gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / net / wireless / ath / carl9170 / main.c
blob5914926a5c5b8add0e387dff9dea1b39559f24e8
1 /*
2 * Atheros CARL9170 driver
4 * mac80211 interaction code
6 * Copyright 2008, Johannes Berg <johannes@sipsolutions.net>
7 * Copyright 2009, 2010, Christian Lamparter <chunkeey@googlemail.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, see
21 * http://www.gnu.org/licenses/.
23 * This file incorporates work covered by the following copyright and
24 * permission notice:
25 * Copyright (c) 2007-2008 Atheros Communications, Inc.
27 * Permission to use, copy, modify, and/or distribute this software for any
28 * purpose with or without fee is hereby granted, provided that the above
29 * copyright notice and this permission notice appear in all copies.
31 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
32 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
33 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
34 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
35 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
36 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
37 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <linux/etherdevice.h>
43 #include <linux/random.h>
44 #include <net/mac80211.h>
45 #include <net/cfg80211.h>
46 #include "hw.h"
47 #include "carl9170.h"
48 #include "cmd.h"
50 static bool modparam_nohwcrypt;
51 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, 0444);
52 MODULE_PARM_DESC(nohwcrypt, "Disable hardware crypto offload.");
54 int modparam_noht;
55 module_param_named(noht, modparam_noht, int, 0444);
56 MODULE_PARM_DESC(noht, "Disable MPDU aggregation.");
58 #define RATE(_bitrate, _hw_rate, _txpidx, _flags) { \
59 .bitrate = (_bitrate), \
60 .flags = (_flags), \
61 .hw_value = (_hw_rate) | (_txpidx) << 4, \
64 struct ieee80211_rate __carl9170_ratetable[] = {
65 RATE(10, 0, 0, 0),
66 RATE(20, 1, 1, IEEE80211_RATE_SHORT_PREAMBLE),
67 RATE(55, 2, 2, IEEE80211_RATE_SHORT_PREAMBLE),
68 RATE(110, 3, 3, IEEE80211_RATE_SHORT_PREAMBLE),
69 RATE(60, 0xb, 0, 0),
70 RATE(90, 0xf, 0, 0),
71 RATE(120, 0xa, 0, 0),
72 RATE(180, 0xe, 0, 0),
73 RATE(240, 0x9, 0, 0),
74 RATE(360, 0xd, 1, 0),
75 RATE(480, 0x8, 2, 0),
76 RATE(540, 0xc, 3, 0),
78 #undef RATE
80 #define carl9170_g_ratetable (__carl9170_ratetable + 0)
81 #define carl9170_g_ratetable_size 12
82 #define carl9170_a_ratetable (__carl9170_ratetable + 4)
83 #define carl9170_a_ratetable_size 8
86 * NB: The hw_value is used as an index into the carl9170_phy_freq_params
87 * array in phy.c so that we don't have to do frequency lookups!
89 #define CHAN(_freq, _idx) { \
90 .center_freq = (_freq), \
91 .hw_value = (_idx), \
92 .max_power = 18, /* XXX */ \
95 static struct ieee80211_channel carl9170_2ghz_chantable[] = {
96 CHAN(2412, 0),
97 CHAN(2417, 1),
98 CHAN(2422, 2),
99 CHAN(2427, 3),
100 CHAN(2432, 4),
101 CHAN(2437, 5),
102 CHAN(2442, 6),
103 CHAN(2447, 7),
104 CHAN(2452, 8),
105 CHAN(2457, 9),
106 CHAN(2462, 10),
107 CHAN(2467, 11),
108 CHAN(2472, 12),
109 CHAN(2484, 13),
112 static struct ieee80211_channel carl9170_5ghz_chantable[] = {
113 CHAN(4920, 14),
114 CHAN(4940, 15),
115 CHAN(4960, 16),
116 CHAN(4980, 17),
117 CHAN(5040, 18),
118 CHAN(5060, 19),
119 CHAN(5080, 20),
120 CHAN(5180, 21),
121 CHAN(5200, 22),
122 CHAN(5220, 23),
123 CHAN(5240, 24),
124 CHAN(5260, 25),
125 CHAN(5280, 26),
126 CHAN(5300, 27),
127 CHAN(5320, 28),
128 CHAN(5500, 29),
129 CHAN(5520, 30),
130 CHAN(5540, 31),
131 CHAN(5560, 32),
132 CHAN(5580, 33),
133 CHAN(5600, 34),
134 CHAN(5620, 35),
135 CHAN(5640, 36),
136 CHAN(5660, 37),
137 CHAN(5680, 38),
138 CHAN(5700, 39),
139 CHAN(5745, 40),
140 CHAN(5765, 41),
141 CHAN(5785, 42),
142 CHAN(5805, 43),
143 CHAN(5825, 44),
144 CHAN(5170, 45),
145 CHAN(5190, 46),
146 CHAN(5210, 47),
147 CHAN(5230, 48),
149 #undef CHAN
151 #define CARL9170_HT_CAP \
153 .ht_supported = true, \
154 .cap = IEEE80211_HT_CAP_MAX_AMSDU | \
155 IEEE80211_HT_CAP_SUP_WIDTH_20_40 | \
156 IEEE80211_HT_CAP_SGI_40 | \
157 IEEE80211_HT_CAP_DSSSCCK40 | \
158 IEEE80211_HT_CAP_SM_PS, \
159 .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, \
160 .ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, \
161 .mcs = { \
162 .rx_mask = { 0xff, 0xff, 0, 0, 0x1, 0, 0, 0, 0, 0, }, \
163 .rx_highest = cpu_to_le16(300), \
164 .tx_params = IEEE80211_HT_MCS_TX_DEFINED, \
165 }, \
168 static struct ieee80211_supported_band carl9170_band_2GHz = {
169 .channels = carl9170_2ghz_chantable,
170 .n_channels = ARRAY_SIZE(carl9170_2ghz_chantable),
171 .bitrates = carl9170_g_ratetable,
172 .n_bitrates = carl9170_g_ratetable_size,
173 .ht_cap = CARL9170_HT_CAP,
176 static struct ieee80211_supported_band carl9170_band_5GHz = {
177 .channels = carl9170_5ghz_chantable,
178 .n_channels = ARRAY_SIZE(carl9170_5ghz_chantable),
179 .bitrates = carl9170_a_ratetable,
180 .n_bitrates = carl9170_a_ratetable_size,
181 .ht_cap = CARL9170_HT_CAP,
184 static void carl9170_ampdu_gc(struct ar9170 *ar)
186 struct carl9170_sta_tid *tid_info;
187 LIST_HEAD(tid_gc);
189 rcu_read_lock();
190 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
191 spin_lock_bh(&ar->tx_ampdu_list_lock);
192 if (tid_info->state == CARL9170_TID_STATE_SHUTDOWN) {
193 tid_info->state = CARL9170_TID_STATE_KILLED;
194 list_del_rcu(&tid_info->list);
195 ar->tx_ampdu_list_len--;
196 list_add_tail(&tid_info->tmp_list, &tid_gc);
198 spin_unlock_bh(&ar->tx_ampdu_list_lock);
201 rcu_assign_pointer(ar->tx_ampdu_iter, tid_info);
202 rcu_read_unlock();
204 synchronize_rcu();
206 while (!list_empty(&tid_gc)) {
207 struct sk_buff *skb;
208 tid_info = list_first_entry(&tid_gc, struct carl9170_sta_tid,
209 tmp_list);
211 while ((skb = __skb_dequeue(&tid_info->queue)))
212 carl9170_tx_status(ar, skb, false);
214 list_del_init(&tid_info->tmp_list);
215 kfree(tid_info);
219 static void carl9170_flush(struct ar9170 *ar, bool drop_queued)
221 if (drop_queued) {
222 int i;
225 * We can only drop frames which have not been uploaded
226 * to the device yet.
229 for (i = 0; i < ar->hw->queues; i++) {
230 struct sk_buff *skb;
232 while ((skb = skb_dequeue(&ar->tx_pending[i]))) {
233 struct ieee80211_tx_info *info;
235 info = IEEE80211_SKB_CB(skb);
236 if (info->flags & IEEE80211_TX_CTL_AMPDU)
237 atomic_dec(&ar->tx_ampdu_upload);
239 carl9170_tx_status(ar, skb, false);
244 /* Wait for all other outstanding frames to timeout. */
245 if (atomic_read(&ar->tx_total_queued))
246 WARN_ON(wait_for_completion_timeout(&ar->tx_flush, HZ) == 0);
249 static void carl9170_flush_ba(struct ar9170 *ar)
251 struct sk_buff_head free;
252 struct carl9170_sta_tid *tid_info;
253 struct sk_buff *skb;
255 __skb_queue_head_init(&free);
257 rcu_read_lock();
258 spin_lock_bh(&ar->tx_ampdu_list_lock);
259 list_for_each_entry_rcu(tid_info, &ar->tx_ampdu_list, list) {
260 if (tid_info->state > CARL9170_TID_STATE_SUSPEND) {
261 tid_info->state = CARL9170_TID_STATE_SUSPEND;
263 spin_lock(&tid_info->lock);
264 while ((skb = __skb_dequeue(&tid_info->queue)))
265 __skb_queue_tail(&free, skb);
266 spin_unlock(&tid_info->lock);
269 spin_unlock_bh(&ar->tx_ampdu_list_lock);
270 rcu_read_unlock();
272 while ((skb = __skb_dequeue(&free)))
273 carl9170_tx_status(ar, skb, false);
276 static void carl9170_zap_queues(struct ar9170 *ar)
278 struct carl9170_vif_info *cvif;
279 unsigned int i;
281 carl9170_ampdu_gc(ar);
283 carl9170_flush_ba(ar);
284 carl9170_flush(ar, true);
286 for (i = 0; i < ar->hw->queues; i++) {
287 spin_lock_bh(&ar->tx_status[i].lock);
288 while (!skb_queue_empty(&ar->tx_status[i])) {
289 struct sk_buff *skb;
291 skb = skb_peek(&ar->tx_status[i]);
292 carl9170_tx_get_skb(skb);
293 spin_unlock_bh(&ar->tx_status[i].lock);
294 carl9170_tx_drop(ar, skb);
295 spin_lock_bh(&ar->tx_status[i].lock);
296 carl9170_tx_put_skb(skb);
298 spin_unlock_bh(&ar->tx_status[i].lock);
301 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_SOFT < 1);
302 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD < CARL9170_NUM_TX_LIMIT_SOFT);
303 BUILD_BUG_ON(CARL9170_NUM_TX_LIMIT_HARD >= CARL9170_BAW_BITS);
305 /* reinitialize queues statistics */
306 memset(&ar->tx_stats, 0, sizeof(ar->tx_stats));
307 for (i = 0; i < ar->hw->queues; i++)
308 ar->tx_stats[i].limit = CARL9170_NUM_TX_LIMIT_HARD;
310 for (i = 0; i < DIV_ROUND_UP(ar->fw.mem_blocks, BITS_PER_LONG); i++)
311 ar->mem_bitmap[i] = 0;
313 rcu_read_lock();
314 list_for_each_entry_rcu(cvif, &ar->vif_list, list) {
315 spin_lock_bh(&ar->beacon_lock);
316 dev_kfree_skb_any(cvif->beacon);
317 cvif->beacon = NULL;
318 spin_unlock_bh(&ar->beacon_lock);
320 rcu_read_unlock();
322 atomic_set(&ar->tx_ampdu_upload, 0);
323 atomic_set(&ar->tx_ampdu_scheduler, 0);
324 atomic_set(&ar->tx_total_pending, 0);
325 atomic_set(&ar->tx_total_queued, 0);
326 atomic_set(&ar->mem_free_blocks, ar->fw.mem_blocks);
329 #define CARL9170_FILL_QUEUE(queue, ai_fs, cwmin, cwmax, _txop) \
330 do { \
331 queue.aifs = ai_fs; \
332 queue.cw_min = cwmin; \
333 queue.cw_max = cwmax; \
334 queue.txop = _txop; \
335 } while (0)
337 static int carl9170_op_start(struct ieee80211_hw *hw)
339 struct ar9170 *ar = hw->priv;
340 int err, i;
342 mutex_lock(&ar->mutex);
344 carl9170_zap_queues(ar);
346 /* reset QoS defaults */
347 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VO], 2, 3, 7, 47);
348 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_VI], 2, 7, 15, 94);
349 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BE], 3, 15, 1023, 0);
350 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_BK], 7, 15, 1023, 0);
351 CARL9170_FILL_QUEUE(ar->edcf[AR9170_TXQ_SPECIAL], 2, 3, 7, 0);
353 ar->current_factor = ar->current_density = -1;
354 /* "The first key is unique." */
355 ar->usedkeys = 1;
356 ar->filter_state = 0;
357 ar->ps.last_action = jiffies;
358 ar->ps.last_slept = jiffies;
359 ar->erp_mode = CARL9170_ERP_AUTO;
361 /* Set "disable hw crypto offload" whenever the module parameter
362 * nohwcrypt is true or if the firmware does not support it.
364 ar->disable_offload = modparam_nohwcrypt |
365 ar->fw.disable_offload_fw;
366 ar->rx_software_decryption = ar->disable_offload;
368 for (i = 0; i < ar->hw->queues; i++) {
369 ar->queue_stop_timeout[i] = jiffies;
370 ar->max_queue_stop_timeout[i] = 0;
373 atomic_set(&ar->mem_allocs, 0);
375 err = carl9170_usb_open(ar);
376 if (err)
377 goto out;
379 err = carl9170_init_mac(ar);
380 if (err)
381 goto out;
383 err = carl9170_set_qos(ar);
384 if (err)
385 goto out;
387 if (ar->fw.rx_filter) {
388 err = carl9170_rx_filter(ar, CARL9170_RX_FILTER_OTHER_RA |
389 CARL9170_RX_FILTER_CTL_OTHER | CARL9170_RX_FILTER_BAD);
390 if (err)
391 goto out;
394 err = carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER,
395 AR9170_DMA_TRIGGER_RXQ);
396 if (err)
397 goto out;
399 /* Clear key-cache */
400 for (i = 0; i < AR9170_CAM_MAX_USER + 4; i++) {
401 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
402 0, NULL, 0);
403 if (err)
404 goto out;
406 err = carl9170_upload_key(ar, i, NULL, AR9170_ENC_ALG_NONE,
407 1, NULL, 0);
408 if (err)
409 goto out;
411 if (i < AR9170_CAM_MAX_USER) {
412 err = carl9170_disable_key(ar, i);
413 if (err)
414 goto out;
418 carl9170_set_state_when(ar, CARL9170_IDLE, CARL9170_STARTED);
420 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
421 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
423 ieee80211_wake_queues(ar->hw);
424 err = 0;
426 out:
427 mutex_unlock(&ar->mutex);
428 return err;
431 static void carl9170_cancel_worker(struct ar9170 *ar)
433 cancel_delayed_work_sync(&ar->stat_work);
434 cancel_delayed_work_sync(&ar->tx_janitor);
435 #ifdef CONFIG_CARL9170_LEDS
436 cancel_delayed_work_sync(&ar->led_work);
437 #endif /* CONFIG_CARL9170_LEDS */
438 cancel_work_sync(&ar->ps_work);
439 cancel_work_sync(&ar->ping_work);
440 cancel_work_sync(&ar->ampdu_work);
443 static void carl9170_op_stop(struct ieee80211_hw *hw)
445 struct ar9170 *ar = hw->priv;
447 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
449 ieee80211_stop_queues(ar->hw);
451 mutex_lock(&ar->mutex);
452 if (IS_ACCEPTING_CMD(ar)) {
453 RCU_INIT_POINTER(ar->beacon_iter, NULL);
455 carl9170_led_set_state(ar, 0);
457 /* stop DMA */
458 carl9170_write_reg(ar, AR9170_MAC_REG_DMA_TRIGGER, 0);
459 carl9170_usb_stop(ar);
462 carl9170_zap_queues(ar);
463 mutex_unlock(&ar->mutex);
465 carl9170_cancel_worker(ar);
468 static void carl9170_restart_work(struct work_struct *work)
470 struct ar9170 *ar = container_of(work, struct ar9170,
471 restart_work);
472 int err = -EIO;
474 ar->usedkeys = 0;
475 ar->filter_state = 0;
476 carl9170_cancel_worker(ar);
478 mutex_lock(&ar->mutex);
479 if (!ar->force_usb_reset) {
480 err = carl9170_usb_restart(ar);
481 if (net_ratelimit()) {
482 if (err)
483 dev_err(&ar->udev->dev, "Failed to restart device (%d).\n", err);
484 else
485 dev_info(&ar->udev->dev, "device restarted successfully.\n");
488 carl9170_zap_queues(ar);
489 mutex_unlock(&ar->mutex);
491 if (!err && !ar->force_usb_reset) {
492 ar->restart_counter++;
493 atomic_set(&ar->pending_restarts, 0);
495 ieee80211_restart_hw(ar->hw);
496 } else {
498 * The reset was unsuccessful and the device seems to
499 * be dead. But there's still one option: a low-level
500 * usb subsystem reset...
503 carl9170_usb_reset(ar);
507 void carl9170_restart(struct ar9170 *ar, const enum carl9170_restart_reasons r)
509 carl9170_set_state_when(ar, CARL9170_STARTED, CARL9170_IDLE);
512 * Sometimes, an error can trigger several different reset events.
513 * By ignoring these *surplus* reset events, the device won't be
514 * killed again, right after it has recovered.
516 if (atomic_inc_return(&ar->pending_restarts) > 1) {
517 dev_dbg(&ar->udev->dev, "ignoring restart (%d)\n", r);
518 return;
521 ieee80211_stop_queues(ar->hw);
523 dev_err(&ar->udev->dev, "restart device (%d)\n", r);
525 if (!WARN_ON(r == CARL9170_RR_NO_REASON) ||
526 !WARN_ON(r >= __CARL9170_RR_LAST))
527 ar->last_reason = r;
529 if (!ar->registered)
530 return;
532 if (!IS_ACCEPTING_CMD(ar) || ar->needs_full_reset)
533 ar->force_usb_reset = true;
535 ieee80211_queue_work(ar->hw, &ar->restart_work);
538 * At this point, the device instance might have vanished/disabled.
539 * So, don't put any code which access the ar9170 struct
540 * without proper protection.
544 static void carl9170_ping_work(struct work_struct *work)
546 struct ar9170 *ar = container_of(work, struct ar9170, ping_work);
547 int err;
549 if (!IS_STARTED(ar))
550 return;
552 mutex_lock(&ar->mutex);
553 err = carl9170_echo_test(ar, 0xdeadbeef);
554 if (err)
555 carl9170_restart(ar, CARL9170_RR_UNRESPONSIVE_DEVICE);
556 mutex_unlock(&ar->mutex);
559 static int carl9170_init_interface(struct ar9170 *ar,
560 struct ieee80211_vif *vif)
562 struct ath_common *common = &ar->common;
563 int err;
565 if (!vif) {
566 WARN_ON_ONCE(IS_STARTED(ar));
567 return 0;
570 memcpy(common->macaddr, vif->addr, ETH_ALEN);
572 /* We have to fall back to software crypto, whenever
573 * the user choose to participates in an IBSS. HW
574 * offload for IBSS RSN is not supported by this driver.
576 * NOTE: If the previous main interface has already
577 * disabled hw crypto offload, we have to keep this
578 * previous disable_offload setting as it was.
579 * Altough ideally, we should notify mac80211 and tell
580 * it to forget about any HW crypto offload for now.
582 ar->disable_offload |= ((vif->type != NL80211_IFTYPE_STATION) &&
583 (vif->type != NL80211_IFTYPE_AP));
585 /* While the driver supports HW offload in a single
586 * P2P client configuration, it doesn't support HW
587 * offload in the favourit, concurrent P2P GO+CLIENT
588 * configuration. Hence, HW offload will always be
589 * disabled for P2P.
591 ar->disable_offload |= vif->p2p;
593 ar->rx_software_decryption = ar->disable_offload;
595 err = carl9170_set_operating_mode(ar);
596 return err;
599 static int carl9170_op_add_interface(struct ieee80211_hw *hw,
600 struct ieee80211_vif *vif)
602 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
603 struct ieee80211_vif *main_vif, *old_main = NULL;
604 struct ar9170 *ar = hw->priv;
605 int vif_id = -1, err = 0;
607 mutex_lock(&ar->mutex);
608 rcu_read_lock();
609 if (vif_priv->active) {
611 * Skip the interface structure initialization,
612 * if the vif survived the _restart call.
614 vif_id = vif_priv->id;
615 vif_priv->enable_beacon = false;
617 spin_lock_bh(&ar->beacon_lock);
618 dev_kfree_skb_any(vif_priv->beacon);
619 vif_priv->beacon = NULL;
620 spin_unlock_bh(&ar->beacon_lock);
622 goto init;
625 /* Because the AR9170 HW's MAC doesn't provide full support for
626 * multiple, independent interfaces [of different operation modes].
627 * We have to select ONE main interface [main mode of HW], but we
628 * can have multiple slaves [AKA: entry in the ACK-table].
630 * The first (from HEAD/TOP) interface in the ar->vif_list is
631 * always the main intf. All following intfs in this list
632 * are considered to be slave intfs.
634 main_vif = carl9170_get_main_vif(ar);
636 if (main_vif) {
637 switch (main_vif->type) {
638 case NL80211_IFTYPE_STATION:
639 if (vif->type == NL80211_IFTYPE_STATION)
640 break;
642 /* P2P GO [master] use-case
643 * Because the P2P GO station is selected dynamically
644 * by all participating peers of a WIFI Direct network,
645 * the driver has be able to change the main interface
646 * operating mode on the fly.
648 if (main_vif->p2p && vif->p2p &&
649 vif->type == NL80211_IFTYPE_AP) {
650 old_main = main_vif;
651 break;
654 err = -EBUSY;
655 rcu_read_unlock();
657 goto unlock;
659 case NL80211_IFTYPE_MESH_POINT:
660 case NL80211_IFTYPE_AP:
661 if ((vif->type == NL80211_IFTYPE_STATION) ||
662 (vif->type == NL80211_IFTYPE_WDS) ||
663 (vif->type == NL80211_IFTYPE_AP) ||
664 (vif->type == NL80211_IFTYPE_MESH_POINT))
665 break;
667 err = -EBUSY;
668 rcu_read_unlock();
669 goto unlock;
671 default:
672 rcu_read_unlock();
673 goto unlock;
677 vif_id = bitmap_find_free_region(&ar->vif_bitmap, ar->fw.vif_num, 0);
679 if (vif_id < 0) {
680 rcu_read_unlock();
682 err = -ENOSPC;
683 goto unlock;
686 BUG_ON(ar->vif_priv[vif_id].id != vif_id);
688 vif_priv->active = true;
689 vif_priv->id = vif_id;
690 vif_priv->enable_beacon = false;
691 ar->vifs++;
692 if (old_main) {
693 /* We end up in here, if the main interface is being replaced.
694 * Put the new main interface at the HEAD of the list and the
695 * previous inteface will automatically become second in line.
697 list_add_rcu(&vif_priv->list, &ar->vif_list);
698 } else {
699 /* Add new inteface. If the list is empty, it will become the
700 * main inteface, otherwise it will be slave.
702 list_add_tail_rcu(&vif_priv->list, &ar->vif_list);
704 rcu_assign_pointer(ar->vif_priv[vif_id].vif, vif);
706 init:
707 main_vif = carl9170_get_main_vif(ar);
709 if (main_vif == vif) {
710 rcu_assign_pointer(ar->beacon_iter, vif_priv);
711 rcu_read_unlock();
713 if (old_main) {
714 struct carl9170_vif_info *old_main_priv =
715 (void *) old_main->drv_priv;
716 /* downgrade old main intf to slave intf.
717 * NOTE: We are no longer under rcu_read_lock.
718 * But we are still holding ar->mutex, so the
719 * vif data [id, addr] is safe.
721 err = carl9170_mod_virtual_mac(ar, old_main_priv->id,
722 old_main->addr);
723 if (err)
724 goto unlock;
727 err = carl9170_init_interface(ar, vif);
728 if (err)
729 goto unlock;
730 } else {
731 rcu_read_unlock();
732 err = carl9170_mod_virtual_mac(ar, vif_id, vif->addr);
734 if (err)
735 goto unlock;
738 if (ar->fw.tx_seq_table) {
739 err = carl9170_write_reg(ar, ar->fw.tx_seq_table + vif_id * 4,
741 if (err)
742 goto unlock;
745 unlock:
746 if (err && (vif_id >= 0)) {
747 vif_priv->active = false;
748 bitmap_release_region(&ar->vif_bitmap, vif_id, 0);
749 ar->vifs--;
750 RCU_INIT_POINTER(ar->vif_priv[vif_id].vif, NULL);
751 list_del_rcu(&vif_priv->list);
752 mutex_unlock(&ar->mutex);
753 synchronize_rcu();
754 } else {
755 if (ar->vifs > 1)
756 ar->ps.off_override |= PS_OFF_VIF;
758 mutex_unlock(&ar->mutex);
761 return err;
764 static void carl9170_op_remove_interface(struct ieee80211_hw *hw,
765 struct ieee80211_vif *vif)
767 struct carl9170_vif_info *vif_priv = (void *) vif->drv_priv;
768 struct ieee80211_vif *main_vif;
769 struct ar9170 *ar = hw->priv;
770 unsigned int id;
772 mutex_lock(&ar->mutex);
774 if (WARN_ON_ONCE(!vif_priv->active))
775 goto unlock;
777 ar->vifs--;
779 rcu_read_lock();
780 main_vif = carl9170_get_main_vif(ar);
782 id = vif_priv->id;
784 vif_priv->active = false;
785 WARN_ON(vif_priv->enable_beacon);
786 vif_priv->enable_beacon = false;
787 list_del_rcu(&vif_priv->list);
788 RCU_INIT_POINTER(ar->vif_priv[id].vif, NULL);
790 if (vif == main_vif) {
791 rcu_read_unlock();
793 if (ar->vifs) {
794 WARN_ON(carl9170_init_interface(ar,
795 carl9170_get_main_vif(ar)));
796 } else {
797 carl9170_set_operating_mode(ar);
799 } else {
800 rcu_read_unlock();
802 WARN_ON(carl9170_mod_virtual_mac(ar, id, NULL));
805 carl9170_update_beacon(ar, false);
806 carl9170_flush_cab(ar, id);
808 spin_lock_bh(&ar->beacon_lock);
809 dev_kfree_skb_any(vif_priv->beacon);
810 vif_priv->beacon = NULL;
811 spin_unlock_bh(&ar->beacon_lock);
813 bitmap_release_region(&ar->vif_bitmap, id, 0);
815 carl9170_set_beacon_timers(ar);
817 if (ar->vifs == 1)
818 ar->ps.off_override &= ~PS_OFF_VIF;
820 unlock:
821 mutex_unlock(&ar->mutex);
823 synchronize_rcu();
826 void carl9170_ps_check(struct ar9170 *ar)
828 ieee80211_queue_work(ar->hw, &ar->ps_work);
831 /* caller must hold ar->mutex */
832 static int carl9170_ps_update(struct ar9170 *ar)
834 bool ps = false;
835 int err = 0;
837 if (!ar->ps.off_override)
838 ps = (ar->hw->conf.flags & IEEE80211_CONF_PS);
840 if (ps != ar->ps.state) {
841 err = carl9170_powersave(ar, ps);
842 if (err)
843 return err;
845 if (ar->ps.state && !ps) {
846 ar->ps.sleep_ms = jiffies_to_msecs(jiffies -
847 ar->ps.last_action);
850 if (ps)
851 ar->ps.last_slept = jiffies;
853 ar->ps.last_action = jiffies;
854 ar->ps.state = ps;
857 return 0;
860 static void carl9170_ps_work(struct work_struct *work)
862 struct ar9170 *ar = container_of(work, struct ar9170,
863 ps_work);
864 mutex_lock(&ar->mutex);
865 if (IS_STARTED(ar))
866 WARN_ON_ONCE(carl9170_ps_update(ar) != 0);
867 mutex_unlock(&ar->mutex);
870 static int carl9170_update_survey(struct ar9170 *ar, bool flush, bool noise)
872 int err;
874 if (noise) {
875 err = carl9170_get_noisefloor(ar);
876 if (err)
877 return err;
880 if (ar->fw.hw_counters) {
881 err = carl9170_collect_tally(ar);
882 if (err)
883 return err;
886 if (flush)
887 memset(&ar->tally, 0, sizeof(ar->tally));
889 return 0;
892 static void carl9170_stat_work(struct work_struct *work)
894 struct ar9170 *ar = container_of(work, struct ar9170, stat_work.work);
895 int err;
897 mutex_lock(&ar->mutex);
898 err = carl9170_update_survey(ar, false, true);
899 mutex_unlock(&ar->mutex);
901 if (err)
902 return;
904 ieee80211_queue_delayed_work(ar->hw, &ar->stat_work,
905 round_jiffies(msecs_to_jiffies(CARL9170_STAT_WORK)));
908 static int carl9170_op_config(struct ieee80211_hw *hw, u32 changed)
910 struct ar9170 *ar = hw->priv;
911 int err = 0;
913 mutex_lock(&ar->mutex);
914 if (changed & IEEE80211_CONF_CHANGE_LISTEN_INTERVAL) {
915 /* TODO */
916 err = 0;
919 if (changed & IEEE80211_CONF_CHANGE_PS) {
920 err = carl9170_ps_update(ar);
921 if (err)
922 goto out;
925 if (changed & IEEE80211_CONF_CHANGE_SMPS) {
926 /* TODO */
927 err = 0;
930 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
931 enum nl80211_channel_type channel_type =
932 cfg80211_get_chandef_type(&hw->conf.chandef);
934 /* adjust slot time for 5 GHz */
935 err = carl9170_set_slot_time(ar);
936 if (err)
937 goto out;
939 err = carl9170_update_survey(ar, true, false);
940 if (err)
941 goto out;
943 err = carl9170_set_channel(ar, hw->conf.chandef.chan,
944 channel_type);
945 if (err)
946 goto out;
948 err = carl9170_update_survey(ar, false, true);
949 if (err)
950 goto out;
952 err = carl9170_set_dyn_sifs_ack(ar);
953 if (err)
954 goto out;
956 err = carl9170_set_rts_cts_rate(ar);
957 if (err)
958 goto out;
961 if (changed & IEEE80211_CONF_CHANGE_POWER) {
962 err = carl9170_set_mac_tpc(ar, ar->hw->conf.chandef.chan);
963 if (err)
964 goto out;
967 out:
968 mutex_unlock(&ar->mutex);
969 return err;
972 static u64 carl9170_op_prepare_multicast(struct ieee80211_hw *hw,
973 struct netdev_hw_addr_list *mc_list)
975 struct netdev_hw_addr *ha;
976 u64 mchash;
978 /* always get broadcast frames */
979 mchash = 1ULL << (0xff >> 2);
981 netdev_hw_addr_list_for_each(ha, mc_list)
982 mchash |= 1ULL << (ha->addr[5] >> 2);
984 return mchash;
987 static void carl9170_op_configure_filter(struct ieee80211_hw *hw,
988 unsigned int changed_flags,
989 unsigned int *new_flags,
990 u64 multicast)
992 struct ar9170 *ar = hw->priv;
994 /* mask supported flags */
995 *new_flags &= FIF_ALLMULTI | ar->rx_filter_caps;
997 if (!IS_ACCEPTING_CMD(ar))
998 return;
1000 mutex_lock(&ar->mutex);
1002 ar->filter_state = *new_flags;
1004 * We can support more by setting the sniffer bit and
1005 * then checking the error flags, later.
1008 if (*new_flags & FIF_ALLMULTI)
1009 multicast = ~0ULL;
1011 if (multicast != ar->cur_mc_hash)
1012 WARN_ON(carl9170_update_multicast(ar, multicast));
1014 if (changed_flags & FIF_OTHER_BSS) {
1015 ar->sniffer_enabled = !!(*new_flags & FIF_OTHER_BSS);
1017 WARN_ON(carl9170_set_operating_mode(ar));
1020 if (ar->fw.rx_filter && changed_flags & ar->rx_filter_caps) {
1021 u32 rx_filter = 0;
1023 if (!ar->fw.ba_filter)
1024 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
1026 if (!(*new_flags & (FIF_FCSFAIL | FIF_PLCPFAIL)))
1027 rx_filter |= CARL9170_RX_FILTER_BAD;
1029 if (!(*new_flags & FIF_CONTROL))
1030 rx_filter |= CARL9170_RX_FILTER_CTL_OTHER;
1032 if (!(*new_flags & FIF_PSPOLL))
1033 rx_filter |= CARL9170_RX_FILTER_CTL_PSPOLL;
1035 if (!(*new_flags & FIF_OTHER_BSS)) {
1036 rx_filter |= CARL9170_RX_FILTER_OTHER_RA;
1037 rx_filter |= CARL9170_RX_FILTER_DECRY_FAIL;
1040 WARN_ON(carl9170_rx_filter(ar, rx_filter));
1043 mutex_unlock(&ar->mutex);
1047 static void carl9170_op_bss_info_changed(struct ieee80211_hw *hw,
1048 struct ieee80211_vif *vif,
1049 struct ieee80211_bss_conf *bss_conf,
1050 u32 changed)
1052 struct ar9170 *ar = hw->priv;
1053 struct ath_common *common = &ar->common;
1054 int err = 0;
1055 struct carl9170_vif_info *vif_priv;
1056 struct ieee80211_vif *main_vif;
1058 mutex_lock(&ar->mutex);
1059 vif_priv = (void *) vif->drv_priv;
1060 main_vif = carl9170_get_main_vif(ar);
1061 if (WARN_ON(!main_vif))
1062 goto out;
1064 if (changed & BSS_CHANGED_BEACON_ENABLED) {
1065 struct carl9170_vif_info *iter;
1066 int i = 0;
1068 vif_priv->enable_beacon = bss_conf->enable_beacon;
1069 rcu_read_lock();
1070 list_for_each_entry_rcu(iter, &ar->vif_list, list) {
1071 if (iter->active && iter->enable_beacon)
1072 i++;
1075 rcu_read_unlock();
1077 ar->beacon_enabled = i;
1080 if (changed & BSS_CHANGED_BEACON) {
1081 err = carl9170_update_beacon(ar, false);
1082 if (err)
1083 goto out;
1086 if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON |
1087 BSS_CHANGED_BEACON_INT)) {
1089 if (main_vif != vif) {
1090 bss_conf->beacon_int = main_vif->bss_conf.beacon_int;
1091 bss_conf->dtim_period = main_vif->bss_conf.dtim_period;
1095 * Therefore a hard limit for the broadcast traffic should
1096 * prevent false alarms.
1098 if (vif->type != NL80211_IFTYPE_STATION &&
1099 (bss_conf->beacon_int * bss_conf->dtim_period >=
1100 (CARL9170_QUEUE_STUCK_TIMEOUT / 2))) {
1101 err = -EINVAL;
1102 goto out;
1105 err = carl9170_set_beacon_timers(ar);
1106 if (err)
1107 goto out;
1110 if (changed & BSS_CHANGED_HT) {
1111 /* TODO */
1112 err = 0;
1113 if (err)
1114 goto out;
1117 if (main_vif != vif)
1118 goto out;
1121 * The following settings can only be changed by the
1122 * master interface.
1125 if (changed & BSS_CHANGED_BSSID) {
1126 memcpy(common->curbssid, bss_conf->bssid, ETH_ALEN);
1127 err = carl9170_set_operating_mode(ar);
1128 if (err)
1129 goto out;
1132 if (changed & BSS_CHANGED_ASSOC) {
1133 ar->common.curaid = bss_conf->aid;
1134 err = carl9170_set_beacon_timers(ar);
1135 if (err)
1136 goto out;
1139 if (changed & BSS_CHANGED_ERP_SLOT) {
1140 err = carl9170_set_slot_time(ar);
1141 if (err)
1142 goto out;
1145 if (changed & BSS_CHANGED_BASIC_RATES) {
1146 err = carl9170_set_mac_rates(ar);
1147 if (err)
1148 goto out;
1151 out:
1152 WARN_ON_ONCE(err && IS_STARTED(ar));
1153 mutex_unlock(&ar->mutex);
1156 static u64 carl9170_op_get_tsf(struct ieee80211_hw *hw,
1157 struct ieee80211_vif *vif)
1159 struct ar9170 *ar = hw->priv;
1160 struct carl9170_tsf_rsp tsf;
1161 int err;
1163 mutex_lock(&ar->mutex);
1164 err = carl9170_exec_cmd(ar, CARL9170_CMD_READ_TSF,
1165 0, NULL, sizeof(tsf), &tsf);
1166 mutex_unlock(&ar->mutex);
1167 if (WARN_ON(err))
1168 return 0;
1170 return le64_to_cpu(tsf.tsf_64);
1173 static int carl9170_op_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1174 struct ieee80211_vif *vif,
1175 struct ieee80211_sta *sta,
1176 struct ieee80211_key_conf *key)
1178 struct ar9170 *ar = hw->priv;
1179 int err = 0, i;
1180 u8 ktype;
1182 if (ar->disable_offload || !vif)
1183 return -EOPNOTSUPP;
1185 /* Fall back to software encryption whenever the driver is connected
1186 * to more than one network.
1188 * This is very unfortunate, because some machines cannot handle
1189 * the high througput speed in 802.11n networks.
1192 if (!is_main_vif(ar, vif)) {
1193 mutex_lock(&ar->mutex);
1194 goto err_softw;
1198 * While the hardware supports *catch-all* key, for offloading
1199 * group-key en-/de-cryption. The way of how the hardware
1200 * decides which keyId maps to which key, remains a mystery...
1202 if ((vif->type != NL80211_IFTYPE_STATION &&
1203 vif->type != NL80211_IFTYPE_ADHOC) &&
1204 !(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
1205 return -EOPNOTSUPP;
1207 switch (key->cipher) {
1208 case WLAN_CIPHER_SUITE_WEP40:
1209 ktype = AR9170_ENC_ALG_WEP64;
1210 break;
1211 case WLAN_CIPHER_SUITE_WEP104:
1212 ktype = AR9170_ENC_ALG_WEP128;
1213 break;
1214 case WLAN_CIPHER_SUITE_TKIP:
1215 ktype = AR9170_ENC_ALG_TKIP;
1216 break;
1217 case WLAN_CIPHER_SUITE_CCMP:
1218 ktype = AR9170_ENC_ALG_AESCCMP;
1219 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT_TX;
1220 break;
1221 default:
1222 return -EOPNOTSUPP;
1225 mutex_lock(&ar->mutex);
1226 if (cmd == SET_KEY) {
1227 if (!IS_STARTED(ar)) {
1228 err = -EOPNOTSUPP;
1229 goto out;
1232 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
1233 sta = NULL;
1235 i = 64 + key->keyidx;
1236 } else {
1237 for (i = 0; i < 64; i++)
1238 if (!(ar->usedkeys & BIT(i)))
1239 break;
1240 if (i == 64)
1241 goto err_softw;
1244 key->hw_key_idx = i;
1246 err = carl9170_upload_key(ar, i, sta ? sta->addr : NULL,
1247 ktype, 0, key->key,
1248 min_t(u8, 16, key->keylen));
1249 if (err)
1250 goto out;
1252 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1253 err = carl9170_upload_key(ar, i, sta ? sta->addr :
1254 NULL, ktype, 1,
1255 key->key + 16, 16);
1256 if (err)
1257 goto out;
1260 * hardware is not capable generating MMIC
1261 * of fragmented frames!
1263 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
1266 if (i < 64)
1267 ar->usedkeys |= BIT(i);
1269 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
1270 } else {
1271 if (!IS_STARTED(ar)) {
1272 /* The device is gone... together with the key ;-) */
1273 err = 0;
1274 goto out;
1277 if (key->hw_key_idx < 64) {
1278 ar->usedkeys &= ~BIT(key->hw_key_idx);
1279 } else {
1280 err = carl9170_upload_key(ar, key->hw_key_idx, NULL,
1281 AR9170_ENC_ALG_NONE, 0,
1282 NULL, 0);
1283 if (err)
1284 goto out;
1286 if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
1287 err = carl9170_upload_key(ar, key->hw_key_idx,
1288 NULL,
1289 AR9170_ENC_ALG_NONE,
1290 1, NULL, 0);
1291 if (err)
1292 goto out;
1297 err = carl9170_disable_key(ar, key->hw_key_idx);
1298 if (err)
1299 goto out;
1302 out:
1303 mutex_unlock(&ar->mutex);
1304 return err;
1306 err_softw:
1307 if (!ar->rx_software_decryption) {
1308 ar->rx_software_decryption = true;
1309 carl9170_set_operating_mode(ar);
1311 mutex_unlock(&ar->mutex);
1312 return -ENOSPC;
1315 static int carl9170_op_sta_add(struct ieee80211_hw *hw,
1316 struct ieee80211_vif *vif,
1317 struct ieee80211_sta *sta)
1319 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1320 unsigned int i;
1322 atomic_set(&sta_info->pending_frames, 0);
1324 if (sta->ht_cap.ht_supported) {
1325 if (sta->ht_cap.ampdu_density > 6) {
1327 * HW does support 16us AMPDU density.
1328 * No HT-Xmit for station.
1331 return 0;
1334 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++)
1335 RCU_INIT_POINTER(sta_info->agg[i], NULL);
1337 sta_info->ampdu_max_len = 1 << (3 + sta->ht_cap.ampdu_factor);
1338 sta_info->ht_sta = true;
1341 return 0;
1344 static int carl9170_op_sta_remove(struct ieee80211_hw *hw,
1345 struct ieee80211_vif *vif,
1346 struct ieee80211_sta *sta)
1348 struct ar9170 *ar = hw->priv;
1349 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1350 unsigned int i;
1351 bool cleanup = false;
1353 if (sta->ht_cap.ht_supported) {
1355 sta_info->ht_sta = false;
1357 rcu_read_lock();
1358 for (i = 0; i < ARRAY_SIZE(sta_info->agg); i++) {
1359 struct carl9170_sta_tid *tid_info;
1361 tid_info = rcu_dereference(sta_info->agg[i]);
1362 RCU_INIT_POINTER(sta_info->agg[i], NULL);
1364 if (!tid_info)
1365 continue;
1367 spin_lock_bh(&ar->tx_ampdu_list_lock);
1368 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1369 tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1370 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1371 cleanup = true;
1373 rcu_read_unlock();
1375 if (cleanup)
1376 carl9170_ampdu_gc(ar);
1379 return 0;
1382 static int carl9170_op_conf_tx(struct ieee80211_hw *hw,
1383 struct ieee80211_vif *vif, u16 queue,
1384 const struct ieee80211_tx_queue_params *param)
1386 struct ar9170 *ar = hw->priv;
1387 int ret;
1389 mutex_lock(&ar->mutex);
1390 memcpy(&ar->edcf[ar9170_qmap[queue]], param, sizeof(*param));
1391 ret = carl9170_set_qos(ar);
1392 mutex_unlock(&ar->mutex);
1393 return ret;
1396 static void carl9170_ampdu_work(struct work_struct *work)
1398 struct ar9170 *ar = container_of(work, struct ar9170,
1399 ampdu_work);
1401 if (!IS_STARTED(ar))
1402 return;
1404 mutex_lock(&ar->mutex);
1405 carl9170_ampdu_gc(ar);
1406 mutex_unlock(&ar->mutex);
1409 static int carl9170_op_ampdu_action(struct ieee80211_hw *hw,
1410 struct ieee80211_vif *vif,
1411 struct ieee80211_ampdu_params *params)
1413 struct ieee80211_sta *sta = params->sta;
1414 enum ieee80211_ampdu_mlme_action action = params->action;
1415 u16 tid = params->tid;
1416 u16 *ssn = &params->ssn;
1417 struct ar9170 *ar = hw->priv;
1418 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1419 struct carl9170_sta_tid *tid_info;
1421 if (modparam_noht)
1422 return -EOPNOTSUPP;
1424 switch (action) {
1425 case IEEE80211_AMPDU_TX_START:
1426 if (!sta_info->ht_sta)
1427 return -EOPNOTSUPP;
1429 tid_info = kzalloc(sizeof(struct carl9170_sta_tid),
1430 GFP_ATOMIC);
1431 if (!tid_info)
1432 return -ENOMEM;
1434 tid_info->hsn = tid_info->bsn = tid_info->snx = (*ssn);
1435 tid_info->state = CARL9170_TID_STATE_PROGRESS;
1436 tid_info->tid = tid;
1437 tid_info->max = sta_info->ampdu_max_len;
1438 tid_info->sta = sta;
1439 tid_info->vif = vif;
1441 INIT_LIST_HEAD(&tid_info->list);
1442 INIT_LIST_HEAD(&tid_info->tmp_list);
1443 skb_queue_head_init(&tid_info->queue);
1444 spin_lock_init(&tid_info->lock);
1446 spin_lock_bh(&ar->tx_ampdu_list_lock);
1447 ar->tx_ampdu_list_len++;
1448 list_add_tail_rcu(&tid_info->list, &ar->tx_ampdu_list);
1449 rcu_assign_pointer(sta_info->agg[tid], tid_info);
1450 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1452 return IEEE80211_AMPDU_TX_START_IMMEDIATE;
1454 case IEEE80211_AMPDU_TX_STOP_CONT:
1455 case IEEE80211_AMPDU_TX_STOP_FLUSH:
1456 case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
1457 rcu_read_lock();
1458 tid_info = rcu_dereference(sta_info->agg[tid]);
1459 if (tid_info) {
1460 spin_lock_bh(&ar->tx_ampdu_list_lock);
1461 if (tid_info->state > CARL9170_TID_STATE_SHUTDOWN)
1462 tid_info->state = CARL9170_TID_STATE_SHUTDOWN;
1463 spin_unlock_bh(&ar->tx_ampdu_list_lock);
1466 RCU_INIT_POINTER(sta_info->agg[tid], NULL);
1467 rcu_read_unlock();
1469 ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
1470 ieee80211_queue_work(ar->hw, &ar->ampdu_work);
1471 break;
1473 case IEEE80211_AMPDU_TX_OPERATIONAL:
1474 rcu_read_lock();
1475 tid_info = rcu_dereference(sta_info->agg[tid]);
1477 sta_info->stats[tid].clear = true;
1478 sta_info->stats[tid].req = false;
1480 if (tid_info) {
1481 bitmap_zero(tid_info->bitmap, CARL9170_BAW_SIZE);
1482 tid_info->state = CARL9170_TID_STATE_IDLE;
1484 rcu_read_unlock();
1486 if (WARN_ON_ONCE(!tid_info))
1487 return -EFAULT;
1489 break;
1491 case IEEE80211_AMPDU_RX_START:
1492 case IEEE80211_AMPDU_RX_STOP:
1493 /* Handled by hardware */
1494 break;
1496 default:
1497 return -EOPNOTSUPP;
1500 return 0;
1503 #ifdef CONFIG_CARL9170_WPC
1504 static int carl9170_register_wps_button(struct ar9170 *ar)
1506 struct input_dev *input;
1507 int err;
1509 if (!(ar->features & CARL9170_WPS_BUTTON))
1510 return 0;
1512 input = input_allocate_device();
1513 if (!input)
1514 return -ENOMEM;
1516 snprintf(ar->wps.name, sizeof(ar->wps.name), "%s WPS Button",
1517 wiphy_name(ar->hw->wiphy));
1519 snprintf(ar->wps.phys, sizeof(ar->wps.phys),
1520 "ieee80211/%s/input0", wiphy_name(ar->hw->wiphy));
1522 input->name = ar->wps.name;
1523 input->phys = ar->wps.phys;
1524 input->id.bustype = BUS_USB;
1525 input->dev.parent = &ar->hw->wiphy->dev;
1527 input_set_capability(input, EV_KEY, KEY_WPS_BUTTON);
1529 err = input_register_device(input);
1530 if (err) {
1531 input_free_device(input);
1532 return err;
1535 ar->wps.pbc = input;
1536 return 0;
1538 #endif /* CONFIG_CARL9170_WPC */
1540 #ifdef CONFIG_CARL9170_HWRNG
1541 static int carl9170_rng_get(struct ar9170 *ar)
1544 #define RW (CARL9170_MAX_CMD_PAYLOAD_LEN / sizeof(u32))
1545 #define RB (CARL9170_MAX_CMD_PAYLOAD_LEN)
1547 static const __le32 rng_load[RW] = {
1548 [0 ... (RW - 1)] = cpu_to_le32(AR9170_RAND_REG_NUM)};
1550 u32 buf[RW];
1552 unsigned int i, off = 0, transfer, count;
1553 int err;
1555 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_PAYLOAD_LEN);
1557 if (!IS_ACCEPTING_CMD(ar) || !ar->rng.initialized)
1558 return -EAGAIN;
1560 count = ARRAY_SIZE(ar->rng.cache);
1561 while (count) {
1562 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1563 RB, (u8 *) rng_load,
1564 RB, (u8 *) buf);
1565 if (err)
1566 return err;
1568 transfer = min_t(unsigned int, count, RW);
1569 for (i = 0; i < transfer; i++)
1570 ar->rng.cache[off + i] = buf[i];
1572 off += transfer;
1573 count -= transfer;
1576 ar->rng.cache_idx = 0;
1578 #undef RW
1579 #undef RB
1580 return 0;
1583 static int carl9170_rng_read(struct hwrng *rng, u32 *data)
1585 struct ar9170 *ar = (struct ar9170 *)rng->priv;
1586 int ret = -EIO;
1588 mutex_lock(&ar->mutex);
1589 if (ar->rng.cache_idx >= ARRAY_SIZE(ar->rng.cache)) {
1590 ret = carl9170_rng_get(ar);
1591 if (ret) {
1592 mutex_unlock(&ar->mutex);
1593 return ret;
1597 *data = ar->rng.cache[ar->rng.cache_idx++];
1598 mutex_unlock(&ar->mutex);
1600 return sizeof(u16);
1603 static void carl9170_unregister_hwrng(struct ar9170 *ar)
1605 if (ar->rng.initialized) {
1606 hwrng_unregister(&ar->rng.rng);
1607 ar->rng.initialized = false;
1611 static int carl9170_register_hwrng(struct ar9170 *ar)
1613 int err;
1615 snprintf(ar->rng.name, ARRAY_SIZE(ar->rng.name),
1616 "%s_%s", KBUILD_MODNAME, wiphy_name(ar->hw->wiphy));
1617 ar->rng.rng.name = ar->rng.name;
1618 ar->rng.rng.data_read = carl9170_rng_read;
1619 ar->rng.rng.priv = (unsigned long)ar;
1621 if (WARN_ON(ar->rng.initialized))
1622 return -EALREADY;
1624 err = hwrng_register(&ar->rng.rng);
1625 if (err) {
1626 dev_err(&ar->udev->dev, "Failed to register the random "
1627 "number generator (%d)\n", err);
1628 return err;
1631 ar->rng.initialized = true;
1633 err = carl9170_rng_get(ar);
1634 if (err) {
1635 carl9170_unregister_hwrng(ar);
1636 return err;
1639 return 0;
1641 #endif /* CONFIG_CARL9170_HWRNG */
1643 static int carl9170_op_get_survey(struct ieee80211_hw *hw, int idx,
1644 struct survey_info *survey)
1646 struct ar9170 *ar = hw->priv;
1647 struct ieee80211_channel *chan;
1648 struct ieee80211_supported_band *band;
1649 int err, b, i;
1651 chan = ar->channel;
1652 if (!chan)
1653 return -ENODEV;
1655 if (idx == chan->hw_value) {
1656 mutex_lock(&ar->mutex);
1657 err = carl9170_update_survey(ar, false, true);
1658 mutex_unlock(&ar->mutex);
1659 if (err)
1660 return err;
1663 for (b = 0; b < NUM_NL80211_BANDS; b++) {
1664 band = ar->hw->wiphy->bands[b];
1666 if (!band)
1667 continue;
1669 for (i = 0; i < band->n_channels; i++) {
1670 if (band->channels[i].hw_value == idx) {
1671 chan = &band->channels[i];
1672 goto found;
1676 return -ENOENT;
1678 found:
1679 memcpy(survey, &ar->survey[idx], sizeof(*survey));
1681 survey->channel = chan;
1682 survey->filled = SURVEY_INFO_NOISE_DBM;
1684 if (ar->channel == chan)
1685 survey->filled |= SURVEY_INFO_IN_USE;
1687 if (ar->fw.hw_counters) {
1688 survey->filled |= SURVEY_INFO_TIME |
1689 SURVEY_INFO_TIME_BUSY |
1690 SURVEY_INFO_TIME_TX;
1693 return 0;
1696 static void carl9170_op_flush(struct ieee80211_hw *hw,
1697 struct ieee80211_vif *vif,
1698 u32 queues, bool drop)
1700 struct ar9170 *ar = hw->priv;
1701 unsigned int vid;
1703 mutex_lock(&ar->mutex);
1704 for_each_set_bit(vid, &ar->vif_bitmap, ar->fw.vif_num)
1705 carl9170_flush_cab(ar, vid);
1707 carl9170_flush(ar, drop);
1708 mutex_unlock(&ar->mutex);
1711 static int carl9170_op_get_stats(struct ieee80211_hw *hw,
1712 struct ieee80211_low_level_stats *stats)
1714 struct ar9170 *ar = hw->priv;
1716 memset(stats, 0, sizeof(*stats));
1717 stats->dot11ACKFailureCount = ar->tx_ack_failures;
1718 stats->dot11FCSErrorCount = ar->tx_fcs_errors;
1719 return 0;
1722 static void carl9170_op_sta_notify(struct ieee80211_hw *hw,
1723 struct ieee80211_vif *vif,
1724 enum sta_notify_cmd cmd,
1725 struct ieee80211_sta *sta)
1727 struct carl9170_sta_info *sta_info = (void *) sta->drv_priv;
1729 switch (cmd) {
1730 case STA_NOTIFY_SLEEP:
1731 sta_info->sleeping = true;
1732 if (atomic_read(&sta_info->pending_frames))
1733 ieee80211_sta_block_awake(hw, sta, true);
1734 break;
1736 case STA_NOTIFY_AWAKE:
1737 sta_info->sleeping = false;
1738 break;
1742 static bool carl9170_tx_frames_pending(struct ieee80211_hw *hw)
1744 struct ar9170 *ar = hw->priv;
1746 return !!atomic_read(&ar->tx_total_queued);
1749 static const struct ieee80211_ops carl9170_ops = {
1750 .start = carl9170_op_start,
1751 .stop = carl9170_op_stop,
1752 .tx = carl9170_op_tx,
1753 .flush = carl9170_op_flush,
1754 .add_interface = carl9170_op_add_interface,
1755 .remove_interface = carl9170_op_remove_interface,
1756 .config = carl9170_op_config,
1757 .prepare_multicast = carl9170_op_prepare_multicast,
1758 .configure_filter = carl9170_op_configure_filter,
1759 .conf_tx = carl9170_op_conf_tx,
1760 .bss_info_changed = carl9170_op_bss_info_changed,
1761 .get_tsf = carl9170_op_get_tsf,
1762 .set_key = carl9170_op_set_key,
1763 .sta_add = carl9170_op_sta_add,
1764 .sta_remove = carl9170_op_sta_remove,
1765 .sta_notify = carl9170_op_sta_notify,
1766 .get_survey = carl9170_op_get_survey,
1767 .get_stats = carl9170_op_get_stats,
1768 .ampdu_action = carl9170_op_ampdu_action,
1769 .tx_frames_pending = carl9170_tx_frames_pending,
1772 void *carl9170_alloc(size_t priv_size)
1774 struct ieee80211_hw *hw;
1775 struct ar9170 *ar;
1776 struct sk_buff *skb;
1777 int i;
1780 * this buffer is used for rx stream reconstruction.
1781 * Under heavy load this device (or the transport layer?)
1782 * tends to split the streams into separate rx descriptors.
1785 skb = __dev_alloc_skb(AR9170_RX_STREAM_MAX_SIZE, GFP_KERNEL);
1786 if (!skb)
1787 goto err_nomem;
1789 hw = ieee80211_alloc_hw(priv_size, &carl9170_ops);
1790 if (!hw)
1791 goto err_nomem;
1793 ar = hw->priv;
1794 ar->hw = hw;
1795 ar->rx_failover = skb;
1797 memset(&ar->rx_plcp, 0, sizeof(struct ar9170_rx_head));
1798 ar->rx_has_plcp = false;
1801 * Here's a hidden pitfall!
1803 * All 4 AC queues work perfectly well under _legacy_ operation.
1804 * However as soon as aggregation is enabled, the traffic flow
1805 * gets very bumpy. Therefore we have to _switch_ to a
1806 * software AC with a single HW queue.
1808 hw->queues = __AR9170_NUM_TXQ;
1810 mutex_init(&ar->mutex);
1811 spin_lock_init(&ar->beacon_lock);
1812 spin_lock_init(&ar->cmd_lock);
1813 spin_lock_init(&ar->tx_stats_lock);
1814 spin_lock_init(&ar->tx_ampdu_list_lock);
1815 spin_lock_init(&ar->mem_lock);
1816 spin_lock_init(&ar->state_lock);
1817 atomic_set(&ar->pending_restarts, 0);
1818 ar->vifs = 0;
1819 for (i = 0; i < ar->hw->queues; i++) {
1820 skb_queue_head_init(&ar->tx_status[i]);
1821 skb_queue_head_init(&ar->tx_pending[i]);
1823 INIT_LIST_HEAD(&ar->bar_list[i]);
1824 spin_lock_init(&ar->bar_list_lock[i]);
1826 INIT_WORK(&ar->ps_work, carl9170_ps_work);
1827 INIT_WORK(&ar->ping_work, carl9170_ping_work);
1828 INIT_WORK(&ar->restart_work, carl9170_restart_work);
1829 INIT_WORK(&ar->ampdu_work, carl9170_ampdu_work);
1830 INIT_DELAYED_WORK(&ar->stat_work, carl9170_stat_work);
1831 INIT_DELAYED_WORK(&ar->tx_janitor, carl9170_tx_janitor);
1832 INIT_LIST_HEAD(&ar->tx_ampdu_list);
1833 rcu_assign_pointer(ar->tx_ampdu_iter,
1834 (struct carl9170_sta_tid *) &ar->tx_ampdu_list);
1836 bitmap_zero(&ar->vif_bitmap, ar->fw.vif_num);
1837 INIT_LIST_HEAD(&ar->vif_list);
1838 init_completion(&ar->tx_flush);
1840 /* firmware decides which modes we support */
1841 hw->wiphy->interface_modes = 0;
1843 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
1844 ieee80211_hw_set(hw, MFP_CAPABLE);
1845 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
1846 ieee80211_hw_set(hw, SUPPORTS_PS);
1847 ieee80211_hw_set(hw, PS_NULLFUNC_STACK);
1848 ieee80211_hw_set(hw, NEED_DTIM_BEFORE_ASSOC);
1849 ieee80211_hw_set(hw, SUPPORTS_RC_TABLE);
1850 ieee80211_hw_set(hw, SIGNAL_DBM);
1851 ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
1853 if (!modparam_noht) {
1855 * see the comment above, why we allow the user
1856 * to disable HT by a module parameter.
1858 ieee80211_hw_set(hw, AMPDU_AGGREGATION);
1861 hw->extra_tx_headroom = sizeof(struct _carl9170_tx_superframe);
1862 hw->sta_data_size = sizeof(struct carl9170_sta_info);
1863 hw->vif_data_size = sizeof(struct carl9170_vif_info);
1865 hw->max_rates = CARL9170_TX_MAX_RATES;
1866 hw->max_rate_tries = CARL9170_TX_USER_RATE_TRIES;
1868 for (i = 0; i < ARRAY_SIZE(ar->noise); i++)
1869 ar->noise[i] = -95; /* ATH_DEFAULT_NOISE_FLOOR */
1871 wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
1873 return ar;
1875 err_nomem:
1876 kfree_skb(skb);
1877 return ERR_PTR(-ENOMEM);
1880 static int carl9170_read_eeprom(struct ar9170 *ar)
1882 #define RW 8 /* number of words to read at once */
1883 #define RB (sizeof(u32) * RW)
1884 u8 *eeprom = (void *)&ar->eeprom;
1885 __le32 offsets[RW];
1886 int i, j, err;
1888 BUILD_BUG_ON(sizeof(ar->eeprom) & 3);
1890 BUILD_BUG_ON(RB > CARL9170_MAX_CMD_LEN - 4);
1891 #ifndef __CHECKER__
1892 /* don't want to handle trailing remains */
1893 BUILD_BUG_ON(sizeof(ar->eeprom) % RB);
1894 #endif
1896 for (i = 0; i < sizeof(ar->eeprom) / RB; i++) {
1897 for (j = 0; j < RW; j++)
1898 offsets[j] = cpu_to_le32(AR9170_EEPROM_START +
1899 RB * i + 4 * j);
1901 err = carl9170_exec_cmd(ar, CARL9170_CMD_RREG,
1902 RB, (u8 *) &offsets,
1903 RB, eeprom + RB * i);
1904 if (err)
1905 return err;
1908 #undef RW
1909 #undef RB
1910 return 0;
1913 static int carl9170_parse_eeprom(struct ar9170 *ar)
1915 struct ath_regulatory *regulatory = &ar->common.regulatory;
1916 unsigned int rx_streams, tx_streams, tx_params = 0;
1917 int bands = 0;
1918 int chans = 0;
1920 if (ar->eeprom.length == cpu_to_le16(0xffff))
1921 return -ENODATA;
1923 rx_streams = hweight8(ar->eeprom.rx_mask);
1924 tx_streams = hweight8(ar->eeprom.tx_mask);
1926 if (rx_streams != tx_streams) {
1927 tx_params = IEEE80211_HT_MCS_TX_RX_DIFF;
1929 WARN_ON(!(tx_streams >= 1 && tx_streams <=
1930 IEEE80211_HT_MCS_TX_MAX_STREAMS));
1932 tx_params = (tx_streams - 1) <<
1933 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
1935 carl9170_band_2GHz.ht_cap.mcs.tx_params |= tx_params;
1936 carl9170_band_5GHz.ht_cap.mcs.tx_params |= tx_params;
1939 if (ar->eeprom.operating_flags & AR9170_OPFLAG_2GHZ) {
1940 ar->hw->wiphy->bands[NL80211_BAND_2GHZ] =
1941 &carl9170_band_2GHz;
1942 chans += carl9170_band_2GHz.n_channels;
1943 bands++;
1945 if (ar->eeprom.operating_flags & AR9170_OPFLAG_5GHZ) {
1946 ar->hw->wiphy->bands[NL80211_BAND_5GHZ] =
1947 &carl9170_band_5GHz;
1948 chans += carl9170_band_5GHz.n_channels;
1949 bands++;
1952 if (!bands)
1953 return -EINVAL;
1955 ar->survey = kcalloc(chans, sizeof(struct survey_info), GFP_KERNEL);
1956 if (!ar->survey)
1957 return -ENOMEM;
1958 ar->num_channels = chans;
1960 regulatory->current_rd = le16_to_cpu(ar->eeprom.reg_domain[0]);
1962 /* second part of wiphy init */
1963 SET_IEEE80211_PERM_ADDR(ar->hw, ar->eeprom.mac_address);
1965 return 0;
1968 static void carl9170_reg_notifier(struct wiphy *wiphy,
1969 struct regulatory_request *request)
1971 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1972 struct ar9170 *ar = hw->priv;
1974 ath_reg_notifier_apply(wiphy, request, &ar->common.regulatory);
1977 int carl9170_register(struct ar9170 *ar)
1979 struct ath_regulatory *regulatory = &ar->common.regulatory;
1980 int err = 0, i;
1982 if (WARN_ON(ar->mem_bitmap))
1983 return -EINVAL;
1985 ar->mem_bitmap = kcalloc(roundup(ar->fw.mem_blocks, BITS_PER_LONG),
1986 sizeof(unsigned long),
1987 GFP_KERNEL);
1989 if (!ar->mem_bitmap)
1990 return -ENOMEM;
1992 /* try to read EEPROM, init MAC addr */
1993 err = carl9170_read_eeprom(ar);
1994 if (err)
1995 return err;
1997 err = carl9170_parse_eeprom(ar);
1998 if (err)
1999 return err;
2001 err = ath_regd_init(regulatory, ar->hw->wiphy,
2002 carl9170_reg_notifier);
2003 if (err)
2004 return err;
2006 if (modparam_noht) {
2007 carl9170_band_2GHz.ht_cap.ht_supported = false;
2008 carl9170_band_5GHz.ht_cap.ht_supported = false;
2011 for (i = 0; i < ar->fw.vif_num; i++) {
2012 ar->vif_priv[i].id = i;
2013 ar->vif_priv[i].vif = NULL;
2016 err = ieee80211_register_hw(ar->hw);
2017 if (err)
2018 return err;
2020 /* mac80211 interface is now registered */
2021 ar->registered = true;
2023 if (!ath_is_world_regd(regulatory))
2024 regulatory_hint(ar->hw->wiphy, regulatory->alpha2);
2026 #ifdef CONFIG_CARL9170_DEBUGFS
2027 carl9170_debugfs_register(ar);
2028 #endif /* CONFIG_CARL9170_DEBUGFS */
2030 err = carl9170_led_init(ar);
2031 if (err)
2032 goto err_unreg;
2034 #ifdef CONFIG_CARL9170_LEDS
2035 err = carl9170_led_register(ar);
2036 if (err)
2037 goto err_unreg;
2038 #endif /* CONFIG_CARL9170_LEDS */
2040 #ifdef CONFIG_CARL9170_WPC
2041 err = carl9170_register_wps_button(ar);
2042 if (err)
2043 goto err_unreg;
2044 #endif /* CONFIG_CARL9170_WPC */
2046 #ifdef CONFIG_CARL9170_HWRNG
2047 err = carl9170_register_hwrng(ar);
2048 if (err)
2049 goto err_unreg;
2050 #endif /* CONFIG_CARL9170_HWRNG */
2052 dev_info(&ar->udev->dev, "Atheros AR9170 is registered as '%s'\n",
2053 wiphy_name(ar->hw->wiphy));
2055 return 0;
2057 err_unreg:
2058 carl9170_unregister(ar);
2059 return err;
2062 void carl9170_unregister(struct ar9170 *ar)
2064 if (!ar->registered)
2065 return;
2067 ar->registered = false;
2069 #ifdef CONFIG_CARL9170_LEDS
2070 carl9170_led_unregister(ar);
2071 #endif /* CONFIG_CARL9170_LEDS */
2073 #ifdef CONFIG_CARL9170_DEBUGFS
2074 carl9170_debugfs_unregister(ar);
2075 #endif /* CONFIG_CARL9170_DEBUGFS */
2077 #ifdef CONFIG_CARL9170_WPC
2078 if (ar->wps.pbc) {
2079 input_unregister_device(ar->wps.pbc);
2080 ar->wps.pbc = NULL;
2082 #endif /* CONFIG_CARL9170_WPC */
2084 #ifdef CONFIG_CARL9170_HWRNG
2085 carl9170_unregister_hwrng(ar);
2086 #endif /* CONFIG_CARL9170_HWRNG */
2088 carl9170_cancel_worker(ar);
2089 cancel_work_sync(&ar->restart_work);
2091 ieee80211_unregister_hw(ar->hw);
2094 void carl9170_free(struct ar9170 *ar)
2096 WARN_ON(ar->registered);
2097 WARN_ON(IS_INITIALIZED(ar));
2099 kfree_skb(ar->rx_failover);
2100 ar->rx_failover = NULL;
2102 kfree(ar->mem_bitmap);
2103 ar->mem_bitmap = NULL;
2105 kfree(ar->survey);
2106 ar->survey = NULL;
2108 mutex_destroy(&ar->mutex);
2110 ieee80211_free_hw(ar->hw);