshold
);
2390 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers
);
2392 /*******************/
2393 /* HW Capabilities */
2394 /*******************/
2396 static u8
fixup_chainmask(u8 chip_chainmask
, u8 eeprom_chainmask
)
2398 eeprom_chainmask
&= chip_chainmask
;
2399 if (eeprom_chainmask
)
2400 return eeprom_chainmask
;
2402 return chip_chainmask
;
2406 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2407 * @ah: the atheros hardware data structure
2409 * We enable DFS support upstream on chipsets which have passed a series
2410 * of tests. The testing requirements are going to be documented. Desired
2411 * test requirements are documented at:
2413 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2415 * Once a new chipset gets properly tested an individual commit can be used
2416 * to document the testing for DFS for that chipset.
2418 static bool ath9k_hw_dfs_tested(struct ath_hw
*ah
)
2421 switch (ah
->hw_version
.macVersion
) {
2422 /* for temporary testing DFS with 9280 */
2423 case AR_SREV_VERSION_9280
:
2424 /* AR9580 will likely be our first target to get testing on */
2425 case AR_SREV_VERSION_9580
:
2432 static void ath9k_gpio_cap_init(struct ath_hw
*ah
)
2434 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2436 if (AR_SREV_9271(ah
)) {
2437 pCap
->num_gpio_pins
= AR9271_NUM_GPIO
;
2438 pCap
->gpio_mask
= AR9271_GPIO_MASK
;
2439 } else if (AR_DEVID_7010(ah
)) {
2440 pCap
->num_gpio_pins
= AR7010_NUM_GPIO
;
2441 pCap
->gpio_mask
= AR7010_GPIO_MASK
;
2442 } else if (AR_SREV_9287(ah
)) {
2443 pCap
->num_gpio_pins
= AR9287_NUM_GPIO
;
2444 pCap
->gpio_mask
= AR9287_GPIO_MASK
;
2445 } else if (AR_SREV_9285(ah
)) {
2446 pCap
->num_gpio_pins
= AR9285_NUM_GPIO
;
2447 pCap
->gpio_mask
= AR9285_GPIO_MASK
;
2448 } else if (AR_SREV_9280(ah
)) {
2449 pCap
->num_gpio_pins
= AR9280_NUM_GPIO
;
2450 pCap
->gpio_mask
= AR9280_GPIO_MASK
;
2451 } else if (AR_SREV_9300(ah
)) {
2452 pCap
->num_gpio_pins
= AR9300_NUM_GPIO
;
2453 pCap
->gpio_mask
= AR9300_GPIO_MASK
;
2454 } else if (AR_SREV_9330(ah
)) {
2455 pCap
->num_gpio_pins
= AR9330_NUM_GPIO
;
2456 pCap
->gpio_mask
= AR9330_GPIO_MASK
;
2457 } else if (AR_SREV_9340(ah
)) {
2458 pCap
->num_gpio_pins
= AR9340_NUM_GPIO
;
2459 pCap
->gpio_mask
= AR9340_GPIO_MASK
;
2460 } else if (AR_SREV_9462(ah
)) {
2461 pCap
->num_gpio_pins
= AR9462_NUM_GPIO
;
2462 pCap
->gpio_mask
= AR9462_GPIO_MASK
;
2463 } else if (AR_SREV_9485(ah
)) {
2464 pCap
->num_gpio_pins
= AR9485_NUM_GPIO
;
2465 pCap
->gpio_mask
= AR9485_GPIO_MASK
;
2466 } else if (AR_SREV_9531(ah
)) {
2467 pCap
->num_gpio_pins
= AR9531_NUM_GPIO
;
2468 pCap
->gpio_mask
= AR9531_GPIO_MASK
;
2469 } else if (AR_SREV_9550(ah
)) {
2470 pCap
->num_gpio_pins
= AR9550_NUM_GPIO
;
2471 pCap
->gpio_mask
= AR9550_GPIO_MASK
;
2472 } else if (AR_SREV_9561(ah
)) {
2473 pCap
->num_gpio_pins
= AR9561_NUM_GPIO
;
2474 pCap
->gpio_mask
= AR9561_GPIO_MASK
;
2475 } else if (AR_SREV_9565(ah
)) {
2476 pCap
->num_gpio_pins
= AR9565_NUM_GPIO
;
2477 pCap
->gpio_mask
= AR9565_GPIO_MASK
;
2478 } else if (AR_SREV_9580(ah
)) {
2479 pCap
->num_gpio_pins
= AR9580_NUM_GPIO
;
2480 pCap
->gpio_mask
= AR9580_GPIO_MASK
;
2482 pCap
->num_gpio_pins
= AR_NUM_GPIO
;
2483 pCap
->gpio_mask
= AR_GPIO_MASK
;
2487 int ath9k_hw_fill_cap_info(struct ath_hw
*ah
)
2489 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
2490 struct ath_regulatory
*regulatory
= ath9k_hw_regulatory(ah
);
2491 struct ath_common
*common
= ath9k_hw_common(ah
);
2494 u8 ant_div_ctl1
, tx_chainmask
, rx_chainmask
;
2496 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_REG_0
);
2497 regulatory
->current_rd
= eeval
;
2499 if (ah
->opmode
!= NL80211_IFTYPE_AP
&&
2500 ah
->hw_version
.subvendorid
== AR_SUBVENDOR_ID_NEW_A
) {
2501 if (regulatory
->current_rd
== 0x64 ||
2502 regulatory
->current_rd
== 0x65)
2503 regulatory
->current_rd
+= 5;
2504 else if (regulatory
->current_rd
== 0x41)
2505 regulatory
->current_rd
= 0x43;
2506 ath_dbg(common
, REGULATORY
, "regdomain mapped to 0x%x\n",
2507 regulatory
->current_rd
);
2510 eeval
= ah
->eep_ops
->get_eeprom(ah
, EEP_OP_MODE
);
2512 if (eeval
& AR5416_OPFLAGS_11A
) {
2513 if (ah
->disable_5ghz
)
2514 ath_warn(common
, "disabling 5GHz band\n");
2516 pCap
->hw_caps
|= ATH9K_HW_CAP_5GHZ
;
2519 if (eeval
& AR5416_OPFLAGS_11G
) {
2520 if (ah
->disable_2ghz
)
2521 ath_warn(common
, "disabling 2GHz band\n");
2523 pCap
->hw_caps
|= ATH9K_HW_CAP_2GHZ
;
2526 if ((pCap
->hw_caps
& (ATH9K_HW_CAP_2GHZ
| ATH9K_HW_CAP_5GHZ
)) == 0) {
2527 ath_err(common
, "both bands are disabled\n");
2531 ath9k_gpio_cap_init(ah
);
2533 if (AR_SREV_9485(ah
) ||
2537 pCap
->chip_chainmask
= 1;
2538 else if (!AR_SREV_9280_20_OR_LATER(ah
))
2539 pCap
->chip_chainmask
= 7;
2540 else if (!AR_SREV_9300_20_OR_LATER(ah
) ||
2544 pCap
->chip_chainmask
= 3;
2546 pCap
->chip_chainmask
= 7;
2548 pCap
->tx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_TX_MASK
);
2550 * For AR9271 we will temporarilly uses the rx chainmax as read from
2553 if ((ah
->hw_version
.devid
== AR5416_DEVID_PCI
) &&
2554 !(eeval
& AR5416_OPFLAGS_11A
) &&
2555 !(AR_SREV_9271(ah
)))
2556 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2557 pCap
->rx_chainmask
= ath9k_hw_gpio_get(ah
, 0) ? 0x5 : 0x7;
2558 else if (AR_SREV_9100(ah
))
2559 pCap
->rx_chainmask
= 0x7;
2561 /* Use rx_chainmask from EEPROM. */
2562 pCap
->rx_chainmask
= ah
->eep_ops
->get_eeprom(ah
, EEP_RX_MASK
);
2564 pCap
->tx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->tx_chainmask
);
2565 pCap
->rx_chainmask
= fixup_chainmask(pCap
->chip_chainmask
, pCap
->rx_chainmask
);
2566 ah
->txchainmask
= pCap
->tx_chainmask
;
2567 ah
->rxchainmask
= pCap
->rx_chainmask
;
2569 ah
->misc_mode
|= AR_PCU_MIC_NEW_LOC_ENA
;
2571 /* enable key search for every frame in an aggregate */
2572 if (AR_SREV_9300_20_OR_LATER(ah
))
2573 ah
->misc_mode
|= AR_PCU_ALWAYS_PERFORM_KEYSEARCH
;
2575 common
->crypt_caps
|= ATH_CRYPT_CAP_CIPHER_AESCCM
;
2577 if (ah
->hw_version
.devid
!= AR2427_DEVID_PCIE
)
2578 pCap
->hw_caps
|= ATH9K_HW_CAP_HT
;
2580 pCap
->hw_caps
&= ~ATH9K_HW_CAP_HT
;
2582 if (AR_SREV_9160_10_OR_LATER(ah
) || AR_SREV_9100(ah
))
2583 pCap
->rts_aggr_limit
= ATH_AMPDU_LIMIT_MAX
;
2585 pCap
->rts_aggr_limit
= (8 * 1024);
2587 #ifdef CONFIG_ATH9K_RFKILL
2588 ah
->rfsilent
= ah
->eep_ops
->get_eeprom(ah
, EEP_RF_SILENT
);
2589 if (ah
->rfsilent
& EEP_RFSILENT_ENABLED
) {
2591 MS(ah
->rfsilent
, EEP_RFSILENT_GPIO_SEL
);
2592 ah
->rfkill_polarity
=
2593 MS(ah
->rfsilent
, EEP_RFSILENT_POLARITY
);
2595 pCap
->hw_caps
|= ATH9K_HW_CAP_RFSILENT
;
2598 if (AR_SREV_9271(ah
) || AR_SREV_9300_20_OR_LATER(ah
))
2599 pCap
->hw_caps
|= ATH9K_HW_CAP_AUTOSLEEP
;
2601 pCap
->hw_caps
&= ~ATH9K_HW_CAP_AUTOSLEEP
;
2603 if (AR_SREV_9280(ah
) || AR_SREV_9285(ah
))
2604 pCap
->hw_caps
&= ~ATH9K_HW_CAP_4KB_SPLITTRANS
;
2606 pCap
->hw_caps
|= ATH9K_HW_CAP_4KB_SPLITTRANS
;
2608 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2609 pCap
->hw_caps
|= ATH9K_HW_CAP_EDMA
| ATH9K_HW_CAP_FASTCLOCK
;
2610 if (!AR_SREV_9330(ah
) && !AR_SREV_9485(ah
) &&
2611 !AR_SREV_9561(ah
) && !AR_SREV_9565(ah
))
2612 pCap
->hw_caps
|= ATH9K_HW_CAP_LDPC
;
2614 pCap
->rx_hp_qdepth
= ATH9K_HW_RX_HP_QDEPTH
;
2615 pCap
->rx_lp_qdepth
= ATH9K_HW_RX_LP_QDEPTH
;
2616 pCap
->rx_status_len
= sizeof(struct ar9003_rxs
);
2617 pCap
->tx_desc_len
= sizeof(struct ar9003_txc
);
2618 pCap
->txs_len
= sizeof(struct ar9003_txs
);
2620 pCap
->tx_desc_len
= sizeof(struct ath_desc
);
2621 if (AR_SREV_9280_20(ah
))
2622 pCap
->hw_caps
|= ATH9K_HW_CAP_FASTCLOCK
;
2625 if (AR_SREV_9300_20_OR_LATER(ah
))
2626 pCap
->hw_caps
|= ATH9K_HW_CAP_RAC_SUPPORTED
;
2628 if (AR_SREV_9561(ah
))
2629 ah
->ent_mode
= 0x3BDA000;
2630 else if (AR_SREV_9300_20_OR_LATER(ah
))
2631 ah
->ent_mode
= REG_READ(ah
, AR_ENT_OTP
);
2633 if (AR_SREV_9287_11_OR_LATER(ah
) || AR_SREV_9271(ah
))
2634 pCap
->hw_caps
|= ATH9K_HW_CAP_SGI_20
;
2636 if (AR_SREV_9285(ah
)) {
2637 if (ah
->eep_ops
->get_eeprom(ah
, EEP_MODAL_VER
) >= 3) {
2639 ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2640 if ((ant_div_ctl1
& 0x1) && ((ant_div_ctl1
>> 3) & 0x1)) {
2641 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2642 ath_info(common
, "Enable LNA combining\n");
2647 if (AR_SREV_9300_20_OR_LATER(ah
)) {
2648 if (ah
->eep_ops
->get_eeprom(ah
, EEP_CHAIN_MASK_REDUCE
))
2649 pCap
->hw_caps
|= ATH9K_HW_CAP_APM
;
2652 if (AR_SREV_9330(ah
) || AR_SREV_9485(ah
) || AR_SREV_9565(ah
)) {
2653 ant_div_ctl1
= ah
->eep_ops
->get_eeprom(ah
, EEP_ANT_DIV_CTL1
);
2654 if ((ant_div_ctl1
>> 0x6) == 0x3) {
2655 pCap
->hw_caps
|= ATH9K_HW_CAP_ANT_DIV_COMB
;
2656 ath_info(common
, "Enable LNA combining\n");
2660 if (ath9k_hw_dfs_tested(ah
))
2661 pCap
->hw_caps
|= ATH9K_HW_CAP_DFS
;
2663 tx_chainmask
= pCap
->tx_chainmask
;
2664 rx_chainmask
= pCap
->rx_chainmask
;
2665 while (tx_chainmask
|| rx_chainmask
) {
2666 if (tx_chainmask
& BIT(0))
2667 pCap
->max_txchains
++;
2668 if (rx_chainmask
& BIT(0))
2669 pCap
->max_rxchains
++;
2675 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
2676 if (!(ah
->ent_mode
& AR_ENT_OTP_49GHZ_DISABLE
))
2677 pCap
->hw_caps
|= ATH9K_HW_CAP_MCI
;
2679 if (AR_SREV_9462_20_OR_LATER(ah
))
2680 pCap
->hw_caps
|= ATH9K_HW_CAP_RTT
;
2683 if (AR_SREV_9300_20_OR_LATER(ah
) &&
2684 ah
->eep_ops
->get_eeprom(ah
, EEP_PAPRD
))
2685 pCap
->hw_caps
|= ATH9K_HW_CAP_PAPRD
;
2687 #ifdef CONFIG_ATH9K_WOW
2688 if (AR_SREV_9462_20_OR_LATER(ah
) || AR_SREV_9565_11_OR_LATER(ah
))
2689 ah
->wow
.max_patterns
= MAX_NUM_PATTERN
;
2691 ah
->wow
.max_patterns
= MAX_NUM_PATTERN_LEGACY
;
2697 /****************************/
2698 /* GPIO / RFKILL / Antennae */
2699 /****************************/
2701 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw
*ah
, u32 gpio
, u32 type
)
2704 u32 gpio_shift
, tmp
;
2707 addr
= AR_GPIO_OUTPUT_MUX3
;
2709 addr
= AR_GPIO_OUTPUT_MUX2
;
2711 addr
= AR_GPIO_OUTPUT_MUX1
;
2713 gpio_shift
= (gpio
% 6) * 5;
2715 if (AR_SREV_9280_20_OR_LATER(ah
) ||
2716 (addr
!= AR_GPIO_OUTPUT_MUX1
)) {
2717 REG_RMW(ah
, addr
, (type
<< gpio_shift
),
2718 (0x1f << gpio_shift
));
2720 tmp
= REG_READ(ah
, addr
);
2721 tmp
= ((tmp
& 0x1F0) << 1) | (tmp
& ~0x1F0);
2722 tmp
&= ~(0x1f << gpio_shift
);
2723 tmp
|= (type
<< gpio_shift
);
2724 REG_WRITE(ah
, addr
, tmp
);
2728 /* BSP should set the corresponding MUX register correctly.
2730 static void ath9k_hw_gpio_cfg_soc(struct ath_hw
*ah
, u32 gpio
, bool out
,
2733 if (ah
->caps
.gpio_requested
& BIT(gpio
))
2736 /* may be requested by BSP, free anyway */
2739 if (gpio_request_one(gpio
, out
? GPIOF_OUT_INIT_LOW
: GPIOF_IN
, label
))
2742 ah
->caps
.gpio_requested
|= BIT(gpio
);
2745 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw
*ah
, u32 gpio
, bool out
,
2748 u32 gpio_set
, gpio_shift
= gpio
;
2750 if (AR_DEVID_7010(ah
)) {
2752 AR7010_GPIO_OE_AS_OUTPUT
: AR7010_GPIO_OE_AS_INPUT
;
2753 REG_RMW(ah
, AR7010_GPIO_OE
, gpio_set
<< gpio_shift
,
2754 AR7010_GPIO_OE_MASK
<< gpio_shift
);
2755 } else if (AR_SREV_SOC(ah
)) {
2756 gpio_set
= out
? 1 : 0;
2757 REG_RMW(ah
, AR_GPIO_OE_OUT
, gpio_set
<< gpio_shift
,
2758 gpio_set
<< gpio_shift
);
2760 gpio_shift
= gpio
<< 1;
2762 AR_GPIO_OE_OUT_DRV_ALL
: AR_GPIO_OE_OUT_DRV_NO
;
2763 REG_RMW(ah
, AR_GPIO_OE_OUT
, gpio_set
<< gpio_shift
,
2764 AR_GPIO_OE_OUT_DRV
<< gpio_shift
);
2767 ath9k_hw_gpio_cfg_output_mux(ah
, gpio
, ah_signal_type
);
2771 static void ath9k_hw_gpio_request(struct ath_hw
*ah
, u32 gpio
, bool out
,
2772 const char *label
, u32 ah_signal_type
)
2774 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2776 if (BIT(gpio
) & ah
->caps
.gpio_mask
)
2777 ath9k_hw_gpio_cfg_wmac(ah
, gpio
, out
, ah_signal_type
);
2778 else if (AR_SREV_SOC(ah
))
2779 ath9k_hw_gpio_cfg_soc(ah
, gpio
, out
, label
);
2784 void ath9k_hw_gpio_request_in(struct ath_hw
*ah
, u32 gpio
, const char *label
)
2786 ath9k_hw_gpio_request(ah
, gpio
, false, label
, 0);
2788 EXPORT_SYMBOL(ath9k_hw_gpio_request_in
);
2790 void ath9k_hw_gpio_request_out(struct ath_hw
*ah
, u32 gpio
, const char *label
,
2793 ath9k_hw_gpio_request(ah
, gpio
, true, label
, ah_signal_type
);
2795 EXPORT_SYMBOL(ath9k_hw_gpio_request_out
);
2797 void ath9k_hw_gpio_free(struct ath_hw
*ah
, u32 gpio
)
2799 if (!AR_SREV_SOC(ah
))
2802 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2804 if (ah
->caps
.gpio_requested
& BIT(gpio
)) {
2806 ah
->caps
.gpio_requested
&= ~BIT(gpio
);
2809 EXPORT_SYMBOL(ath9k_hw_gpio_free
);
2811 u32
ath9k_hw_gpio_get(struct ath_hw
*ah
, u32 gpio
)
2813 u32 val
= 0xffffffff;
2815 #define MS_REG_READ(x, y) \
2816 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2818 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2820 if (BIT(gpio
) & ah
->caps
.gpio_mask
) {
2821 if (AR_SREV_9271(ah
))
2822 val
= MS_REG_READ(AR9271
, gpio
);
2823 else if (AR_SREV_9287(ah
))
2824 val
= MS_REG_READ(AR9287
, gpio
);
2825 else if (AR_SREV_9285(ah
))
2826 val
= MS_REG_READ(AR9285
, gpio
);
2827 else if (AR_SREV_9280(ah
))
2828 val
= MS_REG_READ(AR928X
, gpio
);
2829 else if (AR_DEVID_7010(ah
))
2830 val
= REG_READ(ah
, AR7010_GPIO_IN
) & BIT(gpio
);
2831 else if (AR_SREV_9300_20_OR_LATER(ah
))
2832 val
= REG_READ(ah
, AR_GPIO_IN
) & BIT(gpio
);
2834 val
= MS_REG_READ(AR
, gpio
);
2835 } else if (BIT(gpio
) & ah
->caps
.gpio_requested
) {
2836 val
= gpio_get_value(gpio
) & BIT(gpio
);
2843 EXPORT_SYMBOL(ath9k_hw_gpio_get
);
2845 void ath9k_hw_set_gpio(struct ath_hw
*ah
, u32 gpio
, u32 val
)
2847 WARN_ON(gpio
>= ah
->caps
.num_gpio_pins
);
2849 if (AR_DEVID_7010(ah
) || AR_SREV_9271(ah
))
2854 if (BIT(gpio
) & ah
->caps
.gpio_mask
) {
2855 u32 out_addr
= AR_DEVID_7010(ah
) ?
2856 AR7010_GPIO_OUT
: AR_GPIO_IN_OUT
;
2858 REG_RMW(ah
, out_addr
, val
<< gpio
, BIT(gpio
));
2859 } else if (BIT(gpio
) & ah
->caps
.gpio_requested
) {
2860 gpio_set_value(gpio
, val
);
2865 EXPORT_SYMBOL(ath9k_hw_set_gpio
);
2867 void ath9k_hw_setantenna(struct ath_hw
*ah
, u32 antenna
)
2869 REG_WRITE(ah
, AR_DEF_ANTENNA
, (antenna
& 0x7));
2871 EXPORT_SYMBOL(ath9k_hw_setantenna
);
2873 /*********************/
2874 /* General Operation */
2875 /*********************/
2877 u32
ath9k_hw_getrxfilter(struct ath_hw
*ah
)
2879 u32 bits
= REG_READ(ah
, AR_RX_FILTER
);
2880 u32 phybits
= REG_READ(ah
, AR_PHY_ERR
);
2882 if (phybits
& AR_PHY_ERR_RADAR
)
2883 bits
|= ATH9K_RX_FILTER_PHYRADAR
;
2884 if (phybits
& (AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
))
2885 bits
|= ATH9K_RX_FILTER_PHYERR
;
2889 EXPORT_SYMBOL(ath9k_hw_getrxfilter
);
2891 void ath9k_hw_setrxfilter(struct ath_hw
*ah
, u32 bits
)
2895 ENABLE_REGWRITE_BUFFER(ah
);
2897 REG_WRITE(ah
, AR_RX_FILTER
, bits
);
2900 if (bits
& ATH9K_RX_FILTER_PHYRADAR
)
2901 phybits
|= AR_PHY_ERR_RADAR
;
2902 if (bits
& ATH9K_RX_FILTER_PHYERR
)
2903 phybits
|= AR_PHY_ERR_OFDM_TIMING
| AR_PHY_ERR_CCK_TIMING
;
2904 REG_WRITE(ah
, AR_PHY_ERR
, phybits
);
2907 REG_SET_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2909 REG_CLR_BIT(ah
, AR_RXCFG
, AR_RXCFG_ZLFDMA
);
2911 REGWRITE_BUFFER_FLUSH(ah
);
2913 EXPORT_SYMBOL(ath9k_hw_setrxfilter
);
2915 bool ath9k_hw_phy_disable(struct ath_hw
*ah
)
2917 if (ath9k_hw_mci_is_enabled(ah
))
2918 ar9003_mci_bt_gain_ctrl(ah
);
2920 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_WARM
))
2923 ath9k_hw_init_pll(ah
, NULL
);
2924 ah
->htc_reset_init
= true;
2927 EXPORT_SYMBOL(ath9k_hw_phy_disable
);
2929 bool ath9k_hw_disable(struct ath_hw
*ah
)
2931 if (!ath9k_hw_setpower(ah
, ATH9K_PM_AWAKE
))
2934 if (!ath9k_hw_set_reset_reg(ah
, ATH9K_RESET_COLD
))
2937 ath9k_hw_init_pll(ah
, NULL
);
2940 EXPORT_SYMBOL(ath9k_hw_disable
);
2942 static int get_antenna_gain(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
2944 enum eeprom_param gain_param
;
2946 if (IS_CHAN_2GHZ(chan
))
2947 gain_param
= EEP_ANTENNA_GAIN_2G
;
2949 gain_param
= EEP_ANTENNA_GAIN_5G
;
2951 return ah
->eep_ops
->get_eeprom(ah
, gain_param
);
2954 void ath9k_hw_apply_txpower(struct ath_hw
*ah
, struct ath9k_channel
*chan
,
2957 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2958 struct ieee80211_channel
*channel
;
2959 int chan_pwr
, new_pwr
;
2966 ctl
= ath9k_regd_get_ctl(reg
, chan
);
2968 channel
= chan
->chan
;
2969 chan_pwr
= min_t(int, channel
->max_power
* 2, MAX_COMBINED_POWER
);
2970 new_pwr
= min_t(int, chan_pwr
, reg
->power_limit
);
2972 ah
->eep_ops
->set_txpower(ah
, chan
, ctl
,
2973 get_antenna_gain(ah
, chan
), new_pwr
, test
);
2976 void ath9k_hw_set_txpowerlimit(struct ath_hw
*ah
, u32 limit
, bool test
)
2978 struct ath_regulatory
*reg
= ath9k_hw_regulatory(ah
);
2979 struct ath9k_channel
*chan
= ah
->curchan
;
2980 struct ieee80211_channel
*channel
= chan
->chan
;
2982 reg
->power_limit
= min_t(u32
, limit
, MAX_COMBINED_POWER
);
2984 channel
->max_power
= MAX_COMBINED_POWER
/ 2;
2986 ath9k_hw_apply_txpower(ah
, chan
, test
);
2989 channel
->max_power
= DIV_ROUND_UP(reg
->max_power_level
, 2);
2991 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit
);
2993 void ath9k_hw_setopmode(struct ath_hw
*ah
)
2995 ath9k_hw_set_operating_mode(ah
, ah
->opmode
);
2997 EXPORT_SYMBOL(ath9k_hw_setopmode
);
2999 void ath9k_hw_setmcastfilter(struct ath_hw
*ah
, u32 filter0
, u32 filter1
)
3001 REG_WRITE(ah
, AR_MCAST_FIL0
, filter0
);
3002 REG_WRITE(ah
, AR_MCAST_FIL1
, filter1
);
3004 EXPORT_SYMBOL(ath9k_hw_setmcastfilter
);
3006 void ath9k_hw_write_associd(struct ath_hw
*ah
)
3008 struct ath_common
*common
= ath9k_hw_common(ah
);
3010 REG_WRITE(ah
, AR_BSS_ID0
, get_unaligned_le32(common
->curbssid
));
3011 REG_WRITE(ah
, AR_BSS_ID1
, get_unaligned_le16(common
->curbssid
+ 4) |
3012 ((common
->curaid
& 0x3fff) << AR_BSS_ID1_AID_S
));
3014 EXPORT_SYMBOL(ath9k_hw_write_associd
);
3016 #define ATH9K_MAX_TSF_READ 10
3018 u64
ath9k_hw_gettsf64(struct ath_hw
*ah
)
3020 u32 tsf_lower
, tsf_upper1
, tsf_upper2
;
3023 tsf_upper1
= REG_READ(ah
, AR_TSF_U32
);
3024 for (i
= 0; i
< ATH9K_MAX_TSF_READ
; i
++) {
3025 tsf_lower
= REG_READ(ah
, AR_TSF_L32
);
3026 tsf_upper2
= REG_READ(ah
, AR_TSF_U32
);
3027 if (tsf_upper2
== tsf_upper1
)
3029 tsf_upper1
= tsf_upper2
;
3032 WARN_ON( i
== ATH9K_MAX_TSF_READ
);
3034 return (((u64
)tsf_upper1
<< 32) | tsf_lower
);
3036 EXPORT_SYMBOL(ath9k_hw_gettsf64
);
3038 void ath9k_hw_settsf64(struct ath_hw
*ah
, u64 tsf64
)
3040 REG_WRITE(ah
, AR_TSF_L32
, tsf64
& 0xffffffff);
3041 REG_WRITE(ah
, AR_TSF_U32
, (tsf64
>> 32) & 0xffffffff);
3043 EXPORT_SYMBOL(ath9k_hw_settsf64
);
3045 void ath9k_hw_reset_tsf(struct ath_hw
*ah
)
3047 if (!ath9k_hw_wait(ah
, AR_SLP32_MODE
, AR_SLP32_TSF_WRITE_STATUS
, 0,
3048 AH_TSF_WRITE_TIMEOUT
))
3049 ath_dbg(ath9k_hw_common(ah
), RESET
,
3050 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3052 REG_WRITE(ah
, AR_RESET_TSF
, AR_RESET_TSF_ONCE
);
3054 EXPORT_SYMBOL(ath9k_hw_reset_tsf
);
3056 void ath9k_hw_set_tsfadjust(struct ath_hw
*ah
, bool set
)
3059 ah
->misc_mode
|= AR_PCU_TX_ADD_TSF
;
3061 ah
->misc_mode
&= ~AR_PCU_TX_ADD_TSF
;
3063 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust
);
3065 void ath9k_hw_set11nmac2040(struct ath_hw
*ah
, struct ath9k_channel
*chan
)
3069 if (IS_CHAN_HT40(chan
) && !ah
->config
.cwm_ignore_extcca
)
3070 macmode
= AR_2040_JOINED_RX_CLEAR
;
3074 REG_WRITE(ah
, AR_2040_MODE
, macmode
);
3077 /* HW Generic timers configuration */
3079 static const struct ath_gen_timer_configuration gen_tmr_configuration
[] =
3081 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3082 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3083 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3084 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3085 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3086 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3087 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3088 {AR_NEXT_NDP_TIMER
, AR_NDP_PERIOD
, AR_TIMER_MODE
, 0x0080},
3089 {AR_NEXT_NDP2_TIMER
, AR_NDP2_PERIOD
, AR_NDP2_TIMER_MODE
, 0x0001},
3090 {AR_NEXT_NDP2_TIMER
+ 1*4, AR_NDP2_PERIOD
+ 1*4,
3091 AR_NDP2_TIMER_MODE
, 0x0002},
3092 {AR_NEXT_NDP2_TIMER
+ 2*4, AR_NDP2_PERIOD
+ 2*4,
3093 AR_NDP2_TIMER_MODE
, 0x0004},
3094 {AR_NEXT_NDP2_TIMER
+ 3*4, AR_NDP2_PERIOD
+ 3*4,
3095 AR_NDP2_TIMER_MODE
, 0x0008},
3096 {AR_NEXT_NDP2_TIMER
+ 4*4, AR_NDP2_PERIOD
+ 4*4,
3097 AR_NDP2_TIMER_MODE
, 0x0010},
3098 {AR_NEXT_NDP2_TIMER
+ 5*4, AR_NDP2_PERIOD
+ 5*4,
3099 AR_NDP2_TIMER_MODE
, 0x0020},
3100 {AR_NEXT_NDP2_TIMER
+ 6*4, AR_NDP2_PERIOD
+ 6*4,
3101 AR_NDP2_TIMER_MODE
, 0x0040},
3102 {AR_NEXT_NDP2_TIMER
+ 7*4, AR_NDP2_PERIOD
+ 7*4,
3103 AR_NDP2_TIMER_MODE
, 0x0080}
3106 /* HW generic timer primitives */
3108 u32
ath9k_hw_gettsf32(struct ath_hw
*ah
)
3110 return REG_READ(ah
, AR_TSF_L32
);
3112 EXPORT_SYMBOL(ath9k_hw_gettsf32
);
3114 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw
*ah
)
3116 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3118 if (timer_table
->tsf2_enabled
) {
3119 REG_SET_BIT(ah
, AR_DIRECT_CONNECT
, AR_DC_AP_STA_EN
);
3120 REG_SET_BIT(ah
, AR_RESET_TSF
, AR_RESET_TSF2_ONCE
);
3124 struct ath_gen_timer
*ath_gen_timer_alloc(struct ath_hw
*ah
,
3125 void (*trigger
)(void *),
3126 void (*overflow
)(void *),
3130 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3131 struct ath_gen_timer
*timer
;
3133 if ((timer_index
< AR_FIRST_NDP_TIMER
) ||
3134 (timer_index
>= ATH_MAX_GEN_TIMER
))
3137 if ((timer_index
> AR_FIRST_NDP_TIMER
) &&
3138 !AR_SREV_9300_20_OR_LATER(ah
))
3141 timer
= kzalloc(sizeof(struct ath_gen_timer
), GFP_KERNEL
);
3145 /* allocate a hardware generic timer slot */
3146 timer_table
->timers
[timer_index
] = timer
;
3147 timer
->index
= timer_index
;
3148 timer
->trigger
= trigger
;
3149 timer
->overflow
= overflow
;
3152 if ((timer_index
> AR_FIRST_NDP_TIMER
) && !timer_table
->tsf2_enabled
) {
3153 timer_table
->tsf2_enabled
= true;
3154 ath9k_hw_gen_timer_start_tsf2(ah
);
3159 EXPORT_SYMBOL(ath_gen_timer_alloc
);
3161 void ath9k_hw_gen_timer_start(struct ath_hw
*ah
,
3162 struct ath_gen_timer
*timer
,
3166 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3169 timer_table
->timer_mask
|= BIT(timer
->index
);
3172 * Program generic timer registers
3174 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].next_addr
,
3176 REG_WRITE(ah
, gen_tmr_configuration
[timer
->index
].period_addr
,
3178 REG_SET_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3179 gen_tmr_configuration
[timer
->index
].mode_mask
);
3181 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3183 * Starting from AR9462, each generic timer can select which tsf
3184 * to use. But we still follow the old rule, 0 - 7 use tsf and
3187 if ((timer
->index
< AR_GEN_TIMER_BANK_1_LEN
))
3188 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3189 (1 << timer
->index
));
3191 REG_SET_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3192 (1 << timer
->index
));
3196 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3197 AR_IMR_S5_GENTIMER_TRIG
);
3198 if (timer
->overflow
)
3199 mask
|= SM(AR_GENTMR_BIT(timer
->index
),
3200 AR_IMR_S5_GENTIMER_THRESH
);
3202 REG_SET_BIT(ah
, AR_IMR_S5
, mask
);
3204 if ((ah
->imask
& ATH9K_INT_GENTIMER
) == 0) {
3205 ah
->imask
|= ATH9K_INT_GENTIMER
;
3206 ath9k_hw_set_interrupts(ah
);
3209 EXPORT_SYMBOL(ath9k_hw_gen_timer_start
);
3211 void ath9k_hw_gen_timer_stop(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3213 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3215 /* Clear generic timer enable bits. */
3216 REG_CLR_BIT(ah
, gen_tmr_configuration
[timer
->index
].mode_addr
,
3217 gen_tmr_configuration
[timer
->index
].mode_mask
);
3219 if (AR_SREV_9462(ah
) || AR_SREV_9565(ah
)) {
3221 * Need to switch back to TSF if it was using TSF2.
3223 if ((timer
->index
>= AR_GEN_TIMER_BANK_1_LEN
)) {
3224 REG_CLR_BIT(ah
, AR_MAC_PCU_GEN_TIMER_TSF_SEL
,
3225 (1 << timer
->index
));
3229 /* Disable both trigger and thresh interrupt masks */
3230 REG_CLR_BIT(ah
, AR_IMR_S5
,
3231 (SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_THRESH
) |
3232 SM(AR_GENTMR_BIT(timer
->index
), AR_IMR_S5_GENTIMER_TRIG
)));
3234 timer_table
->timer_mask
&= ~BIT(timer
->index
);
3236 if (timer_table
->timer_mask
== 0) {
3237 ah
->imask
&= ~ATH9K_INT_GENTIMER
;
3238 ath9k_hw_set_interrupts(ah
);
3241 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop
);
3243 void ath_gen_timer_free(struct ath_hw
*ah
, struct ath_gen_timer
*timer
)
3245 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3247 /* free the hardware generic timer slot */
3248 timer_table
->timers
[timer
->index
] = NULL
;
3251 EXPORT_SYMBOL(ath_gen_timer_free
);
3254 * Generic Timer Interrupts handling
3256 void ath_gen_timer_isr(struct ath_hw
*ah
)
3258 struct ath_gen_timer_table
*timer_table
= &ah
->hw_gen_timers
;
3259 struct ath_gen_timer
*timer
;
3260 unsigned long trigger_mask
, thresh_mask
;
3263 /* get hardware generic timer interrupt status */
3264 trigger_mask
= ah
->intr_gen_timer_trigger
;
3265 thresh_mask
= ah
->intr_gen_timer_thresh
;
3266 trigger_mask
&= timer_table
->timer_mask
;
3267 thresh_mask
&= timer_table
->timer_mask
;
3269 for_each_set_bit(index
, &thresh_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3270 timer
= timer_table
->timers
[index
];
3273 if (!timer
->overflow
)
3276 trigger_mask
&= ~BIT(index
);
3277 timer
->overflow(timer
->arg
);
3280 for_each_set_bit(index
, &trigger_mask
, ARRAY_SIZE(timer_table
->timers
)) {
3281 timer
= timer_table
->timers
[index
];
3284 if (!timer
->trigger
)
3286 timer
->trigger(timer
->arg
);
3289 EXPORT_SYMBOL(ath_gen_timer_isr
);
3298 } ath_mac_bb_names
[] = {
3299 /* Devices with external radios */
3300 { AR_SREV_VERSION_5416_PCI
, "5416" },
3301 { AR_SREV_VERSION_5416_PCIE
, "5418" },
3302 { AR_SREV_VERSION_9100
, "9100" },
3303 { AR_SREV_VERSION_9160
, "9160" },
3304 /* Single-chip solutions */
3305 { AR_SREV_VERSION_9280
, "9280" },
3306 { AR_SREV_VERSION_9285
, "9285" },
3307 { AR_SREV_VERSION_9287
, "9287" },
3308 { AR_SREV_VERSION_9271
, "9271" },
3309 { AR_SREV_VERSION_9300
, "9300" },
3310 { AR_SREV_VERSION_9330
, "9330" },
3311 { AR_SREV_VERSION_9340
, "9340" },
3312 { AR_SREV_VERSION_9485
, "9485" },
3313 { AR_SREV_VERSION_9462
, "9462" },
3314 { AR_SREV_VERSION_9550
, "9550" },
3315 { AR_SREV_VERSION_9565
, "9565" },
3316 { AR_SREV_VERSION_9531
, "9531" },
3317 { AR_SREV_VERSION_9561
, "9561" },
3320 /* For devices with external radios */
3324 } ath_rf_names
[] = {
3326 { AR_RAD5133_SREV_MAJOR
, "5133" },
3327 { AR_RAD5122_SREV_MAJOR
, "5122" },
3328 { AR_RAD2133_SREV_MAJOR
, "2133" },
3329 { AR_RAD2122_SREV_MAJOR
, "2122" }
3333 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3335 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version
)
3339 for (i
=0; i
<ARRAY_SIZE(ath_mac_bb_names
); i
++) {
3340 if (ath_mac_bb_names
[i
].version
== mac_bb_version
) {
3341 return ath_mac_bb_names
[i
].name
;
3349 * Return the RF name. "????" is returned if the RF is unknown.
3350 * Used for devices with external radios.
3352 static const char *ath9k_hw_rf_name(u16 rf_version
)
3356 for (i
=0; i
<ARRAY_SIZE(ath_rf_names
); i
++) {
3357 if (ath_rf_names
[i
].version
== rf_version
) {
3358 return ath_rf_names
[i
].name
;
3365 void ath9k_hw_name(struct ath_hw
*ah
, char *hw_name
, size_t len
)
3369 /* chipsets >= AR9280 are single-chip */
3370 if (AR_SREV_9280_20_OR_LATER(ah
)) {
3371 used
= scnprintf(hw_name
, len
,
3372 "Atheros AR%s Rev:%x",
3373 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3374 ah
->hw_version
.macRev
);
3377 used
= scnprintf(hw_name
, len
,
3378 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3379 ath9k_hw_mac_bb_name(ah
->hw_version
.macVersion
),
3380 ah
->hw_version
.macRev
,
3381 ath9k_hw_rf_name((ah
->hw_version
.analog5GhzRev
3382 & AR_RADIO_SREV_MAJOR
)),
3383 ah
->hw_version
.phyRev
);
3386 hw_name
[used
] = '\0';
3388 EXPORT_SYMBOL(ath9k_hw_name
);