gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / wireless / ath / ath9k / mac.c
blob58d02c19b6d074291aaf64eaacf6e7d452a8abf1
1 /*
2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 struct ath9k_tx_queue_info *qi)
24 ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 ah->txurn_interrupt_mask);
30 ENABLE_REGWRITE_BUFFER(ah);
32 REG_WRITE(ah, AR_IMR_S0,
33 SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 REG_WRITE(ah, AR_IMR_S1,
36 SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
39 ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
43 REGWRITE_BUFFER_FLUSH(ah);
46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
48 return REG_READ(ah, AR_QTXDP(q));
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
54 REG_WRITE(ah, AR_QTXDP(q), txdp);
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
60 ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 REG_WRITE(ah, AR_Q_TXE, 1 << q);
63 EXPORT_SYMBOL(ath9k_hw_txstart);
65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
67 u32 npend;
69 npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 if (npend == 0) {
72 if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 npend = 1;
76 return npend;
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
80 /**
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91 * first)
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
100 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
107 u32 txcfg, curLevel, newLevel;
109 if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 return false;
112 ath9k_hw_disable_interrupts(ah);
114 txcfg = REG_READ(ah, AR_TXCFG);
115 curLevel = MS(txcfg, AR_FTRIG);
116 newLevel = curLevel;
117 if (bIncTrigLevel) {
118 if (curLevel < ah->config.max_txtrig_level)
119 newLevel++;
120 } else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 newLevel--;
122 if (newLevel != curLevel)
123 REG_WRITE(ah, AR_TXCFG,
124 (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
126 ath9k_hw_enable_interrupts(ah);
128 ah->tx_trig_level = newLevel;
130 return newLevel != curLevel;
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
136 int maxdelay = 1000;
137 int i, q;
139 if (ah->curchan) {
140 if (IS_CHAN_HALF_RATE(ah->curchan))
141 maxdelay *= 2;
142 else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143 maxdelay *= 4;
146 REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
148 REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150 REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
152 for (q = 0; q < AR_NUM_QCU; q++) {
153 for (i = 0; i < maxdelay; i++) {
154 if (i)
155 udelay(5);
157 if (!ath9k_hw_numtxpending(ah, q))
158 break;
162 REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163 REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164 REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
166 REG_WRITE(ah, AR_Q_TXD, 0);
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
170 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
172 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
173 #define ATH9K_TIME_QUANTUM 100 /* usec */
174 int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175 int wait;
177 REG_WRITE(ah, AR_Q_TXD, 1 << q);
179 for (wait = wait_time; wait != 0; wait--) {
180 if (wait != wait_time)
181 udelay(ATH9K_TIME_QUANTUM);
183 if (ath9k_hw_numtxpending(ah, q) == 0)
184 break;
187 REG_WRITE(ah, AR_Q_TXD, 0);
189 return wait != 0;
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
196 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197 const struct ath9k_tx_queue_info *qinfo)
199 u32 cw;
200 struct ath_common *common = ath9k_hw_common(ah);
201 struct ath9k_tx_queue_info *qi;
203 qi = &ah->txq[q];
204 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205 ath_dbg(common, QUEUE,
206 "Set TXQ properties, inactive queue: %u\n", q);
207 return false;
210 ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
212 qi->tqi_ver = qinfo->tqi_ver;
213 qi->tqi_subtype = qinfo->tqi_subtype;
214 qi->tqi_qflags = qinfo->tqi_qflags;
215 qi->tqi_priority = qinfo->tqi_priority;
216 if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217 qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218 else
219 qi->tqi_aifs = INIT_AIFS;
220 if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221 cw = min(qinfo->tqi_cwmin, 1024U);
222 qi->tqi_cwmin = 1;
223 while (qi->tqi_cwmin < cw)
224 qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225 } else
226 qi->tqi_cwmin = qinfo->tqi_cwmin;
227 if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228 cw = min(qinfo->tqi_cwmax, 1024U);
229 qi->tqi_cwmax = 1;
230 while (qi->tqi_cwmax < cw)
231 qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232 } else
233 qi->tqi_cwmax = INIT_CWMAX;
235 if (qinfo->tqi_shretry != 0)
236 qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237 else
238 qi->tqi_shretry = INIT_SH_RETRY;
239 if (qinfo->tqi_lgretry != 0)
240 qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241 else
242 qi->tqi_lgretry = INIT_LG_RETRY;
243 qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244 qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245 qi->tqi_burstTime = qinfo->tqi_burstTime;
246 qi->tqi_readyTime = qinfo->tqi_readyTime;
248 switch (qinfo->tqi_subtype) {
249 case ATH9K_WME_UPSD:
250 if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251 qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252 break;
253 default:
254 break;
257 return true;
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
261 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262 struct ath9k_tx_queue_info *qinfo)
264 struct ath_common *common = ath9k_hw_common(ah);
265 struct ath9k_tx_queue_info *qi;
267 qi = &ah->txq[q];
268 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269 ath_dbg(common, QUEUE,
270 "Get TXQ properties, inactive queue: %u\n", q);
271 return false;
274 qinfo->tqi_qflags = qi->tqi_qflags;
275 qinfo->tqi_ver = qi->tqi_ver;
276 qinfo->tqi_subtype = qi->tqi_subtype;
277 qinfo->tqi_qflags = qi->tqi_qflags;
278 qinfo->tqi_priority = qi->tqi_priority;
279 qinfo->tqi_aifs = qi->tqi_aifs;
280 qinfo->tqi_cwmin = qi->tqi_cwmin;
281 qinfo->tqi_cwmax = qi->tqi_cwmax;
282 qinfo->tqi_shretry = qi->tqi_shretry;
283 qinfo->tqi_lgretry = qi->tqi_lgretry;
284 qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285 qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286 qinfo->tqi_burstTime = qi->tqi_burstTime;
287 qinfo->tqi_readyTime = qi->tqi_readyTime;
289 return true;
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
293 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294 const struct ath9k_tx_queue_info *qinfo)
296 struct ath_common *common = ath9k_hw_common(ah);
297 struct ath9k_tx_queue_info *qi;
298 int q;
300 switch (type) {
301 case ATH9K_TX_QUEUE_BEACON:
302 q = ATH9K_NUM_TX_QUEUES - 1;
303 break;
304 case ATH9K_TX_QUEUE_CAB:
305 q = ATH9K_NUM_TX_QUEUES - 2;
306 break;
307 case ATH9K_TX_QUEUE_PSPOLL:
308 q = 1;
309 break;
310 case ATH9K_TX_QUEUE_UAPSD:
311 q = ATH9K_NUM_TX_QUEUES - 3;
312 break;
313 case ATH9K_TX_QUEUE_DATA:
314 q = qinfo->tqi_subtype;
315 break;
316 default:
317 ath_err(common, "Invalid TX queue type: %u\n", type);
318 return -1;
321 ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
323 qi = &ah->txq[q];
324 if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
325 ath_err(common, "TX queue: %u already active\n", q);
326 return -1;
328 memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
329 qi->tqi_type = type;
330 qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
331 (void) ath9k_hw_set_txq_props(ah, q, qinfo);
333 return q;
335 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
337 static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
339 ah->txok_interrupt_mask &= ~(1 << q);
340 ah->txerr_interrupt_mask &= ~(1 << q);
341 ah->txdesc_interrupt_mask &= ~(1 << q);
342 ah->txeol_interrupt_mask &= ~(1 << q);
343 ah->txurn_interrupt_mask &= ~(1 << q);
346 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
348 struct ath_common *common = ath9k_hw_common(ah);
349 struct ath9k_tx_queue_info *qi;
351 qi = &ah->txq[q];
352 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
353 ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
354 return false;
357 ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
359 qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
360 ath9k_hw_clear_queue_interrupts(ah, q);
361 ath9k_hw_set_txq_interrupts(ah, qi);
363 return true;
365 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
367 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
369 struct ath_common *common = ath9k_hw_common(ah);
370 struct ath9k_tx_queue_info *qi;
371 u32 cwMin, chanCwMin, value;
373 qi = &ah->txq[q];
374 if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375 ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
376 return true;
379 ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
381 if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
382 chanCwMin = INIT_CWMIN;
384 for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
385 } else
386 cwMin = qi->tqi_cwmin;
388 ENABLE_REGWRITE_BUFFER(ah);
390 REG_WRITE(ah, AR_DLCL_IFS(q),
391 SM(cwMin, AR_D_LCL_IFS_CWMIN) |
392 SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
393 SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
395 REG_WRITE(ah, AR_DRETRY_LIMIT(q),
396 SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
397 SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
398 SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
400 REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
402 if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
403 REG_WRITE(ah, AR_DMISC(q),
404 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
405 else
406 REG_WRITE(ah, AR_DMISC(q),
407 AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
409 if (qi->tqi_cbrPeriod) {
410 REG_WRITE(ah, AR_QCBRCFG(q),
411 SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
412 SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
413 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
414 (qi->tqi_cbrOverflowLimit ?
415 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
417 if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
418 REG_WRITE(ah, AR_QRDYTIMECFG(q),
419 SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
420 AR_Q_RDYTIMECFG_EN);
423 REG_WRITE(ah, AR_DCHNTIME(q),
424 SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
425 (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
427 if (qi->tqi_burstTime
428 && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
429 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
431 if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
432 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
434 REGWRITE_BUFFER_FLUSH(ah);
436 if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
437 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
439 switch (qi->tqi_type) {
440 case ATH9K_TX_QUEUE_BEACON:
441 ENABLE_REGWRITE_BUFFER(ah);
443 REG_SET_BIT(ah, AR_QMISC(q),
444 AR_Q_MISC_FSP_DBA_GATED
445 | AR_Q_MISC_BEACON_USE
446 | AR_Q_MISC_CBR_INCR_DIS1);
448 REG_SET_BIT(ah, AR_DMISC(q),
449 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
450 AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
451 | AR_D_MISC_BEACON_USE
452 | AR_D_MISC_POST_FR_BKOFF_DIS);
454 REGWRITE_BUFFER_FLUSH(ah);
457 * cwmin and cwmax should be 0 for beacon queue
458 * but not for IBSS as we would create an imbalance
459 * on beaconing fairness for participating nodes.
461 if (AR_SREV_9300_20_OR_LATER(ah) &&
462 ah->opmode != NL80211_IFTYPE_ADHOC) {
463 REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
464 | SM(0, AR_D_LCL_IFS_CWMAX)
465 | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
467 break;
468 case ATH9K_TX_QUEUE_CAB:
469 ENABLE_REGWRITE_BUFFER(ah);
471 REG_SET_BIT(ah, AR_QMISC(q),
472 AR_Q_MISC_FSP_DBA_GATED
473 | AR_Q_MISC_CBR_INCR_DIS1
474 | AR_Q_MISC_CBR_INCR_DIS0);
475 value = (qi->tqi_readyTime -
476 (ah->config.sw_beacon_response_time -
477 ah->config.dma_beacon_response_time)) * 1024;
478 REG_WRITE(ah, AR_QRDYTIMECFG(q),
479 value | AR_Q_RDYTIMECFG_EN);
480 REG_SET_BIT(ah, AR_DMISC(q),
481 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
482 AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
484 REGWRITE_BUFFER_FLUSH(ah);
486 break;
487 case ATH9K_TX_QUEUE_PSPOLL:
488 REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
489 break;
490 case ATH9K_TX_QUEUE_UAPSD:
491 REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
492 break;
493 default:
494 break;
497 if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
498 REG_SET_BIT(ah, AR_DMISC(q),
499 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
500 AR_D_MISC_ARB_LOCKOUT_CNTRL) |
501 AR_D_MISC_POST_FR_BKOFF_DIS);
504 if (AR_SREV_9300_20_OR_LATER(ah))
505 REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
507 ath9k_hw_clear_queue_interrupts(ah, q);
508 if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
509 ah->txok_interrupt_mask |= 1 << q;
510 ah->txerr_interrupt_mask |= 1 << q;
512 if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
513 ah->txdesc_interrupt_mask |= 1 << q;
514 if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
515 ah->txeol_interrupt_mask |= 1 << q;
516 if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
517 ah->txurn_interrupt_mask |= 1 << q;
518 ath9k_hw_set_txq_interrupts(ah, qi);
520 return true;
522 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
524 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
525 struct ath_rx_status *rs)
527 struct ar5416_desc ads;
528 struct ar5416_desc *adsp = AR5416DESC(ds);
529 u32 phyerr;
531 if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
532 return -EINPROGRESS;
534 ads.u.rx = adsp->u.rx;
536 rs->rs_status = 0;
537 rs->rs_flags = 0;
538 rs->enc_flags = 0;
539 rs->bw = RATE_INFO_BW_20;
541 rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
542 rs->rs_tstamp = ads.AR_RcvTimestamp;
544 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
545 rs->rs_rssi = ATH9K_RSSI_BAD;
546 rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
547 rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
548 rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
549 rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
550 rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
551 rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
552 } else {
553 rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
554 rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
555 AR_RxRSSIAnt00);
556 rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
557 AR_RxRSSIAnt01);
558 rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
559 AR_RxRSSIAnt02);
560 rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
561 AR_RxRSSIAnt10);
562 rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
563 AR_RxRSSIAnt11);
564 rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
565 AR_RxRSSIAnt12);
567 if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
568 rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
569 else
570 rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
572 rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
573 rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
575 rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
576 rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
577 rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
578 rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
580 /* directly mapped flags for ieee80211_rx_status */
581 rs->enc_flags |=
582 (ads.ds_rxstatus3 & AR_GI) ? RX_ENC_FLAG_SHORT_GI : 0;
583 rs->bw = (ads.ds_rxstatus3 & AR_2040) ? RATE_INFO_BW_40 :
584 RATE_INFO_BW_20;
585 if (AR_SREV_9280_20_OR_LATER(ah))
586 rs->enc_flags |=
587 (ads.ds_rxstatus3 & AR_STBC) ?
588 /* we can only Nss=1 STBC */
589 (1 << RX_ENC_FLAG_STBC_SHIFT) : 0;
591 if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
592 rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
593 if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
594 rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
595 if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
596 rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
598 if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
600 * Treat these errors as mutually exclusive to avoid spurious
601 * extra error reports from the hardware. If a CRC error is
602 * reported, then decryption and MIC errors are irrelevant,
603 * the frame is going to be dropped either way
605 if (ads.ds_rxstatus8 & AR_PHYErr) {
606 rs->rs_status |= ATH9K_RXERR_PHY;
607 phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
608 rs->rs_phyerr = phyerr;
609 } else if (ads.ds_rxstatus8 & AR_CRCErr)
610 rs->rs_status |= ATH9K_RXERR_CRC;
611 else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
612 rs->rs_status |= ATH9K_RXERR_DECRYPT;
613 else if (ads.ds_rxstatus8 & AR_MichaelErr)
614 rs->rs_status |= ATH9K_RXERR_MIC;
615 } else {
616 if (ads.ds_rxstatus8 &
617 (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
618 rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
620 /* Only up to MCS16 supported, everything above is invalid */
621 if (rs->rs_rate >= 0x90)
622 rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
625 if (ads.ds_rxstatus8 & AR_KeyMiss)
626 rs->rs_status |= ATH9K_RXERR_KEYMISS;
628 return 0;
630 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
633 * This can stop or re-enables RX.
635 * If bool is set this will kill any frame which is currently being
636 * transferred between the MAC and baseband and also prevent any new
637 * frames from getting started.
639 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
641 u32 reg;
643 if (set) {
644 REG_SET_BIT(ah, AR_DIAG_SW,
645 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
647 if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
648 0, AH_WAIT_TIMEOUT)) {
649 REG_CLR_BIT(ah, AR_DIAG_SW,
650 (AR_DIAG_RX_DIS |
651 AR_DIAG_RX_ABORT));
653 reg = REG_READ(ah, AR_OBS_BUS_1);
654 ath_err(ath9k_hw_common(ah),
655 "RX failed to go idle in 10 ms RXSM=0x%x\n",
656 reg);
658 return false;
660 } else {
661 REG_CLR_BIT(ah, AR_DIAG_SW,
662 (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
665 return true;
667 EXPORT_SYMBOL(ath9k_hw_setrxabort);
669 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
671 REG_WRITE(ah, AR_RXDP, rxdp);
673 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
675 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
677 ath9k_enable_mib_counters(ah);
679 ath9k_ani_reset(ah, is_scanning);
681 REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
683 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
685 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
687 REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
689 ath9k_hw_disable_mib_counters(ah);
691 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
693 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
695 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
696 struct ath_common *common = ath9k_hw_common(ah);
697 u32 mac_status, last_mac_status = 0;
698 int i;
700 /* Enable access to the DMA observation bus */
701 REG_WRITE(ah, AR_MACMISC,
702 ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
703 (AR_MACMISC_MISC_OBS_BUS_1 <<
704 AR_MACMISC_MISC_OBS_BUS_MSB_S)));
706 REG_WRITE(ah, AR_CR, AR_CR_RXD);
708 /* Wait for rx enable bit to go low */
709 for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
710 if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
711 break;
713 if (!AR_SREV_9300_20_OR_LATER(ah)) {
714 mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
715 if (mac_status == 0x1c0 && mac_status == last_mac_status) {
716 *reset = true;
717 break;
720 last_mac_status = mac_status;
723 udelay(AH_TIME_QUANTUM);
726 if (i == 0) {
727 ath_err(common,
728 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
729 AH_RX_STOP_DMA_TIMEOUT / 1000,
730 REG_READ(ah, AR_CR),
731 REG_READ(ah, AR_DIAG_SW),
732 REG_READ(ah, AR_DMADBG_7));
733 return false;
734 } else {
735 return true;
738 #undef AH_RX_STOP_DMA_TIMEOUT
740 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
742 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
744 struct ath9k_tx_queue_info qi;
746 memset(&qi, 0, sizeof(qi));
747 qi.tqi_aifs = 1;
748 qi.tqi_cwmin = 0;
749 qi.tqi_cwmax = 0;
751 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
752 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
754 return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
756 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
758 bool ath9k_hw_intrpend(struct ath_hw *ah)
760 u32 host_isr;
762 if (AR_SREV_9100(ah))
763 return true;
765 host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
767 if (((host_isr & AR_INTR_MAC_IRQ) ||
768 (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
769 (host_isr != AR_INTR_SPURIOUS))
770 return true;
772 host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
773 if ((host_isr & AR_INTR_SYNC_DEFAULT)
774 && (host_isr != AR_INTR_SPURIOUS))
775 return true;
777 return false;
779 EXPORT_SYMBOL(ath9k_hw_intrpend);
781 void ath9k_hw_kill_interrupts(struct ath_hw *ah)
783 struct ath_common *common = ath9k_hw_common(ah);
785 ath_dbg(common, INTERRUPT, "disable IER\n");
786 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
787 (void) REG_READ(ah, AR_IER);
788 if (!AR_SREV_9100(ah)) {
789 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
790 (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
792 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
793 (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
796 EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
798 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
800 if (!(ah->imask & ATH9K_INT_GLOBAL))
801 atomic_set(&ah->intr_ref_cnt, -1);
802 else
803 atomic_dec(&ah->intr_ref_cnt);
805 ath9k_hw_kill_interrupts(ah);
807 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
809 static void __ath9k_hw_enable_interrupts(struct ath_hw *ah)
811 struct ath_common *common = ath9k_hw_common(ah);
812 u32 sync_default = AR_INTR_SYNC_DEFAULT;
813 u32 async_mask;
815 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
816 AR_SREV_9561(ah))
817 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
819 async_mask = AR_INTR_MAC_IRQ;
821 if (ah->imask & ATH9K_INT_MCI)
822 async_mask |= AR_INTR_ASYNC_MASK_MCI;
824 ath_dbg(common, INTERRUPT, "enable IER\n");
825 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
826 if (!AR_SREV_9100(ah)) {
827 REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
828 REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
830 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
831 REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
833 ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
834 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
836 if (ah->msi_enabled) {
837 u32 _msi_reg = 0;
838 u32 i = 0;
839 u32 msi_pend_addr_mask = AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
841 ath_dbg(ath9k_hw_common(ah), INTERRUPT,
842 "Enabling MSI, msi_mask=0x%X\n", ah->msi_mask);
844 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, ah->msi_mask);
845 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, ah->msi_mask);
846 ath_dbg(ath9k_hw_common(ah), INTERRUPT,
847 "AR_INTR_PRIO_ASYNC_ENABLE=0x%X, AR_INTR_PRIO_ASYNC_MASK=0x%X\n",
848 REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE),
849 REG_READ(ah, AR_INTR_PRIO_ASYNC_MASK));
851 if (ah->msi_reg == 0)
852 ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
854 ath_dbg(ath9k_hw_common(ah), INTERRUPT,
855 "AR_PCIE_MSI=0x%X, ah->msi_reg = 0x%X\n",
856 AR_PCIE_MSI, ah->msi_reg);
858 i = 0;
859 do {
860 REG_WRITE(ah, AR_PCIE_MSI,
861 (ah->msi_reg | AR_PCIE_MSI_ENABLE)
862 & msi_pend_addr_mask);
863 _msi_reg = REG_READ(ah, AR_PCIE_MSI);
864 i++;
865 } while ((_msi_reg & AR_PCIE_MSI_ENABLE) == 0 && i < 200);
867 if (i >= 200)
868 ath_err(ath9k_hw_common(ah),
869 "%s: _msi_reg = 0x%X\n",
870 __func__, _msi_reg);
874 void ath9k_hw_resume_interrupts(struct ath_hw *ah)
876 struct ath_common *common = ath9k_hw_common(ah);
878 if (!(ah->imask & ATH9K_INT_GLOBAL))
879 return;
881 if (atomic_read(&ah->intr_ref_cnt) != 0) {
882 ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
883 atomic_read(&ah->intr_ref_cnt));
884 return;
887 __ath9k_hw_enable_interrupts(ah);
889 EXPORT_SYMBOL(ath9k_hw_resume_interrupts);
891 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
893 struct ath_common *common = ath9k_hw_common(ah);
895 if (!(ah->imask & ATH9K_INT_GLOBAL))
896 return;
898 if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
899 ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
900 atomic_read(&ah->intr_ref_cnt));
901 return;
904 __ath9k_hw_enable_interrupts(ah);
906 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
908 void ath9k_hw_set_interrupts(struct ath_hw *ah)
910 enum ath9k_int ints = ah->imask;
911 u32 mask, mask2;
912 struct ath9k_hw_capabilities *pCap = &ah->caps;
913 struct ath_common *common = ath9k_hw_common(ah);
915 if (!(ints & ATH9K_INT_GLOBAL))
916 ath9k_hw_disable_interrupts(ah);
918 if (ah->msi_enabled) {
919 ath_dbg(common, INTERRUPT, "Clearing AR_INTR_PRIO_ASYNC_ENABLE\n");
921 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
922 REG_READ(ah, AR_INTR_PRIO_ASYNC_ENABLE);
925 ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
927 mask = ints & ATH9K_INT_COMMON;
928 mask2 = 0;
930 ah->msi_mask = 0;
931 if (ints & ATH9K_INT_TX) {
932 ah->msi_mask |= AR_INTR_PRIO_TX;
933 if (ah->config.tx_intr_mitigation)
934 mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
935 else {
936 if (ah->txok_interrupt_mask)
937 mask |= AR_IMR_TXOK;
938 if (ah->txdesc_interrupt_mask)
939 mask |= AR_IMR_TXDESC;
941 if (ah->txerr_interrupt_mask)
942 mask |= AR_IMR_TXERR;
943 if (ah->txeol_interrupt_mask)
944 mask |= AR_IMR_TXEOL;
946 if (ints & ATH9K_INT_RX) {
947 ah->msi_mask |= AR_INTR_PRIO_RXLP | AR_INTR_PRIO_RXHP;
948 if (AR_SREV_9300_20_OR_LATER(ah)) {
949 mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
950 if (ah->config.rx_intr_mitigation) {
951 mask &= ~AR_IMR_RXOK_LP;
952 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
953 } else {
954 mask |= AR_IMR_RXOK_LP;
956 } else {
957 if (ah->config.rx_intr_mitigation)
958 mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
959 else
960 mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
962 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
963 mask |= AR_IMR_GENTMR;
966 if (ints & ATH9K_INT_GENTIMER)
967 mask |= AR_IMR_GENTMR;
969 if (ints & (ATH9K_INT_BMISC)) {
970 mask |= AR_IMR_BCNMISC;
971 if (ints & ATH9K_INT_TIM)
972 mask2 |= AR_IMR_S2_TIM;
973 if (ints & ATH9K_INT_DTIM)
974 mask2 |= AR_IMR_S2_DTIM;
975 if (ints & ATH9K_INT_DTIMSYNC)
976 mask2 |= AR_IMR_S2_DTIMSYNC;
977 if (ints & ATH9K_INT_CABEND)
978 mask2 |= AR_IMR_S2_CABEND;
979 if (ints & ATH9K_INT_TSFOOR)
980 mask2 |= AR_IMR_S2_TSFOOR;
983 if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
984 mask |= AR_IMR_BCNMISC;
985 if (ints & ATH9K_INT_GTT)
986 mask2 |= AR_IMR_S2_GTT;
987 if (ints & ATH9K_INT_CST)
988 mask2 |= AR_IMR_S2_CST;
991 if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
992 if (ints & ATH9K_INT_BB_WATCHDOG) {
993 mask |= AR_IMR_BCNMISC;
994 mask2 |= AR_IMR_S2_BB_WATCHDOG;
998 ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
999 REG_WRITE(ah, AR_IMR, mask);
1000 ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
1001 AR_IMR_S2_DTIM |
1002 AR_IMR_S2_DTIMSYNC |
1003 AR_IMR_S2_CABEND |
1004 AR_IMR_S2_CABTO |
1005 AR_IMR_S2_TSFOOR |
1006 AR_IMR_S2_GTT |
1007 AR_IMR_S2_CST);
1009 if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
1010 if (ints & ATH9K_INT_BB_WATCHDOG)
1011 ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
1014 ah->imrs2_reg |= mask2;
1015 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
1017 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1018 if (ints & ATH9K_INT_TIM_TIMER)
1019 REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1020 else
1021 REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
1024 return;
1026 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
1028 #define ATH9K_HW_MAX_DCU 10
1029 #define ATH9K_HW_SLICE_PER_DCU 16
1030 #define ATH9K_HW_BIT_IN_SLICE 16
1031 void ath9k_hw_set_tx_filter(struct ath_hw *ah, u8 destidx, bool set)
1033 int dcu_idx;
1034 u32 filter;
1036 for (dcu_idx = 0; dcu_idx < 10; dcu_idx++) {
1037 filter = SM(set, AR_D_TXBLK_WRITE_COMMAND);
1038 filter |= SM(dcu_idx, AR_D_TXBLK_WRITE_DCU);
1039 filter |= SM((destidx / ATH9K_HW_SLICE_PER_DCU),
1040 AR_D_TXBLK_WRITE_SLICE);
1041 filter |= BIT(destidx % ATH9K_HW_BIT_IN_SLICE);
1042 ath_dbg(ath9k_hw_common(ah), PS,
1043 "DCU%d staid %d set %d txfilter %08x\n",
1044 dcu_idx, destidx, set, filter);
1045 REG_WRITE(ah, AR_D_TXBLK_BASE, filter);
1048 EXPORT_SYMBOL(ath9k_hw_set_tx_filter);