2 * Copyright (c) 2008-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 #include <linux/export.h>
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw
*ah
,
22 struct ath9k_tx_queue_info
*qi
)
24 ath_dbg(ath9k_hw_common(ah
), INTERRUPT
,
25 "tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 ah
->txok_interrupt_mask
, ah
->txerr_interrupt_mask
,
27 ah
->txdesc_interrupt_mask
, ah
->txeol_interrupt_mask
,
28 ah
->txurn_interrupt_mask
);
30 ENABLE_REGWRITE_BUFFER(ah
);
32 REG_WRITE(ah
, AR_IMR_S0
,
33 SM(ah
->txok_interrupt_mask
, AR_IMR_S0_QCU_TXOK
)
34 | SM(ah
->txdesc_interrupt_mask
, AR_IMR_S0_QCU_TXDESC
));
35 REG_WRITE(ah
, AR_IMR_S1
,
36 SM(ah
->txerr_interrupt_mask
, AR_IMR_S1_QCU_TXERR
)
37 | SM(ah
->txeol_interrupt_mask
, AR_IMR_S1_QCU_TXEOL
));
39 ah
->imrs2_reg
&= ~AR_IMR_S2_QCU_TXURN
;
40 ah
->imrs2_reg
|= (ah
->txurn_interrupt_mask
& AR_IMR_S2_QCU_TXURN
);
41 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
43 REGWRITE_BUFFER_FLUSH(ah
);
46 u32
ath9k_hw_gettxbuf(struct ath_hw
*ah
, u32 q
)
48 return REG_READ(ah
, AR_QTXDP(q
));
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf
);
52 void ath9k_hw_puttxbuf(struct ath_hw
*ah
, u32 q
, u32 txdp
)
54 REG_WRITE(ah
, AR_QTXDP(q
), txdp
);
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf
);
58 void ath9k_hw_txstart(struct ath_hw
*ah
, u32 q
)
60 ath_dbg(ath9k_hw_common(ah
), QUEUE
, "Enable TXE on queue: %u\n", q
);
61 REG_WRITE(ah
, AR_Q_TXE
, 1 << q
);
63 EXPORT_SYMBOL(ath9k_hw_txstart
);
65 u32
ath9k_hw_numtxpending(struct ath_hw
*ah
, u32 q
)
69 npend
= REG_READ(ah
, AR_QSTS(q
)) & AR_Q_STS_PEND_FR_CNT
;
72 if (REG_READ(ah
, AR_Q_TXE
) & (1 << q
))
78 EXPORT_SYMBOL(ath9k_hw_numtxpending
);
81 * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
83 * @ah: atheros hardware struct
84 * @bIncTrigLevel: whether or not the frame trigger level should be updated
86 * The frame trigger level specifies the minimum number of bytes,
87 * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88 * before the PCU will initiate sending the frame on the air. This can
89 * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90 * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
93 * Caution must be taken to ensure to set the frame trigger level based
94 * on the DMA request size. For example if the DMA request size is set to
95 * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96 * there need to be enough space in the tx FIFO for the requested transfer
97 * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98 * the threshold to a value beyond 6, then the transmit will hang.
100 * Current dual stream devices have a PCU TX FIFO size of 8 KB.
101 * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102 * there is a hardware issue which forces us to use 2 KB instead so the
103 * frame trigger level must not exceed 2 KB for these chipsets.
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw
*ah
, bool bIncTrigLevel
)
107 u32 txcfg
, curLevel
, newLevel
;
109 if (ah
->tx_trig_level
>= ah
->config
.max_txtrig_level
)
112 ath9k_hw_disable_interrupts(ah
);
114 txcfg
= REG_READ(ah
, AR_TXCFG
);
115 curLevel
= MS(txcfg
, AR_FTRIG
);
118 if (curLevel
< ah
->config
.max_txtrig_level
)
120 } else if (curLevel
> MIN_TX_FIFO_THRESHOLD
)
122 if (newLevel
!= curLevel
)
123 REG_WRITE(ah
, AR_TXCFG
,
124 (txcfg
& ~AR_FTRIG
) | SM(newLevel
, AR_FTRIG
));
126 ath9k_hw_enable_interrupts(ah
);
128 ah
->tx_trig_level
= newLevel
;
130 return newLevel
!= curLevel
;
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel
);
134 void ath9k_hw_abort_tx_dma(struct ath_hw
*ah
)
140 if (IS_CHAN_HALF_RATE(ah
->curchan
))
142 else if (IS_CHAN_QUARTER_RATE(ah
->curchan
))
146 REG_WRITE(ah
, AR_Q_TXD
, AR_Q_TXD_M
);
148 REG_SET_BIT(ah
, AR_PCU_MISC
, AR_PCU_FORCE_QUIET_COLL
| AR_PCU_CLEAR_VMF
);
149 REG_SET_BIT(ah
, AR_DIAG_SW
, AR_DIAG_FORCE_CH_IDLE_HIGH
);
150 REG_SET_BIT(ah
, AR_D_GBL_IFS_MISC
, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF
);
152 for (q
= 0; q
< AR_NUM_QCU
; q
++) {
153 for (i
= 0; i
< maxdelay
; i
++) {
157 if (!ath9k_hw_numtxpending(ah
, q
))
162 REG_CLR_BIT(ah
, AR_PCU_MISC
, AR_PCU_FORCE_QUIET_COLL
| AR_PCU_CLEAR_VMF
);
163 REG_CLR_BIT(ah
, AR_DIAG_SW
, AR_DIAG_FORCE_CH_IDLE_HIGH
);
164 REG_CLR_BIT(ah
, AR_D_GBL_IFS_MISC
, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF
);
166 REG_WRITE(ah
, AR_Q_TXD
, 0);
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma
);
170 bool ath9k_hw_stop_dma_queue(struct ath_hw
*ah
, u32 q
)
172 #define ATH9K_TX_STOP_DMA_TIMEOUT 1000 /* usec */
173 #define ATH9K_TIME_QUANTUM 100 /* usec */
174 int wait_time
= ATH9K_TX_STOP_DMA_TIMEOUT
/ ATH9K_TIME_QUANTUM
;
177 REG_WRITE(ah
, AR_Q_TXD
, 1 << q
);
179 for (wait
= wait_time
; wait
!= 0; wait
--) {
180 if (wait
!= wait_time
)
181 udelay(ATH9K_TIME_QUANTUM
);
183 if (ath9k_hw_numtxpending(ah
, q
) == 0)
187 REG_WRITE(ah
, AR_Q_TXD
, 0);
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue
);
196 bool ath9k_hw_set_txq_props(struct ath_hw
*ah
, int q
,
197 const struct ath9k_tx_queue_info
*qinfo
)
200 struct ath_common
*common
= ath9k_hw_common(ah
);
201 struct ath9k_tx_queue_info
*qi
;
204 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
205 ath_dbg(common
, QUEUE
,
206 "Set TXQ properties, inactive queue: %u\n", q
);
210 ath_dbg(common
, QUEUE
, "Set queue properties for: %u\n", q
);
212 qi
->tqi_ver
= qinfo
->tqi_ver
;
213 qi
->tqi_subtype
= qinfo
->tqi_subtype
;
214 qi
->tqi_qflags
= qinfo
->tqi_qflags
;
215 qi
->tqi_priority
= qinfo
->tqi_priority
;
216 if (qinfo
->tqi_aifs
!= ATH9K_TXQ_USEDEFAULT
)
217 qi
->tqi_aifs
= min(qinfo
->tqi_aifs
, 255U);
219 qi
->tqi_aifs
= INIT_AIFS
;
220 if (qinfo
->tqi_cwmin
!= ATH9K_TXQ_USEDEFAULT
) {
221 cw
= min(qinfo
->tqi_cwmin
, 1024U);
223 while (qi
->tqi_cwmin
< cw
)
224 qi
->tqi_cwmin
= (qi
->tqi_cwmin
<< 1) | 1;
226 qi
->tqi_cwmin
= qinfo
->tqi_cwmin
;
227 if (qinfo
->tqi_cwmax
!= ATH9K_TXQ_USEDEFAULT
) {
228 cw
= min(qinfo
->tqi_cwmax
, 1024U);
230 while (qi
->tqi_cwmax
< cw
)
231 qi
->tqi_cwmax
= (qi
->tqi_cwmax
<< 1) | 1;
233 qi
->tqi_cwmax
= INIT_CWMAX
;
235 if (qinfo
->tqi_shretry
!= 0)
236 qi
->tqi_shretry
= min((u32
) qinfo
->tqi_shretry
, 15U);
238 qi
->tqi_shretry
= INIT_SH_RETRY
;
239 if (qinfo
->tqi_lgretry
!= 0)
240 qi
->tqi_lgretry
= min((u32
) qinfo
->tqi_lgretry
, 15U);
242 qi
->tqi_lgretry
= INIT_LG_RETRY
;
243 qi
->tqi_cbrPeriod
= qinfo
->tqi_cbrPeriod
;
244 qi
->tqi_cbrOverflowLimit
= qinfo
->tqi_cbrOverflowLimit
;
245 qi
->tqi_burstTime
= qinfo
->tqi_burstTime
;
246 qi
->tqi_readyTime
= qinfo
->tqi_readyTime
;
248 switch (qinfo
->tqi_subtype
) {
250 if (qi
->tqi_type
== ATH9K_TX_QUEUE_DATA
)
251 qi
->tqi_intFlags
= ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS
;
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props
);
261 bool ath9k_hw_get_txq_props(struct ath_hw
*ah
, int q
,
262 struct ath9k_tx_queue_info
*qinfo
)
264 struct ath_common
*common
= ath9k_hw_common(ah
);
265 struct ath9k_tx_queue_info
*qi
;
268 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
269 ath_dbg(common
, QUEUE
,
270 "Get TXQ properties, inactive queue: %u\n", q
);
274 qinfo
->tqi_qflags
= qi
->tqi_qflags
;
275 qinfo
->tqi_ver
= qi
->tqi_ver
;
276 qinfo
->tqi_subtype
= qi
->tqi_subtype
;
277 qinfo
->tqi_qflags
= qi
->tqi_qflags
;
278 qinfo
->tqi_priority
= qi
->tqi_priority
;
279 qinfo
->tqi_aifs
= qi
->tqi_aifs
;
280 qinfo
->tqi_cwmin
= qi
->tqi_cwmin
;
281 qinfo
->tqi_cwmax
= qi
->tqi_cwmax
;
282 qinfo
->tqi_shretry
= qi
->tqi_shretry
;
283 qinfo
->tqi_lgretry
= qi
->tqi_lgretry
;
284 qinfo
->tqi_cbrPeriod
= qi
->tqi_cbrPeriod
;
285 qinfo
->tqi_cbrOverflowLimit
= qi
->tqi_cbrOverflowLimit
;
286 qinfo
->tqi_burstTime
= qi
->tqi_burstTime
;
287 qinfo
->tqi_readyTime
= qi
->tqi_readyTime
;
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props
);
293 int ath9k_hw_setuptxqueue(struct ath_hw
*ah
, enum ath9k_tx_queue type
,
294 const struct ath9k_tx_queue_info
*qinfo
)
296 struct ath_common
*common
= ath9k_hw_common(ah
);
297 struct ath9k_tx_queue_info
*qi
;
301 case ATH9K_TX_QUEUE_BEACON
:
302 q
= ATH9K_NUM_TX_QUEUES
- 1;
304 case ATH9K_TX_QUEUE_CAB
:
305 q
= ATH9K_NUM_TX_QUEUES
- 2;
307 case ATH9K_TX_QUEUE_PSPOLL
:
310 case ATH9K_TX_QUEUE_UAPSD
:
311 q
= ATH9K_NUM_TX_QUEUES
- 3;
313 case ATH9K_TX_QUEUE_DATA
:
314 q
= qinfo
->tqi_subtype
;
317 ath_err(common
, "Invalid TX queue type: %u\n", type
);
321 ath_dbg(common
, QUEUE
, "Setup TX queue: %u\n", q
);
324 if (qi
->tqi_type
!= ATH9K_TX_QUEUE_INACTIVE
) {
325 ath_err(common
, "TX queue: %u already active\n", q
);
328 memset(qi
, 0, sizeof(struct ath9k_tx_queue_info
));
330 qi
->tqi_physCompBuf
= qinfo
->tqi_physCompBuf
;
331 (void) ath9k_hw_set_txq_props(ah
, q
, qinfo
);
335 EXPORT_SYMBOL(ath9k_hw_setuptxqueue
);
337 static void ath9k_hw_clear_queue_interrupts(struct ath_hw
*ah
, u32 q
)
339 ah
->txok_interrupt_mask
&= ~(1 << q
);
340 ah
->txerr_interrupt_mask
&= ~(1 << q
);
341 ah
->txdesc_interrupt_mask
&= ~(1 << q
);
342 ah
->txeol_interrupt_mask
&= ~(1 << q
);
343 ah
->txurn_interrupt_mask
&= ~(1 << q
);
346 bool ath9k_hw_releasetxqueue(struct ath_hw
*ah
, u32 q
)
348 struct ath_common
*common
= ath9k_hw_common(ah
);
349 struct ath9k_tx_queue_info
*qi
;
352 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
353 ath_dbg(common
, QUEUE
, "Release TXQ, inactive queue: %u\n", q
);
357 ath_dbg(common
, QUEUE
, "Release TX queue: %u\n", q
);
359 qi
->tqi_type
= ATH9K_TX_QUEUE_INACTIVE
;
360 ath9k_hw_clear_queue_interrupts(ah
, q
);
361 ath9k_hw_set_txq_interrupts(ah
, qi
);
365 EXPORT_SYMBOL(ath9k_hw_releasetxqueue
);
367 bool ath9k_hw_resettxqueue(struct ath_hw
*ah
, u32 q
)
369 struct ath_common
*common
= ath9k_hw_common(ah
);
370 struct ath9k_tx_queue_info
*qi
;
371 u32 cwMin
, chanCwMin
, value
;
374 if (qi
->tqi_type
== ATH9K_TX_QUEUE_INACTIVE
) {
375 ath_dbg(common
, QUEUE
, "Reset TXQ, inactive queue: %u\n", q
);
379 ath_dbg(common
, QUEUE
, "Reset TX queue: %u\n", q
);
381 if (qi
->tqi_cwmin
== ATH9K_TXQ_USEDEFAULT
) {
382 chanCwMin
= INIT_CWMIN
;
384 for (cwMin
= 1; cwMin
< chanCwMin
; cwMin
= (cwMin
<< 1) | 1);
386 cwMin
= qi
->tqi_cwmin
;
388 ENABLE_REGWRITE_BUFFER(ah
);
390 REG_WRITE(ah
, AR_DLCL_IFS(q
),
391 SM(cwMin
, AR_D_LCL_IFS_CWMIN
) |
392 SM(qi
->tqi_cwmax
, AR_D_LCL_IFS_CWMAX
) |
393 SM(qi
->tqi_aifs
, AR_D_LCL_IFS_AIFS
));
395 REG_WRITE(ah
, AR_DRETRY_LIMIT(q
),
396 SM(INIT_SSH_RETRY
, AR_D_RETRY_LIMIT_STA_SH
) |
397 SM(INIT_SLG_RETRY
, AR_D_RETRY_LIMIT_STA_LG
) |
398 SM(qi
->tqi_shretry
, AR_D_RETRY_LIMIT_FR_SH
));
400 REG_WRITE(ah
, AR_QMISC(q
), AR_Q_MISC_DCU_EARLY_TERM_REQ
);
402 if (AR_SREV_9340(ah
) && !AR_SREV_9340_13_OR_LATER(ah
))
403 REG_WRITE(ah
, AR_DMISC(q
),
404 AR_D_MISC_CW_BKOFF_EN
| AR_D_MISC_FRAG_WAIT_EN
| 0x1);
406 REG_WRITE(ah
, AR_DMISC(q
),
407 AR_D_MISC_CW_BKOFF_EN
| AR_D_MISC_FRAG_WAIT_EN
| 0x2);
409 if (qi
->tqi_cbrPeriod
) {
410 REG_WRITE(ah
, AR_QCBRCFG(q
),
411 SM(qi
->tqi_cbrPeriod
, AR_Q_CBRCFG_INTERVAL
) |
412 SM(qi
->tqi_cbrOverflowLimit
, AR_Q_CBRCFG_OVF_THRESH
));
413 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_FSP_CBR
|
414 (qi
->tqi_cbrOverflowLimit
?
415 AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN
: 0));
417 if (qi
->tqi_readyTime
&& (qi
->tqi_type
!= ATH9K_TX_QUEUE_CAB
)) {
418 REG_WRITE(ah
, AR_QRDYTIMECFG(q
),
419 SM(qi
->tqi_readyTime
, AR_Q_RDYTIMECFG_DURATION
) |
423 REG_WRITE(ah
, AR_DCHNTIME(q
),
424 SM(qi
->tqi_burstTime
, AR_D_CHNTIME_DUR
) |
425 (qi
->tqi_burstTime
? AR_D_CHNTIME_EN
: 0));
427 if (qi
->tqi_burstTime
428 && (qi
->tqi_qflags
& TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE
))
429 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_RDYTIME_EXP_POLICY
);
431 if (qi
->tqi_qflags
& TXQ_FLAG_BACKOFF_DISABLE
)
432 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_POST_FR_BKOFF_DIS
);
434 REGWRITE_BUFFER_FLUSH(ah
);
436 if (qi
->tqi_qflags
& TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE
)
437 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_FRAG_BKOFF_EN
);
439 switch (qi
->tqi_type
) {
440 case ATH9K_TX_QUEUE_BEACON
:
441 ENABLE_REGWRITE_BUFFER(ah
);
443 REG_SET_BIT(ah
, AR_QMISC(q
),
444 AR_Q_MISC_FSP_DBA_GATED
445 | AR_Q_MISC_BEACON_USE
446 | AR_Q_MISC_CBR_INCR_DIS1
);
448 REG_SET_BIT(ah
, AR_DMISC(q
),
449 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
<<
450 AR_D_MISC_ARB_LOCKOUT_CNTRL_S
)
451 | AR_D_MISC_BEACON_USE
452 | AR_D_MISC_POST_FR_BKOFF_DIS
);
454 REGWRITE_BUFFER_FLUSH(ah
);
457 * cwmin and cwmax should be 0 for beacon queue
458 * but not for IBSS as we would create an imbalance
459 * on beaconing fairness for participating nodes.
461 if (AR_SREV_9300_20_OR_LATER(ah
) &&
462 ah
->opmode
!= NL80211_IFTYPE_ADHOC
) {
463 REG_WRITE(ah
, AR_DLCL_IFS(q
), SM(0, AR_D_LCL_IFS_CWMIN
)
464 | SM(0, AR_D_LCL_IFS_CWMAX
)
465 | SM(qi
->tqi_aifs
, AR_D_LCL_IFS_AIFS
));
468 case ATH9K_TX_QUEUE_CAB
:
469 ENABLE_REGWRITE_BUFFER(ah
);
471 REG_SET_BIT(ah
, AR_QMISC(q
),
472 AR_Q_MISC_FSP_DBA_GATED
473 | AR_Q_MISC_CBR_INCR_DIS1
474 | AR_Q_MISC_CBR_INCR_DIS0
);
475 value
= (qi
->tqi_readyTime
-
476 (ah
->config
.sw_beacon_response_time
-
477 ah
->config
.dma_beacon_response_time
)) * 1024;
478 REG_WRITE(ah
, AR_QRDYTIMECFG(q
),
479 value
| AR_Q_RDYTIMECFG_EN
);
480 REG_SET_BIT(ah
, AR_DMISC(q
),
481 (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
<<
482 AR_D_MISC_ARB_LOCKOUT_CNTRL_S
));
484 REGWRITE_BUFFER_FLUSH(ah
);
487 case ATH9K_TX_QUEUE_PSPOLL
:
488 REG_SET_BIT(ah
, AR_QMISC(q
), AR_Q_MISC_CBR_INCR_DIS1
);
490 case ATH9K_TX_QUEUE_UAPSD
:
491 REG_SET_BIT(ah
, AR_DMISC(q
), AR_D_MISC_POST_FR_BKOFF_DIS
);
497 if (qi
->tqi_intFlags
& ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS
) {
498 REG_SET_BIT(ah
, AR_DMISC(q
),
499 SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL
,
500 AR_D_MISC_ARB_LOCKOUT_CNTRL
) |
501 AR_D_MISC_POST_FR_BKOFF_DIS
);
504 if (AR_SREV_9300_20_OR_LATER(ah
))
505 REG_WRITE(ah
, AR_Q_DESC_CRCCHK
, AR_Q_DESC_CRCCHK_EN
);
507 ath9k_hw_clear_queue_interrupts(ah
, q
);
508 if (qi
->tqi_qflags
& TXQ_FLAG_TXINT_ENABLE
) {
509 ah
->txok_interrupt_mask
|= 1 << q
;
510 ah
->txerr_interrupt_mask
|= 1 << q
;
512 if (qi
->tqi_qflags
& TXQ_FLAG_TXDESCINT_ENABLE
)
513 ah
->txdesc_interrupt_mask
|= 1 << q
;
514 if (qi
->tqi_qflags
& TXQ_FLAG_TXEOLINT_ENABLE
)
515 ah
->txeol_interrupt_mask
|= 1 << q
;
516 if (qi
->tqi_qflags
& TXQ_FLAG_TXURNINT_ENABLE
)
517 ah
->txurn_interrupt_mask
|= 1 << q
;
518 ath9k_hw_set_txq_interrupts(ah
, qi
);
522 EXPORT_SYMBOL(ath9k_hw_resettxqueue
);
524 int ath9k_hw_rxprocdesc(struct ath_hw
*ah
, struct ath_desc
*ds
,
525 struct ath_rx_status
*rs
)
527 struct ar5416_desc ads
;
528 struct ar5416_desc
*adsp
= AR5416DESC(ds
);
531 if ((adsp
->ds_rxstatus8
& AR_RxDone
) == 0)
534 ads
.u
.rx
= adsp
->u
.rx
;
539 rs
->bw
= RATE_INFO_BW_20
;
541 rs
->rs_datalen
= ads
.ds_rxstatus1
& AR_DataLen
;
542 rs
->rs_tstamp
= ads
.AR_RcvTimestamp
;
544 if (ads
.ds_rxstatus8
& AR_PostDelimCRCErr
) {
545 rs
->rs_rssi
= ATH9K_RSSI_BAD
;
546 rs
->rs_rssi_ctl
[0] = ATH9K_RSSI_BAD
;
547 rs
->rs_rssi_ctl
[1] = ATH9K_RSSI_BAD
;
548 rs
->rs_rssi_ctl
[2] = ATH9K_RSSI_BAD
;
549 rs
->rs_rssi_ext
[0] = ATH9K_RSSI_BAD
;
550 rs
->rs_rssi_ext
[1] = ATH9K_RSSI_BAD
;
551 rs
->rs_rssi_ext
[2] = ATH9K_RSSI_BAD
;
553 rs
->rs_rssi
= MS(ads
.ds_rxstatus4
, AR_RxRSSICombined
);
554 rs
->rs_rssi_ctl
[0] = MS(ads
.ds_rxstatus0
,
556 rs
->rs_rssi_ctl
[1] = MS(ads
.ds_rxstatus0
,
558 rs
->rs_rssi_ctl
[2] = MS(ads
.ds_rxstatus0
,
560 rs
->rs_rssi_ext
[0] = MS(ads
.ds_rxstatus4
,
562 rs
->rs_rssi_ext
[1] = MS(ads
.ds_rxstatus4
,
564 rs
->rs_rssi_ext
[2] = MS(ads
.ds_rxstatus4
,
567 if (ads
.ds_rxstatus8
& AR_RxKeyIdxValid
)
568 rs
->rs_keyix
= MS(ads
.ds_rxstatus8
, AR_KeyIdx
);
570 rs
->rs_keyix
= ATH9K_RXKEYIX_INVALID
;
572 rs
->rs_rate
= MS(ads
.ds_rxstatus0
, AR_RxRate
);
573 rs
->rs_more
= (ads
.ds_rxstatus1
& AR_RxMore
) ? 1 : 0;
575 rs
->rs_firstaggr
= (ads
.ds_rxstatus8
& AR_RxFirstAggr
) ? 1 : 0;
576 rs
->rs_isaggr
= (ads
.ds_rxstatus8
& AR_RxAggr
) ? 1 : 0;
577 rs
->rs_moreaggr
= (ads
.ds_rxstatus8
& AR_RxMoreAggr
) ? 1 : 0;
578 rs
->rs_antenna
= MS(ads
.ds_rxstatus3
, AR_RxAntenna
);
580 /* directly mapped flags for ieee80211_rx_status */
582 (ads
.ds_rxstatus3
& AR_GI
) ? RX_ENC_FLAG_SHORT_GI
: 0;
583 rs
->bw
= (ads
.ds_rxstatus3
& AR_2040
) ? RATE_INFO_BW_40
:
585 if (AR_SREV_9280_20_OR_LATER(ah
))
587 (ads
.ds_rxstatus3
& AR_STBC
) ?
588 /* we can only Nss=1 STBC */
589 (1 << RX_ENC_FLAG_STBC_SHIFT
) : 0;
591 if (ads
.ds_rxstatus8
& AR_PreDelimCRCErr
)
592 rs
->rs_flags
|= ATH9K_RX_DELIM_CRC_PRE
;
593 if (ads
.ds_rxstatus8
& AR_PostDelimCRCErr
)
594 rs
->rs_flags
|= ATH9K_RX_DELIM_CRC_POST
;
595 if (ads
.ds_rxstatus8
& AR_DecryptBusyErr
)
596 rs
->rs_flags
|= ATH9K_RX_DECRYPT_BUSY
;
598 if ((ads
.ds_rxstatus8
& AR_RxFrameOK
) == 0) {
600 * Treat these errors as mutually exclusive to avoid spurious
601 * extra error reports from the hardware. If a CRC error is
602 * reported, then decryption and MIC errors are irrelevant,
603 * the frame is going to be dropped either way
605 if (ads
.ds_rxstatus8
& AR_PHYErr
) {
606 rs
->rs_status
|= ATH9K_RXERR_PHY
;
607 phyerr
= MS(ads
.ds_rxstatus8
, AR_PHYErrCode
);
608 rs
->rs_phyerr
= phyerr
;
609 } else if (ads
.ds_rxstatus8
& AR_CRCErr
)
610 rs
->rs_status
|= ATH9K_RXERR_CRC
;
611 else if (ads
.ds_rxstatus8
& AR_DecryptCRCErr
)
612 rs
->rs_status
|= ATH9K_RXERR_DECRYPT
;
613 else if (ads
.ds_rxstatus8
& AR_MichaelErr
)
614 rs
->rs_status
|= ATH9K_RXERR_MIC
;
616 if (ads
.ds_rxstatus8
&
617 (AR_CRCErr
| AR_PHYErr
| AR_DecryptCRCErr
| AR_MichaelErr
))
618 rs
->rs_status
|= ATH9K_RXERR_CORRUPT_DESC
;
620 /* Only up to MCS16 supported, everything above is invalid */
621 if (rs
->rs_rate
>= 0x90)
622 rs
->rs_status
|= ATH9K_RXERR_CORRUPT_DESC
;
625 if (ads
.ds_rxstatus8
& AR_KeyMiss
)
626 rs
->rs_status
|= ATH9K_RXERR_KEYMISS
;
630 EXPORT_SYMBOL(ath9k_hw_rxprocdesc
);
633 * This can stop or re-enables RX.
635 * If bool is set this will kill any frame which is currently being
636 * transferred between the MAC and baseband and also prevent any new
637 * frames from getting started.
639 bool ath9k_hw_setrxabort(struct ath_hw
*ah
, bool set
)
644 REG_SET_BIT(ah
, AR_DIAG_SW
,
645 (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
647 if (!ath9k_hw_wait(ah
, AR_OBS_BUS_1
, AR_OBS_BUS_1_RX_STATE
,
648 0, AH_WAIT_TIMEOUT
)) {
649 REG_CLR_BIT(ah
, AR_DIAG_SW
,
653 reg
= REG_READ(ah
, AR_OBS_BUS_1
);
654 ath_err(ath9k_hw_common(ah
),
655 "RX failed to go idle in 10 ms RXSM=0x%x\n",
661 REG_CLR_BIT(ah
, AR_DIAG_SW
,
662 (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
667 EXPORT_SYMBOL(ath9k_hw_setrxabort
);
669 void ath9k_hw_putrxbuf(struct ath_hw
*ah
, u32 rxdp
)
671 REG_WRITE(ah
, AR_RXDP
, rxdp
);
673 EXPORT_SYMBOL(ath9k_hw_putrxbuf
);
675 void ath9k_hw_startpcureceive(struct ath_hw
*ah
, bool is_scanning
)
677 ath9k_enable_mib_counters(ah
);
679 ath9k_ani_reset(ah
, is_scanning
);
681 REG_CLR_BIT(ah
, AR_DIAG_SW
, (AR_DIAG_RX_DIS
| AR_DIAG_RX_ABORT
));
683 EXPORT_SYMBOL(ath9k_hw_startpcureceive
);
685 void ath9k_hw_abortpcurecv(struct ath_hw
*ah
)
687 REG_SET_BIT(ah
, AR_DIAG_SW
, AR_DIAG_RX_ABORT
| AR_DIAG_RX_DIS
);
689 ath9k_hw_disable_mib_counters(ah
);
691 EXPORT_SYMBOL(ath9k_hw_abortpcurecv
);
693 bool ath9k_hw_stopdmarecv(struct ath_hw
*ah
, bool *reset
)
695 #define AH_RX_STOP_DMA_TIMEOUT 10000 /* usec */
696 struct ath_common
*common
= ath9k_hw_common(ah
);
697 u32 mac_status
, last_mac_status
= 0;
700 /* Enable access to the DMA observation bus */
701 REG_WRITE(ah
, AR_MACMISC
,
702 ((AR_MACMISC_DMA_OBS_LINE_8
<< AR_MACMISC_DMA_OBS_S
) |
703 (AR_MACMISC_MISC_OBS_BUS_1
<<
704 AR_MACMISC_MISC_OBS_BUS_MSB_S
)));
706 REG_WRITE(ah
, AR_CR
, AR_CR_RXD
);
708 /* Wait for rx enable bit to go low */
709 for (i
= AH_RX_STOP_DMA_TIMEOUT
/ AH_TIME_QUANTUM
; i
!= 0; i
--) {
710 if ((REG_READ(ah
, AR_CR
) & AR_CR_RXE
) == 0)
713 if (!AR_SREV_9300_20_OR_LATER(ah
)) {
714 mac_status
= REG_READ(ah
, AR_DMADBG_7
) & 0x7f0;
715 if (mac_status
== 0x1c0 && mac_status
== last_mac_status
) {
720 last_mac_status
= mac_status
;
723 udelay(AH_TIME_QUANTUM
);
728 "DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
729 AH_RX_STOP_DMA_TIMEOUT
/ 1000,
731 REG_READ(ah
, AR_DIAG_SW
),
732 REG_READ(ah
, AR_DMADBG_7
));
738 #undef AH_RX_STOP_DMA_TIMEOUT
740 EXPORT_SYMBOL(ath9k_hw_stopdmarecv
);
742 int ath9k_hw_beaconq_setup(struct ath_hw
*ah
)
744 struct ath9k_tx_queue_info qi
;
746 memset(&qi
, 0, sizeof(qi
));
751 if (ah
->caps
.hw_caps
& ATH9K_HW_CAP_EDMA
)
752 qi
.tqi_qflags
= TXQ_FLAG_TXINT_ENABLE
;
754 return ath9k_hw_setuptxqueue(ah
, ATH9K_TX_QUEUE_BEACON
, &qi
);
756 EXPORT_SYMBOL(ath9k_hw_beaconq_setup
);
758 bool ath9k_hw_intrpend(struct ath_hw
*ah
)
762 if (AR_SREV_9100(ah
))
765 host_isr
= REG_READ(ah
, AR_INTR_ASYNC_CAUSE
);
767 if (((host_isr
& AR_INTR_MAC_IRQ
) ||
768 (host_isr
& AR_INTR_ASYNC_MASK_MCI
)) &&
769 (host_isr
!= AR_INTR_SPURIOUS
))
772 host_isr
= REG_READ(ah
, AR_INTR_SYNC_CAUSE
);
773 if ((host_isr
& AR_INTR_SYNC_DEFAULT
)
774 && (host_isr
!= AR_INTR_SPURIOUS
))
779 EXPORT_SYMBOL(ath9k_hw_intrpend
);
781 void ath9k_hw_kill_interrupts(struct ath_hw
*ah
)
783 struct ath_common
*common
= ath9k_hw_common(ah
);
785 ath_dbg(common
, INTERRUPT
, "disable IER\n");
786 REG_WRITE(ah
, AR_IER
, AR_IER_DISABLE
);
787 (void) REG_READ(ah
, AR_IER
);
788 if (!AR_SREV_9100(ah
)) {
789 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, 0);
790 (void) REG_READ(ah
, AR_INTR_ASYNC_ENABLE
);
792 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, 0);
793 (void) REG_READ(ah
, AR_INTR_SYNC_ENABLE
);
796 EXPORT_SYMBOL(ath9k_hw_kill_interrupts
);
798 void ath9k_hw_disable_interrupts(struct ath_hw
*ah
)
800 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
801 atomic_set(&ah
->intr_ref_cnt
, -1);
803 atomic_dec(&ah
->intr_ref_cnt
);
805 ath9k_hw_kill_interrupts(ah
);
807 EXPORT_SYMBOL(ath9k_hw_disable_interrupts
);
809 static void __ath9k_hw_enable_interrupts(struct ath_hw
*ah
)
811 struct ath_common
*common
= ath9k_hw_common(ah
);
812 u32 sync_default
= AR_INTR_SYNC_DEFAULT
;
815 if (AR_SREV_9340(ah
) || AR_SREV_9550(ah
) || AR_SREV_9531(ah
) ||
817 sync_default
&= ~AR_INTR_SYNC_HOST1_FATAL
;
819 async_mask
= AR_INTR_MAC_IRQ
;
821 if (ah
->imask
& ATH9K_INT_MCI
)
822 async_mask
|= AR_INTR_ASYNC_MASK_MCI
;
824 ath_dbg(common
, INTERRUPT
, "enable IER\n");
825 REG_WRITE(ah
, AR_IER
, AR_IER_ENABLE
);
826 if (!AR_SREV_9100(ah
)) {
827 REG_WRITE(ah
, AR_INTR_ASYNC_ENABLE
, async_mask
);
828 REG_WRITE(ah
, AR_INTR_ASYNC_MASK
, async_mask
);
830 REG_WRITE(ah
, AR_INTR_SYNC_ENABLE
, sync_default
);
831 REG_WRITE(ah
, AR_INTR_SYNC_MASK
, sync_default
);
833 ath_dbg(common
, INTERRUPT
, "AR_IMR 0x%x IER 0x%x\n",
834 REG_READ(ah
, AR_IMR
), REG_READ(ah
, AR_IER
));
836 if (ah
->msi_enabled
) {
839 u32 msi_pend_addr_mask
= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64
;
841 ath_dbg(ath9k_hw_common(ah
), INTERRUPT
,
842 "Enabling MSI, msi_mask=0x%X\n", ah
->msi_mask
);
844 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, ah
->msi_mask
);
845 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_MASK
, ah
->msi_mask
);
846 ath_dbg(ath9k_hw_common(ah
), INTERRUPT
,
847 "AR_INTR_PRIO_ASYNC_ENABLE=0x%X, AR_INTR_PRIO_ASYNC_MASK=0x%X\n",
848 REG_READ(ah
, AR_INTR_PRIO_ASYNC_ENABLE
),
849 REG_READ(ah
, AR_INTR_PRIO_ASYNC_MASK
));
851 if (ah
->msi_reg
== 0)
852 ah
->msi_reg
= REG_READ(ah
, AR_PCIE_MSI
);
854 ath_dbg(ath9k_hw_common(ah
), INTERRUPT
,
855 "AR_PCIE_MSI=0x%X, ah->msi_reg = 0x%X\n",
856 AR_PCIE_MSI
, ah
->msi_reg
);
860 REG_WRITE(ah
, AR_PCIE_MSI
,
861 (ah
->msi_reg
| AR_PCIE_MSI_ENABLE
)
862 & msi_pend_addr_mask
);
863 _msi_reg
= REG_READ(ah
, AR_PCIE_MSI
);
865 } while ((_msi_reg
& AR_PCIE_MSI_ENABLE
) == 0 && i
< 200);
868 ath_err(ath9k_hw_common(ah
),
869 "%s: _msi_reg = 0x%X\n",
874 void ath9k_hw_resume_interrupts(struct ath_hw
*ah
)
876 struct ath_common
*common
= ath9k_hw_common(ah
);
878 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
881 if (atomic_read(&ah
->intr_ref_cnt
) != 0) {
882 ath_dbg(common
, INTERRUPT
, "Do not enable IER ref count %d\n",
883 atomic_read(&ah
->intr_ref_cnt
));
887 __ath9k_hw_enable_interrupts(ah
);
889 EXPORT_SYMBOL(ath9k_hw_resume_interrupts
);
891 void ath9k_hw_enable_interrupts(struct ath_hw
*ah
)
893 struct ath_common
*common
= ath9k_hw_common(ah
);
895 if (!(ah
->imask
& ATH9K_INT_GLOBAL
))
898 if (!atomic_inc_and_test(&ah
->intr_ref_cnt
)) {
899 ath_dbg(common
, INTERRUPT
, "Do not enable IER ref count %d\n",
900 atomic_read(&ah
->intr_ref_cnt
));
904 __ath9k_hw_enable_interrupts(ah
);
906 EXPORT_SYMBOL(ath9k_hw_enable_interrupts
);
908 void ath9k_hw_set_interrupts(struct ath_hw
*ah
)
910 enum ath9k_int ints
= ah
->imask
;
912 struct ath9k_hw_capabilities
*pCap
= &ah
->caps
;
913 struct ath_common
*common
= ath9k_hw_common(ah
);
915 if (!(ints
& ATH9K_INT_GLOBAL
))
916 ath9k_hw_disable_interrupts(ah
);
918 if (ah
->msi_enabled
) {
919 ath_dbg(common
, INTERRUPT
, "Clearing AR_INTR_PRIO_ASYNC_ENABLE\n");
921 REG_WRITE(ah
, AR_INTR_PRIO_ASYNC_ENABLE
, 0);
922 REG_READ(ah
, AR_INTR_PRIO_ASYNC_ENABLE
);
925 ath_dbg(common
, INTERRUPT
, "New interrupt mask 0x%x\n", ints
);
927 mask
= ints
& ATH9K_INT_COMMON
;
931 if (ints
& ATH9K_INT_TX
) {
932 ah
->msi_mask
|= AR_INTR_PRIO_TX
;
933 if (ah
->config
.tx_intr_mitigation
)
934 mask
|= AR_IMR_TXMINTR
| AR_IMR_TXINTM
;
936 if (ah
->txok_interrupt_mask
)
938 if (ah
->txdesc_interrupt_mask
)
939 mask
|= AR_IMR_TXDESC
;
941 if (ah
->txerr_interrupt_mask
)
942 mask
|= AR_IMR_TXERR
;
943 if (ah
->txeol_interrupt_mask
)
944 mask
|= AR_IMR_TXEOL
;
946 if (ints
& ATH9K_INT_RX
) {
947 ah
->msi_mask
|= AR_INTR_PRIO_RXLP
| AR_INTR_PRIO_RXHP
;
948 if (AR_SREV_9300_20_OR_LATER(ah
)) {
949 mask
|= AR_IMR_RXERR
| AR_IMR_RXOK_HP
;
950 if (ah
->config
.rx_intr_mitigation
) {
951 mask
&= ~AR_IMR_RXOK_LP
;
952 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
954 mask
|= AR_IMR_RXOK_LP
;
957 if (ah
->config
.rx_intr_mitigation
)
958 mask
|= AR_IMR_RXMINTR
| AR_IMR_RXINTM
;
960 mask
|= AR_IMR_RXOK
| AR_IMR_RXDESC
;
962 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
))
963 mask
|= AR_IMR_GENTMR
;
966 if (ints
& ATH9K_INT_GENTIMER
)
967 mask
|= AR_IMR_GENTMR
;
969 if (ints
& (ATH9K_INT_BMISC
)) {
970 mask
|= AR_IMR_BCNMISC
;
971 if (ints
& ATH9K_INT_TIM
)
972 mask2
|= AR_IMR_S2_TIM
;
973 if (ints
& ATH9K_INT_DTIM
)
974 mask2
|= AR_IMR_S2_DTIM
;
975 if (ints
& ATH9K_INT_DTIMSYNC
)
976 mask2
|= AR_IMR_S2_DTIMSYNC
;
977 if (ints
& ATH9K_INT_CABEND
)
978 mask2
|= AR_IMR_S2_CABEND
;
979 if (ints
& ATH9K_INT_TSFOOR
)
980 mask2
|= AR_IMR_S2_TSFOOR
;
983 if (ints
& (ATH9K_INT_GTT
| ATH9K_INT_CST
)) {
984 mask
|= AR_IMR_BCNMISC
;
985 if (ints
& ATH9K_INT_GTT
)
986 mask2
|= AR_IMR_S2_GTT
;
987 if (ints
& ATH9K_INT_CST
)
988 mask2
|= AR_IMR_S2_CST
;
991 if (ah
->config
.hw_hang_checks
& HW_BB_WATCHDOG
) {
992 if (ints
& ATH9K_INT_BB_WATCHDOG
) {
993 mask
|= AR_IMR_BCNMISC
;
994 mask2
|= AR_IMR_S2_BB_WATCHDOG
;
998 ath_dbg(common
, INTERRUPT
, "new IMR 0x%x\n", mask
);
999 REG_WRITE(ah
, AR_IMR
, mask
);
1000 ah
->imrs2_reg
&= ~(AR_IMR_S2_TIM
|
1002 AR_IMR_S2_DTIMSYNC
|
1009 if (ah
->config
.hw_hang_checks
& HW_BB_WATCHDOG
) {
1010 if (ints
& ATH9K_INT_BB_WATCHDOG
)
1011 ah
->imrs2_reg
&= ~AR_IMR_S2_BB_WATCHDOG
;
1014 ah
->imrs2_reg
|= mask2
;
1015 REG_WRITE(ah
, AR_IMR_S2
, ah
->imrs2_reg
);
1017 if (!(pCap
->hw_caps
& ATH9K_HW_CAP_AUTOSLEEP
)) {
1018 if (ints
& ATH9K_INT_TIM_TIMER
)
1019 REG_SET_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
1021 REG_CLR_BIT(ah
, AR_IMR_S5
, AR_IMR_S5_TIM_TIMER
);
1026 EXPORT_SYMBOL(ath9k_hw_set_interrupts
);
1028 #define ATH9K_HW_MAX_DCU 10
1029 #define ATH9K_HW_SLICE_PER_DCU 16
1030 #define ATH9K_HW_BIT_IN_SLICE 16
1031 void ath9k_hw_set_tx_filter(struct ath_hw
*ah
, u8 destidx
, bool set
)
1036 for (dcu_idx
= 0; dcu_idx
< 10; dcu_idx
++) {
1037 filter
= SM(set
, AR_D_TXBLK_WRITE_COMMAND
);
1038 filter
|= SM(dcu_idx
, AR_D_TXBLK_WRITE_DCU
);
1039 filter
|= SM((destidx
/ ATH9K_HW_SLICE_PER_DCU
),
1040 AR_D_TXBLK_WRITE_SLICE
);
1041 filter
|= BIT(destidx
% ATH9K_HW_BIT_IN_SLICE
);
1042 ath_dbg(ath9k_hw_common(ah
), PS
,
1043 "DCU%d staid %d set %d txfilter %08x\n",
1044 dcu_idx
, destidx
, set
, filter
);
1045 REG_WRITE(ah
, AR_D_TXBLK_BASE
, filter
);
1048 EXPORT_SYMBOL(ath9k_hw_set_tx_filter
);