gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / drivers / spi / spi-pxa2xx.c
blob73d2a65d0b6eff66a9a692580ff08b4f46c55ff8
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * Copyright (C) 2013, Intel Corporation
5 */
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
31 #include "spi-pxa2xx.h"
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
38 #define TIMOUT_DFLT 1000
41 * for testing SSCR1 changes that require SSP restart, basically
42 * everything except the service and interrupt enables, the pxa270 developer
43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44 * list, but the PXA255 dev man says all bits without really meaning the
45 * service and interrupt enables
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \
55 | QUARK_X1000_SSCR1_EFWR \
56 | QUARK_X1000_SSCR1_RFT \
57 | QUARK_X1000_SSCR1_TFT \
58 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT 9
71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT)
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
77 struct lpss_config {
78 /* LPSS offset from drv_data->ioaddr */
79 unsigned offset;
80 /* Register offsets from drv_data->lpss_base or -1 */
81 int reg_general;
82 int reg_ssp;
83 int reg_cs_ctrl;
84 int reg_capabilities;
85 /* FIFO thresholds */
86 u32 rx_threshold;
87 u32 tx_threshold_lo;
88 u32 tx_threshold_hi;
89 /* Chip select control */
90 unsigned cs_sel_shift;
91 unsigned cs_sel_mask;
92 unsigned cs_num;
93 /* Quirks */
94 unsigned cs_clk_stays_gated : 1;
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 { /* LPSS_LPT_SSP */
100 .offset = 0x800,
101 .reg_general = 0x08,
102 .reg_ssp = 0x0c,
103 .reg_cs_ctrl = 0x18,
104 .reg_capabilities = -1,
105 .rx_threshold = 64,
106 .tx_threshold_lo = 160,
107 .tx_threshold_hi = 224,
109 { /* LPSS_BYT_SSP */
110 .offset = 0x400,
111 .reg_general = 0x08,
112 .reg_ssp = 0x0c,
113 .reg_cs_ctrl = 0x18,
114 .reg_capabilities = -1,
115 .rx_threshold = 64,
116 .tx_threshold_lo = 160,
117 .tx_threshold_hi = 224,
119 { /* LPSS_BSW_SSP */
120 .offset = 0x400,
121 .reg_general = 0x08,
122 .reg_ssp = 0x0c,
123 .reg_cs_ctrl = 0x18,
124 .reg_capabilities = -1,
125 .rx_threshold = 64,
126 .tx_threshold_lo = 160,
127 .tx_threshold_hi = 224,
128 .cs_sel_shift = 2,
129 .cs_sel_mask = 1 << 2,
130 .cs_num = 2,
132 { /* LPSS_SPT_SSP */
133 .offset = 0x200,
134 .reg_general = -1,
135 .reg_ssp = 0x20,
136 .reg_cs_ctrl = 0x24,
137 .reg_capabilities = -1,
138 .rx_threshold = 1,
139 .tx_threshold_lo = 32,
140 .tx_threshold_hi = 56,
142 { /* LPSS_BXT_SSP */
143 .offset = 0x200,
144 .reg_general = -1,
145 .reg_ssp = 0x20,
146 .reg_cs_ctrl = 0x24,
147 .reg_capabilities = 0xfc,
148 .rx_threshold = 1,
149 .tx_threshold_lo = 16,
150 .tx_threshold_hi = 48,
151 .cs_sel_shift = 8,
152 .cs_sel_mask = 3 << 8,
154 { /* LPSS_CNL_SSP */
155 .offset = 0x200,
156 .reg_general = -1,
157 .reg_ssp = 0x20,
158 .reg_cs_ctrl = 0x24,
159 .reg_capabilities = 0xfc,
160 .rx_threshold = 1,
161 .tx_threshold_lo = 32,
162 .tx_threshold_hi = 56,
163 .cs_sel_shift = 8,
164 .cs_sel_mask = 3 << 8,
165 .cs_clk_stays_gated = true,
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
172 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
177 switch (drv_data->ssp_type) {
178 case LPSS_LPT_SSP:
179 case LPSS_BYT_SSP:
180 case LPSS_BSW_SSP:
181 case LPSS_SPT_SSP:
182 case LPSS_BXT_SSP:
183 case LPSS_CNL_SSP:
184 return true;
185 default:
186 return false;
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192 return drv_data->ssp_type == QUARK_X1000_SSP;
195 static bool is_mmp2_ssp(const struct driver_data *drv_data)
197 return drv_data->ssp_type == MMP2_SSP;
200 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
202 switch (drv_data->ssp_type) {
203 case QUARK_X1000_SSP:
204 return QUARK_X1000_SSCR1_CHANGE_MASK;
205 case CE4100_SSP:
206 return CE4100_SSCR1_CHANGE_MASK;
207 default:
208 return SSCR1_CHANGE_MASK;
212 static u32
213 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
215 switch (drv_data->ssp_type) {
216 case QUARK_X1000_SSP:
217 return RX_THRESH_QUARK_X1000_DFLT;
218 case CE4100_SSP:
219 return RX_THRESH_CE4100_DFLT;
220 default:
221 return RX_THRESH_DFLT;
225 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
227 u32 mask;
229 switch (drv_data->ssp_type) {
230 case QUARK_X1000_SSP:
231 mask = QUARK_X1000_SSSR_TFL_MASK;
232 break;
233 case CE4100_SSP:
234 mask = CE4100_SSSR_TFL_MASK;
235 break;
236 default:
237 mask = SSSR_TFL_MASK;
238 break;
241 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
244 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
245 u32 *sccr1_reg)
247 u32 mask;
249 switch (drv_data->ssp_type) {
250 case QUARK_X1000_SSP:
251 mask = QUARK_X1000_SSCR1_RFT;
252 break;
253 case CE4100_SSP:
254 mask = CE4100_SSCR1_RFT;
255 break;
256 default:
257 mask = SSCR1_RFT;
258 break;
260 *sccr1_reg &= ~mask;
263 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
264 u32 *sccr1_reg, u32 threshold)
266 switch (drv_data->ssp_type) {
267 case QUARK_X1000_SSP:
268 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
269 break;
270 case CE4100_SSP:
271 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
272 break;
273 default:
274 *sccr1_reg |= SSCR1_RxTresh(threshold);
275 break;
279 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
280 u32 clk_div, u8 bits)
282 switch (drv_data->ssp_type) {
283 case QUARK_X1000_SSP:
284 return clk_div
285 | QUARK_X1000_SSCR0_Motorola
286 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
287 | SSCR0_SSE;
288 default:
289 return clk_div
290 | SSCR0_Motorola
291 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
292 | SSCR0_SSE
293 | (bits > 16 ? SSCR0_EDSS : 0);
298 * Read and write LPSS SSP private registers. Caller must first check that
299 * is_lpss_ssp() returns true before these can be called.
301 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
303 WARN_ON(!drv_data->lpss_base);
304 return readl(drv_data->lpss_base + offset);
307 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
308 unsigned offset, u32 value)
310 WARN_ON(!drv_data->lpss_base);
311 writel(value, drv_data->lpss_base + offset);
315 * lpss_ssp_setup - perform LPSS SSP specific setup
316 * @drv_data: pointer to the driver private data
318 * Perform LPSS SSP specific setup. This function must be called first if
319 * one is going to use LPSS SSP private registers.
321 static void lpss_ssp_setup(struct driver_data *drv_data)
323 const struct lpss_config *config;
324 u32 value;
326 config = lpss_get_config(drv_data);
327 drv_data->lpss_base = drv_data->ioaddr + config->offset;
329 /* Enable software chip select control */
330 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
331 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
332 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
333 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
335 /* Enable multiblock DMA transfers */
336 if (drv_data->controller_info->enable_dma) {
337 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
339 if (config->reg_general >= 0) {
340 value = __lpss_ssp_read_priv(drv_data,
341 config->reg_general);
342 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
343 __lpss_ssp_write_priv(drv_data,
344 config->reg_general, value);
349 static void lpss_ssp_select_cs(struct spi_device *spi,
350 const struct lpss_config *config)
352 struct driver_data *drv_data =
353 spi_controller_get_devdata(spi->controller);
354 u32 value, cs;
356 if (!config->cs_sel_mask)
357 return;
359 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
361 cs = spi->chip_select;
362 cs <<= config->cs_sel_shift;
363 if (cs != (value & config->cs_sel_mask)) {
365 * When switching another chip select output active the
366 * output must be selected first and wait 2 ssp_clk cycles
367 * before changing state to active. Otherwise a short
368 * glitch will occur on the previous chip select since
369 * output select is latched but state control is not.
371 value &= ~config->cs_sel_mask;
372 value |= cs;
373 __lpss_ssp_write_priv(drv_data,
374 config->reg_cs_ctrl, value);
375 ndelay(1000000000 /
376 (drv_data->controller->max_speed_hz / 2));
380 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
382 struct driver_data *drv_data =
383 spi_controller_get_devdata(spi->controller);
384 const struct lpss_config *config;
385 u32 value;
387 config = lpss_get_config(drv_data);
389 if (enable)
390 lpss_ssp_select_cs(spi, config);
392 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
393 if (enable)
394 value &= ~LPSS_CS_CONTROL_CS_HIGH;
395 else
396 value |= LPSS_CS_CONTROL_CS_HIGH;
397 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
398 if (config->cs_clk_stays_gated) {
399 u32 clkgate;
402 * Changing CS alone when dynamic clock gating is on won't
403 * actually flip CS at that time. This ruins SPI transfers
404 * that specify delays, or have no data. Toggle the clock mode
405 * to force on briefly to poke the CS pin to move.
407 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
408 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
409 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
411 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
412 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
416 static void cs_assert(struct spi_device *spi)
418 struct chip_data *chip = spi_get_ctldata(spi);
419 struct driver_data *drv_data =
420 spi_controller_get_devdata(spi->controller);
422 if (drv_data->ssp_type == CE4100_SSP) {
423 pxa2xx_spi_write(drv_data, SSSR, chip->frm);
424 return;
427 if (chip->cs_control) {
428 chip->cs_control(PXA2XX_CS_ASSERT);
429 return;
432 if (chip->gpiod_cs) {
433 gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
434 return;
437 if (is_lpss_ssp(drv_data))
438 lpss_ssp_cs_control(spi, true);
441 static void cs_deassert(struct spi_device *spi)
443 struct chip_data *chip = spi_get_ctldata(spi);
444 struct driver_data *drv_data =
445 spi_controller_get_devdata(spi->controller);
446 unsigned long timeout;
448 if (drv_data->ssp_type == CE4100_SSP)
449 return;
451 /* Wait until SSP becomes idle before deasserting the CS */
452 timeout = jiffies + msecs_to_jiffies(10);
453 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
454 !time_after(jiffies, timeout))
455 cpu_relax();
457 if (chip->cs_control) {
458 chip->cs_control(PXA2XX_CS_DEASSERT);
459 return;
462 if (chip->gpiod_cs) {
463 gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
464 return;
467 if (is_lpss_ssp(drv_data))
468 lpss_ssp_cs_control(spi, false);
471 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
473 if (level)
474 cs_deassert(spi);
475 else
476 cs_assert(spi);
479 int pxa2xx_spi_flush(struct driver_data *drv_data)
481 unsigned long limit = loops_per_jiffy << 1;
483 do {
484 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
485 pxa2xx_spi_read(drv_data, SSDR);
486 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
487 write_SSSR_CS(drv_data, SSSR_ROR);
489 return limit;
492 static void pxa2xx_spi_off(struct driver_data *drv_data)
494 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */
495 if (is_mmp2_ssp(drv_data))
496 return;
498 pxa2xx_spi_write(drv_data, SSCR0,
499 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
502 static int null_writer(struct driver_data *drv_data)
504 u8 n_bytes = drv_data->n_bytes;
506 if (pxa2xx_spi_txfifo_full(drv_data)
507 || (drv_data->tx == drv_data->tx_end))
508 return 0;
510 pxa2xx_spi_write(drv_data, SSDR, 0);
511 drv_data->tx += n_bytes;
513 return 1;
516 static int null_reader(struct driver_data *drv_data)
518 u8 n_bytes = drv_data->n_bytes;
520 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
521 && (drv_data->rx < drv_data->rx_end)) {
522 pxa2xx_spi_read(drv_data, SSDR);
523 drv_data->rx += n_bytes;
526 return drv_data->rx == drv_data->rx_end;
529 static int u8_writer(struct driver_data *drv_data)
531 if (pxa2xx_spi_txfifo_full(drv_data)
532 || (drv_data->tx == drv_data->tx_end))
533 return 0;
535 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
536 ++drv_data->tx;
538 return 1;
541 static int u8_reader(struct driver_data *drv_data)
543 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
544 && (drv_data->rx < drv_data->rx_end)) {
545 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
546 ++drv_data->rx;
549 return drv_data->rx == drv_data->rx_end;
552 static int u16_writer(struct driver_data *drv_data)
554 if (pxa2xx_spi_txfifo_full(drv_data)
555 || (drv_data->tx == drv_data->tx_end))
556 return 0;
558 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
559 drv_data->tx += 2;
561 return 1;
564 static int u16_reader(struct driver_data *drv_data)
566 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
567 && (drv_data->rx < drv_data->rx_end)) {
568 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
569 drv_data->rx += 2;
572 return drv_data->rx == drv_data->rx_end;
575 static int u32_writer(struct driver_data *drv_data)
577 if (pxa2xx_spi_txfifo_full(drv_data)
578 || (drv_data->tx == drv_data->tx_end))
579 return 0;
581 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
582 drv_data->tx += 4;
584 return 1;
587 static int u32_reader(struct driver_data *drv_data)
589 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
590 && (drv_data->rx < drv_data->rx_end)) {
591 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
592 drv_data->rx += 4;
595 return drv_data->rx == drv_data->rx_end;
598 static void reset_sccr1(struct driver_data *drv_data)
600 struct chip_data *chip =
601 spi_get_ctldata(drv_data->controller->cur_msg->spi);
602 u32 sccr1_reg;
604 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
605 switch (drv_data->ssp_type) {
606 case QUARK_X1000_SSP:
607 sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
608 break;
609 case CE4100_SSP:
610 sccr1_reg &= ~CE4100_SSCR1_RFT;
611 break;
612 default:
613 sccr1_reg &= ~SSCR1_RFT;
614 break;
616 sccr1_reg |= chip->threshold;
617 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
620 static void int_error_stop(struct driver_data *drv_data, const char* msg)
622 /* Stop and reset SSP */
623 write_SSSR_CS(drv_data, drv_data->clear_sr);
624 reset_sccr1(drv_data);
625 if (!pxa25x_ssp_comp(drv_data))
626 pxa2xx_spi_write(drv_data, SSTO, 0);
627 pxa2xx_spi_flush(drv_data);
628 pxa2xx_spi_off(drv_data);
630 dev_err(&drv_data->pdev->dev, "%s\n", msg);
632 drv_data->controller->cur_msg->status = -EIO;
633 spi_finalize_current_transfer(drv_data->controller);
636 static void int_transfer_complete(struct driver_data *drv_data)
638 /* Clear and disable interrupts */
639 write_SSSR_CS(drv_data, drv_data->clear_sr);
640 reset_sccr1(drv_data);
641 if (!pxa25x_ssp_comp(drv_data))
642 pxa2xx_spi_write(drv_data, SSTO, 0);
644 spi_finalize_current_transfer(drv_data->controller);
647 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
649 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
650 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
652 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
654 if (irq_status & SSSR_ROR) {
655 int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
656 return IRQ_HANDLED;
659 if (irq_status & SSSR_TUR) {
660 int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
661 return IRQ_HANDLED;
664 if (irq_status & SSSR_TINT) {
665 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
666 if (drv_data->read(drv_data)) {
667 int_transfer_complete(drv_data);
668 return IRQ_HANDLED;
672 /* Drain rx fifo, Fill tx fifo and prevent overruns */
673 do {
674 if (drv_data->read(drv_data)) {
675 int_transfer_complete(drv_data);
676 return IRQ_HANDLED;
678 } while (drv_data->write(drv_data));
680 if (drv_data->read(drv_data)) {
681 int_transfer_complete(drv_data);
682 return IRQ_HANDLED;
685 if (drv_data->tx == drv_data->tx_end) {
686 u32 bytes_left;
687 u32 sccr1_reg;
689 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
690 sccr1_reg &= ~SSCR1_TIE;
693 * PXA25x_SSP has no timeout, set up rx threshould for the
694 * remaining RX bytes.
696 if (pxa25x_ssp_comp(drv_data)) {
697 u32 rx_thre;
699 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
701 bytes_left = drv_data->rx_end - drv_data->rx;
702 switch (drv_data->n_bytes) {
703 case 4:
704 bytes_left >>= 2;
705 break;
706 case 2:
707 bytes_left >>= 1;
708 break;
711 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
712 if (rx_thre > bytes_left)
713 rx_thre = bytes_left;
715 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
717 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
720 /* We did something */
721 return IRQ_HANDLED;
724 static void handle_bad_msg(struct driver_data *drv_data)
726 pxa2xx_spi_off(drv_data);
727 pxa2xx_spi_write(drv_data, SSCR1,
728 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
729 if (!pxa25x_ssp_comp(drv_data))
730 pxa2xx_spi_write(drv_data, SSTO, 0);
731 write_SSSR_CS(drv_data, drv_data->clear_sr);
733 dev_err(&drv_data->pdev->dev,
734 "bad message state in interrupt handler\n");
737 static irqreturn_t ssp_int(int irq, void *dev_id)
739 struct driver_data *drv_data = dev_id;
740 u32 sccr1_reg;
741 u32 mask = drv_data->mask_sr;
742 u32 status;
745 * The IRQ might be shared with other peripherals so we must first
746 * check that are we RPM suspended or not. If we are we assume that
747 * the IRQ was not for us (we shouldn't be RPM suspended when the
748 * interrupt is enabled).
750 if (pm_runtime_suspended(&drv_data->pdev->dev))
751 return IRQ_NONE;
754 * If the device is not yet in RPM suspended state and we get an
755 * interrupt that is meant for another device, check if status bits
756 * are all set to one. That means that the device is already
757 * powered off.
759 status = pxa2xx_spi_read(drv_data, SSSR);
760 if (status == ~0)
761 return IRQ_NONE;
763 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
765 /* Ignore possible writes if we don't need to write */
766 if (!(sccr1_reg & SSCR1_TIE))
767 mask &= ~SSSR_TFS;
769 /* Ignore RX timeout interrupt if it is disabled */
770 if (!(sccr1_reg & SSCR1_TINTE))
771 mask &= ~SSSR_TINT;
773 if (!(status & mask))
774 return IRQ_NONE;
776 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
777 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
779 if (!drv_data->controller->cur_msg) {
780 handle_bad_msg(drv_data);
781 /* Never fail */
782 return IRQ_HANDLED;
785 return drv_data->transfer_handler(drv_data);
789 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
790 * input frequency by fractions of 2^24. It also has a divider by 5.
792 * There are formulas to get baud rate value for given input frequency and
793 * divider parameters, such as DDS_CLK_RATE and SCR:
795 * Fsys = 200MHz
797 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1)
798 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2)
800 * DDS_CLK_RATE either 2^n or 2^n / 5.
801 * SCR is in range 0 .. 255
803 * Divisor = 5^i * 2^j * 2 * k
804 * i = [0, 1] i = 1 iff j = 0 or j > 3
805 * j = [0, 23] j = 0 iff i = 1
806 * k = [1, 256]
807 * Special case: j = 0, i = 1: Divisor = 2 / 5
809 * Accordingly to the specification the recommended values for DDS_CLK_RATE
810 * are:
811 * Case 1: 2^n, n = [0, 23]
812 * Case 2: 2^24 * 2 / 5 (0x666666)
813 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333)
815 * In all cases the lowest possible value is better.
817 * The function calculates parameters for all cases and chooses the one closest
818 * to the asked baud rate.
820 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
822 unsigned long xtal = 200000000;
823 unsigned long fref = xtal / 2; /* mandatory division by 2,
824 see (2) */
825 /* case 3 */
826 unsigned long fref1 = fref / 2; /* case 1 */
827 unsigned long fref2 = fref * 2 / 5; /* case 2 */
828 unsigned long scale;
829 unsigned long q, q1, q2;
830 long r, r1, r2;
831 u32 mul;
833 /* Case 1 */
835 /* Set initial value for DDS_CLK_RATE */
836 mul = (1 << 24) >> 1;
838 /* Calculate initial quot */
839 q1 = DIV_ROUND_UP(fref1, rate);
841 /* Scale q1 if it's too big */
842 if (q1 > 256) {
843 /* Scale q1 to range [1, 512] */
844 scale = fls_long(q1 - 1);
845 if (scale > 9) {
846 q1 >>= scale - 9;
847 mul >>= scale - 9;
850 /* Round the result if we have a remainder */
851 q1 += q1 & 1;
854 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */
855 scale = __ffs(q1);
856 q1 >>= scale;
857 mul >>= scale;
859 /* Get the remainder */
860 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
862 /* Case 2 */
864 q2 = DIV_ROUND_UP(fref2, rate);
865 r2 = abs(fref2 / q2 - rate);
868 * Choose the best between two: less remainder we have the better. We
869 * can't go case 2 if q2 is greater than 256 since SCR register can
870 * hold only values 0 .. 255.
872 if (r2 >= r1 || q2 > 256) {
873 /* case 1 is better */
874 r = r1;
875 q = q1;
876 } else {
877 /* case 2 is better */
878 r = r2;
879 q = q2;
880 mul = (1 << 24) * 2 / 5;
883 /* Check case 3 only if the divisor is big enough */
884 if (fref / rate >= 80) {
885 u64 fssp;
886 u32 m;
888 /* Calculate initial quot */
889 q1 = DIV_ROUND_UP(fref, rate);
890 m = (1 << 24) / q1;
892 /* Get the remainder */
893 fssp = (u64)fref * m;
894 do_div(fssp, 1 << 24);
895 r1 = abs(fssp - rate);
897 /* Choose this one if it suits better */
898 if (r1 < r) {
899 /* case 3 is better */
900 q = 1;
901 mul = m;
905 *dds = mul;
906 return q - 1;
909 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
911 unsigned long ssp_clk = drv_data->controller->max_speed_hz;
912 const struct ssp_device *ssp = drv_data->ssp;
914 rate = min_t(int, ssp_clk, rate);
917 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
918 * that the SSP transmission rate can be greater than the device rate
920 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
921 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
922 else
923 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff;
926 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
927 int rate)
929 struct chip_data *chip =
930 spi_get_ctldata(drv_data->controller->cur_msg->spi);
931 unsigned int clk_div;
933 switch (drv_data->ssp_type) {
934 case QUARK_X1000_SSP:
935 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
936 break;
937 default:
938 clk_div = ssp_get_clk_div(drv_data, rate);
939 break;
941 return clk_div << 8;
944 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
945 struct spi_device *spi,
946 struct spi_transfer *xfer)
948 struct chip_data *chip = spi_get_ctldata(spi);
950 return chip->enable_dma &&
951 xfer->len <= MAX_DMA_LEN &&
952 xfer->len >= chip->dma_burst_size;
955 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
956 struct spi_device *spi,
957 struct spi_transfer *transfer)
959 struct driver_data *drv_data = spi_controller_get_devdata(controller);
960 struct spi_message *message = controller->cur_msg;
961 struct chip_data *chip = spi_get_ctldata(spi);
962 u32 dma_thresh = chip->dma_threshold;
963 u32 dma_burst = chip->dma_burst_size;
964 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
965 u32 clk_div;
966 u8 bits;
967 u32 speed;
968 u32 cr0;
969 u32 cr1;
970 int err;
971 int dma_mapped;
973 /* Check if we can DMA this transfer */
974 if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
976 /* reject already-mapped transfers; PIO won't always work */
977 if (message->is_dma_mapped
978 || transfer->rx_dma || transfer->tx_dma) {
979 dev_err(&spi->dev,
980 "Mapped transfer length of %u is greater than %d\n",
981 transfer->len, MAX_DMA_LEN);
982 return -EINVAL;
985 /* warn ... we force this to PIO mode */
986 dev_warn_ratelimited(&spi->dev,
987 "DMA disabled for transfer length %ld greater than %d\n",
988 (long)transfer->len, MAX_DMA_LEN);
991 /* Setup the transfer state based on the type of transfer */
992 if (pxa2xx_spi_flush(drv_data) == 0) {
993 dev_err(&spi->dev, "Flush failed\n");
994 return -EIO;
996 drv_data->n_bytes = chip->n_bytes;
997 drv_data->tx = (void *)transfer->tx_buf;
998 drv_data->tx_end = drv_data->tx + transfer->len;
999 drv_data->rx = transfer->rx_buf;
1000 drv_data->rx_end = drv_data->rx + transfer->len;
1001 drv_data->write = drv_data->tx ? chip->write : null_writer;
1002 drv_data->read = drv_data->rx ? chip->read : null_reader;
1004 /* Change speed and bit per word on a per transfer */
1005 bits = transfer->bits_per_word;
1006 speed = transfer->speed_hz;
1008 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1010 if (bits <= 8) {
1011 drv_data->n_bytes = 1;
1012 drv_data->read = drv_data->read != null_reader ?
1013 u8_reader : null_reader;
1014 drv_data->write = drv_data->write != null_writer ?
1015 u8_writer : null_writer;
1016 } else if (bits <= 16) {
1017 drv_data->n_bytes = 2;
1018 drv_data->read = drv_data->read != null_reader ?
1019 u16_reader : null_reader;
1020 drv_data->write = drv_data->write != null_writer ?
1021 u16_writer : null_writer;
1022 } else if (bits <= 32) {
1023 drv_data->n_bytes = 4;
1024 drv_data->read = drv_data->read != null_reader ?
1025 u32_reader : null_reader;
1026 drv_data->write = drv_data->write != null_writer ?
1027 u32_writer : null_writer;
1030 * if bits/word is changed in dma mode, then must check the
1031 * thresholds and burst also
1033 if (chip->enable_dma) {
1034 if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1035 spi,
1036 bits, &dma_burst,
1037 &dma_thresh))
1038 dev_warn_ratelimited(&spi->dev,
1039 "DMA burst size reduced to match bits_per_word\n");
1042 dma_mapped = controller->can_dma &&
1043 controller->can_dma(controller, spi, transfer) &&
1044 controller->cur_msg_mapped;
1045 if (dma_mapped) {
1047 /* Ensure we have the correct interrupt handler */
1048 drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050 err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1051 if (err)
1052 return err;
1054 /* Clear status and start DMA engine */
1055 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1056 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1058 pxa2xx_spi_dma_start(drv_data);
1059 } else {
1060 /* Ensure we have the correct interrupt handler */
1061 drv_data->transfer_handler = interrupt_transfer;
1063 /* Clear status */
1064 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1065 write_SSSR_CS(drv_data, drv_data->clear_sr);
1068 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1069 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1070 if (!pxa25x_ssp_comp(drv_data))
1071 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1072 controller->max_speed_hz
1073 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1074 dma_mapped ? "DMA" : "PIO");
1075 else
1076 dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1077 controller->max_speed_hz / 2
1078 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1079 dma_mapped ? "DMA" : "PIO");
1081 if (is_lpss_ssp(drv_data)) {
1082 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1083 != chip->lpss_rx_threshold)
1084 pxa2xx_spi_write(drv_data, SSIRF,
1085 chip->lpss_rx_threshold);
1086 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1087 != chip->lpss_tx_threshold)
1088 pxa2xx_spi_write(drv_data, SSITF,
1089 chip->lpss_tx_threshold);
1092 if (is_quark_x1000_ssp(drv_data) &&
1093 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1094 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1096 /* see if we need to reload the config registers */
1097 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1098 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1099 != (cr1 & change_mask)) {
1100 /* stop the SSP, and update the other bits */
1101 if (!is_mmp2_ssp(drv_data))
1102 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1103 if (!pxa25x_ssp_comp(drv_data))
1104 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1105 /* first set CR1 without interrupt and service enables */
1106 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1107 /* restart the SSP */
1108 pxa2xx_spi_write(drv_data, SSCR0, cr0);
1110 } else {
1111 if (!pxa25x_ssp_comp(drv_data))
1112 pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1115 if (is_mmp2_ssp(drv_data)) {
1116 u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1117 & SSSR_TFL_MASK) >> 8;
1119 if (tx_level) {
1120 /* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1121 dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1122 tx_level);
1123 if (tx_level > transfer->len)
1124 tx_level = transfer->len;
1125 drv_data->tx += tx_level;
1129 if (spi_controller_is_slave(controller)) {
1130 while (drv_data->write(drv_data))
1132 if (drv_data->gpiod_ready) {
1133 gpiod_set_value(drv_data->gpiod_ready, 1);
1134 udelay(1);
1135 gpiod_set_value(drv_data->gpiod_ready, 0);
1140 * Release the data by enabling service requests and interrupts,
1141 * without changing any mode bits
1143 pxa2xx_spi_write(drv_data, SSCR1, cr1);
1145 return 1;
1148 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1150 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1152 /* Stop and reset SSP */
1153 write_SSSR_CS(drv_data, drv_data->clear_sr);
1154 reset_sccr1(drv_data);
1155 if (!pxa25x_ssp_comp(drv_data))
1156 pxa2xx_spi_write(drv_data, SSTO, 0);
1157 pxa2xx_spi_flush(drv_data);
1158 pxa2xx_spi_off(drv_data);
1160 dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1162 drv_data->controller->cur_msg->status = -EINTR;
1163 spi_finalize_current_transfer(drv_data->controller);
1165 return 0;
1168 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1169 struct spi_message *msg)
1171 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1173 /* Disable the SSP */
1174 pxa2xx_spi_off(drv_data);
1175 /* Clear and disable interrupts and service requests */
1176 write_SSSR_CS(drv_data, drv_data->clear_sr);
1177 pxa2xx_spi_write(drv_data, SSCR1,
1178 pxa2xx_spi_read(drv_data, SSCR1)
1179 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1180 if (!pxa25x_ssp_comp(drv_data))
1181 pxa2xx_spi_write(drv_data, SSTO, 0);
1184 * Stop the DMA if running. Note DMA callback handler may have unset
1185 * the dma_running already, which is fine as stopping is not needed
1186 * then but we shouldn't rely this flag for anything else than
1187 * stopping. For instance to differentiate between PIO and DMA
1188 * transfers.
1190 if (atomic_read(&drv_data->dma_running))
1191 pxa2xx_spi_dma_stop(drv_data);
1194 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1196 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1198 /* Disable the SSP now */
1199 pxa2xx_spi_off(drv_data);
1201 return 0;
1204 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1205 struct pxa2xx_spi_chip *chip_info)
1207 struct driver_data *drv_data =
1208 spi_controller_get_devdata(spi->controller);
1209 struct gpio_desc *gpiod;
1210 int err = 0;
1212 if (chip == NULL)
1213 return 0;
1215 if (drv_data->cs_gpiods) {
1216 gpiod = drv_data->cs_gpiods[spi->chip_select];
1217 if (gpiod) {
1218 chip->gpiod_cs = gpiod;
1219 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1220 gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1223 return 0;
1226 if (chip_info == NULL)
1227 return 0;
1229 /* NOTE: setup() can be called multiple times, possibly with
1230 * different chip_info, release previously requested GPIO
1232 if (chip->gpiod_cs) {
1233 gpiod_put(chip->gpiod_cs);
1234 chip->gpiod_cs = NULL;
1237 /* If (*cs_control) is provided, ignore GPIO chip select */
1238 if (chip_info->cs_control) {
1239 chip->cs_control = chip_info->cs_control;
1240 return 0;
1243 if (gpio_is_valid(chip_info->gpio_cs)) {
1244 err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1245 if (err) {
1246 dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1247 chip_info->gpio_cs);
1248 return err;
1251 gpiod = gpio_to_desc(chip_info->gpio_cs);
1252 chip->gpiod_cs = gpiod;
1253 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1255 err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1258 return err;
1261 static int setup(struct spi_device *spi)
1263 struct pxa2xx_spi_chip *chip_info;
1264 struct chip_data *chip;
1265 const struct lpss_config *config;
1266 struct driver_data *drv_data =
1267 spi_controller_get_devdata(spi->controller);
1268 uint tx_thres, tx_hi_thres, rx_thres;
1270 switch (drv_data->ssp_type) {
1271 case QUARK_X1000_SSP:
1272 tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1273 tx_hi_thres = 0;
1274 rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1275 break;
1276 case CE4100_SSP:
1277 tx_thres = TX_THRESH_CE4100_DFLT;
1278 tx_hi_thres = 0;
1279 rx_thres = RX_THRESH_CE4100_DFLT;
1280 break;
1281 case LPSS_LPT_SSP:
1282 case LPSS_BYT_SSP:
1283 case LPSS_BSW_SSP:
1284 case LPSS_SPT_SSP:
1285 case LPSS_BXT_SSP:
1286 case LPSS_CNL_SSP:
1287 config = lpss_get_config(drv_data);
1288 tx_thres = config->tx_threshold_lo;
1289 tx_hi_thres = config->tx_threshold_hi;
1290 rx_thres = config->rx_threshold;
1291 break;
1292 default:
1293 tx_hi_thres = 0;
1294 if (spi_controller_is_slave(drv_data->controller)) {
1295 tx_thres = 1;
1296 rx_thres = 2;
1297 } else {
1298 tx_thres = TX_THRESH_DFLT;
1299 rx_thres = RX_THRESH_DFLT;
1301 break;
1304 /* Only alloc on first setup */
1305 chip = spi_get_ctldata(spi);
1306 if (!chip) {
1307 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1308 if (!chip)
1309 return -ENOMEM;
1311 if (drv_data->ssp_type == CE4100_SSP) {
1312 if (spi->chip_select > 4) {
1313 dev_err(&spi->dev,
1314 "failed setup: cs number must not be > 4.\n");
1315 kfree(chip);
1316 return -EINVAL;
1319 chip->frm = spi->chip_select;
1321 chip->enable_dma = drv_data->controller_info->enable_dma;
1322 chip->timeout = TIMOUT_DFLT;
1325 /* protocol drivers may change the chip settings, so...
1326 * if chip_info exists, use it */
1327 chip_info = spi->controller_data;
1329 /* chip_info isn't always needed */
1330 chip->cr1 = 0;
1331 if (chip_info) {
1332 if (chip_info->timeout)
1333 chip->timeout = chip_info->timeout;
1334 if (chip_info->tx_threshold)
1335 tx_thres = chip_info->tx_threshold;
1336 if (chip_info->tx_hi_threshold)
1337 tx_hi_thres = chip_info->tx_hi_threshold;
1338 if (chip_info->rx_threshold)
1339 rx_thres = chip_info->rx_threshold;
1340 chip->dma_threshold = 0;
1341 if (chip_info->enable_loopback)
1342 chip->cr1 = SSCR1_LBM;
1344 if (spi_controller_is_slave(drv_data->controller)) {
1345 chip->cr1 |= SSCR1_SCFR;
1346 chip->cr1 |= SSCR1_SCLKDIR;
1347 chip->cr1 |= SSCR1_SFRMDIR;
1348 chip->cr1 |= SSCR1_SPH;
1351 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1352 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1353 | SSITF_TxHiThresh(tx_hi_thres);
1355 /* set dma burst and threshold outside of chip_info path so that if
1356 * chip_info goes away after setting chip->enable_dma, the
1357 * burst and threshold can still respond to changes in bits_per_word */
1358 if (chip->enable_dma) {
1359 /* set up legal burst and threshold for dma */
1360 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1361 spi->bits_per_word,
1362 &chip->dma_burst_size,
1363 &chip->dma_threshold)) {
1364 dev_warn(&spi->dev,
1365 "in setup: DMA burst size reduced to match bits_per_word\n");
1367 dev_dbg(&spi->dev,
1368 "in setup: DMA burst size set to %u\n",
1369 chip->dma_burst_size);
1372 switch (drv_data->ssp_type) {
1373 case QUARK_X1000_SSP:
1374 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1375 & QUARK_X1000_SSCR1_RFT)
1376 | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1377 & QUARK_X1000_SSCR1_TFT);
1378 break;
1379 case CE4100_SSP:
1380 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1381 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1382 break;
1383 default:
1384 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1385 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1386 break;
1389 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1390 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1391 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1393 if (spi->mode & SPI_LOOP)
1394 chip->cr1 |= SSCR1_LBM;
1396 if (spi->bits_per_word <= 8) {
1397 chip->n_bytes = 1;
1398 chip->read = u8_reader;
1399 chip->write = u8_writer;
1400 } else if (spi->bits_per_word <= 16) {
1401 chip->n_bytes = 2;
1402 chip->read = u16_reader;
1403 chip->write = u16_writer;
1404 } else if (spi->bits_per_word <= 32) {
1405 chip->n_bytes = 4;
1406 chip->read = u32_reader;
1407 chip->write = u32_writer;
1410 spi_set_ctldata(spi, chip);
1412 if (drv_data->ssp_type == CE4100_SSP)
1413 return 0;
1415 return setup_cs(spi, chip, chip_info);
1418 static void cleanup(struct spi_device *spi)
1420 struct chip_data *chip = spi_get_ctldata(spi);
1421 struct driver_data *drv_data =
1422 spi_controller_get_devdata(spi->controller);
1424 if (!chip)
1425 return;
1427 if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1428 chip->gpiod_cs)
1429 gpiod_put(chip->gpiod_cs);
1431 kfree(chip);
1434 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1435 { "INT33C0", LPSS_LPT_SSP },
1436 { "INT33C1", LPSS_LPT_SSP },
1437 { "INT3430", LPSS_LPT_SSP },
1438 { "INT3431", LPSS_LPT_SSP },
1439 { "80860F0E", LPSS_BYT_SSP },
1440 { "8086228E", LPSS_BSW_SSP },
1441 { },
1443 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1446 * PCI IDs of compound devices that integrate both host controller and private
1447 * integrated DMA engine. Please note these are not used in module
1448 * autoloading and probing in this module but matching the LPSS SSP type.
1450 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1451 /* SPT-LP */
1452 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1453 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1454 /* SPT-H */
1455 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1456 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1457 /* KBL-H */
1458 { PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1459 { PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1460 /* CML-V */
1461 { PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1462 { PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1463 /* BXT A-Step */
1464 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1465 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1466 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1467 /* BXT B-Step */
1468 { PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1469 { PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1470 { PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1471 /* GLK */
1472 { PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1473 { PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1474 { PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1475 /* ICL-LP */
1476 { PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1477 { PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1478 { PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1479 /* EHL */
1480 { PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1481 { PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1482 { PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1483 /* JSL */
1484 { PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1485 { PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1486 { PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1487 /* APL */
1488 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1489 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1490 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1491 /* CNL-LP */
1492 { PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1493 { PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1494 { PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1495 /* CNL-H */
1496 { PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1497 { PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1498 { PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1499 /* CML-LP */
1500 { PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1501 { PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1502 { PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1503 /* CML-H */
1504 { PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1505 { PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1506 { PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1507 /* TGL-LP */
1508 { PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1509 { PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1510 { PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1511 { PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1512 { PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1513 { PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1514 { PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1515 { },
1518 static const struct of_device_id pxa2xx_spi_of_match[] = {
1519 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1522 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1524 #ifdef CONFIG_ACPI
1526 static int pxa2xx_spi_get_port_id(struct device *dev)
1528 struct acpi_device *adev;
1529 unsigned int devid;
1530 int port_id = -1;
1532 adev = ACPI_COMPANION(dev);
1533 if (adev && adev->pnp.unique_id &&
1534 !kstrtouint(adev->pnp.unique_id, 0, &devid))
1535 port_id = devid;
1536 return port_id;
1539 #else /* !CONFIG_ACPI */
1541 static int pxa2xx_spi_get_port_id(struct device *dev)
1543 return -1;
1546 #endif /* CONFIG_ACPI */
1549 #ifdef CONFIG_PCI
1551 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1553 return param == chan->device->dev;
1556 #endif /* CONFIG_PCI */
1558 static struct pxa2xx_spi_controller *
1559 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1561 struct pxa2xx_spi_controller *pdata;
1562 struct ssp_device *ssp;
1563 struct resource *res;
1564 struct device *parent = pdev->dev.parent;
1565 struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1566 const struct pci_device_id *pcidev_id = NULL;
1567 enum pxa_ssp_type type;
1568 const void *match;
1570 if (pcidev)
1571 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1573 match = device_get_match_data(&pdev->dev);
1574 if (match)
1575 type = (enum pxa_ssp_type)match;
1576 else if (pcidev_id)
1577 type = (enum pxa_ssp_type)pcidev_id->driver_data;
1578 else
1579 return ERR_PTR(-EINVAL);
1581 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1582 if (!pdata)
1583 return ERR_PTR(-ENOMEM);
1585 ssp = &pdata->ssp;
1587 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1588 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1589 if (IS_ERR(ssp->mmio_base))
1590 return ERR_CAST(ssp->mmio_base);
1592 ssp->phys_base = res->start;
1594 #ifdef CONFIG_PCI
1595 if (pcidev_id) {
1596 pdata->tx_param = parent;
1597 pdata->rx_param = parent;
1598 pdata->dma_filter = pxa2xx_spi_idma_filter;
1600 #endif
1602 ssp->clk = devm_clk_get(&pdev->dev, NULL);
1603 if (IS_ERR(ssp->clk))
1604 return ERR_CAST(ssp->clk);
1606 ssp->irq = platform_get_irq(pdev, 0);
1607 if (ssp->irq < 0)
1608 return ERR_PTR(ssp->irq);
1610 ssp->type = type;
1611 ssp->dev = &pdev->dev;
1612 ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1614 pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1615 pdata->num_chipselect = 1;
1616 pdata->enable_dma = true;
1617 pdata->dma_burst_size = 1;
1619 return pdata;
1622 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1623 unsigned int cs)
1625 struct driver_data *drv_data = spi_controller_get_devdata(controller);
1627 if (has_acpi_companion(&drv_data->pdev->dev)) {
1628 switch (drv_data->ssp_type) {
1630 * For Atoms the ACPI DeviceSelection used by the Windows
1631 * driver starts from 1 instead of 0 so translate it here
1632 * to match what Linux expects.
1634 case LPSS_BYT_SSP:
1635 case LPSS_BSW_SSP:
1636 return cs - 1;
1638 default:
1639 break;
1643 return cs;
1646 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1648 return MAX_DMA_LEN;
1651 static int pxa2xx_spi_probe(struct platform_device *pdev)
1653 struct device *dev = &pdev->dev;
1654 struct pxa2xx_spi_controller *platform_info;
1655 struct spi_controller *controller;
1656 struct driver_data *drv_data;
1657 struct ssp_device *ssp;
1658 const struct lpss_config *config;
1659 int status, count;
1660 u32 tmp;
1662 platform_info = dev_get_platdata(dev);
1663 if (!platform_info) {
1664 platform_info = pxa2xx_spi_init_pdata(pdev);
1665 if (IS_ERR(platform_info)) {
1666 dev_err(&pdev->dev, "missing platform data\n");
1667 return PTR_ERR(platform_info);
1671 ssp = pxa_ssp_request(pdev->id, pdev->name);
1672 if (!ssp)
1673 ssp = &platform_info->ssp;
1675 if (!ssp->mmio_base) {
1676 dev_err(&pdev->dev, "failed to get ssp\n");
1677 return -ENODEV;
1680 if (platform_info->is_slave)
1681 controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1682 else
1683 controller = spi_alloc_master(dev, sizeof(struct driver_data));
1685 if (!controller) {
1686 dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1687 pxa_ssp_free(ssp);
1688 return -ENOMEM;
1690 drv_data = spi_controller_get_devdata(controller);
1691 drv_data->controller = controller;
1692 drv_data->controller_info = platform_info;
1693 drv_data->pdev = pdev;
1694 drv_data->ssp = ssp;
1696 controller->dev.of_node = pdev->dev.of_node;
1697 /* the spi->mode bits understood by this driver: */
1698 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1700 controller->bus_num = ssp->port_id;
1701 controller->dma_alignment = DMA_ALIGNMENT;
1702 controller->cleanup = cleanup;
1703 controller->setup = setup;
1704 controller->set_cs = pxa2xx_spi_set_cs;
1705 controller->transfer_one = pxa2xx_spi_transfer_one;
1706 controller->slave_abort = pxa2xx_spi_slave_abort;
1707 controller->handle_err = pxa2xx_spi_handle_err;
1708 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1709 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1710 controller->auto_runtime_pm = true;
1711 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1713 drv_data->ssp_type = ssp->type;
1715 drv_data->ioaddr = ssp->mmio_base;
1716 drv_data->ssdr_physical = ssp->phys_base + SSDR;
1717 if (pxa25x_ssp_comp(drv_data)) {
1718 switch (drv_data->ssp_type) {
1719 case QUARK_X1000_SSP:
1720 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1721 break;
1722 default:
1723 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1724 break;
1727 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1728 drv_data->dma_cr1 = 0;
1729 drv_data->clear_sr = SSSR_ROR;
1730 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1731 } else {
1732 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1733 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1734 drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1735 drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1736 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1737 | SSSR_ROR | SSSR_TUR;
1740 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1741 drv_data);
1742 if (status < 0) {
1743 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1744 goto out_error_controller_alloc;
1747 /* Setup DMA if requested */
1748 if (platform_info->enable_dma) {
1749 status = pxa2xx_spi_dma_setup(drv_data);
1750 if (status) {
1751 dev_warn(dev, "no DMA channels available, using PIO\n");
1752 platform_info->enable_dma = false;
1753 } else {
1754 controller->can_dma = pxa2xx_spi_can_dma;
1755 controller->max_dma_len = MAX_DMA_LEN;
1756 controller->max_transfer_size =
1757 pxa2xx_spi_max_dma_transfer_size;
1761 /* Enable SOC clock */
1762 status = clk_prepare_enable(ssp->clk);
1763 if (status)
1764 goto out_error_dma_irq_alloc;
1766 controller->max_speed_hz = clk_get_rate(ssp->clk);
1768 * Set minimum speed for all other platforms than Intel Quark which is
1769 * able do under 1 Hz transfers.
1771 if (!pxa25x_ssp_comp(drv_data))
1772 controller->min_speed_hz =
1773 DIV_ROUND_UP(controller->max_speed_hz, 4096);
1774 else if (!is_quark_x1000_ssp(drv_data))
1775 controller->min_speed_hz =
1776 DIV_ROUND_UP(controller->max_speed_hz, 512);
1778 /* Load default SSP configuration */
1779 pxa2xx_spi_write(drv_data, SSCR0, 0);
1780 switch (drv_data->ssp_type) {
1781 case QUARK_X1000_SSP:
1782 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1783 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1784 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1786 /* using the Motorola SPI protocol and use 8 bit frame */
1787 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1788 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1789 break;
1790 case CE4100_SSP:
1791 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1792 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1793 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1794 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1795 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1796 break;
1797 default:
1799 if (spi_controller_is_slave(controller)) {
1800 tmp = SSCR1_SCFR |
1801 SSCR1_SCLKDIR |
1802 SSCR1_SFRMDIR |
1803 SSCR1_RxTresh(2) |
1804 SSCR1_TxTresh(1) |
1805 SSCR1_SPH;
1806 } else {
1807 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1808 SSCR1_TxTresh(TX_THRESH_DFLT);
1810 pxa2xx_spi_write(drv_data, SSCR1, tmp);
1811 tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1812 if (!spi_controller_is_slave(controller))
1813 tmp |= SSCR0_SCR(2);
1814 pxa2xx_spi_write(drv_data, SSCR0, tmp);
1815 break;
1818 if (!pxa25x_ssp_comp(drv_data))
1819 pxa2xx_spi_write(drv_data, SSTO, 0);
1821 if (!is_quark_x1000_ssp(drv_data))
1822 pxa2xx_spi_write(drv_data, SSPSP, 0);
1824 if (is_lpss_ssp(drv_data)) {
1825 lpss_ssp_setup(drv_data);
1826 config = lpss_get_config(drv_data);
1827 if (config->reg_capabilities >= 0) {
1828 tmp = __lpss_ssp_read_priv(drv_data,
1829 config->reg_capabilities);
1830 tmp &= LPSS_CAPS_CS_EN_MASK;
1831 tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1832 platform_info->num_chipselect = ffz(tmp);
1833 } else if (config->cs_num) {
1834 platform_info->num_chipselect = config->cs_num;
1837 controller->num_chipselect = platform_info->num_chipselect;
1839 count = gpiod_count(&pdev->dev, "cs");
1840 if (count > 0) {
1841 int i;
1843 controller->num_chipselect = max_t(int, count,
1844 controller->num_chipselect);
1846 drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1847 controller->num_chipselect, sizeof(struct gpio_desc *),
1848 GFP_KERNEL);
1849 if (!drv_data->cs_gpiods) {
1850 status = -ENOMEM;
1851 goto out_error_clock_enabled;
1854 for (i = 0; i < controller->num_chipselect; i++) {
1855 struct gpio_desc *gpiod;
1857 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1858 if (IS_ERR(gpiod)) {
1859 /* Means use native chip select */
1860 if (PTR_ERR(gpiod) == -ENOENT)
1861 continue;
1863 status = PTR_ERR(gpiod);
1864 goto out_error_clock_enabled;
1865 } else {
1866 drv_data->cs_gpiods[i] = gpiod;
1871 if (platform_info->is_slave) {
1872 drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1873 "ready", GPIOD_OUT_LOW);
1874 if (IS_ERR(drv_data->gpiod_ready)) {
1875 status = PTR_ERR(drv_data->gpiod_ready);
1876 goto out_error_clock_enabled;
1880 pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1881 pm_runtime_use_autosuspend(&pdev->dev);
1882 pm_runtime_set_active(&pdev->dev);
1883 pm_runtime_enable(&pdev->dev);
1885 /* Register with the SPI framework */
1886 platform_set_drvdata(pdev, drv_data);
1887 status = devm_spi_register_controller(&pdev->dev, controller);
1888 if (status != 0) {
1889 dev_err(&pdev->dev, "problem registering spi controller\n");
1890 goto out_error_pm_runtime_enabled;
1893 return status;
1895 out_error_pm_runtime_enabled:
1896 pm_runtime_put_noidle(&pdev->dev);
1897 pm_runtime_disable(&pdev->dev);
1899 out_error_clock_enabled:
1900 clk_disable_unprepare(ssp->clk);
1902 out_error_dma_irq_alloc:
1903 pxa2xx_spi_dma_release(drv_data);
1904 free_irq(ssp->irq, drv_data);
1906 out_error_controller_alloc:
1907 spi_controller_put(controller);
1908 pxa_ssp_free(ssp);
1909 return status;
1912 static int pxa2xx_spi_remove(struct platform_device *pdev)
1914 struct driver_data *drv_data = platform_get_drvdata(pdev);
1915 struct ssp_device *ssp = drv_data->ssp;
1917 pm_runtime_get_sync(&pdev->dev);
1919 /* Disable the SSP at the peripheral and SOC level */
1920 pxa2xx_spi_write(drv_data, SSCR0, 0);
1921 clk_disable_unprepare(ssp->clk);
1923 /* Release DMA */
1924 if (drv_data->controller_info->enable_dma)
1925 pxa2xx_spi_dma_release(drv_data);
1927 pm_runtime_put_noidle(&pdev->dev);
1928 pm_runtime_disable(&pdev->dev);
1930 /* Release IRQ */
1931 free_irq(ssp->irq, drv_data);
1933 /* Release SSP */
1934 pxa_ssp_free(ssp);
1936 return 0;
1939 #ifdef CONFIG_PM_SLEEP
1940 static int pxa2xx_spi_suspend(struct device *dev)
1942 struct driver_data *drv_data = dev_get_drvdata(dev);
1943 struct ssp_device *ssp = drv_data->ssp;
1944 int status;
1946 status = spi_controller_suspend(drv_data->controller);
1947 if (status != 0)
1948 return status;
1949 pxa2xx_spi_write(drv_data, SSCR0, 0);
1951 if (!pm_runtime_suspended(dev))
1952 clk_disable_unprepare(ssp->clk);
1954 return 0;
1957 static int pxa2xx_spi_resume(struct device *dev)
1959 struct driver_data *drv_data = dev_get_drvdata(dev);
1960 struct ssp_device *ssp = drv_data->ssp;
1961 int status;
1963 /* Enable the SSP clock */
1964 if (!pm_runtime_suspended(dev)) {
1965 status = clk_prepare_enable(ssp->clk);
1966 if (status)
1967 return status;
1970 /* Start the queue running */
1971 return spi_controller_resume(drv_data->controller);
1973 #endif
1975 #ifdef CONFIG_PM
1976 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1978 struct driver_data *drv_data = dev_get_drvdata(dev);
1980 clk_disable_unprepare(drv_data->ssp->clk);
1981 return 0;
1984 static int pxa2xx_spi_runtime_resume(struct device *dev)
1986 struct driver_data *drv_data = dev_get_drvdata(dev);
1987 int status;
1989 status = clk_prepare_enable(drv_data->ssp->clk);
1990 return status;
1992 #endif
1994 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1995 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1996 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1997 pxa2xx_spi_runtime_resume, NULL)
2000 static struct platform_driver driver = {
2001 .driver = {
2002 .name = "pxa2xx-spi",
2003 .pm = &pxa2xx_spi_pm_ops,
2004 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2005 .of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2007 .probe = pxa2xx_spi_probe,
2008 .remove = pxa2xx_spi_remove,
2011 static int __init pxa2xx_spi_init(void)
2013 return platform_driver_register(&driver);
2015 subsys_initcall(pxa2xx_spi_init);
2017 static void __exit pxa2xx_spi_exit(void)
2019 platform_driver_unregister(&driver);
2021 module_exit(pxa2xx_spi_exit);
2023 MODULE_SOFTDEP("pre: dw_dmac");