1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
31 #include "spi-pxa2xx.h"
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
38 #define TIMOUT_DFLT 1000
41 * for testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the pxa270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 dev man says all bits without really meaning the
45 * service and interrupt enables
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
55 | QUARK_X1000_SSCR1_EFWR \
56 | QUARK_X1000_SSCR1_RFT \
57 | QUARK_X1000_SSCR1_TFT \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT 9
71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78 /* LPSS offset from drv_data->ioaddr */
80 /* Register offsets from drv_data->lpss_base or -1 */
89 /* Chip select control */
90 unsigned cs_sel_shift
;
94 unsigned cs_clk_stays_gated
: 1;
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms
[] = {
104 .reg_capabilities
= -1,
106 .tx_threshold_lo
= 160,
107 .tx_threshold_hi
= 224,
114 .reg_capabilities
= -1,
116 .tx_threshold_lo
= 160,
117 .tx_threshold_hi
= 224,
124 .reg_capabilities
= -1,
126 .tx_threshold_lo
= 160,
127 .tx_threshold_hi
= 224,
129 .cs_sel_mask
= 1 << 2,
137 .reg_capabilities
= -1,
139 .tx_threshold_lo
= 32,
140 .tx_threshold_hi
= 56,
147 .reg_capabilities
= 0xfc,
149 .tx_threshold_lo
= 16,
150 .tx_threshold_hi
= 48,
152 .cs_sel_mask
= 3 << 8,
159 .reg_capabilities
= 0xfc,
161 .tx_threshold_lo
= 32,
162 .tx_threshold_hi
= 56,
164 .cs_sel_mask
= 3 << 8,
165 .cs_clk_stays_gated
= true,
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data
*drv_data
)
172 return &lpss_platforms
[drv_data
->ssp_type
- LPSS_LPT_SSP
];
175 static bool is_lpss_ssp(const struct driver_data
*drv_data
)
177 switch (drv_data
->ssp_type
) {
190 static bool is_quark_x1000_ssp(const struct driver_data
*drv_data
)
192 return drv_data
->ssp_type
== QUARK_X1000_SSP
;
195 static bool is_mmp2_ssp(const struct driver_data
*drv_data
)
197 return drv_data
->ssp_type
== MMP2_SSP
;
200 static u32
pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data
*drv_data
)
202 switch (drv_data
->ssp_type
) {
203 case QUARK_X1000_SSP
:
204 return QUARK_X1000_SSCR1_CHANGE_MASK
;
206 return CE4100_SSCR1_CHANGE_MASK
;
208 return SSCR1_CHANGE_MASK
;
213 pxa2xx_spi_get_rx_default_thre(const struct driver_data
*drv_data
)
215 switch (drv_data
->ssp_type
) {
216 case QUARK_X1000_SSP
:
217 return RX_THRESH_QUARK_X1000_DFLT
;
219 return RX_THRESH_CE4100_DFLT
;
221 return RX_THRESH_DFLT
;
225 static bool pxa2xx_spi_txfifo_full(const struct driver_data
*drv_data
)
229 switch (drv_data
->ssp_type
) {
230 case QUARK_X1000_SSP
:
231 mask
= QUARK_X1000_SSSR_TFL_MASK
;
234 mask
= CE4100_SSSR_TFL_MASK
;
237 mask
= SSSR_TFL_MASK
;
241 return (pxa2xx_spi_read(drv_data
, SSSR
) & mask
) == mask
;
244 static void pxa2xx_spi_clear_rx_thre(const struct driver_data
*drv_data
,
249 switch (drv_data
->ssp_type
) {
250 case QUARK_X1000_SSP
:
251 mask
= QUARK_X1000_SSCR1_RFT
;
254 mask
= CE4100_SSCR1_RFT
;
263 static void pxa2xx_spi_set_rx_thre(const struct driver_data
*drv_data
,
264 u32
*sccr1_reg
, u32 threshold
)
266 switch (drv_data
->ssp_type
) {
267 case QUARK_X1000_SSP
:
268 *sccr1_reg
|= QUARK_X1000_SSCR1_RxTresh(threshold
);
271 *sccr1_reg
|= CE4100_SSCR1_RxTresh(threshold
);
274 *sccr1_reg
|= SSCR1_RxTresh(threshold
);
279 static u32
pxa2xx_configure_sscr0(const struct driver_data
*drv_data
,
280 u32 clk_div
, u8 bits
)
282 switch (drv_data
->ssp_type
) {
283 case QUARK_X1000_SSP
:
285 | QUARK_X1000_SSCR0_Motorola
286 | QUARK_X1000_SSCR0_DataSize(bits
> 32 ? 8 : bits
)
291 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
293 | (bits
> 16 ? SSCR0_EDSS
: 0);
298 * Read and write LPSS SSP private registers. Caller must first check that
299 * is_lpss_ssp() returns true before these can be called.
301 static u32
__lpss_ssp_read_priv(struct driver_data
*drv_data
, unsigned offset
)
303 WARN_ON(!drv_data
->lpss_base
);
304 return readl(drv_data
->lpss_base
+ offset
);
307 static void __lpss_ssp_write_priv(struct driver_data
*drv_data
,
308 unsigned offset
, u32 value
)
310 WARN_ON(!drv_data
->lpss_base
);
311 writel(value
, drv_data
->lpss_base
+ offset
);
315 * lpss_ssp_setup - perform LPSS SSP specific setup
316 * @drv_data: pointer to the driver private data
318 * Perform LPSS SSP specific setup. This function must be called first if
319 * one is going to use LPSS SSP private registers.
321 static void lpss_ssp_setup(struct driver_data
*drv_data
)
323 const struct lpss_config
*config
;
326 config
= lpss_get_config(drv_data
);
327 drv_data
->lpss_base
= drv_data
->ioaddr
+ config
->offset
;
329 /* Enable software chip select control */
330 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
331 value
&= ~(LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
);
332 value
|= LPSS_CS_CONTROL_SW_MODE
| LPSS_CS_CONTROL_CS_HIGH
;
333 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
335 /* Enable multiblock DMA transfers */
336 if (drv_data
->controller_info
->enable_dma
) {
337 __lpss_ssp_write_priv(drv_data
, config
->reg_ssp
, 1);
339 if (config
->reg_general
>= 0) {
340 value
= __lpss_ssp_read_priv(drv_data
,
341 config
->reg_general
);
342 value
|= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE
;
343 __lpss_ssp_write_priv(drv_data
,
344 config
->reg_general
, value
);
349 static void lpss_ssp_select_cs(struct spi_device
*spi
,
350 const struct lpss_config
*config
)
352 struct driver_data
*drv_data
=
353 spi_controller_get_devdata(spi
->controller
);
356 if (!config
->cs_sel_mask
)
359 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
361 cs
= spi
->chip_select
;
362 cs
<<= config
->cs_sel_shift
;
363 if (cs
!= (value
& config
->cs_sel_mask
)) {
365 * When switching another chip select output active the
366 * output must be selected first and wait 2 ssp_clk cycles
367 * before changing state to active. Otherwise a short
368 * glitch will occur on the previous chip select since
369 * output select is latched but state control is not.
371 value
&= ~config
->cs_sel_mask
;
373 __lpss_ssp_write_priv(drv_data
,
374 config
->reg_cs_ctrl
, value
);
376 (drv_data
->controller
->max_speed_hz
/ 2));
380 static void lpss_ssp_cs_control(struct spi_device
*spi
, bool enable
)
382 struct driver_data
*drv_data
=
383 spi_controller_get_devdata(spi
->controller
);
384 const struct lpss_config
*config
;
387 config
= lpss_get_config(drv_data
);
390 lpss_ssp_select_cs(spi
, config
);
392 value
= __lpss_ssp_read_priv(drv_data
, config
->reg_cs_ctrl
);
394 value
&= ~LPSS_CS_CONTROL_CS_HIGH
;
396 value
|= LPSS_CS_CONTROL_CS_HIGH
;
397 __lpss_ssp_write_priv(drv_data
, config
->reg_cs_ctrl
, value
);
398 if (config
->cs_clk_stays_gated
) {
402 * Changing CS alone when dynamic clock gating is on won't
403 * actually flip CS at that time. This ruins SPI transfers
404 * that specify delays, or have no data. Toggle the clock mode
405 * to force on briefly to poke the CS pin to move.
407 clkgate
= __lpss_ssp_read_priv(drv_data
, LPSS_PRIV_CLOCK_GATE
);
408 value
= (clkgate
& ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK
) |
409 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON
;
411 __lpss_ssp_write_priv(drv_data
, LPSS_PRIV_CLOCK_GATE
, value
);
412 __lpss_ssp_write_priv(drv_data
, LPSS_PRIV_CLOCK_GATE
, clkgate
);
416 static void cs_assert(struct spi_device
*spi
)
418 struct chip_data
*chip
= spi_get_ctldata(spi
);
419 struct driver_data
*drv_data
=
420 spi_controller_get_devdata(spi
->controller
);
422 if (drv_data
->ssp_type
== CE4100_SSP
) {
423 pxa2xx_spi_write(drv_data
, SSSR
, chip
->frm
);
427 if (chip
->cs_control
) {
428 chip
->cs_control(PXA2XX_CS_ASSERT
);
432 if (chip
->gpiod_cs
) {
433 gpiod_set_value(chip
->gpiod_cs
, chip
->gpio_cs_inverted
);
437 if (is_lpss_ssp(drv_data
))
438 lpss_ssp_cs_control(spi
, true);
441 static void cs_deassert(struct spi_device
*spi
)
443 struct chip_data
*chip
= spi_get_ctldata(spi
);
444 struct driver_data
*drv_data
=
445 spi_controller_get_devdata(spi
->controller
);
446 unsigned long timeout
;
448 if (drv_data
->ssp_type
== CE4100_SSP
)
451 /* Wait until SSP becomes idle before deasserting the CS */
452 timeout
= jiffies
+ msecs_to_jiffies(10);
453 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
&&
454 !time_after(jiffies
, timeout
))
457 if (chip
->cs_control
) {
458 chip
->cs_control(PXA2XX_CS_DEASSERT
);
462 if (chip
->gpiod_cs
) {
463 gpiod_set_value(chip
->gpiod_cs
, !chip
->gpio_cs_inverted
);
467 if (is_lpss_ssp(drv_data
))
468 lpss_ssp_cs_control(spi
, false);
471 static void pxa2xx_spi_set_cs(struct spi_device
*spi
, bool level
)
479 int pxa2xx_spi_flush(struct driver_data
*drv_data
)
481 unsigned long limit
= loops_per_jiffy
<< 1;
484 while (pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
485 pxa2xx_spi_read(drv_data
, SSDR
);
486 } while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_BSY
) && --limit
);
487 write_SSSR_CS(drv_data
, SSSR_ROR
);
492 static void pxa2xx_spi_off(struct driver_data
*drv_data
)
494 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
495 if (is_mmp2_ssp(drv_data
))
498 pxa2xx_spi_write(drv_data
, SSCR0
,
499 pxa2xx_spi_read(drv_data
, SSCR0
) & ~SSCR0_SSE
);
502 static int null_writer(struct driver_data
*drv_data
)
504 u8 n_bytes
= drv_data
->n_bytes
;
506 if (pxa2xx_spi_txfifo_full(drv_data
)
507 || (drv_data
->tx
== drv_data
->tx_end
))
510 pxa2xx_spi_write(drv_data
, SSDR
, 0);
511 drv_data
->tx
+= n_bytes
;
516 static int null_reader(struct driver_data
*drv_data
)
518 u8 n_bytes
= drv_data
->n_bytes
;
520 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
521 && (drv_data
->rx
< drv_data
->rx_end
)) {
522 pxa2xx_spi_read(drv_data
, SSDR
);
523 drv_data
->rx
+= n_bytes
;
526 return drv_data
->rx
== drv_data
->rx_end
;
529 static int u8_writer(struct driver_data
*drv_data
)
531 if (pxa2xx_spi_txfifo_full(drv_data
)
532 || (drv_data
->tx
== drv_data
->tx_end
))
535 pxa2xx_spi_write(drv_data
, SSDR
, *(u8
*)(drv_data
->tx
));
541 static int u8_reader(struct driver_data
*drv_data
)
543 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
544 && (drv_data
->rx
< drv_data
->rx_end
)) {
545 *(u8
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
549 return drv_data
->rx
== drv_data
->rx_end
;
552 static int u16_writer(struct driver_data
*drv_data
)
554 if (pxa2xx_spi_txfifo_full(drv_data
)
555 || (drv_data
->tx
== drv_data
->tx_end
))
558 pxa2xx_spi_write(drv_data
, SSDR
, *(u16
*)(drv_data
->tx
));
564 static int u16_reader(struct driver_data
*drv_data
)
566 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
567 && (drv_data
->rx
< drv_data
->rx_end
)) {
568 *(u16
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
572 return drv_data
->rx
== drv_data
->rx_end
;
575 static int u32_writer(struct driver_data
*drv_data
)
577 if (pxa2xx_spi_txfifo_full(drv_data
)
578 || (drv_data
->tx
== drv_data
->tx_end
))
581 pxa2xx_spi_write(drv_data
, SSDR
, *(u32
*)(drv_data
->tx
));
587 static int u32_reader(struct driver_data
*drv_data
)
589 while ((pxa2xx_spi_read(drv_data
, SSSR
) & SSSR_RNE
)
590 && (drv_data
->rx
< drv_data
->rx_end
)) {
591 *(u32
*)(drv_data
->rx
) = pxa2xx_spi_read(drv_data
, SSDR
);
595 return drv_data
->rx
== drv_data
->rx_end
;
598 static void reset_sccr1(struct driver_data
*drv_data
)
600 struct chip_data
*chip
=
601 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
604 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
;
605 switch (drv_data
->ssp_type
) {
606 case QUARK_X1000_SSP
:
607 sccr1_reg
&= ~QUARK_X1000_SSCR1_RFT
;
610 sccr1_reg
&= ~CE4100_SSCR1_RFT
;
613 sccr1_reg
&= ~SSCR1_RFT
;
616 sccr1_reg
|= chip
->threshold
;
617 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
620 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
622 /* Stop and reset SSP */
623 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
624 reset_sccr1(drv_data
);
625 if (!pxa25x_ssp_comp(drv_data
))
626 pxa2xx_spi_write(drv_data
, SSTO
, 0);
627 pxa2xx_spi_flush(drv_data
);
628 pxa2xx_spi_off(drv_data
);
630 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
632 drv_data
->controller
->cur_msg
->status
= -EIO
;
633 spi_finalize_current_transfer(drv_data
->controller
);
636 static void int_transfer_complete(struct driver_data
*drv_data
)
638 /* Clear and disable interrupts */
639 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
640 reset_sccr1(drv_data
);
641 if (!pxa25x_ssp_comp(drv_data
))
642 pxa2xx_spi_write(drv_data
, SSTO
, 0);
644 spi_finalize_current_transfer(drv_data
->controller
);
647 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
649 u32 irq_mask
= (pxa2xx_spi_read(drv_data
, SSCR1
) & SSCR1_TIE
) ?
650 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
652 u32 irq_status
= pxa2xx_spi_read(drv_data
, SSSR
) & irq_mask
;
654 if (irq_status
& SSSR_ROR
) {
655 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
659 if (irq_status
& SSSR_TUR
) {
660 int_error_stop(drv_data
, "interrupt_transfer: fifo underrun");
664 if (irq_status
& SSSR_TINT
) {
665 pxa2xx_spi_write(drv_data
, SSSR
, SSSR_TINT
);
666 if (drv_data
->read(drv_data
)) {
667 int_transfer_complete(drv_data
);
672 /* Drain rx fifo, Fill tx fifo and prevent overruns */
674 if (drv_data
->read(drv_data
)) {
675 int_transfer_complete(drv_data
);
678 } while (drv_data
->write(drv_data
));
680 if (drv_data
->read(drv_data
)) {
681 int_transfer_complete(drv_data
);
685 if (drv_data
->tx
== drv_data
->tx_end
) {
689 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
690 sccr1_reg
&= ~SSCR1_TIE
;
693 * PXA25x_SSP has no timeout, set up rx threshould for the
694 * remaining RX bytes.
696 if (pxa25x_ssp_comp(drv_data
)) {
699 pxa2xx_spi_clear_rx_thre(drv_data
, &sccr1_reg
);
701 bytes_left
= drv_data
->rx_end
- drv_data
->rx
;
702 switch (drv_data
->n_bytes
) {
711 rx_thre
= pxa2xx_spi_get_rx_default_thre(drv_data
);
712 if (rx_thre
> bytes_left
)
713 rx_thre
= bytes_left
;
715 pxa2xx_spi_set_rx_thre(drv_data
, &sccr1_reg
, rx_thre
);
717 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
720 /* We did something */
724 static void handle_bad_msg(struct driver_data
*drv_data
)
726 pxa2xx_spi_off(drv_data
);
727 pxa2xx_spi_write(drv_data
, SSCR1
,
728 pxa2xx_spi_read(drv_data
, SSCR1
) & ~drv_data
->int_cr1
);
729 if (!pxa25x_ssp_comp(drv_data
))
730 pxa2xx_spi_write(drv_data
, SSTO
, 0);
731 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
733 dev_err(&drv_data
->pdev
->dev
,
734 "bad message state in interrupt handler\n");
737 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
739 struct driver_data
*drv_data
= dev_id
;
741 u32 mask
= drv_data
->mask_sr
;
745 * The IRQ might be shared with other peripherals so we must first
746 * check that are we RPM suspended or not. If we are we assume that
747 * the IRQ was not for us (we shouldn't be RPM suspended when the
748 * interrupt is enabled).
750 if (pm_runtime_suspended(&drv_data
->pdev
->dev
))
754 * If the device is not yet in RPM suspended state and we get an
755 * interrupt that is meant for another device, check if status bits
756 * are all set to one. That means that the device is already
759 status
= pxa2xx_spi_read(drv_data
, SSSR
);
763 sccr1_reg
= pxa2xx_spi_read(drv_data
, SSCR1
);
765 /* Ignore possible writes if we don't need to write */
766 if (!(sccr1_reg
& SSCR1_TIE
))
769 /* Ignore RX timeout interrupt if it is disabled */
770 if (!(sccr1_reg
& SSCR1_TINTE
))
773 if (!(status
& mask
))
776 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
& ~drv_data
->int_cr1
);
777 pxa2xx_spi_write(drv_data
, SSCR1
, sccr1_reg
);
779 if (!drv_data
->controller
->cur_msg
) {
780 handle_bad_msg(drv_data
);
785 return drv_data
->transfer_handler(drv_data
);
789 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
790 * input frequency by fractions of 2^24. It also has a divider by 5.
792 * There are formulas to get baud rate value for given input frequency and
793 * divider parameters, such as DDS_CLK_RATE and SCR:
797 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
798 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
800 * DDS_CLK_RATE either 2^n or 2^n / 5.
801 * SCR is in range 0 .. 255
803 * Divisor = 5^i * 2^j * 2 * k
804 * i = [0, 1] i = 1 iff j = 0 or j > 3
805 * j = [0, 23] j = 0 iff i = 1
807 * Special case: j = 0, i = 1: Divisor = 2 / 5
809 * Accordingly to the specification the recommended values for DDS_CLK_RATE
811 * Case 1: 2^n, n = [0, 23]
812 * Case 2: 2^24 * 2 / 5 (0x666666)
813 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
815 * In all cases the lowest possible value is better.
817 * The function calculates parameters for all cases and chooses the one closest
818 * to the asked baud rate.
820 static unsigned int quark_x1000_get_clk_div(int rate
, u32
*dds
)
822 unsigned long xtal
= 200000000;
823 unsigned long fref
= xtal
/ 2; /* mandatory division by 2,
826 unsigned long fref1
= fref
/ 2; /* case 1 */
827 unsigned long fref2
= fref
* 2 / 5; /* case 2 */
829 unsigned long q
, q1
, q2
;
835 /* Set initial value for DDS_CLK_RATE */
836 mul
= (1 << 24) >> 1;
838 /* Calculate initial quot */
839 q1
= DIV_ROUND_UP(fref1
, rate
);
841 /* Scale q1 if it's too big */
843 /* Scale q1 to range [1, 512] */
844 scale
= fls_long(q1
- 1);
850 /* Round the result if we have a remainder */
854 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
859 /* Get the remainder */
860 r1
= abs(fref1
/ (1 << (24 - fls_long(mul
))) / q1
- rate
);
864 q2
= DIV_ROUND_UP(fref2
, rate
);
865 r2
= abs(fref2
/ q2
- rate
);
868 * Choose the best between two: less remainder we have the better. We
869 * can't go case 2 if q2 is greater than 256 since SCR register can
870 * hold only values 0 .. 255.
872 if (r2
>= r1
|| q2
> 256) {
873 /* case 1 is better */
877 /* case 2 is better */
880 mul
= (1 << 24) * 2 / 5;
883 /* Check case 3 only if the divisor is big enough */
884 if (fref
/ rate
>= 80) {
888 /* Calculate initial quot */
889 q1
= DIV_ROUND_UP(fref
, rate
);
892 /* Get the remainder */
893 fssp
= (u64
)fref
* m
;
894 do_div(fssp
, 1 << 24);
895 r1
= abs(fssp
- rate
);
897 /* Choose this one if it suits better */
899 /* case 3 is better */
909 static unsigned int ssp_get_clk_div(struct driver_data
*drv_data
, int rate
)
911 unsigned long ssp_clk
= drv_data
->controller
->max_speed_hz
;
912 const struct ssp_device
*ssp
= drv_data
->ssp
;
914 rate
= min_t(int, ssp_clk
, rate
);
917 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
918 * that the SSP transmission rate can be greater than the device rate
920 if (ssp
->type
== PXA25x_SSP
|| ssp
->type
== CE4100_SSP
)
921 return (DIV_ROUND_UP(ssp_clk
, 2 * rate
) - 1) & 0xff;
923 return (DIV_ROUND_UP(ssp_clk
, rate
) - 1) & 0xfff;
926 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data
*drv_data
,
929 struct chip_data
*chip
=
930 spi_get_ctldata(drv_data
->controller
->cur_msg
->spi
);
931 unsigned int clk_div
;
933 switch (drv_data
->ssp_type
) {
934 case QUARK_X1000_SSP
:
935 clk_div
= quark_x1000_get_clk_div(rate
, &chip
->dds_rate
);
938 clk_div
= ssp_get_clk_div(drv_data
, rate
);
944 static bool pxa2xx_spi_can_dma(struct spi_controller
*controller
,
945 struct spi_device
*spi
,
946 struct spi_transfer
*xfer
)
948 struct chip_data
*chip
= spi_get_ctldata(spi
);
950 return chip
->enable_dma
&&
951 xfer
->len
<= MAX_DMA_LEN
&&
952 xfer
->len
>= chip
->dma_burst_size
;
955 static int pxa2xx_spi_transfer_one(struct spi_controller
*controller
,
956 struct spi_device
*spi
,
957 struct spi_transfer
*transfer
)
959 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
960 struct spi_message
*message
= controller
->cur_msg
;
961 struct chip_data
*chip
= spi_get_ctldata(spi
);
962 u32 dma_thresh
= chip
->dma_threshold
;
963 u32 dma_burst
= chip
->dma_burst_size
;
964 u32 change_mask
= pxa2xx_spi_get_ssrc1_change_mask(drv_data
);
973 /* Check if we can DMA this transfer */
974 if (transfer
->len
> MAX_DMA_LEN
&& chip
->enable_dma
) {
976 /* reject already-mapped transfers; PIO won't always work */
977 if (message
->is_dma_mapped
978 || transfer
->rx_dma
|| transfer
->tx_dma
) {
980 "Mapped transfer length of %u is greater than %d\n",
981 transfer
->len
, MAX_DMA_LEN
);
985 /* warn ... we force this to PIO mode */
986 dev_warn_ratelimited(&spi
->dev
,
987 "DMA disabled for transfer length %ld greater than %d\n",
988 (long)transfer
->len
, MAX_DMA_LEN
);
991 /* Setup the transfer state based on the type of transfer */
992 if (pxa2xx_spi_flush(drv_data
) == 0) {
993 dev_err(&spi
->dev
, "Flush failed\n");
996 drv_data
->n_bytes
= chip
->n_bytes
;
997 drv_data
->tx
= (void *)transfer
->tx_buf
;
998 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
999 drv_data
->rx
= transfer
->rx_buf
;
1000 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
1001 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
1002 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
1004 /* Change speed and bit per word on a per transfer */
1005 bits
= transfer
->bits_per_word
;
1006 speed
= transfer
->speed_hz
;
1008 clk_div
= pxa2xx_ssp_get_clk_div(drv_data
, speed
);
1011 drv_data
->n_bytes
= 1;
1012 drv_data
->read
= drv_data
->read
!= null_reader
?
1013 u8_reader
: null_reader
;
1014 drv_data
->write
= drv_data
->write
!= null_writer
?
1015 u8_writer
: null_writer
;
1016 } else if (bits
<= 16) {
1017 drv_data
->n_bytes
= 2;
1018 drv_data
->read
= drv_data
->read
!= null_reader
?
1019 u16_reader
: null_reader
;
1020 drv_data
->write
= drv_data
->write
!= null_writer
?
1021 u16_writer
: null_writer
;
1022 } else if (bits
<= 32) {
1023 drv_data
->n_bytes
= 4;
1024 drv_data
->read
= drv_data
->read
!= null_reader
?
1025 u32_reader
: null_reader
;
1026 drv_data
->write
= drv_data
->write
!= null_writer
?
1027 u32_writer
: null_writer
;
1030 * if bits/word is changed in dma mode, then must check the
1031 * thresholds and burst also
1033 if (chip
->enable_dma
) {
1034 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
,
1038 dev_warn_ratelimited(&spi
->dev
,
1039 "DMA burst size reduced to match bits_per_word\n");
1042 dma_mapped
= controller
->can_dma
&&
1043 controller
->can_dma(controller
, spi
, transfer
) &&
1044 controller
->cur_msg_mapped
;
1047 /* Ensure we have the correct interrupt handler */
1048 drv_data
->transfer_handler
= pxa2xx_spi_dma_transfer
;
1050 err
= pxa2xx_spi_dma_prepare(drv_data
, transfer
);
1054 /* Clear status and start DMA engine */
1055 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
1056 pxa2xx_spi_write(drv_data
, SSSR
, drv_data
->clear_sr
);
1058 pxa2xx_spi_dma_start(drv_data
);
1060 /* Ensure we have the correct interrupt handler */
1061 drv_data
->transfer_handler
= interrupt_transfer
;
1064 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
1065 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1068 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1069 cr0
= pxa2xx_configure_sscr0(drv_data
, clk_div
, bits
);
1070 if (!pxa25x_ssp_comp(drv_data
))
1071 dev_dbg(&spi
->dev
, "%u Hz actual, %s\n",
1072 controller
->max_speed_hz
1073 / (1 + ((cr0
& SSCR0_SCR(0xfff)) >> 8)),
1074 dma_mapped
? "DMA" : "PIO");
1076 dev_dbg(&spi
->dev
, "%u Hz actual, %s\n",
1077 controller
->max_speed_hz
/ 2
1078 / (1 + ((cr0
& SSCR0_SCR(0x0ff)) >> 8)),
1079 dma_mapped
? "DMA" : "PIO");
1081 if (is_lpss_ssp(drv_data
)) {
1082 if ((pxa2xx_spi_read(drv_data
, SSIRF
) & 0xff)
1083 != chip
->lpss_rx_threshold
)
1084 pxa2xx_spi_write(drv_data
, SSIRF
,
1085 chip
->lpss_rx_threshold
);
1086 if ((pxa2xx_spi_read(drv_data
, SSITF
) & 0xffff)
1087 != chip
->lpss_tx_threshold
)
1088 pxa2xx_spi_write(drv_data
, SSITF
,
1089 chip
->lpss_tx_threshold
);
1092 if (is_quark_x1000_ssp(drv_data
) &&
1093 (pxa2xx_spi_read(drv_data
, DDS_RATE
) != chip
->dds_rate
))
1094 pxa2xx_spi_write(drv_data
, DDS_RATE
, chip
->dds_rate
);
1096 /* see if we need to reload the config registers */
1097 if ((pxa2xx_spi_read(drv_data
, SSCR0
) != cr0
)
1098 || (pxa2xx_spi_read(drv_data
, SSCR1
) & change_mask
)
1099 != (cr1
& change_mask
)) {
1100 /* stop the SSP, and update the other bits */
1101 if (!is_mmp2_ssp(drv_data
))
1102 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
& ~SSCR0_SSE
);
1103 if (!pxa25x_ssp_comp(drv_data
))
1104 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1105 /* first set CR1 without interrupt and service enables */
1106 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
& change_mask
);
1107 /* restart the SSP */
1108 pxa2xx_spi_write(drv_data
, SSCR0
, cr0
);
1111 if (!pxa25x_ssp_comp(drv_data
))
1112 pxa2xx_spi_write(drv_data
, SSTO
, chip
->timeout
);
1115 if (is_mmp2_ssp(drv_data
)) {
1116 u8 tx_level
= (pxa2xx_spi_read(drv_data
, SSSR
)
1117 & SSSR_TFL_MASK
) >> 8;
1120 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1121 dev_warn(&spi
->dev
, "%d bytes of garbage in TXFIFO!\n",
1123 if (tx_level
> transfer
->len
)
1124 tx_level
= transfer
->len
;
1125 drv_data
->tx
+= tx_level
;
1129 if (spi_controller_is_slave(controller
)) {
1130 while (drv_data
->write(drv_data
))
1132 if (drv_data
->gpiod_ready
) {
1133 gpiod_set_value(drv_data
->gpiod_ready
, 1);
1135 gpiod_set_value(drv_data
->gpiod_ready
, 0);
1140 * Release the data by enabling service requests and interrupts,
1141 * without changing any mode bits
1143 pxa2xx_spi_write(drv_data
, SSCR1
, cr1
);
1148 static int pxa2xx_spi_slave_abort(struct spi_controller
*controller
)
1150 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1152 /* Stop and reset SSP */
1153 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1154 reset_sccr1(drv_data
);
1155 if (!pxa25x_ssp_comp(drv_data
))
1156 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1157 pxa2xx_spi_flush(drv_data
);
1158 pxa2xx_spi_off(drv_data
);
1160 dev_dbg(&drv_data
->pdev
->dev
, "transfer aborted\n");
1162 drv_data
->controller
->cur_msg
->status
= -EINTR
;
1163 spi_finalize_current_transfer(drv_data
->controller
);
1168 static void pxa2xx_spi_handle_err(struct spi_controller
*controller
,
1169 struct spi_message
*msg
)
1171 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1173 /* Disable the SSP */
1174 pxa2xx_spi_off(drv_data
);
1175 /* Clear and disable interrupts and service requests */
1176 write_SSSR_CS(drv_data
, drv_data
->clear_sr
);
1177 pxa2xx_spi_write(drv_data
, SSCR1
,
1178 pxa2xx_spi_read(drv_data
, SSCR1
)
1179 & ~(drv_data
->int_cr1
| drv_data
->dma_cr1
));
1180 if (!pxa25x_ssp_comp(drv_data
))
1181 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1184 * Stop the DMA if running. Note DMA callback handler may have unset
1185 * the dma_running already, which is fine as stopping is not needed
1186 * then but we shouldn't rely this flag for anything else than
1187 * stopping. For instance to differentiate between PIO and DMA
1190 if (atomic_read(&drv_data
->dma_running
))
1191 pxa2xx_spi_dma_stop(drv_data
);
1194 static int pxa2xx_spi_unprepare_transfer(struct spi_controller
*controller
)
1196 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1198 /* Disable the SSP now */
1199 pxa2xx_spi_off(drv_data
);
1204 static int setup_cs(struct spi_device
*spi
, struct chip_data
*chip
,
1205 struct pxa2xx_spi_chip
*chip_info
)
1207 struct driver_data
*drv_data
=
1208 spi_controller_get_devdata(spi
->controller
);
1209 struct gpio_desc
*gpiod
;
1215 if (drv_data
->cs_gpiods
) {
1216 gpiod
= drv_data
->cs_gpiods
[spi
->chip_select
];
1218 chip
->gpiod_cs
= gpiod
;
1219 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1220 gpiod_set_value(gpiod
, chip
->gpio_cs_inverted
);
1226 if (chip_info
== NULL
)
1229 /* NOTE: setup() can be called multiple times, possibly with
1230 * different chip_info, release previously requested GPIO
1232 if (chip
->gpiod_cs
) {
1233 gpiod_put(chip
->gpiod_cs
);
1234 chip
->gpiod_cs
= NULL
;
1237 /* If (*cs_control) is provided, ignore GPIO chip select */
1238 if (chip_info
->cs_control
) {
1239 chip
->cs_control
= chip_info
->cs_control
;
1243 if (gpio_is_valid(chip_info
->gpio_cs
)) {
1244 err
= gpio_request(chip_info
->gpio_cs
, "SPI_CS");
1246 dev_err(&spi
->dev
, "failed to request chip select GPIO%d\n",
1247 chip_info
->gpio_cs
);
1251 gpiod
= gpio_to_desc(chip_info
->gpio_cs
);
1252 chip
->gpiod_cs
= gpiod
;
1253 chip
->gpio_cs_inverted
= spi
->mode
& SPI_CS_HIGH
;
1255 err
= gpiod_direction_output(gpiod
, !chip
->gpio_cs_inverted
);
1261 static int setup(struct spi_device
*spi
)
1263 struct pxa2xx_spi_chip
*chip_info
;
1264 struct chip_data
*chip
;
1265 const struct lpss_config
*config
;
1266 struct driver_data
*drv_data
=
1267 spi_controller_get_devdata(spi
->controller
);
1268 uint tx_thres
, tx_hi_thres
, rx_thres
;
1270 switch (drv_data
->ssp_type
) {
1271 case QUARK_X1000_SSP
:
1272 tx_thres
= TX_THRESH_QUARK_X1000_DFLT
;
1274 rx_thres
= RX_THRESH_QUARK_X1000_DFLT
;
1277 tx_thres
= TX_THRESH_CE4100_DFLT
;
1279 rx_thres
= RX_THRESH_CE4100_DFLT
;
1287 config
= lpss_get_config(drv_data
);
1288 tx_thres
= config
->tx_threshold_lo
;
1289 tx_hi_thres
= config
->tx_threshold_hi
;
1290 rx_thres
= config
->rx_threshold
;
1294 if (spi_controller_is_slave(drv_data
->controller
)) {
1298 tx_thres
= TX_THRESH_DFLT
;
1299 rx_thres
= RX_THRESH_DFLT
;
1304 /* Only alloc on first setup */
1305 chip
= spi_get_ctldata(spi
);
1307 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1311 if (drv_data
->ssp_type
== CE4100_SSP
) {
1312 if (spi
->chip_select
> 4) {
1314 "failed setup: cs number must not be > 4.\n");
1319 chip
->frm
= spi
->chip_select
;
1321 chip
->enable_dma
= drv_data
->controller_info
->enable_dma
;
1322 chip
->timeout
= TIMOUT_DFLT
;
1325 /* protocol drivers may change the chip settings, so...
1326 * if chip_info exists, use it */
1327 chip_info
= spi
->controller_data
;
1329 /* chip_info isn't always needed */
1332 if (chip_info
->timeout
)
1333 chip
->timeout
= chip_info
->timeout
;
1334 if (chip_info
->tx_threshold
)
1335 tx_thres
= chip_info
->tx_threshold
;
1336 if (chip_info
->tx_hi_threshold
)
1337 tx_hi_thres
= chip_info
->tx_hi_threshold
;
1338 if (chip_info
->rx_threshold
)
1339 rx_thres
= chip_info
->rx_threshold
;
1340 chip
->dma_threshold
= 0;
1341 if (chip_info
->enable_loopback
)
1342 chip
->cr1
= SSCR1_LBM
;
1344 if (spi_controller_is_slave(drv_data
->controller
)) {
1345 chip
->cr1
|= SSCR1_SCFR
;
1346 chip
->cr1
|= SSCR1_SCLKDIR
;
1347 chip
->cr1
|= SSCR1_SFRMDIR
;
1348 chip
->cr1
|= SSCR1_SPH
;
1351 chip
->lpss_rx_threshold
= SSIRF_RxThresh(rx_thres
);
1352 chip
->lpss_tx_threshold
= SSITF_TxLoThresh(tx_thres
)
1353 | SSITF_TxHiThresh(tx_hi_thres
);
1355 /* set dma burst and threshold outside of chip_info path so that if
1356 * chip_info goes away after setting chip->enable_dma, the
1357 * burst and threshold can still respond to changes in bits_per_word */
1358 if (chip
->enable_dma
) {
1359 /* set up legal burst and threshold for dma */
1360 if (pxa2xx_spi_set_dma_burst_and_threshold(chip
, spi
,
1362 &chip
->dma_burst_size
,
1363 &chip
->dma_threshold
)) {
1365 "in setup: DMA burst size reduced to match bits_per_word\n");
1368 "in setup: DMA burst size set to %u\n",
1369 chip
->dma_burst_size
);
1372 switch (drv_data
->ssp_type
) {
1373 case QUARK_X1000_SSP
:
1374 chip
->threshold
= (QUARK_X1000_SSCR1_RxTresh(rx_thres
)
1375 & QUARK_X1000_SSCR1_RFT
)
1376 | (QUARK_X1000_SSCR1_TxTresh(tx_thres
)
1377 & QUARK_X1000_SSCR1_TFT
);
1380 chip
->threshold
= (CE4100_SSCR1_RxTresh(rx_thres
) & CE4100_SSCR1_RFT
) |
1381 (CE4100_SSCR1_TxTresh(tx_thres
) & CE4100_SSCR1_TFT
);
1384 chip
->threshold
= (SSCR1_RxTresh(rx_thres
) & SSCR1_RFT
) |
1385 (SSCR1_TxTresh(tx_thres
) & SSCR1_TFT
);
1389 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1390 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1391 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1393 if (spi
->mode
& SPI_LOOP
)
1394 chip
->cr1
|= SSCR1_LBM
;
1396 if (spi
->bits_per_word
<= 8) {
1398 chip
->read
= u8_reader
;
1399 chip
->write
= u8_writer
;
1400 } else if (spi
->bits_per_word
<= 16) {
1402 chip
->read
= u16_reader
;
1403 chip
->write
= u16_writer
;
1404 } else if (spi
->bits_per_word
<= 32) {
1406 chip
->read
= u32_reader
;
1407 chip
->write
= u32_writer
;
1410 spi_set_ctldata(spi
, chip
);
1412 if (drv_data
->ssp_type
== CE4100_SSP
)
1415 return setup_cs(spi
, chip
, chip_info
);
1418 static void cleanup(struct spi_device
*spi
)
1420 struct chip_data
*chip
= spi_get_ctldata(spi
);
1421 struct driver_data
*drv_data
=
1422 spi_controller_get_devdata(spi
->controller
);
1427 if (drv_data
->ssp_type
!= CE4100_SSP
&& !drv_data
->cs_gpiods
&&
1429 gpiod_put(chip
->gpiod_cs
);
1434 static const struct acpi_device_id pxa2xx_spi_acpi_match
[] = {
1435 { "INT33C0", LPSS_LPT_SSP
},
1436 { "INT33C1", LPSS_LPT_SSP
},
1437 { "INT3430", LPSS_LPT_SSP
},
1438 { "INT3431", LPSS_LPT_SSP
},
1439 { "80860F0E", LPSS_BYT_SSP
},
1440 { "8086228E", LPSS_BSW_SSP
},
1443 MODULE_DEVICE_TABLE(acpi
, pxa2xx_spi_acpi_match
);
1446 * PCI IDs of compound devices that integrate both host controller and private
1447 * integrated DMA engine. Please note these are not used in module
1448 * autoloading and probing in this module but matching the LPSS SSP type.
1450 static const struct pci_device_id pxa2xx_spi_pci_compound_match
[] = {
1452 { PCI_VDEVICE(INTEL
, 0x9d29), LPSS_SPT_SSP
},
1453 { PCI_VDEVICE(INTEL
, 0x9d2a), LPSS_SPT_SSP
},
1455 { PCI_VDEVICE(INTEL
, 0xa129), LPSS_SPT_SSP
},
1456 { PCI_VDEVICE(INTEL
, 0xa12a), LPSS_SPT_SSP
},
1458 { PCI_VDEVICE(INTEL
, 0xa2a9), LPSS_SPT_SSP
},
1459 { PCI_VDEVICE(INTEL
, 0xa2aa), LPSS_SPT_SSP
},
1461 { PCI_VDEVICE(INTEL
, 0xa3a9), LPSS_SPT_SSP
},
1462 { PCI_VDEVICE(INTEL
, 0xa3aa), LPSS_SPT_SSP
},
1464 { PCI_VDEVICE(INTEL
, 0x0ac2), LPSS_BXT_SSP
},
1465 { PCI_VDEVICE(INTEL
, 0x0ac4), LPSS_BXT_SSP
},
1466 { PCI_VDEVICE(INTEL
, 0x0ac6), LPSS_BXT_SSP
},
1468 { PCI_VDEVICE(INTEL
, 0x1ac2), LPSS_BXT_SSP
},
1469 { PCI_VDEVICE(INTEL
, 0x1ac4), LPSS_BXT_SSP
},
1470 { PCI_VDEVICE(INTEL
, 0x1ac6), LPSS_BXT_SSP
},
1472 { PCI_VDEVICE(INTEL
, 0x31c2), LPSS_BXT_SSP
},
1473 { PCI_VDEVICE(INTEL
, 0x31c4), LPSS_BXT_SSP
},
1474 { PCI_VDEVICE(INTEL
, 0x31c6), LPSS_BXT_SSP
},
1476 { PCI_VDEVICE(INTEL
, 0x34aa), LPSS_CNL_SSP
},
1477 { PCI_VDEVICE(INTEL
, 0x34ab), LPSS_CNL_SSP
},
1478 { PCI_VDEVICE(INTEL
, 0x34fb), LPSS_CNL_SSP
},
1480 { PCI_VDEVICE(INTEL
, 0x4b2a), LPSS_BXT_SSP
},
1481 { PCI_VDEVICE(INTEL
, 0x4b2b), LPSS_BXT_SSP
},
1482 { PCI_VDEVICE(INTEL
, 0x4b37), LPSS_BXT_SSP
},
1484 { PCI_VDEVICE(INTEL
, 0x4daa), LPSS_CNL_SSP
},
1485 { PCI_VDEVICE(INTEL
, 0x4dab), LPSS_CNL_SSP
},
1486 { PCI_VDEVICE(INTEL
, 0x4dfb), LPSS_CNL_SSP
},
1488 { PCI_VDEVICE(INTEL
, 0x5ac2), LPSS_BXT_SSP
},
1489 { PCI_VDEVICE(INTEL
, 0x5ac4), LPSS_BXT_SSP
},
1490 { PCI_VDEVICE(INTEL
, 0x5ac6), LPSS_BXT_SSP
},
1492 { PCI_VDEVICE(INTEL
, 0x9daa), LPSS_CNL_SSP
},
1493 { PCI_VDEVICE(INTEL
, 0x9dab), LPSS_CNL_SSP
},
1494 { PCI_VDEVICE(INTEL
, 0x9dfb), LPSS_CNL_SSP
},
1496 { PCI_VDEVICE(INTEL
, 0xa32a), LPSS_CNL_SSP
},
1497 { PCI_VDEVICE(INTEL
, 0xa32b), LPSS_CNL_SSP
},
1498 { PCI_VDEVICE(INTEL
, 0xa37b), LPSS_CNL_SSP
},
1500 { PCI_VDEVICE(INTEL
, 0x02aa), LPSS_CNL_SSP
},
1501 { PCI_VDEVICE(INTEL
, 0x02ab), LPSS_CNL_SSP
},
1502 { PCI_VDEVICE(INTEL
, 0x02fb), LPSS_CNL_SSP
},
1504 { PCI_VDEVICE(INTEL
, 0x06aa), LPSS_CNL_SSP
},
1505 { PCI_VDEVICE(INTEL
, 0x06ab), LPSS_CNL_SSP
},
1506 { PCI_VDEVICE(INTEL
, 0x06fb), LPSS_CNL_SSP
},
1508 { PCI_VDEVICE(INTEL
, 0xa0aa), LPSS_CNL_SSP
},
1509 { PCI_VDEVICE(INTEL
, 0xa0ab), LPSS_CNL_SSP
},
1510 { PCI_VDEVICE(INTEL
, 0xa0de), LPSS_CNL_SSP
},
1511 { PCI_VDEVICE(INTEL
, 0xa0df), LPSS_CNL_SSP
},
1512 { PCI_VDEVICE(INTEL
, 0xa0fb), LPSS_CNL_SSP
},
1513 { PCI_VDEVICE(INTEL
, 0xa0fd), LPSS_CNL_SSP
},
1514 { PCI_VDEVICE(INTEL
, 0xa0fe), LPSS_CNL_SSP
},
1518 static const struct of_device_id pxa2xx_spi_of_match
[] = {
1519 { .compatible
= "marvell,mmp2-ssp", .data
= (void *)MMP2_SSP
},
1522 MODULE_DEVICE_TABLE(of
, pxa2xx_spi_of_match
);
1526 static int pxa2xx_spi_get_port_id(struct device
*dev
)
1528 struct acpi_device
*adev
;
1532 adev
= ACPI_COMPANION(dev
);
1533 if (adev
&& adev
->pnp
.unique_id
&&
1534 !kstrtouint(adev
->pnp
.unique_id
, 0, &devid
))
1539 #else /* !CONFIG_ACPI */
1541 static int pxa2xx_spi_get_port_id(struct device
*dev
)
1546 #endif /* CONFIG_ACPI */
1551 static bool pxa2xx_spi_idma_filter(struct dma_chan
*chan
, void *param
)
1553 return param
== chan
->device
->dev
;
1556 #endif /* CONFIG_PCI */
1558 static struct pxa2xx_spi_controller
*
1559 pxa2xx_spi_init_pdata(struct platform_device
*pdev
)
1561 struct pxa2xx_spi_controller
*pdata
;
1562 struct ssp_device
*ssp
;
1563 struct resource
*res
;
1564 struct device
*parent
= pdev
->dev
.parent
;
1565 struct pci_dev
*pcidev
= dev_is_pci(parent
) ? to_pci_dev(parent
) : NULL
;
1566 const struct pci_device_id
*pcidev_id
= NULL
;
1567 enum pxa_ssp_type type
;
1571 pcidev_id
= pci_match_id(pxa2xx_spi_pci_compound_match
, pcidev
);
1573 match
= device_get_match_data(&pdev
->dev
);
1575 type
= (enum pxa_ssp_type
)match
;
1577 type
= (enum pxa_ssp_type
)pcidev_id
->driver_data
;
1579 return ERR_PTR(-EINVAL
);
1581 pdata
= devm_kzalloc(&pdev
->dev
, sizeof(*pdata
), GFP_KERNEL
);
1583 return ERR_PTR(-ENOMEM
);
1587 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1588 ssp
->mmio_base
= devm_ioremap_resource(&pdev
->dev
, res
);
1589 if (IS_ERR(ssp
->mmio_base
))
1590 return ERR_CAST(ssp
->mmio_base
);
1592 ssp
->phys_base
= res
->start
;
1596 pdata
->tx_param
= parent
;
1597 pdata
->rx_param
= parent
;
1598 pdata
->dma_filter
= pxa2xx_spi_idma_filter
;
1602 ssp
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1603 if (IS_ERR(ssp
->clk
))
1604 return ERR_CAST(ssp
->clk
);
1606 ssp
->irq
= platform_get_irq(pdev
, 0);
1608 return ERR_PTR(ssp
->irq
);
1611 ssp
->dev
= &pdev
->dev
;
1612 ssp
->port_id
= pxa2xx_spi_get_port_id(&pdev
->dev
);
1614 pdata
->is_slave
= device_property_read_bool(&pdev
->dev
, "spi-slave");
1615 pdata
->num_chipselect
= 1;
1616 pdata
->enable_dma
= true;
1617 pdata
->dma_burst_size
= 1;
1622 static int pxa2xx_spi_fw_translate_cs(struct spi_controller
*controller
,
1625 struct driver_data
*drv_data
= spi_controller_get_devdata(controller
);
1627 if (has_acpi_companion(&drv_data
->pdev
->dev
)) {
1628 switch (drv_data
->ssp_type
) {
1630 * For Atoms the ACPI DeviceSelection used by the Windows
1631 * driver starts from 1 instead of 0 so translate it here
1632 * to match what Linux expects.
1646 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device
*spi
)
1651 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1653 struct device
*dev
= &pdev
->dev
;
1654 struct pxa2xx_spi_controller
*platform_info
;
1655 struct spi_controller
*controller
;
1656 struct driver_data
*drv_data
;
1657 struct ssp_device
*ssp
;
1658 const struct lpss_config
*config
;
1662 platform_info
= dev_get_platdata(dev
);
1663 if (!platform_info
) {
1664 platform_info
= pxa2xx_spi_init_pdata(pdev
);
1665 if (IS_ERR(platform_info
)) {
1666 dev_err(&pdev
->dev
, "missing platform data\n");
1667 return PTR_ERR(platform_info
);
1671 ssp
= pxa_ssp_request(pdev
->id
, pdev
->name
);
1673 ssp
= &platform_info
->ssp
;
1675 if (!ssp
->mmio_base
) {
1676 dev_err(&pdev
->dev
, "failed to get ssp\n");
1680 if (platform_info
->is_slave
)
1681 controller
= spi_alloc_slave(dev
, sizeof(struct driver_data
));
1683 controller
= spi_alloc_master(dev
, sizeof(struct driver_data
));
1686 dev_err(&pdev
->dev
, "cannot alloc spi_controller\n");
1690 drv_data
= spi_controller_get_devdata(controller
);
1691 drv_data
->controller
= controller
;
1692 drv_data
->controller_info
= platform_info
;
1693 drv_data
->pdev
= pdev
;
1694 drv_data
->ssp
= ssp
;
1696 controller
->dev
.of_node
= pdev
->dev
.of_node
;
1697 /* the spi->mode bits understood by this driver: */
1698 controller
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
| SPI_LOOP
;
1700 controller
->bus_num
= ssp
->port_id
;
1701 controller
->dma_alignment
= DMA_ALIGNMENT
;
1702 controller
->cleanup
= cleanup
;
1703 controller
->setup
= setup
;
1704 controller
->set_cs
= pxa2xx_spi_set_cs
;
1705 controller
->transfer_one
= pxa2xx_spi_transfer_one
;
1706 controller
->slave_abort
= pxa2xx_spi_slave_abort
;
1707 controller
->handle_err
= pxa2xx_spi_handle_err
;
1708 controller
->unprepare_transfer_hardware
= pxa2xx_spi_unprepare_transfer
;
1709 controller
->fw_translate_cs
= pxa2xx_spi_fw_translate_cs
;
1710 controller
->auto_runtime_pm
= true;
1711 controller
->flags
= SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
;
1713 drv_data
->ssp_type
= ssp
->type
;
1715 drv_data
->ioaddr
= ssp
->mmio_base
;
1716 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1717 if (pxa25x_ssp_comp(drv_data
)) {
1718 switch (drv_data
->ssp_type
) {
1719 case QUARK_X1000_SSP
:
1720 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1723 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 16);
1727 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1728 drv_data
->dma_cr1
= 0;
1729 drv_data
->clear_sr
= SSSR_ROR
;
1730 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1732 controller
->bits_per_word_mask
= SPI_BPW_RANGE_MASK(4, 32);
1733 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1734 drv_data
->dma_cr1
= DEFAULT_DMA_CR1
;
1735 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1736 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
1737 | SSSR_ROR
| SSSR_TUR
;
1740 status
= request_irq(ssp
->irq
, ssp_int
, IRQF_SHARED
, dev_name(dev
),
1743 dev_err(&pdev
->dev
, "cannot get IRQ %d\n", ssp
->irq
);
1744 goto out_error_controller_alloc
;
1747 /* Setup DMA if requested */
1748 if (platform_info
->enable_dma
) {
1749 status
= pxa2xx_spi_dma_setup(drv_data
);
1751 dev_warn(dev
, "no DMA channels available, using PIO\n");
1752 platform_info
->enable_dma
= false;
1754 controller
->can_dma
= pxa2xx_spi_can_dma
;
1755 controller
->max_dma_len
= MAX_DMA_LEN
;
1756 controller
->max_transfer_size
=
1757 pxa2xx_spi_max_dma_transfer_size
;
1761 /* Enable SOC clock */
1762 status
= clk_prepare_enable(ssp
->clk
);
1764 goto out_error_dma_irq_alloc
;
1766 controller
->max_speed_hz
= clk_get_rate(ssp
->clk
);
1768 * Set minimum speed for all other platforms than Intel Quark which is
1769 * able do under 1 Hz transfers.
1771 if (!pxa25x_ssp_comp(drv_data
))
1772 controller
->min_speed_hz
=
1773 DIV_ROUND_UP(controller
->max_speed_hz
, 4096);
1774 else if (!is_quark_x1000_ssp(drv_data
))
1775 controller
->min_speed_hz
=
1776 DIV_ROUND_UP(controller
->max_speed_hz
, 512);
1778 /* Load default SSP configuration */
1779 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1780 switch (drv_data
->ssp_type
) {
1781 case QUARK_X1000_SSP
:
1782 tmp
= QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT
) |
1783 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT
);
1784 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1786 /* using the Motorola SPI protocol and use 8 bit frame */
1787 tmp
= QUARK_X1000_SSCR0_Motorola
| QUARK_X1000_SSCR0_DataSize(8);
1788 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1791 tmp
= CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT
) |
1792 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT
);
1793 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1794 tmp
= SSCR0_SCR(2) | SSCR0_Motorola
| SSCR0_DataSize(8);
1795 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1799 if (spi_controller_is_slave(controller
)) {
1807 tmp
= SSCR1_RxTresh(RX_THRESH_DFLT
) |
1808 SSCR1_TxTresh(TX_THRESH_DFLT
);
1810 pxa2xx_spi_write(drv_data
, SSCR1
, tmp
);
1811 tmp
= SSCR0_Motorola
| SSCR0_DataSize(8);
1812 if (!spi_controller_is_slave(controller
))
1813 tmp
|= SSCR0_SCR(2);
1814 pxa2xx_spi_write(drv_data
, SSCR0
, tmp
);
1818 if (!pxa25x_ssp_comp(drv_data
))
1819 pxa2xx_spi_write(drv_data
, SSTO
, 0);
1821 if (!is_quark_x1000_ssp(drv_data
))
1822 pxa2xx_spi_write(drv_data
, SSPSP
, 0);
1824 if (is_lpss_ssp(drv_data
)) {
1825 lpss_ssp_setup(drv_data
);
1826 config
= lpss_get_config(drv_data
);
1827 if (config
->reg_capabilities
>= 0) {
1828 tmp
= __lpss_ssp_read_priv(drv_data
,
1829 config
->reg_capabilities
);
1830 tmp
&= LPSS_CAPS_CS_EN_MASK
;
1831 tmp
>>= LPSS_CAPS_CS_EN_SHIFT
;
1832 platform_info
->num_chipselect
= ffz(tmp
);
1833 } else if (config
->cs_num
) {
1834 platform_info
->num_chipselect
= config
->cs_num
;
1837 controller
->num_chipselect
= platform_info
->num_chipselect
;
1839 count
= gpiod_count(&pdev
->dev
, "cs");
1843 controller
->num_chipselect
= max_t(int, count
,
1844 controller
->num_chipselect
);
1846 drv_data
->cs_gpiods
= devm_kcalloc(&pdev
->dev
,
1847 controller
->num_chipselect
, sizeof(struct gpio_desc
*),
1849 if (!drv_data
->cs_gpiods
) {
1851 goto out_error_clock_enabled
;
1854 for (i
= 0; i
< controller
->num_chipselect
; i
++) {
1855 struct gpio_desc
*gpiod
;
1857 gpiod
= devm_gpiod_get_index(dev
, "cs", i
, GPIOD_ASIS
);
1858 if (IS_ERR(gpiod
)) {
1859 /* Means use native chip select */
1860 if (PTR_ERR(gpiod
) == -ENOENT
)
1863 status
= PTR_ERR(gpiod
);
1864 goto out_error_clock_enabled
;
1866 drv_data
->cs_gpiods
[i
] = gpiod
;
1871 if (platform_info
->is_slave
) {
1872 drv_data
->gpiod_ready
= devm_gpiod_get_optional(dev
,
1873 "ready", GPIOD_OUT_LOW
);
1874 if (IS_ERR(drv_data
->gpiod_ready
)) {
1875 status
= PTR_ERR(drv_data
->gpiod_ready
);
1876 goto out_error_clock_enabled
;
1880 pm_runtime_set_autosuspend_delay(&pdev
->dev
, 50);
1881 pm_runtime_use_autosuspend(&pdev
->dev
);
1882 pm_runtime_set_active(&pdev
->dev
);
1883 pm_runtime_enable(&pdev
->dev
);
1885 /* Register with the SPI framework */
1886 platform_set_drvdata(pdev
, drv_data
);
1887 status
= devm_spi_register_controller(&pdev
->dev
, controller
);
1889 dev_err(&pdev
->dev
, "problem registering spi controller\n");
1890 goto out_error_pm_runtime_enabled
;
1895 out_error_pm_runtime_enabled
:
1896 pm_runtime_put_noidle(&pdev
->dev
);
1897 pm_runtime_disable(&pdev
->dev
);
1899 out_error_clock_enabled
:
1900 clk_disable_unprepare(ssp
->clk
);
1902 out_error_dma_irq_alloc
:
1903 pxa2xx_spi_dma_release(drv_data
);
1904 free_irq(ssp
->irq
, drv_data
);
1906 out_error_controller_alloc
:
1907 spi_controller_put(controller
);
1912 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1914 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1915 struct ssp_device
*ssp
= drv_data
->ssp
;
1917 pm_runtime_get_sync(&pdev
->dev
);
1919 /* Disable the SSP at the peripheral and SOC level */
1920 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1921 clk_disable_unprepare(ssp
->clk
);
1924 if (drv_data
->controller_info
->enable_dma
)
1925 pxa2xx_spi_dma_release(drv_data
);
1927 pm_runtime_put_noidle(&pdev
->dev
);
1928 pm_runtime_disable(&pdev
->dev
);
1931 free_irq(ssp
->irq
, drv_data
);
1939 #ifdef CONFIG_PM_SLEEP
1940 static int pxa2xx_spi_suspend(struct device
*dev
)
1942 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1943 struct ssp_device
*ssp
= drv_data
->ssp
;
1946 status
= spi_controller_suspend(drv_data
->controller
);
1949 pxa2xx_spi_write(drv_data
, SSCR0
, 0);
1951 if (!pm_runtime_suspended(dev
))
1952 clk_disable_unprepare(ssp
->clk
);
1957 static int pxa2xx_spi_resume(struct device
*dev
)
1959 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1960 struct ssp_device
*ssp
= drv_data
->ssp
;
1963 /* Enable the SSP clock */
1964 if (!pm_runtime_suspended(dev
)) {
1965 status
= clk_prepare_enable(ssp
->clk
);
1970 /* Start the queue running */
1971 return spi_controller_resume(drv_data
->controller
);
1976 static int pxa2xx_spi_runtime_suspend(struct device
*dev
)
1978 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1980 clk_disable_unprepare(drv_data
->ssp
->clk
);
1984 static int pxa2xx_spi_runtime_resume(struct device
*dev
)
1986 struct driver_data
*drv_data
= dev_get_drvdata(dev
);
1989 status
= clk_prepare_enable(drv_data
->ssp
->clk
);
1994 static const struct dev_pm_ops pxa2xx_spi_pm_ops
= {
1995 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend
, pxa2xx_spi_resume
)
1996 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend
,
1997 pxa2xx_spi_runtime_resume
, NULL
)
2000 static struct platform_driver driver
= {
2002 .name
= "pxa2xx-spi",
2003 .pm
= &pxa2xx_spi_pm_ops
,
2004 .acpi_match_table
= ACPI_PTR(pxa2xx_spi_acpi_match
),
2005 .of_match_table
= of_match_ptr(pxa2xx_spi_of_match
),
2007 .probe
= pxa2xx_spi_probe
,
2008 .remove
= pxa2xx_spi_remove
,
2011 static int __init
pxa2xx_spi_init(void)
2013 return platform_driver_register(&driver
);
2015 subsys_initcall(pxa2xx_spi_init
);
2017 static void __exit
pxa2xx_spi_exit(void)
2019 platform_driver_unregister(&driver
);
2021 module_exit(pxa2xx_spi_exit
);
2023 MODULE_SOFTDEP("pre: dw_dmac");