usb: dwc3: keystone: drop dma_mask configuration
[linux/fpc-iii.git] / drivers / connector / cn_proc.c
blobccdd4c7e748b3b1e63b75e08398ac7972fde66b8
1 /*
2 * cn_proc.c - process events connector
4 * Copyright (C) Matt Helsley, IBM Corp. 2005
5 * Based on cn_fork.c by Guillaume Thouvenin <guillaume.thouvenin@bull.net>
6 * Original copyright notice follows:
7 * Copyright (C) 2005 BULL SA.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/init.h>
29 #include <linux/connector.h>
30 #include <linux/gfp.h>
31 #include <linux/ptrace.h>
32 #include <linux/atomic.h>
33 #include <linux/pid_namespace.h>
35 #include <linux/cn_proc.h>
38 * Size of a cn_msg followed by a proc_event structure. Since the
39 * sizeof struct cn_msg is a multiple of 4 bytes, but not 8 bytes, we
40 * add one 4-byte word to the size here, and then start the actual
41 * cn_msg structure 4 bytes into the stack buffer. The result is that
42 * the immediately following proc_event structure is aligned to 8 bytes.
44 #define CN_PROC_MSG_SIZE (sizeof(struct cn_msg) + sizeof(struct proc_event) + 4)
46 /* See comment above; we test our assumption about sizeof struct cn_msg here. */
47 static inline struct cn_msg *buffer_to_cn_msg(__u8 *buffer)
49 BUILD_BUG_ON(sizeof(struct cn_msg) != 20);
50 return (struct cn_msg *)(buffer + 4);
53 static atomic_t proc_event_num_listeners = ATOMIC_INIT(0);
54 static struct cb_id cn_proc_event_id = { CN_IDX_PROC, CN_VAL_PROC };
56 /* proc_event_counts is used as the sequence number of the netlink message */
57 static DEFINE_PER_CPU(__u32, proc_event_counts) = { 0 };
59 static inline void get_seq(__u32 *ts, int *cpu)
61 preempt_disable();
62 *ts = __this_cpu_inc_return(proc_event_counts) - 1;
63 *cpu = smp_processor_id();
64 preempt_enable();
67 void proc_fork_connector(struct task_struct *task)
69 struct cn_msg *msg;
70 struct proc_event *ev;
71 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
72 struct timespec ts;
73 struct task_struct *parent;
75 if (atomic_read(&proc_event_num_listeners) < 1)
76 return;
78 msg = buffer_to_cn_msg(buffer);
79 ev = (struct proc_event *)msg->data;
80 memset(&ev->event_data, 0, sizeof(ev->event_data));
81 get_seq(&msg->seq, &ev->cpu);
82 ktime_get_ts(&ts); /* get high res monotonic timestamp */
83 ev->timestamp_ns = timespec_to_ns(&ts);
84 ev->what = PROC_EVENT_FORK;
85 rcu_read_lock();
86 parent = rcu_dereference(task->real_parent);
87 ev->event_data.fork.parent_pid = parent->pid;
88 ev->event_data.fork.parent_tgid = parent->tgid;
89 rcu_read_unlock();
90 ev->event_data.fork.child_pid = task->pid;
91 ev->event_data.fork.child_tgid = task->tgid;
93 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
94 msg->ack = 0; /* not used */
95 msg->len = sizeof(*ev);
96 msg->flags = 0; /* not used */
97 /* If cn_netlink_send() failed, the data is not sent */
98 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
101 void proc_exec_connector(struct task_struct *task)
103 struct cn_msg *msg;
104 struct proc_event *ev;
105 struct timespec ts;
106 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
108 if (atomic_read(&proc_event_num_listeners) < 1)
109 return;
111 msg = buffer_to_cn_msg(buffer);
112 ev = (struct proc_event *)msg->data;
113 memset(&ev->event_data, 0, sizeof(ev->event_data));
114 get_seq(&msg->seq, &ev->cpu);
115 ktime_get_ts(&ts); /* get high res monotonic timestamp */
116 ev->timestamp_ns = timespec_to_ns(&ts);
117 ev->what = PROC_EVENT_EXEC;
118 ev->event_data.exec.process_pid = task->pid;
119 ev->event_data.exec.process_tgid = task->tgid;
121 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
122 msg->ack = 0; /* not used */
123 msg->len = sizeof(*ev);
124 msg->flags = 0; /* not used */
125 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
128 void proc_id_connector(struct task_struct *task, int which_id)
130 struct cn_msg *msg;
131 struct proc_event *ev;
132 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
133 struct timespec ts;
134 const struct cred *cred;
136 if (atomic_read(&proc_event_num_listeners) < 1)
137 return;
139 msg = buffer_to_cn_msg(buffer);
140 ev = (struct proc_event *)msg->data;
141 memset(&ev->event_data, 0, sizeof(ev->event_data));
142 ev->what = which_id;
143 ev->event_data.id.process_pid = task->pid;
144 ev->event_data.id.process_tgid = task->tgid;
145 rcu_read_lock();
146 cred = __task_cred(task);
147 if (which_id == PROC_EVENT_UID) {
148 ev->event_data.id.r.ruid = from_kuid_munged(&init_user_ns, cred->uid);
149 ev->event_data.id.e.euid = from_kuid_munged(&init_user_ns, cred->euid);
150 } else if (which_id == PROC_EVENT_GID) {
151 ev->event_data.id.r.rgid = from_kgid_munged(&init_user_ns, cred->gid);
152 ev->event_data.id.e.egid = from_kgid_munged(&init_user_ns, cred->egid);
153 } else {
154 rcu_read_unlock();
155 return;
157 rcu_read_unlock();
158 get_seq(&msg->seq, &ev->cpu);
159 ktime_get_ts(&ts); /* get high res monotonic timestamp */
160 ev->timestamp_ns = timespec_to_ns(&ts);
162 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
163 msg->ack = 0; /* not used */
164 msg->len = sizeof(*ev);
165 msg->flags = 0; /* not used */
166 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
169 void proc_sid_connector(struct task_struct *task)
171 struct cn_msg *msg;
172 struct proc_event *ev;
173 struct timespec ts;
174 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
176 if (atomic_read(&proc_event_num_listeners) < 1)
177 return;
179 msg = buffer_to_cn_msg(buffer);
180 ev = (struct proc_event *)msg->data;
181 memset(&ev->event_data, 0, sizeof(ev->event_data));
182 get_seq(&msg->seq, &ev->cpu);
183 ktime_get_ts(&ts); /* get high res monotonic timestamp */
184 ev->timestamp_ns = timespec_to_ns(&ts);
185 ev->what = PROC_EVENT_SID;
186 ev->event_data.sid.process_pid = task->pid;
187 ev->event_data.sid.process_tgid = task->tgid;
189 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
190 msg->ack = 0; /* not used */
191 msg->len = sizeof(*ev);
192 msg->flags = 0; /* not used */
193 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
196 void proc_ptrace_connector(struct task_struct *task, int ptrace_id)
198 struct cn_msg *msg;
199 struct proc_event *ev;
200 struct timespec ts;
201 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
203 if (atomic_read(&proc_event_num_listeners) < 1)
204 return;
206 msg = buffer_to_cn_msg(buffer);
207 ev = (struct proc_event *)msg->data;
208 memset(&ev->event_data, 0, sizeof(ev->event_data));
209 get_seq(&msg->seq, &ev->cpu);
210 ktime_get_ts(&ts); /* get high res monotonic timestamp */
211 ev->timestamp_ns = timespec_to_ns(&ts);
212 ev->what = PROC_EVENT_PTRACE;
213 ev->event_data.ptrace.process_pid = task->pid;
214 ev->event_data.ptrace.process_tgid = task->tgid;
215 if (ptrace_id == PTRACE_ATTACH) {
216 ev->event_data.ptrace.tracer_pid = current->pid;
217 ev->event_data.ptrace.tracer_tgid = current->tgid;
218 } else if (ptrace_id == PTRACE_DETACH) {
219 ev->event_data.ptrace.tracer_pid = 0;
220 ev->event_data.ptrace.tracer_tgid = 0;
221 } else
222 return;
224 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
225 msg->ack = 0; /* not used */
226 msg->len = sizeof(*ev);
227 msg->flags = 0; /* not used */
228 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
231 void proc_comm_connector(struct task_struct *task)
233 struct cn_msg *msg;
234 struct proc_event *ev;
235 struct timespec ts;
236 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
238 if (atomic_read(&proc_event_num_listeners) < 1)
239 return;
241 msg = buffer_to_cn_msg(buffer);
242 ev = (struct proc_event *)msg->data;
243 memset(&ev->event_data, 0, sizeof(ev->event_data));
244 get_seq(&msg->seq, &ev->cpu);
245 ktime_get_ts(&ts); /* get high res monotonic timestamp */
246 ev->timestamp_ns = timespec_to_ns(&ts);
247 ev->what = PROC_EVENT_COMM;
248 ev->event_data.comm.process_pid = task->pid;
249 ev->event_data.comm.process_tgid = task->tgid;
250 get_task_comm(ev->event_data.comm.comm, task);
252 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
253 msg->ack = 0; /* not used */
254 msg->len = sizeof(*ev);
255 msg->flags = 0; /* not used */
256 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
259 void proc_coredump_connector(struct task_struct *task)
261 struct cn_msg *msg;
262 struct proc_event *ev;
263 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
264 struct timespec ts;
266 if (atomic_read(&proc_event_num_listeners) < 1)
267 return;
269 msg = buffer_to_cn_msg(buffer);
270 ev = (struct proc_event *)msg->data;
271 memset(&ev->event_data, 0, sizeof(ev->event_data));
272 get_seq(&msg->seq, &ev->cpu);
273 ktime_get_ts(&ts); /* get high res monotonic timestamp */
274 ev->timestamp_ns = timespec_to_ns(&ts);
275 ev->what = PROC_EVENT_COREDUMP;
276 ev->event_data.coredump.process_pid = task->pid;
277 ev->event_data.coredump.process_tgid = task->tgid;
279 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
280 msg->ack = 0; /* not used */
281 msg->len = sizeof(*ev);
282 msg->flags = 0; /* not used */
283 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
286 void proc_exit_connector(struct task_struct *task)
288 struct cn_msg *msg;
289 struct proc_event *ev;
290 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
291 struct timespec ts;
293 if (atomic_read(&proc_event_num_listeners) < 1)
294 return;
296 msg = buffer_to_cn_msg(buffer);
297 ev = (struct proc_event *)msg->data;
298 memset(&ev->event_data, 0, sizeof(ev->event_data));
299 get_seq(&msg->seq, &ev->cpu);
300 ktime_get_ts(&ts); /* get high res monotonic timestamp */
301 ev->timestamp_ns = timespec_to_ns(&ts);
302 ev->what = PROC_EVENT_EXIT;
303 ev->event_data.exit.process_pid = task->pid;
304 ev->event_data.exit.process_tgid = task->tgid;
305 ev->event_data.exit.exit_code = task->exit_code;
306 ev->event_data.exit.exit_signal = task->exit_signal;
308 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
309 msg->ack = 0; /* not used */
310 msg->len = sizeof(*ev);
311 msg->flags = 0; /* not used */
312 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
316 * Send an acknowledgement message to userspace
318 * Use 0 for success, EFOO otherwise.
319 * Note: this is the negative of conventional kernel error
320 * values because it's not being returned via syscall return
321 * mechanisms.
323 static void cn_proc_ack(int err, int rcvd_seq, int rcvd_ack)
325 struct cn_msg *msg;
326 struct proc_event *ev;
327 __u8 buffer[CN_PROC_MSG_SIZE] __aligned(8);
328 struct timespec ts;
330 if (atomic_read(&proc_event_num_listeners) < 1)
331 return;
333 msg = buffer_to_cn_msg(buffer);
334 ev = (struct proc_event *)msg->data;
335 memset(&ev->event_data, 0, sizeof(ev->event_data));
336 msg->seq = rcvd_seq;
337 ktime_get_ts(&ts); /* get high res monotonic timestamp */
338 ev->timestamp_ns = timespec_to_ns(&ts);
339 ev->cpu = -1;
340 ev->what = PROC_EVENT_NONE;
341 ev->event_data.ack.err = err;
342 memcpy(&msg->id, &cn_proc_event_id, sizeof(msg->id));
343 msg->ack = rcvd_ack + 1;
344 msg->len = sizeof(*ev);
345 msg->flags = 0; /* not used */
346 cn_netlink_send(msg, 0, CN_IDX_PROC, GFP_KERNEL);
350 * cn_proc_mcast_ctl
351 * @data: message sent from userspace via the connector
353 static void cn_proc_mcast_ctl(struct cn_msg *msg,
354 struct netlink_skb_parms *nsp)
356 enum proc_cn_mcast_op *mc_op = NULL;
357 int err = 0;
359 if (msg->len != sizeof(*mc_op))
360 return;
363 * Events are reported with respect to the initial pid
364 * and user namespaces so ignore requestors from
365 * other namespaces.
367 if ((current_user_ns() != &init_user_ns) ||
368 (task_active_pid_ns(current) != &init_pid_ns))
369 return;
371 /* Can only change if privileged. */
372 if (!__netlink_ns_capable(nsp, &init_user_ns, CAP_NET_ADMIN)) {
373 err = EPERM;
374 goto out;
377 mc_op = (enum proc_cn_mcast_op *)msg->data;
378 switch (*mc_op) {
379 case PROC_CN_MCAST_LISTEN:
380 atomic_inc(&proc_event_num_listeners);
381 break;
382 case PROC_CN_MCAST_IGNORE:
383 atomic_dec(&proc_event_num_listeners);
384 break;
385 default:
386 err = EINVAL;
387 break;
390 out:
391 cn_proc_ack(err, msg->seq, msg->ack);
395 * cn_proc_init - initialization entry point
397 * Adds the connector callback to the connector driver.
399 static int __init cn_proc_init(void)
401 int err = cn_add_callback(&cn_proc_event_id,
402 "cn_proc",
403 &cn_proc_mcast_ctl);
404 if (err) {
405 pr_warn("cn_proc failed to register\n");
406 return err;
408 return 0;
411 module_init(cn_proc_init);