usb: dwc3: keystone: drop dma_mask configuration
[linux/fpc-iii.git] / drivers / staging / et131x / et131x.c
blob2d36eac6889cec07d6ae959fe53bb5f40ef5511d
1 /* Agere Systems Inc.
2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
4 * Copyright © 2005 Agere Systems Inc.
5 * All rights reserved.
6 * http://www.agere.com
8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
10 *------------------------------------------------------------------------------
12 * SOFTWARE LICENSE
14 * This software is provided subject to the following terms and conditions,
15 * which you should read carefully before using the software. Using this
16 * software indicates your acceptance of these terms and conditions. If you do
17 * not agree with these terms and conditions, do not use the software.
19 * Copyright © 2005 Agere Systems Inc.
20 * All rights reserved.
22 * Redistribution and use in source or binary forms, with or without
23 * modifications, are permitted provided that the following conditions are met:
25 * . Redistributions of source code must retain the above copyright notice, this
26 * list of conditions and the following Disclaimer as comments in the code as
27 * well as in the documentation and/or other materials provided with the
28 * distribution.
30 * . Redistributions in binary form must reproduce the above copyright notice,
31 * this list of conditions and the following Disclaimer in the documentation
32 * and/or other materials provided with the distribution.
34 * . Neither the name of Agere Systems Inc. nor the names of the contributors
35 * may be used to endorse or promote products derived from this software
36 * without specific prior written permission.
38 * Disclaimer
40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY
43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51 * DAMAGE.
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
82 #include "et131x.h"
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS 1000
91 #define MAX_NUM_WRITE_RETRIES 2
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */
101 /* ISR defines */
102 /* For interrupts, normal running is:
103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104 * watchdog_interrupt & txdma_xfer_done
106 * In both cases, when flow control is enabled for either Tx or bi-direction,
107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108 * buffer rings are running low.
110 #define INT_MASK_DISABLE 0xffffffff
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113 * #define INT_MASK_ENABLE 0xfff6bf17
114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7
116 #define INT_MASK_ENABLE 0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE 60
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST 128
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT (1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD 0
137 /* MP_TCB flags */
138 #define FMP_DEST_MULTI 0x00000001
139 #define FMP_DEST_BROAD 0x00000002
141 /* MP_ADAPTER flags */
142 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008
144 /* MP_SHARED flags */
145 #define FMP_ADAPTER_LOWER_POWER 0x00200000
147 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000
148 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000
150 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000
152 /* Some offsets in PCI config space that are actually used. */
153 #define ET1310_PCI_MAC_ADDRESS 0xA4
154 #define ET1310_PCI_EEPROM_STATUS 0xB2
155 #define ET1310_PCI_ACK_NACK 0xC0
156 #define ET1310_PCI_REPLAY 0xC2
157 #define ET1310_PCI_L0L1LATENCY 0xCF
159 /* PCI Product IDs */
160 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */
161 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */
163 /* Define order of magnitude converter */
164 #define NANO_IN_A_MICRO 1000
166 #define PARM_RX_NUM_BUFS_DEF 4
167 #define PARM_RX_TIME_INT_DEF 10
168 #define PARM_RX_MEM_END_DEF 0x2bc
169 #define PARM_TX_TIME_INT_DEF 40
170 #define PARM_TX_NUM_BUFS_DEF 4
171 #define PARM_DMA_CACHE_DEF 0
173 /* RX defines */
174 #define FBR_CHUNKS 32
175 #define MAX_DESC_PER_RING_RX 1024
177 /* number of RFDs - default and min */
178 #define RFD_LOW_WATER_MARK 40
179 #define NIC_DEFAULT_NUM_RFD 1024
180 #define NUM_FBRS 2
182 #define NUM_PACKETS_HANDLED 256
184 #define ALCATEL_MULTICAST_PKT 0x01000000
185 #define ALCATEL_BROADCAST_PKT 0x02000000
187 /* typedefs for Free Buffer Descriptors */
188 struct fbr_desc {
189 u32 addr_lo;
190 u32 addr_hi;
191 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */
194 /* Packet Status Ring Descriptors
196 * Word 0:
198 * top 16 bits are from the Alcatel Status Word as enumerated in
199 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
201 * 0: hp hash pass
202 * 1: ipa IP checksum assist
203 * 2: ipp IP checksum pass
204 * 3: tcpa TCP checksum assist
205 * 4: tcpp TCP checksum pass
206 * 5: wol WOL Event
207 * 6: rxmac_error RXMAC Error Indicator
208 * 7: drop Drop packet
209 * 8: ft Frame Truncated
210 * 9: jp Jumbo Packet
211 * 10: vp VLAN Packet
212 * 11-15: unused
213 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous
214 * 17: asw_RX_DV_event short receive event detected
215 * 18: asw_false_carrier_event bad carrier since last good packet
216 * 19: asw_code_err one or more nibbles signalled as errors
217 * 20: asw_CRC_err CRC error
218 * 21: asw_len_chk_err frame length field incorrect
219 * 22: asw_too_long frame length > 1518 bytes
220 * 23: asw_OK valid CRC + no code error
221 * 24: asw_multicast has a multicast address
222 * 25: asw_broadcast has a broadcast address
223 * 26: asw_dribble_nibble spurious bits after EOP
224 * 27: asw_control_frame is a control frame
225 * 28: asw_pause_frame is a pause frame
226 * 29: asw_unsupported_op unsupported OP code
227 * 30: asw_VLAN_tag VLAN tag detected
228 * 31: asw_long_evt Rx long event
230 * Word 1:
231 * 0-15: length length in bytes
232 * 16-25: bi Buffer Index
233 * 26-27: ri Ring Index
234 * 28-31: reserved
237 struct pkt_stat_desc {
238 u32 word0;
239 u32 word1;
242 /* Typedefs for the RX DMA status word */
244 /* rx status word 0 holds part of the status bits of the Rx DMA engine
245 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word
246 * which contains the Free Buffer ring 0 and 1 available offset.
248 * bit 0-9 FBR1 offset
249 * bit 10 Wrap flag for FBR1
250 * bit 16-25 FBR0 offset
251 * bit 26 Wrap flag for FBR0
254 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
255 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word
256 * which contains the Packet Status Ring available offset.
258 * bit 0-15 reserved
259 * bit 16-27 PSRoffset
260 * bit 28 PSRwrap
261 * bit 29-31 unused
264 /* struct rx_status_block is a structure representing the status of the Rx
265 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
267 struct rx_status_block {
268 u32 word0;
269 u32 word1;
272 /* Structure for look-up table holding free buffer ring pointers, addresses
273 * and state.
275 struct fbr_lookup {
276 void *virt[MAX_DESC_PER_RING_RX];
277 u32 bus_high[MAX_DESC_PER_RING_RX];
278 u32 bus_low[MAX_DESC_PER_RING_RX];
279 void *ring_virtaddr;
280 dma_addr_t ring_physaddr;
281 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
282 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
283 u32 local_full;
284 u32 num_entries;
285 dma_addr_t buffsize;
288 /* struct rx_ring is the sructure representing the adaptor's local
289 * reference(s) to the rings
291 struct rx_ring {
292 struct fbr_lookup *fbr[NUM_FBRS];
293 void *ps_ring_virtaddr;
294 dma_addr_t ps_ring_physaddr;
295 u32 local_psr_full;
296 u32 psr_num_entries;
298 struct rx_status_block *rx_status_block;
299 dma_addr_t rx_status_bus;
301 /* RECV */
302 struct list_head recv_list;
303 u32 num_ready_recv;
305 u32 num_rfd;
307 bool unfinished_receives;
310 /* TX defines */
311 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
313 * 0-15: length of packet
314 * 16-27: VLAN tag
315 * 28: VLAN CFI
316 * 29-31: VLAN priority
318 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
320 * 0: last packet in the sequence
321 * 1: first packet in the sequence
322 * 2: interrupt the processor when this pkt sent
323 * 3: Control word - no packet data
324 * 4: Issue half-duplex backpressure : XON/XOFF
325 * 5: send pause frame
326 * 6: Tx frame has error
327 * 7: append CRC
328 * 8: MAC override
329 * 9: pad packet
330 * 10: Packet is a Huge packet
331 * 11: append VLAN tag
332 * 12: IP checksum assist
333 * 13: TCP checksum assist
334 * 14: UDP checksum assist
337 #define TXDESC_FLAG_LASTPKT 0x0001
338 #define TXDESC_FLAG_FIRSTPKT 0x0002
339 #define TXDESC_FLAG_INTPROC 0x0004
341 /* struct tx_desc represents each descriptor on the ring */
342 struct tx_desc {
343 u32 addr_hi;
344 u32 addr_lo;
345 u32 len_vlan; /* control words how to xmit the */
346 u32 flags; /* data (detailed above) */
349 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
350 * by 0x101c / 0x1020. This is a DMA10 type
353 /* TCB (Transmit Control Block: Host Side) */
354 struct tcb {
355 struct tcb *next; /* Next entry in ring */
356 u32 flags; /* Our flags for the packet */
357 u32 count; /* Used to spot stuck/lost packets */
358 u32 stale; /* Used to spot stuck/lost packets */
359 struct sk_buff *skb; /* Network skb we are tied to */
360 u32 index; /* Ring indexes */
361 u32 index_start;
364 /* Structure representing our local reference(s) to the ring */
365 struct tx_ring {
366 /* TCB (Transmit Control Block) memory and lists */
367 struct tcb *tcb_ring;
369 /* List of TCBs that are ready to be used */
370 struct tcb *tcb_qhead;
371 struct tcb *tcb_qtail;
373 /* list of TCBs that are currently being sent. NOTE that access to all
374 * three of these (including used) are controlled via the
375 * TCBSendQLock. This lock should be secured prior to incementing /
376 * decrementing used, or any queue manipulation on send_head /
377 * tail
379 struct tcb *send_head;
380 struct tcb *send_tail;
381 int used;
383 /* The actual descriptor ring */
384 struct tx_desc *tx_desc_ring;
385 dma_addr_t tx_desc_ring_pa;
387 /* send_idx indicates where we last wrote to in the descriptor ring. */
388 u32 send_idx;
390 /* The location of the write-back status block */
391 u32 *tx_status;
392 dma_addr_t tx_status_pa;
394 /* Packets since the last IRQ: used for interrupt coalescing */
395 int since_irq;
398 /* Do not change these values: if changed, then change also in respective
399 * TXdma and Rxdma engines
401 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */
402 #define NUM_TCB 64
404 /* These values are all superseded by registry entries to facilitate tuning.
405 * Once the desired performance has been achieved, the optimal registry values
406 * should be re-populated to these #defines:
408 #define TX_ERROR_PERIOD 1000
410 #define LO_MARK_PERCENT_FOR_PSR 15
411 #define LO_MARK_PERCENT_FOR_RX 15
413 /* RFD (Receive Frame Descriptor) */
414 struct rfd {
415 struct list_head list_node;
416 struct sk_buff *skb;
417 u32 len; /* total size of receive frame */
418 u16 bufferindex;
419 u8 ringindex;
422 /* Flow Control */
423 #define FLOW_BOTH 0
424 #define FLOW_TXONLY 1
425 #define FLOW_RXONLY 2
426 #define FLOW_NONE 3
428 /* Struct to define some device statistics */
429 struct ce_stats {
430 /* MIB II variables
432 * NOTE: atomic_t types are only guaranteed to store 24-bits; if we
433 * MUST have 32, then we'll need another way to perform atomic
434 * operations
436 u32 unicast_pkts_rcvd;
437 atomic_t unicast_pkts_xmtd;
438 u32 multicast_pkts_rcvd;
439 atomic_t multicast_pkts_xmtd;
440 u32 broadcast_pkts_rcvd;
441 atomic_t broadcast_pkts_xmtd;
442 u32 rcvd_pkts_dropped;
444 /* Tx Statistics. */
445 u32 tx_underflows;
447 u32 tx_collisions;
448 u32 tx_excessive_collisions;
449 u32 tx_first_collisions;
450 u32 tx_late_collisions;
451 u32 tx_max_pkt_errs;
452 u32 tx_deferred;
454 /* Rx Statistics. */
455 u32 rx_overflows;
457 u32 rx_length_errs;
458 u32 rx_align_errs;
459 u32 rx_crc_errs;
460 u32 rx_code_violations;
461 u32 rx_other_errs;
463 u32 synchronous_iterations;
464 u32 interrupt_status;
467 /* The private adapter structure */
468 struct et131x_adapter {
469 struct net_device *netdev;
470 struct pci_dev *pdev;
471 struct mii_bus *mii_bus;
472 struct phy_device *phydev;
473 struct work_struct task;
475 /* Flags that indicate current state of the adapter */
476 u32 flags;
478 /* local link state, to determine if a state change has occurred */
479 int link;
481 /* Configuration */
482 u8 rom_addr[ETH_ALEN];
483 u8 addr[ETH_ALEN];
484 bool has_eeprom;
485 u8 eeprom_data[2];
487 /* Spinlocks */
488 spinlock_t tcb_send_qlock;
489 spinlock_t tcb_ready_qlock;
490 spinlock_t send_hw_lock;
492 spinlock_t rcv_lock;
493 spinlock_t fbr_lock;
495 /* Packet Filter and look ahead size */
496 u32 packet_filter;
498 /* multicast list */
499 u32 multicast_addr_count;
500 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
502 /* Pointer to the device's PCI register space */
503 struct address_map __iomem *regs;
505 /* Registry parameters */
506 u8 wanted_flow; /* Flow we want for 802.3x flow control */
507 u32 registry_jumbo_packet; /* Max supported ethernet packet size */
509 /* Derived from the registry: */
510 u8 flowcontrol; /* flow control validated by the far-end */
512 /* Minimize init-time */
513 struct timer_list error_timer;
515 /* variable putting the phy into coma mode when boot up with no cable
516 * plugged in after 5 seconds
518 u8 boot_coma;
520 /* Next two used to save power information at power down. This
521 * information will be used during power up to set up parts of Power
522 * Management in JAGCore
524 u16 pdown_speed;
525 u8 pdown_duplex;
527 /* Tx Memory Variables */
528 struct tx_ring tx_ring;
530 /* Rx Memory Variables */
531 struct rx_ring rx_ring;
533 /* Stats */
534 struct ce_stats stats;
536 struct net_device_stats net_stats;
539 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
541 u32 reg;
542 int i;
544 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
545 * bits 7,1:0 both equal to 1, at least once after reset.
546 * Subsequent operations need only to check that bits 1:0 are equal
547 * to 1 prior to starting a single byte read/write
550 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
551 /* Read registers grouped in DWORD1 */
552 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
553 return -EIO;
555 /* I2C idle and Phy Queue Avail both true */
556 if ((reg & 0x3000) == 0x3000) {
557 if (status)
558 *status = reg;
559 return reg & 0xFF;
562 return -ETIMEDOUT;
565 /* eeprom_write - Write a byte to the ET1310's EEPROM
566 * @adapter: pointer to our private adapter structure
567 * @addr: the address to write
568 * @data: the value to write
570 * Returns 1 for a successful write.
572 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
574 struct pci_dev *pdev = adapter->pdev;
575 int index = 0;
576 int retries;
577 int err = 0;
578 int i2c_wack = 0;
579 int writeok = 0;
580 u32 status;
581 u32 val = 0;
583 /* For an EEPROM, an I2C single byte write is defined as a START
584 * condition followed by the device address, EEPROM address, one byte
585 * of data and a STOP condition. The STOP condition will trigger the
586 * EEPROM's internally timed write cycle to the nonvolatile memory.
587 * All inputs are disabled during this write cycle and the EEPROM will
588 * not respond to any access until the internal write is complete.
591 err = eeprom_wait_ready(pdev, NULL);
592 if (err < 0)
593 return err;
595 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0,
596 * and bits 1:0 both =0. Bit 5 should be set according to the
597 * type of EEPROM being accessed (1=two byte addressing, 0=one
598 * byte addressing).
600 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
601 LBCIF_CONTROL_LBCIF_ENABLE | LBCIF_CONTROL_I2C_WRITE))
602 return -EIO;
604 i2c_wack = 1;
606 /* Prepare EEPROM address for Step 3 */
608 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
609 /* Write the address to the LBCIF Address Register */
610 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
611 break;
612 /* Write the data to the LBCIF Data Register (the I2C write
613 * will begin).
615 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
616 break;
617 /* Monitor bit 1:0 of the LBCIF Status Register. When bits
618 * 1:0 are both equal to 1, the I2C write has completed and the
619 * internal write cycle of the EEPROM is about to start.
620 * (bits 1:0 = 01 is a legal state while waiting from both
621 * equal to 1, but bits 1:0 = 10 is invalid and implies that
622 * something is broken).
624 err = eeprom_wait_ready(pdev, &status);
625 if (err < 0)
626 return 0;
628 /* Check bit 3 of the LBCIF Status Register. If equal to 1,
629 * an error has occurred.Don't break here if we are revision
630 * 1, this is so we do a blind write for load bug.
632 if ((status & LBCIF_STATUS_GENERAL_ERROR)
633 && adapter->pdev->revision == 0)
634 break;
636 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an
637 * ACK error has occurred on the address phase of the write.
638 * This could be due to an actual hardware failure or the
639 * EEPROM may still be in its internal write cycle from a
640 * previous write. This write operation was ignored and must be
641 *repeated later.
643 if (status & LBCIF_STATUS_ACK_ERROR) {
644 /* This could be due to an actual hardware failure
645 * or the EEPROM may still be in its internal write
646 * cycle from a previous write. This write operation
647 * was ignored and must be repeated later.
649 udelay(10);
650 continue;
653 writeok = 1;
654 break;
657 /* Set bit 6 of the LBCIF Control Register = 0.
659 udelay(10);
661 while (i2c_wack) {
662 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
663 LBCIF_CONTROL_LBCIF_ENABLE))
664 writeok = 0;
666 /* Do read until internal ACK_ERROR goes away meaning write
667 * completed
669 do {
670 pci_write_config_dword(pdev,
671 LBCIF_ADDRESS_REGISTER,
672 addr);
673 do {
674 pci_read_config_dword(pdev,
675 LBCIF_DATA_REGISTER, &val);
676 } while ((val & 0x00010000) == 0);
677 } while (val & 0x00040000);
679 if ((val & 0xFF00) != 0xC000 || index == 10000)
680 break;
681 index++;
683 return writeok ? 0 : -EIO;
686 /* eeprom_read - Read a byte from the ET1310's EEPROM
687 * @adapter: pointer to our private adapter structure
688 * @addr: the address from which to read
689 * @pdata: a pointer to a byte in which to store the value of the read
690 * @eeprom_id: the ID of the EEPROM
691 * @addrmode: how the EEPROM is to be accessed
693 * Returns 1 for a successful read
695 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
697 struct pci_dev *pdev = adapter->pdev;
698 int err;
699 u32 status;
701 /* A single byte read is similar to the single byte write, with the
702 * exception of the data flow:
705 err = eeprom_wait_ready(pdev, NULL);
706 if (err < 0)
707 return err;
708 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0,
709 * and bits 1:0 both =0. Bit 5 should be set according to the type
710 * of EEPROM being accessed (1=two byte addressing, 0=one byte
711 * addressing).
713 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
714 LBCIF_CONTROL_LBCIF_ENABLE))
715 return -EIO;
716 /* Write the address to the LBCIF Address Register (I2C read will
717 * begin).
719 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
720 return -EIO;
721 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read
722 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
723 * has occurred).
725 err = eeprom_wait_ready(pdev, &status);
726 if (err < 0)
727 return err;
728 /* Regardless of error status, read data byte from LBCIF Data
729 * Register.
731 *pdata = err;
732 /* Check bit 2 of the LBCIF Status Register. If = 1,
733 * then an error has occurred.
735 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
738 static int et131x_init_eeprom(struct et131x_adapter *adapter)
740 struct pci_dev *pdev = adapter->pdev;
741 u8 eestatus;
743 /* We first need to check the EEPROM Status code located at offset
744 * 0xB2 of config space
746 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
748 /* THIS IS A WORKAROUND:
749 * I need to call this function twice to get my card in a
750 * LG M1 Express Dual running. I tried also a msleep before this
751 * function, because I thought there could be some time conditions
752 * but it didn't work. Call the whole function twice also work.
754 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
755 dev_err(&pdev->dev,
756 "Could not read PCI config space for EEPROM Status\n");
757 return -EIO;
760 /* Determine if the error(s) we care about are present. If they are
761 * present we need to fail.
763 if (eestatus & 0x4C) {
764 int write_failed = 0;
766 if (pdev->revision == 0x01) {
767 int i;
768 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
770 /* Re-write the first 4 bytes if we have an eeprom
771 * present and the revision id is 1, this fixes the
772 * corruption seen with 1310 B Silicon
774 for (i = 0; i < 3; i++)
775 if (eeprom_write(adapter, i, eedata[i]) < 0)
776 write_failed = 1;
778 if (pdev->revision != 0x01 || write_failed) {
779 dev_err(&pdev->dev,
780 "Fatal EEPROM Status Error - 0x%04x\n", eestatus);
782 /* This error could mean that there was an error
783 * reading the eeprom or that the eeprom doesn't exist.
784 * We will treat each case the same and not try to
785 * gather additional information that normally would
786 * come from the eeprom, like MAC Address
788 adapter->has_eeprom = 0;
789 return -EIO;
792 adapter->has_eeprom = 1;
794 /* Read the EEPROM for information regarding LED behavior. Refer to
795 * ET1310_phy.c, et131x_xcvr_init(), for its use.
797 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
798 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
800 if (adapter->eeprom_data[0] != 0xcd)
801 /* Disable all optional features */
802 adapter->eeprom_data[1] = 0x00;
804 return 0;
807 /* et131x_rx_dma_enable - re-start of Rx_DMA on the ET1310.
808 * @adapter: pointer to our adapter structure
810 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
812 /* Setup the receive dma configuration register for normal operation */
813 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE;
814 struct rx_ring *rx_ring = &adapter->rx_ring;
816 if (rx_ring->fbr[1]->buffsize == 4096)
817 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
818 else if (rx_ring->fbr[1]->buffsize == 8192)
819 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
820 else if (rx_ring->fbr[1]->buffsize == 16384)
821 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
823 csr |= ET_RXDMA_CSR_FBR0_ENABLE;
824 if (rx_ring->fbr[0]->buffsize == 256)
825 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
826 else if (rx_ring->fbr[0]->buffsize == 512)
827 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
828 else if (rx_ring->fbr[0]->buffsize == 1024)
829 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
830 writel(csr, &adapter->regs->rxdma.csr);
832 csr = readl(&adapter->regs->rxdma.csr);
833 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
834 udelay(5);
835 csr = readl(&adapter->regs->rxdma.csr);
836 if (csr & ET_RXDMA_CSR_HALT_STATUS) {
837 dev_err(&adapter->pdev->dev,
838 "RX Dma failed to exit halt state. CSR 0x%08x\n",
839 csr);
844 /* et131x_rx_dma_disable - Stop of Rx_DMA on the ET1310
845 * @adapter: pointer to our adapter structure
847 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
849 u32 csr;
850 /* Setup the receive dma configuration register */
851 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
852 &adapter->regs->rxdma.csr);
853 csr = readl(&adapter->regs->rxdma.csr);
854 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
855 udelay(5);
856 csr = readl(&adapter->regs->rxdma.csr);
857 if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
858 dev_err(&adapter->pdev->dev,
859 "RX Dma failed to enter halt state. CSR 0x%08x\n",
860 csr);
864 /* et131x_tx_dma_enable - re-start of Tx_DMA on the ET1310.
865 * @adapter: pointer to our adapter structure
867 * Mainly used after a return to the D0 (full-power) state from a lower state.
869 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
871 /* Setup the transmit dma configuration register for normal
872 * operation
874 writel(ET_TXDMA_SNGL_EPKT|(PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
875 &adapter->regs->txdma.csr);
878 static inline void add_10bit(u32 *v, int n)
880 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
883 static inline void add_12bit(u32 *v, int n)
885 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
888 /* et1310_config_mac_regs1 - Initialize the first part of MAC regs
889 * @adapter: pointer to our adapter structure
891 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
893 struct mac_regs __iomem *macregs = &adapter->regs->mac;
894 u32 station1;
895 u32 station2;
896 u32 ipg;
898 /* First we need to reset everything. Write to MAC configuration
899 * register 1 to perform reset.
901 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
902 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
903 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
904 &macregs->cfg1);
906 /* Next lets configure the MAC Inter-packet gap register */
907 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */
908 ipg |= 0x50 << 8; /* ifg enforce 0x50 */
909 writel(ipg, &macregs->ipg);
911 /* Next lets configure the MAC Half Duplex register */
912 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
913 writel(0x00A1F037, &macregs->hfdp);
915 /* Next lets configure the MAC Interface Control register */
916 writel(0, &macregs->if_ctrl);
918 /* Let's move on to setting up the mii management configuration */
919 writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
921 /* Next lets configure the MAC Station Address register. These
922 * values are read from the EEPROM during initialization and stored
923 * in the adapter structure. We write what is stored in the adapter
924 * structure to the MAC Station Address registers high and low. This
925 * station address is used for generating and checking pause control
926 * packets.
928 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
929 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
930 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
931 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
932 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
933 adapter->addr[2];
934 writel(station1, &macregs->station_addr_1);
935 writel(station2, &macregs->station_addr_2);
937 /* Max ethernet packet in bytes that will be passed by the mac without
938 * being truncated. Allow the MAC to pass 4 more than our max packet
939 * size. This is 4 for the Ethernet CRC.
941 * Packets larger than (registry_jumbo_packet) that do not contain a
942 * VLAN ID will be dropped by the Rx function.
944 writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
946 /* clear out MAC config reset */
947 writel(0, &macregs->cfg1);
950 /* et1310_config_mac_regs2 - Initialize the second part of MAC regs
951 * @adapter: pointer to our adapter structure
953 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
955 int32_t delay = 0;
956 struct mac_regs __iomem *mac = &adapter->regs->mac;
957 struct phy_device *phydev = adapter->phydev;
958 u32 cfg1;
959 u32 cfg2;
960 u32 ifctrl;
961 u32 ctl;
963 ctl = readl(&adapter->regs->txmac.ctl);
964 cfg1 = readl(&mac->cfg1);
965 cfg2 = readl(&mac->cfg2);
966 ifctrl = readl(&mac->if_ctrl);
968 /* Set up the if mode bits */
969 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
970 if (phydev->speed == SPEED_1000) {
971 cfg2 |= ET_MAC_CFG2_IFMODE_1000;
972 /* Phy mode bit */
973 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
974 } else {
975 cfg2 |= ET_MAC_CFG2_IFMODE_100;
976 ifctrl |= ET_MAC_IFCTRL_PHYMODE;
979 /* We need to enable Rx/Tx */
980 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
981 ET_MAC_CFG1_TX_FLOW;
982 /* Initialize loop back to off */
983 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
984 if (adapter->flowcontrol == FLOW_RXONLY ||
985 adapter->flowcontrol == FLOW_BOTH)
986 cfg1 |= ET_MAC_CFG1_RX_FLOW;
987 writel(cfg1, &mac->cfg1);
989 /* Now we need to initialize the MAC Configuration 2 register */
990 /* preamble 7, check length, huge frame off, pad crc, crc enable
991 * full duplex off
993 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
994 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
995 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
996 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE;
997 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
998 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
1000 /* Turn on duplex if needed */
1001 if (phydev->duplex == DUPLEX_FULL)
1002 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
1004 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
1005 if (phydev->duplex == DUPLEX_HALF)
1006 ifctrl |= ET_MAC_IFCTRL_GHDMODE;
1008 writel(ifctrl, &mac->if_ctrl);
1009 writel(cfg2, &mac->cfg2);
1011 do {
1012 udelay(10);
1013 delay++;
1014 cfg1 = readl(&mac->cfg1);
1015 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
1017 if (delay == 100) {
1018 dev_warn(&adapter->pdev->dev,
1019 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
1020 cfg1);
1023 /* Enable txmac */
1024 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
1025 writel(ctl, &adapter->regs->txmac.ctl);
1027 /* Ready to start the RXDMA/TXDMA engine */
1028 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
1029 et131x_rx_dma_enable(adapter);
1030 et131x_tx_dma_enable(adapter);
1034 /* et1310_in_phy_coma - check if the device is in phy coma
1035 * @adapter: pointer to our adapter structure
1037 * Returns 0 if the device is not in phy coma, 1 if it is in phy coma
1039 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
1041 u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1043 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
1046 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
1048 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1049 u32 hash1 = 0;
1050 u32 hash2 = 0;
1051 u32 hash3 = 0;
1052 u32 hash4 = 0;
1053 u32 pm_csr;
1055 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
1056 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not
1057 * specified) then we should pass NO multi-cast addresses to the
1058 * driver.
1060 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
1061 int i;
1063 /* Loop through our multicast array and set up the device */
1064 for (i = 0; i < adapter->multicast_addr_count; i++) {
1065 u32 result;
1067 result = ether_crc(6, adapter->multicast_list[i]);
1069 result = (result & 0x3F800000) >> 23;
1071 if (result < 32) {
1072 hash1 |= (1 << result);
1073 } else if ((31 < result) && (result < 64)) {
1074 result -= 32;
1075 hash2 |= (1 << result);
1076 } else if ((63 < result) && (result < 96)) {
1077 result -= 64;
1078 hash3 |= (1 << result);
1079 } else {
1080 result -= 96;
1081 hash4 |= (1 << result);
1086 /* Write out the new hash to the device */
1087 pm_csr = readl(&adapter->regs->global.pm_csr);
1088 if (!et1310_in_phy_coma(adapter)) {
1089 writel(hash1, &rxmac->multi_hash1);
1090 writel(hash2, &rxmac->multi_hash2);
1091 writel(hash3, &rxmac->multi_hash3);
1092 writel(hash4, &rxmac->multi_hash4);
1096 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
1098 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1099 u32 uni_pf1;
1100 u32 uni_pf2;
1101 u32 uni_pf3;
1102 u32 pm_csr;
1104 /* Set up unicast packet filter reg 3 to be the first two octets of
1105 * the MAC address for both address
1107 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1108 * MAC address for second address
1110 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1111 * MAC address for first address
1113 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1114 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1115 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1116 adapter->addr[1];
1118 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1119 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1120 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1121 adapter->addr[5];
1123 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1124 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1125 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1126 adapter->addr[5];
1128 pm_csr = readl(&adapter->regs->global.pm_csr);
1129 if (!et1310_in_phy_coma(adapter)) {
1130 writel(uni_pf1, &rxmac->uni_pf_addr1);
1131 writel(uni_pf2, &rxmac->uni_pf_addr2);
1132 writel(uni_pf3, &rxmac->uni_pf_addr3);
1136 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1138 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1139 struct phy_device *phydev = adapter->phydev;
1140 u32 sa_lo;
1141 u32 sa_hi = 0;
1142 u32 pf_ctrl = 0;
1144 /* Disable the MAC while it is being configured (also disable WOL) */
1145 writel(0x8, &rxmac->ctrl);
1147 /* Initialize WOL to disabled. */
1148 writel(0, &rxmac->crc0);
1149 writel(0, &rxmac->crc12);
1150 writel(0, &rxmac->crc34);
1152 /* We need to set the WOL mask0 - mask4 next. We initialize it to
1153 * its default Values of 0x00000000 because there are not WOL masks
1154 * as of this time.
1156 writel(0, &rxmac->mask0_word0);
1157 writel(0, &rxmac->mask0_word1);
1158 writel(0, &rxmac->mask0_word2);
1159 writel(0, &rxmac->mask0_word3);
1161 writel(0, &rxmac->mask1_word0);
1162 writel(0, &rxmac->mask1_word1);
1163 writel(0, &rxmac->mask1_word2);
1164 writel(0, &rxmac->mask1_word3);
1166 writel(0, &rxmac->mask2_word0);
1167 writel(0, &rxmac->mask2_word1);
1168 writel(0, &rxmac->mask2_word2);
1169 writel(0, &rxmac->mask2_word3);
1171 writel(0, &rxmac->mask3_word0);
1172 writel(0, &rxmac->mask3_word1);
1173 writel(0, &rxmac->mask3_word2);
1174 writel(0, &rxmac->mask3_word3);
1176 writel(0, &rxmac->mask4_word0);
1177 writel(0, &rxmac->mask4_word1);
1178 writel(0, &rxmac->mask4_word2);
1179 writel(0, &rxmac->mask4_word3);
1181 /* Lets setup the WOL Source Address */
1182 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1183 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1184 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1185 adapter->addr[5];
1186 writel(sa_lo, &rxmac->sa_lo);
1188 sa_hi = (u32) (adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1189 adapter->addr[1];
1190 writel(sa_hi, &rxmac->sa_hi);
1192 /* Disable all Packet Filtering */
1193 writel(0, &rxmac->pf_ctrl);
1195 /* Let's initialize the Unicast Packet filtering address */
1196 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1197 et1310_setup_device_for_unicast(adapter);
1198 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1199 } else {
1200 writel(0, &rxmac->uni_pf_addr1);
1201 writel(0, &rxmac->uni_pf_addr2);
1202 writel(0, &rxmac->uni_pf_addr3);
1205 /* Let's initialize the Multicast hash */
1206 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1207 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1208 et1310_setup_device_for_multicast(adapter);
1211 /* Runt packet filtering. Didn't work in version A silicon. */
1212 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1213 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1215 if (adapter->registry_jumbo_packet > 8192)
1216 /* In order to transmit jumbo packets greater than 8k, the
1217 * FIFO between RxMAC and RxDMA needs to be reduced in size
1218 * to (16k - Jumbo packet size). In order to implement this,
1219 * we must use "cut through" mode in the RxMAC, which chops
1220 * packets down into segments which are (max_size * 16). In
1221 * this case we selected 256 bytes, since this is the size of
1222 * the PCI-Express TLP's that the 1310 uses.
1224 * seg_en on, fc_en off, size 0x10
1226 writel(0x41, &rxmac->mcif_ctrl_max_seg);
1227 else
1228 writel(0, &rxmac->mcif_ctrl_max_seg);
1230 /* Initialize the MCIF water marks */
1231 writel(0, &rxmac->mcif_water_mark);
1233 /* Initialize the MIF control */
1234 writel(0, &rxmac->mif_ctrl);
1236 /* Initialize the Space Available Register */
1237 writel(0, &rxmac->space_avail);
1239 /* Initialize the the mif_ctrl register
1240 * bit 3: Receive code error. One or more nibbles were signaled as
1241 * errors during the reception of the packet. Clear this
1242 * bit in Gigabit, set it in 100Mbit. This was derived
1243 * experimentally at UNH.
1244 * bit 4: Receive CRC error. The packet's CRC did not match the
1245 * internally generated CRC.
1246 * bit 5: Receive length check error. Indicates that frame length
1247 * field value in the packet does not match the actual data
1248 * byte length and is not a type field.
1249 * bit 16: Receive frame truncated.
1250 * bit 17: Drop packet enable
1252 if (phydev && phydev->speed == SPEED_100)
1253 writel(0x30038, &rxmac->mif_ctrl);
1254 else
1255 writel(0x30030, &rxmac->mif_ctrl);
1257 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet
1258 * filter is always enabled since it is where the runt packets are
1259 * supposed to be dropped. For version A silicon, runt packet
1260 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1261 * but we still leave the packet filter on.
1263 writel(pf_ctrl, &rxmac->pf_ctrl);
1264 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1267 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1269 struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1271 /* We need to update the Control Frame Parameters
1272 * cfpt - control frame pause timer set to 64 (0x40)
1273 * cfep - control frame extended pause timer set to 0x0
1275 if (adapter->flowcontrol == FLOW_NONE)
1276 writel(0, &txmac->cf_param);
1277 else
1278 writel(0x40, &txmac->cf_param);
1281 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1283 struct macstat_regs __iomem *macstat =
1284 &adapter->regs->macstat;
1286 /* Next we need to initialize all the macstat registers to zero on
1287 * the device.
1289 writel(0, &macstat->txrx_0_64_byte_frames);
1290 writel(0, &macstat->txrx_65_127_byte_frames);
1291 writel(0, &macstat->txrx_128_255_byte_frames);
1292 writel(0, &macstat->txrx_256_511_byte_frames);
1293 writel(0, &macstat->txrx_512_1023_byte_frames);
1294 writel(0, &macstat->txrx_1024_1518_byte_frames);
1295 writel(0, &macstat->txrx_1519_1522_gvln_frames);
1297 writel(0, &macstat->rx_bytes);
1298 writel(0, &macstat->rx_packets);
1299 writel(0, &macstat->rx_fcs_errs);
1300 writel(0, &macstat->rx_multicast_packets);
1301 writel(0, &macstat->rx_broadcast_packets);
1302 writel(0, &macstat->rx_control_frames);
1303 writel(0, &macstat->rx_pause_frames);
1304 writel(0, &macstat->rx_unknown_opcodes);
1305 writel(0, &macstat->rx_align_errs);
1306 writel(0, &macstat->rx_frame_len_errs);
1307 writel(0, &macstat->rx_code_errs);
1308 writel(0, &macstat->rx_carrier_sense_errs);
1309 writel(0, &macstat->rx_undersize_packets);
1310 writel(0, &macstat->rx_oversize_packets);
1311 writel(0, &macstat->rx_fragment_packets);
1312 writel(0, &macstat->rx_jabbers);
1313 writel(0, &macstat->rx_drops);
1315 writel(0, &macstat->tx_bytes);
1316 writel(0, &macstat->tx_packets);
1317 writel(0, &macstat->tx_multicast_packets);
1318 writel(0, &macstat->tx_broadcast_packets);
1319 writel(0, &macstat->tx_pause_frames);
1320 writel(0, &macstat->tx_deferred);
1321 writel(0, &macstat->tx_excessive_deferred);
1322 writel(0, &macstat->tx_single_collisions);
1323 writel(0, &macstat->tx_multiple_collisions);
1324 writel(0, &macstat->tx_late_collisions);
1325 writel(0, &macstat->tx_excessive_collisions);
1326 writel(0, &macstat->tx_total_collisions);
1327 writel(0, &macstat->tx_pause_honored_frames);
1328 writel(0, &macstat->tx_drops);
1329 writel(0, &macstat->tx_jabbers);
1330 writel(0, &macstat->tx_fcs_errs);
1331 writel(0, &macstat->tx_control_frames);
1332 writel(0, &macstat->tx_oversize_frames);
1333 writel(0, &macstat->tx_undersize_frames);
1334 writel(0, &macstat->tx_fragments);
1335 writel(0, &macstat->carry_reg1);
1336 writel(0, &macstat->carry_reg2);
1338 /* Unmask any counters that we want to track the overflow of.
1339 * Initially this will be all counters. It may become clear later
1340 * that we do not need to track all counters.
1342 writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1343 writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1346 /* et131x_phy_mii_read - Read from the PHY through the MII Interface on the MAC
1347 * @adapter: pointer to our private adapter structure
1348 * @addr: the address of the transceiver
1349 * @reg: the register to read
1350 * @value: pointer to a 16-bit value in which the value will be stored
1352 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1353 u8 reg, u16 *value)
1355 struct mac_regs __iomem *mac = &adapter->regs->mac;
1356 int status = 0;
1357 u32 delay = 0;
1358 u32 mii_addr;
1359 u32 mii_cmd;
1360 u32 mii_indicator;
1362 /* Save a local copy of the registers we are dealing with so we can
1363 * set them back
1365 mii_addr = readl(&mac->mii_mgmt_addr);
1366 mii_cmd = readl(&mac->mii_mgmt_cmd);
1368 /* Stop the current operation */
1369 writel(0, &mac->mii_mgmt_cmd);
1371 /* Set up the register we need to read from on the correct PHY */
1372 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1374 writel(0x1, &mac->mii_mgmt_cmd);
1376 do {
1377 udelay(50);
1378 delay++;
1379 mii_indicator = readl(&mac->mii_mgmt_indicator);
1380 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1382 /* If we hit the max delay, we could not read the register */
1383 if (delay == 50) {
1384 dev_warn(&adapter->pdev->dev,
1385 "reg 0x%08x could not be read\n", reg);
1386 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1387 mii_indicator);
1389 status = -EIO;
1390 goto out;
1393 /* If we hit here we were able to read the register and we need to
1394 * return the value to the caller
1396 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1398 out:
1399 /* Stop the read operation */
1400 writel(0, &mac->mii_mgmt_cmd);
1402 /* set the registers we touched back to the state at which we entered
1403 * this function
1405 writel(mii_addr, &mac->mii_mgmt_addr);
1406 writel(mii_cmd, &mac->mii_mgmt_cmd);
1408 return status;
1411 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1413 struct phy_device *phydev = adapter->phydev;
1415 if (!phydev)
1416 return -EIO;
1418 return et131x_phy_mii_read(adapter, phydev->addr, reg, value);
1421 /* et131x_mii_write - Write to a PHY reg through the MII interface of the MAC
1422 * @adapter: pointer to our private adapter structure
1423 * @reg: the register to read
1424 * @value: 16-bit value to write
1426 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1427 u16 value)
1429 struct mac_regs __iomem *mac = &adapter->regs->mac;
1430 int status = 0;
1431 u32 delay = 0;
1432 u32 mii_addr;
1433 u32 mii_cmd;
1434 u32 mii_indicator;
1436 /* Save a local copy of the registers we are dealing with so we can
1437 * set them back
1439 mii_addr = readl(&mac->mii_mgmt_addr);
1440 mii_cmd = readl(&mac->mii_mgmt_cmd);
1442 /* Stop the current operation */
1443 writel(0, &mac->mii_mgmt_cmd);
1445 /* Set up the register we need to write to on the correct PHY */
1446 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1448 /* Add the value to write to the registers to the mac */
1449 writel(value, &mac->mii_mgmt_ctrl);
1451 do {
1452 udelay(50);
1453 delay++;
1454 mii_indicator = readl(&mac->mii_mgmt_indicator);
1455 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1457 /* If we hit the max delay, we could not write the register */
1458 if (delay == 100) {
1459 u16 tmp;
1461 dev_warn(&adapter->pdev->dev,
1462 "reg 0x%08x could not be written", reg);
1463 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n",
1464 mii_indicator);
1465 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n",
1466 readl(&mac->mii_mgmt_cmd));
1468 et131x_mii_read(adapter, reg, &tmp);
1470 status = -EIO;
1472 /* Stop the write operation */
1473 writel(0, &mac->mii_mgmt_cmd);
1475 /* set the registers we touched back to the state at which we entered
1476 * this function
1478 writel(mii_addr, &mac->mii_mgmt_addr);
1479 writel(mii_cmd, &mac->mii_mgmt_cmd);
1481 return status;
1484 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1485 u16 regnum,
1486 u16 bitnum,
1487 u8 *value)
1489 u16 reg;
1490 u16 mask = 1 << bitnum;
1492 /* Read the requested register */
1493 et131x_mii_read(adapter, regnum, &reg);
1495 *value = (reg & mask) >> bitnum;
1498 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1500 struct phy_device *phydev = adapter->phydev;
1502 if (phydev->duplex == DUPLEX_HALF) {
1503 adapter->flowcontrol = FLOW_NONE;
1504 } else {
1505 char remote_pause, remote_async_pause;
1507 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1508 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1510 if (remote_pause && remote_async_pause) {
1511 adapter->flowcontrol = adapter->wanted_flow;
1512 } else if (remote_pause && !remote_async_pause) {
1513 if (adapter->wanted_flow == FLOW_BOTH)
1514 adapter->flowcontrol = FLOW_BOTH;
1515 else
1516 adapter->flowcontrol = FLOW_NONE;
1517 } else if (!remote_pause && !remote_async_pause) {
1518 adapter->flowcontrol = FLOW_NONE;
1519 } else {
1520 if (adapter->wanted_flow == FLOW_BOTH)
1521 adapter->flowcontrol = FLOW_RXONLY;
1522 else
1523 adapter->flowcontrol = FLOW_NONE;
1528 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1529 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1531 struct ce_stats *stats = &adapter->stats;
1532 struct macstat_regs __iomem *macstat =
1533 &adapter->regs->macstat;
1535 stats->tx_collisions += readl(&macstat->tx_total_collisions);
1536 stats->tx_first_collisions += readl(&macstat->tx_single_collisions);
1537 stats->tx_deferred += readl(&macstat->tx_deferred);
1538 stats->tx_excessive_collisions +=
1539 readl(&macstat->tx_multiple_collisions);
1540 stats->tx_late_collisions += readl(&macstat->tx_late_collisions);
1541 stats->tx_underflows += readl(&macstat->tx_undersize_frames);
1542 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames);
1544 stats->rx_align_errs += readl(&macstat->rx_align_errs);
1545 stats->rx_crc_errs += readl(&macstat->rx_code_errs);
1546 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops);
1547 stats->rx_overflows += readl(&macstat->rx_oversize_packets);
1548 stats->rx_code_violations += readl(&macstat->rx_fcs_errs);
1549 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs);
1550 stats->rx_other_errs += readl(&macstat->rx_fragment_packets);
1553 /* et1310_handle_macstat_interrupt
1555 * One of the MACSTAT counters has wrapped. Update the local copy of
1556 * the statistics held in the adapter structure, checking the "wrap"
1557 * bit for each counter.
1559 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1561 u32 carry_reg1;
1562 u32 carry_reg2;
1564 /* Read the interrupt bits from the register(s). These are Clear On
1565 * Write.
1567 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1568 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1570 writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1571 writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1573 /* We need to do update the host copy of all the MAC_STAT counters.
1574 * For each counter, check it's overflow bit. If the overflow bit is
1575 * set, then increment the host version of the count by one complete
1576 * revolution of the counter. This routine is called when the counter
1577 * block indicates that one of the counters has wrapped.
1579 if (carry_reg1 & (1 << 14))
1580 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT;
1581 if (carry_reg1 & (1 << 8))
1582 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT;
1583 if (carry_reg1 & (1 << 7))
1584 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT;
1585 if (carry_reg1 & (1 << 2))
1586 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT;
1587 if (carry_reg1 & (1 << 6))
1588 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT;
1589 if (carry_reg1 & (1 << 3))
1590 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT;
1591 if (carry_reg1 & (1 << 0))
1592 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT;
1593 if (carry_reg2 & (1 << 16))
1594 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT;
1595 if (carry_reg2 & (1 << 15))
1596 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT;
1597 if (carry_reg2 & (1 << 6))
1598 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1599 if (carry_reg2 & (1 << 8))
1600 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT;
1601 if (carry_reg2 & (1 << 5))
1602 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1603 if (carry_reg2 & (1 << 4))
1604 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT;
1605 if (carry_reg2 & (1 << 2))
1606 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT;
1609 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1611 struct net_device *netdev = bus->priv;
1612 struct et131x_adapter *adapter = netdev_priv(netdev);
1613 u16 value;
1614 int ret;
1616 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1618 if (ret < 0)
1619 return ret;
1620 else
1621 return value;
1624 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1625 int reg, u16 value)
1627 struct net_device *netdev = bus->priv;
1628 struct et131x_adapter *adapter = netdev_priv(netdev);
1630 return et131x_mii_write(adapter, phy_addr, reg, value);
1633 /* et1310_phy_power_switch - PHY power control
1634 * @adapter: device to control
1635 * @down: true for off/false for back on
1637 * one hundred, ten, one thousand megs
1638 * How would you like to have your LAN accessed
1639 * Can't you see that this code processed
1640 * Phy power, phy power..
1642 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1644 u16 data;
1645 struct phy_device *phydev = adapter->phydev;
1647 et131x_mii_read(adapter, MII_BMCR, &data);
1648 data &= ~BMCR_PDOWN;
1649 if (down)
1650 data |= BMCR_PDOWN;
1651 et131x_mii_write(adapter, phydev->addr, MII_BMCR, data);
1654 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1655 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1657 u16 lcr2;
1658 struct phy_device *phydev = adapter->phydev;
1660 /* Set the LED behavior such that LED 1 indicates speed (off =
1661 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1662 * link and activity (on for link, blink off for activity).
1664 * NOTE: Some customizations have been added here for specific
1665 * vendors; The LED behavior is now determined by vendor data in the
1666 * EEPROM. However, the above description is the default.
1668 if ((adapter->eeprom_data[1] & 0x4) == 0) {
1669 et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1671 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1672 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1674 if ((adapter->eeprom_data[1] & 0x8) == 0)
1675 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1676 else
1677 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1679 et131x_mii_write(adapter, phydev->addr, PHY_LED_2, lcr2);
1683 /* et131x_configure_global_regs - configure JAGCore global regs
1685 * Used to configure the global registers on the JAGCore
1687 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1689 struct global_regs __iomem *regs = &adapter->regs->global;
1691 writel(0, &regs->rxq_start_addr);
1692 writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1694 if (adapter->registry_jumbo_packet < 2048) {
1695 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1696 * block of RAM that the driver can split between Tx
1697 * and Rx as it desires. Our default is to split it
1698 * 50/50:
1700 writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1701 writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1702 } else if (adapter->registry_jumbo_packet < 8192) {
1703 /* For jumbo packets > 2k but < 8k, split 50-50. */
1704 writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1705 writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1706 } else {
1707 /* 9216 is the only packet size greater than 8k that
1708 * is available. The Tx buffer has to be big enough
1709 * for one whole packet on the Tx side. We'll make
1710 * the Tx 9408, and give the rest to Rx
1712 writel(0x01b3, &regs->rxq_end_addr);
1713 writel(0x01b4, &regs->txq_start_addr);
1716 /* Initialize the loopback register. Disable all loopbacks. */
1717 writel(0, &regs->loopback);
1719 /* MSI Register */
1720 writel(0, &regs->msi_config);
1722 /* By default, disable the watchdog timer. It will be enabled when
1723 * a packet is queued.
1725 writel(0, &regs->watchdog_timer);
1728 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1729 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1731 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1732 struct rx_ring *rx_local = &adapter->rx_ring;
1733 struct fbr_desc *fbr_entry;
1734 u32 entry;
1735 u32 psr_num_des;
1736 unsigned long flags;
1737 u8 id;
1739 /* Halt RXDMA to perform the reconfigure. */
1740 et131x_rx_dma_disable(adapter);
1742 /* Load the completion writeback physical address */
1743 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1744 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1746 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1748 /* Set the address and parameters of the packet status ring into the
1749 * 1310's registers
1751 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1752 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1753 writel(rx_local->psr_num_entries - 1, &rx_dma->psr_num_des);
1754 writel(0, &rx_dma->psr_full_offset);
1756 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1757 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1758 &rx_dma->psr_min_des);
1760 spin_lock_irqsave(&adapter->rcv_lock, flags);
1762 /* These local variables track the PSR in the adapter structure */
1763 rx_local->local_psr_full = 0;
1765 for (id = 0; id < NUM_FBRS; id++) {
1766 u32 __iomem *num_des;
1767 u32 __iomem *full_offset;
1768 u32 __iomem *min_des;
1769 u32 __iomem *base_hi;
1770 u32 __iomem *base_lo;
1771 struct fbr_lookup *fbr = rx_local->fbr[id];
1773 if (id == 0) {
1774 num_des = &rx_dma->fbr0_num_des;
1775 full_offset = &rx_dma->fbr0_full_offset;
1776 min_des = &rx_dma->fbr0_min_des;
1777 base_hi = &rx_dma->fbr0_base_hi;
1778 base_lo = &rx_dma->fbr0_base_lo;
1779 } else {
1780 num_des = &rx_dma->fbr1_num_des;
1781 full_offset = &rx_dma->fbr1_full_offset;
1782 min_des = &rx_dma->fbr1_min_des;
1783 base_hi = &rx_dma->fbr1_base_hi;
1784 base_lo = &rx_dma->fbr1_base_lo;
1787 /* Now's the best time to initialize FBR contents */
1788 fbr_entry = fbr->ring_virtaddr;
1789 for (entry = 0; entry < fbr->num_entries; entry++) {
1790 fbr_entry->addr_hi = fbr->bus_high[entry];
1791 fbr_entry->addr_lo = fbr->bus_low[entry];
1792 fbr_entry->word2 = entry;
1793 fbr_entry++;
1796 /* Set the address and parameters of Free buffer ring 1 and 0
1797 * into the 1310's registers
1799 writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1800 writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1801 writel(fbr->num_entries - 1, num_des);
1802 writel(ET_DMA10_WRAP, full_offset);
1804 /* This variable tracks the free buffer ring 1 full position,
1805 * so it has to match the above.
1807 fbr->local_full = ET_DMA10_WRAP;
1808 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1809 min_des);
1812 /* Program the number of packets we will receive before generating an
1813 * interrupt.
1814 * For version B silicon, this value gets updated once autoneg is
1815 *complete.
1817 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1819 /* The "time_done" is not working correctly to coalesce interrupts
1820 * after a given time period, but rather is giving us an interrupt
1821 * regardless of whether we have received packets.
1822 * This value gets updated once autoneg is complete.
1824 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1826 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1829 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1831 * Configure the transmit engine with the ring buffers we have created
1832 * and prepare it for use.
1834 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1836 struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1837 struct tx_ring *tx_ring = &adapter->tx_ring;
1839 /* Load the hardware with the start of the transmit descriptor ring. */
1840 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1841 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1843 /* Initialise the transmit DMA engine */
1844 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1846 /* Load the completion writeback physical address */
1847 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1848 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1850 *tx_ring->tx_status = 0;
1852 writel(0, &txdma->service_request);
1853 tx_ring->send_idx = 0;
1856 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1857 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1859 /* Configure the JAGCore */
1860 et131x_configure_global_regs(adapter);
1862 et1310_config_mac_regs1(adapter);
1864 /* Configure the MMC registers */
1865 /* All we need to do is initialize the Memory Control Register */
1866 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1868 et1310_config_rxmac_regs(adapter);
1869 et1310_config_txmac_regs(adapter);
1871 et131x_config_rx_dma_regs(adapter);
1872 et131x_config_tx_dma_regs(adapter);
1874 et1310_config_macstat_regs(adapter);
1876 et1310_phy_power_switch(adapter, 0);
1877 et131x_xcvr_init(adapter);
1880 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1881 static void et131x_soft_reset(struct et131x_adapter *adapter)
1883 u32 reg;
1885 /* Disable MAC Core */
1886 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1887 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1888 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1889 writel(reg, &adapter->regs->mac.cfg1);
1891 reg = ET_RESET_ALL;
1892 writel(reg, &adapter->regs->global.sw_reset);
1894 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1895 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1896 writel(reg, &adapter->regs->mac.cfg1);
1897 writel(0, &adapter->regs->mac.cfg1);
1900 /* et131x_enable_interrupts - enable interrupt
1902 * Enable the appropriate interrupts on the ET131x according to our
1903 * configuration
1905 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1907 u32 mask;
1909 /* Enable all global interrupts */
1910 if (adapter->flowcontrol == FLOW_TXONLY ||
1911 adapter->flowcontrol == FLOW_BOTH)
1912 mask = INT_MASK_ENABLE;
1913 else
1914 mask = INT_MASK_ENABLE_NO_FLOW;
1916 writel(mask, &adapter->regs->global.int_mask);
1919 /* et131x_disable_interrupts - interrupt disable
1921 * Block all interrupts from the et131x device at the device itself
1923 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1925 /* Disable all global interrupts */
1926 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1929 /* et131x_tx_dma_disable - Stop of Tx_DMA on the ET1310 */
1930 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1932 /* Setup the tramsmit dma configuration register */
1933 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1934 &adapter->regs->txdma.csr);
1937 /* et131x_enable_txrx - Enable tx/rx queues */
1938 static void et131x_enable_txrx(struct net_device *netdev)
1940 struct et131x_adapter *adapter = netdev_priv(netdev);
1942 /* Enable the Tx and Rx DMA engines (if not already enabled) */
1943 et131x_rx_dma_enable(adapter);
1944 et131x_tx_dma_enable(adapter);
1946 /* Enable device interrupts */
1947 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1948 et131x_enable_interrupts(adapter);
1950 /* We're ready to move some data, so start the queue */
1951 netif_start_queue(netdev);
1954 /* et131x_disable_txrx - Disable tx/rx queues */
1955 static void et131x_disable_txrx(struct net_device *netdev)
1957 struct et131x_adapter *adapter = netdev_priv(netdev);
1959 /* First thing is to stop the queue */
1960 netif_stop_queue(netdev);
1962 /* Stop the Tx and Rx DMA engines */
1963 et131x_rx_dma_disable(adapter);
1964 et131x_tx_dma_disable(adapter);
1966 /* Disable device interrupts */
1967 et131x_disable_interrupts(adapter);
1970 /* et131x_init_send - Initialize send data structures */
1971 static void et131x_init_send(struct et131x_adapter *adapter)
1973 u32 ct;
1974 struct tx_ring *tx_ring = &adapter->tx_ring;
1975 struct tcb *tcb = tx_ring->tcb_ring;
1977 tx_ring->tcb_qhead = tcb;
1979 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1981 /* Go through and set up each TCB */
1982 for (ct = 0; ct++ < NUM_TCB; tcb++)
1983 /* Set the link pointer in HW TCB to the next TCB in the
1984 * chain
1986 tcb->next = tcb + 1;
1988 /* Set the tail pointer */
1989 tcb--;
1990 tx_ring->tcb_qtail = tcb;
1991 tcb->next = NULL;
1992 /* Curr send queue should now be empty */
1993 tx_ring->send_head = NULL;
1994 tx_ring->send_tail = NULL;
1997 /* et1310_enable_phy_coma - called when network cable is unplugged
1999 * driver receive an phy status change interrupt while in D0 and check that
2000 * phy_status is down.
2002 * -- gate off JAGCore;
2003 * -- set gigE PHY in Coma mode
2004 * -- wake on phy_interrupt; Perform software reset JAGCore,
2005 * re-initialize jagcore and gigE PHY
2007 * Add D0-ASPM-PhyLinkDown Support:
2008 * -- while in D0, when there is a phy_interrupt indicating phy link
2009 * down status, call the MPSetPhyComa routine to enter this active
2010 * state power saving mode
2011 * -- while in D0-ASPM-PhyLinkDown mode, when there is a phy_interrupt
2012 * indicating linkup status, call the MPDisablePhyComa routine to
2013 * restore JAGCore and gigE PHY
2015 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
2017 unsigned long flags;
2018 u32 pmcsr;
2020 pmcsr = readl(&adapter->regs->global.pm_csr);
2022 /* Save the GbE PHY speed and duplex modes. Need to restore this
2023 * when cable is plugged back in
2026 /* Stop sending packets. */
2027 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2028 adapter->flags |= FMP_ADAPTER_LOWER_POWER;
2029 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2031 /* Wait for outstanding Receive packets */
2033 et131x_disable_txrx(adapter->netdev);
2035 /* Gate off JAGCore 3 clock domains */
2036 pmcsr &= ~ET_PMCSR_INIT;
2037 writel(pmcsr, &adapter->regs->global.pm_csr);
2039 /* Program gigE PHY in to Coma mode */
2040 pmcsr |= ET_PM_PHY_SW_COMA;
2041 writel(pmcsr, &adapter->regs->global.pm_csr);
2044 /* et1310_disable_phy_coma - Disable the Phy Coma Mode */
2045 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
2047 u32 pmcsr;
2049 pmcsr = readl(&adapter->regs->global.pm_csr);
2051 /* Disable phy_sw_coma register and re-enable JAGCore clocks */
2052 pmcsr |= ET_PMCSR_INIT;
2053 pmcsr &= ~ET_PM_PHY_SW_COMA;
2054 writel(pmcsr, &adapter->regs->global.pm_csr);
2056 /* Restore the GbE PHY speed and duplex modes;
2057 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
2060 /* Re-initialize the send structures */
2061 et131x_init_send(adapter);
2063 /* Bring the device back to the state it was during init prior to
2064 * autonegotiation being complete. This way, when we get the auto-neg
2065 * complete interrupt, we can complete init by calling ConfigMacREGS2.
2067 et131x_soft_reset(adapter);
2069 /* setup et1310 as per the documentation ?? */
2070 et131x_adapter_setup(adapter);
2072 /* Allow Tx to restart */
2073 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
2075 et131x_enable_txrx(adapter->netdev);
2078 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
2080 u32 tmp_free_buff_ring = *free_buff_ring;
2082 tmp_free_buff_ring++;
2083 /* This works for all cases where limit < 1024. The 1023 case
2084 * works because 1023++ is 1024 which means the if condition is not
2085 * taken but the carry of the bit into the wrap bit toggles the wrap
2086 * value correctly
2088 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
2089 tmp_free_buff_ring &= ~ET_DMA10_MASK;
2090 tmp_free_buff_ring ^= ET_DMA10_WRAP;
2092 /* For the 1023 case */
2093 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
2094 *free_buff_ring = tmp_free_buff_ring;
2095 return tmp_free_buff_ring;
2098 /* et131x_rx_dma_memory_alloc
2100 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
2101 * and the Packet Status Ring.
2103 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
2105 u8 id;
2106 u32 i, j;
2107 u32 bufsize;
2108 u32 pktstat_ringsize;
2109 u32 fbr_chunksize;
2110 struct rx_ring *rx_ring = &adapter->rx_ring;
2111 struct fbr_lookup *fbr;
2113 /* Alloc memory for the lookup table */
2114 rx_ring->fbr[0] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2115 if (rx_ring->fbr[0] == NULL)
2116 return -ENOMEM;
2117 rx_ring->fbr[1] = kmalloc(sizeof(struct fbr_lookup), GFP_KERNEL);
2118 if (rx_ring->fbr[1] == NULL)
2119 return -ENOMEM;
2121 /* The first thing we will do is configure the sizes of the buffer
2122 * rings. These will change based on jumbo packet support. Larger
2123 * jumbo packets increases the size of each entry in FBR0, and the
2124 * number of entries in FBR0, while at the same time decreasing the
2125 * number of entries in FBR1.
2127 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1
2128 * entries are huge in order to accommodate a "jumbo" frame, then it
2129 * will have less entries. Conversely, FBR1 will now be relied upon
2130 * to carry more "normal" frames, thus it's entry size also increases
2131 * and the number of entries goes up too (since it now carries
2132 * "small" + "regular" packets.
2134 * In this scheme, we try to maintain 512 entries between the two
2135 * rings. Also, FBR1 remains a constant size - when it's size doubles
2136 * the number of entries halves. FBR0 increases in size, however.
2139 if (adapter->registry_jumbo_packet < 2048) {
2140 rx_ring->fbr[0]->buffsize = 256;
2141 rx_ring->fbr[0]->num_entries = 512;
2142 rx_ring->fbr[1]->buffsize = 2048;
2143 rx_ring->fbr[1]->num_entries = 512;
2144 } else if (adapter->registry_jumbo_packet < 4096) {
2145 rx_ring->fbr[0]->buffsize = 512;
2146 rx_ring->fbr[0]->num_entries = 1024;
2147 rx_ring->fbr[1]->buffsize = 4096;
2148 rx_ring->fbr[1]->num_entries = 512;
2149 } else {
2150 rx_ring->fbr[0]->buffsize = 1024;
2151 rx_ring->fbr[0]->num_entries = 768;
2152 rx_ring->fbr[1]->buffsize = 16384;
2153 rx_ring->fbr[1]->num_entries = 128;
2156 rx_ring->psr_num_entries = rx_ring->fbr[0]->num_entries +
2157 rx_ring->fbr[1]->num_entries;
2159 for (id = 0; id < NUM_FBRS; id++) {
2160 fbr = rx_ring->fbr[id];
2161 /* Allocate an area of memory for Free Buffer Ring */
2162 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2163 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2164 bufsize,
2165 &fbr->ring_physaddr,
2166 GFP_KERNEL);
2167 if (!fbr->ring_virtaddr) {
2168 dev_err(&adapter->pdev->dev,
2169 "Cannot alloc memory for Free Buffer Ring %d\n", id);
2170 return -ENOMEM;
2174 for (id = 0; id < NUM_FBRS; id++) {
2175 fbr = rx_ring->fbr[id];
2176 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
2178 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
2179 dma_addr_t fbr_tmp_physaddr;
2181 fbr->mem_virtaddrs[i] = dma_alloc_coherent(
2182 &adapter->pdev->dev, fbr_chunksize,
2183 &fbr->mem_physaddrs[i],
2184 GFP_KERNEL);
2186 if (!fbr->mem_virtaddrs[i]) {
2187 dev_err(&adapter->pdev->dev,
2188 "Could not alloc memory\n");
2189 return -ENOMEM;
2192 /* See NOTE in "Save Physical Address" comment above */
2193 fbr_tmp_physaddr = fbr->mem_physaddrs[i];
2195 for (j = 0; j < FBR_CHUNKS; j++) {
2196 u32 index = (i * FBR_CHUNKS) + j;
2198 /* Save the Virtual address of this index for
2199 * quick access later
2201 fbr->virt[index] = (u8 *)fbr->mem_virtaddrs[i] +
2202 (j * fbr->buffsize);
2204 /* now store the physical address in the
2205 * descriptor so the device can access it
2207 fbr->bus_high[index] =
2208 upper_32_bits(fbr_tmp_physaddr);
2209 fbr->bus_low[index] =
2210 lower_32_bits(fbr_tmp_physaddr);
2212 fbr_tmp_physaddr += fbr->buffsize;
2217 /* Allocate an area of memory for FIFO of Packet Status ring entries */
2218 pktstat_ringsize =
2219 sizeof(struct pkt_stat_desc) * rx_ring->psr_num_entries;
2221 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
2222 pktstat_ringsize,
2223 &rx_ring->ps_ring_physaddr,
2224 GFP_KERNEL);
2226 if (!rx_ring->ps_ring_virtaddr) {
2227 dev_err(&adapter->pdev->dev,
2228 "Cannot alloc memory for Packet Status Ring\n");
2229 return -ENOMEM;
2232 /* NOTE : dma_alloc_coherent(), used above to alloc DMA regions,
2233 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2234 * are ever returned, make sure the high part is retrieved here before
2235 * storing the adjusted address.
2238 /* Allocate an area of memory for writeback of status information */
2239 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
2240 sizeof(struct rx_status_block),
2241 &rx_ring->rx_status_bus,
2242 GFP_KERNEL);
2243 if (!rx_ring->rx_status_block) {
2244 dev_err(&adapter->pdev->dev,
2245 "Cannot alloc memory for Status Block\n");
2246 return -ENOMEM;
2248 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
2250 /* The RFDs are going to be put on lists later on, so initialize the
2251 * lists now.
2253 INIT_LIST_HEAD(&rx_ring->recv_list);
2254 return 0;
2257 /* et131x_rx_dma_memory_free - Free all memory allocated within this module */
2258 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2260 u8 id;
2261 u32 index;
2262 u32 bufsize;
2263 u32 pktstat_ringsize;
2264 struct rfd *rfd;
2265 struct rx_ring *rx_ring = &adapter->rx_ring;
2266 struct fbr_lookup *fbr;
2268 /* Free RFDs and associated packet descriptors */
2269 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2271 while (!list_empty(&rx_ring->recv_list)) {
2272 rfd = list_entry(rx_ring->recv_list.next,
2273 struct rfd, list_node);
2275 list_del(&rfd->list_node);
2276 rfd->skb = NULL;
2277 kfree(rfd);
2280 /* Free Free Buffer Rings */
2281 for (id = 0; id < NUM_FBRS; id++) {
2282 fbr = rx_ring->fbr[id];
2284 if (!fbr || !fbr->ring_virtaddr)
2285 continue;
2287 /* First the packet memory */
2288 for (index = 0;
2289 index < fbr->num_entries / FBR_CHUNKS;
2290 index++) {
2291 if (fbr->mem_virtaddrs[index]) {
2292 bufsize = fbr->buffsize * FBR_CHUNKS;
2294 dma_free_coherent(&adapter->pdev->dev,
2295 bufsize,
2296 fbr->mem_virtaddrs[index],
2297 fbr->mem_physaddrs[index]);
2299 fbr->mem_virtaddrs[index] = NULL;
2303 bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2305 dma_free_coherent(&adapter->pdev->dev,
2306 bufsize,
2307 fbr->ring_virtaddr,
2308 fbr->ring_physaddr);
2310 fbr->ring_virtaddr = NULL;
2313 /* Free Packet Status Ring */
2314 if (rx_ring->ps_ring_virtaddr) {
2315 pktstat_ringsize = sizeof(struct pkt_stat_desc) *
2316 rx_ring->psr_num_entries;
2318 dma_free_coherent(&adapter->pdev->dev, pktstat_ringsize,
2319 rx_ring->ps_ring_virtaddr,
2320 rx_ring->ps_ring_physaddr);
2322 rx_ring->ps_ring_virtaddr = NULL;
2325 /* Free area of memory for the writeback of status information */
2326 if (rx_ring->rx_status_block) {
2327 dma_free_coherent(&adapter->pdev->dev,
2328 sizeof(struct rx_status_block),
2329 rx_ring->rx_status_block, rx_ring->rx_status_bus);
2330 rx_ring->rx_status_block = NULL;
2333 /* Free the FBR Lookup Table */
2334 kfree(rx_ring->fbr[0]);
2335 kfree(rx_ring->fbr[1]);
2337 /* Reset Counters */
2338 rx_ring->num_ready_recv = 0;
2341 /* et131x_init_recv - Initialize receive data structures */
2342 static int et131x_init_recv(struct et131x_adapter *adapter)
2344 struct rfd *rfd;
2345 u32 rfdct;
2346 struct rx_ring *rx_ring = &adapter->rx_ring;
2348 /* Setup each RFD */
2349 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2350 rfd = kzalloc(sizeof(struct rfd), GFP_ATOMIC | GFP_DMA);
2351 if (!rfd)
2352 return -ENOMEM;
2354 rfd->skb = NULL;
2356 /* Add this RFD to the recv_list */
2357 list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2359 /* Increment the available RFD's */
2360 rx_ring->num_ready_recv++;
2363 return 0;
2366 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2367 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2369 struct phy_device *phydev = adapter->phydev;
2371 /* For version B silicon, we do not use the RxDMA timer for 10 and 100
2372 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2374 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2375 writel(0, &adapter->regs->rxdma.max_pkt_time);
2376 writel(1, &adapter->regs->rxdma.num_pkt_done);
2380 /* NICReturnRFD - Recycle a RFD and put it back onto the receive list
2381 * @adapter: pointer to our adapter
2382 * @rfd: pointer to the RFD
2384 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2386 struct rx_ring *rx_local = &adapter->rx_ring;
2387 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2388 u16 buff_index = rfd->bufferindex;
2389 u8 ring_index = rfd->ringindex;
2390 unsigned long flags;
2391 struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2393 /* We don't use any of the OOB data besides status. Otherwise, we
2394 * need to clean up OOB data
2396 if (buff_index < fbr->num_entries) {
2397 u32 free_buff_ring;
2398 u32 __iomem *offset;
2399 struct fbr_desc *next;
2401 spin_lock_irqsave(&adapter->fbr_lock, flags);
2403 if (ring_index == 0)
2404 offset = &rx_dma->fbr0_full_offset;
2405 else
2406 offset = &rx_dma->fbr1_full_offset;
2408 next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2409 INDEX10(fbr->local_full);
2411 /* Handle the Free Buffer Ring advancement here. Write
2412 * the PA / Buffer Index for the returned buffer into
2413 * the oldest (next to be freed)FBR entry
2415 next->addr_hi = fbr->bus_high[buff_index];
2416 next->addr_lo = fbr->bus_low[buff_index];
2417 next->word2 = buff_index;
2419 free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2420 fbr->num_entries - 1);
2421 writel(free_buff_ring, offset);
2423 spin_unlock_irqrestore(&adapter->fbr_lock, flags);
2424 } else {
2425 dev_err(&adapter->pdev->dev,
2426 "%s illegal Buffer Index returned\n", __func__);
2429 /* The processing on this RFD is done, so put it back on the tail of
2430 * our list
2432 spin_lock_irqsave(&adapter->rcv_lock, flags);
2433 list_add_tail(&rfd->list_node, &rx_local->recv_list);
2434 rx_local->num_ready_recv++;
2435 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2437 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2440 /* nic_rx_pkts - Checks the hardware for available packets
2442 * Returns rfd, a pointer to our MPRFD.
2444 * Checks the hardware for available packets, using completion ring
2445 * If packets are available, it gets an RFD from the recv_list, attaches
2446 * the packet to it, puts the RFD in the RecvPendList, and also returns
2447 * the pointer to the RFD.
2449 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2451 struct rx_ring *rx_local = &adapter->rx_ring;
2452 struct rx_status_block *status;
2453 struct pkt_stat_desc *psr;
2454 struct rfd *rfd;
2455 u32 i;
2456 u8 *buf;
2457 unsigned long flags;
2458 struct list_head *element;
2459 u8 ring_index;
2460 u16 buff_index;
2461 u32 len;
2462 u32 word0;
2463 u32 word1;
2464 struct sk_buff *skb;
2465 struct fbr_lookup *fbr;
2467 /* RX Status block is written by the DMA engine prior to every
2468 * interrupt. It contains the next to be used entry in the Packet
2469 * Status Ring, and also the two Free Buffer rings.
2471 status = rx_local->rx_status_block;
2472 word1 = status->word1 >> 16; /* Get the useful bits */
2474 /* Check the PSR and wrap bits do not match */
2475 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2476 return NULL; /* Looks like this ring is not updated yet */
2478 /* The packet status ring indicates that data is available. */
2479 psr = (struct pkt_stat_desc *) (rx_local->ps_ring_virtaddr) +
2480 (rx_local->local_psr_full & 0xFFF);
2482 /* Grab any information that is required once the PSR is advanced,
2483 * since we can no longer rely on the memory being accurate
2485 len = psr->word1 & 0xFFFF;
2486 ring_index = (psr->word1 >> 26) & 0x03;
2487 fbr = rx_local->fbr[ring_index];
2488 buff_index = (psr->word1 >> 16) & 0x3FF;
2489 word0 = psr->word0;
2491 /* Indicate that we have used this PSR entry. */
2492 /* FIXME wrap 12 */
2493 add_12bit(&rx_local->local_psr_full, 1);
2494 if (
2495 (rx_local->local_psr_full & 0xFFF) > rx_local->psr_num_entries - 1) {
2496 /* Clear psr full and toggle the wrap bit */
2497 rx_local->local_psr_full &= ~0xFFF;
2498 rx_local->local_psr_full ^= 0x1000;
2501 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2503 if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2504 /* Illegal buffer or ring index cannot be used by S/W*/
2505 dev_err(&adapter->pdev->dev,
2506 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2507 rx_local->local_psr_full & 0xFFF, len, buff_index);
2508 return NULL;
2511 /* Get and fill the RFD. */
2512 spin_lock_irqsave(&adapter->rcv_lock, flags);
2514 element = rx_local->recv_list.next;
2515 rfd = list_entry(element, struct rfd, list_node);
2517 if (!rfd) {
2518 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2519 return NULL;
2522 list_del(&rfd->list_node);
2523 rx_local->num_ready_recv--;
2525 spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2527 rfd->bufferindex = buff_index;
2528 rfd->ringindex = ring_index;
2530 /* In V1 silicon, there is a bug which screws up filtering of runt
2531 * packets. Therefore runt packet filtering is disabled in the MAC and
2532 * the packets are dropped here. They are also counted here.
2534 if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2535 adapter->stats.rx_other_errs++;
2536 len = 0;
2539 if (len == 0) {
2540 rfd->len = 0;
2541 goto out;
2544 /* Determine if this is a multicast packet coming in */
2545 if ((word0 & ALCATEL_MULTICAST_PKT) &&
2546 !(word0 & ALCATEL_BROADCAST_PKT)) {
2547 /* Promiscuous mode and Multicast mode are not mutually
2548 * exclusive as was first thought. I guess Promiscuous is just
2549 * considered a super-set of the other filters. Generally filter
2550 * is 0x2b when in promiscuous mode.
2552 if ((adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST)
2553 && !(adapter->packet_filter & ET131X_PACKET_TYPE_PROMISCUOUS)
2554 && !(adapter->packet_filter &
2555 ET131X_PACKET_TYPE_ALL_MULTICAST)) {
2556 buf = fbr->virt[buff_index];
2558 /* Loop through our list to see if the destination
2559 * address of this packet matches one in our list.
2561 for (i = 0; i < adapter->multicast_addr_count; i++) {
2562 if (buf[0] == adapter->multicast_list[i][0]
2563 && buf[1] == adapter->multicast_list[i][1]
2564 && buf[2] == adapter->multicast_list[i][2]
2565 && buf[3] == adapter->multicast_list[i][3]
2566 && buf[4] == adapter->multicast_list[i][4]
2567 && buf[5] == adapter->multicast_list[i][5]) {
2568 break;
2572 /* If our index is equal to the number of Multicast
2573 * address we have, then this means we did not find this
2574 * packet's matching address in our list. Set the len to
2575 * zero, so we free our RFD when we return from this
2576 * function.
2578 if (i == adapter->multicast_addr_count)
2579 len = 0;
2582 if (len > 0)
2583 adapter->stats.multicast_pkts_rcvd++;
2584 } else if (word0 & ALCATEL_BROADCAST_PKT) {
2585 adapter->stats.broadcast_pkts_rcvd++;
2586 } else {
2587 /* Not sure what this counter measures in promiscuous mode.
2588 * Perhaps we should check the MAC address to see if it is
2589 * directed to us in promiscuous mode.
2591 adapter->stats.unicast_pkts_rcvd++;
2594 if (!len) {
2595 rfd->len = 0;
2596 goto out;
2599 rfd->len = len;
2601 skb = dev_alloc_skb(rfd->len + 2);
2602 if (!skb) {
2603 dev_err(&adapter->pdev->dev, "Couldn't alloc an SKB for Rx\n");
2604 return NULL;
2607 adapter->net_stats.rx_bytes += rfd->len;
2609 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2611 skb->protocol = eth_type_trans(skb, adapter->netdev);
2612 skb->ip_summed = CHECKSUM_NONE;
2613 netif_rx_ni(skb);
2615 out:
2616 nic_return_rfd(adapter, rfd);
2617 return rfd;
2620 /* et131x_handle_recv_interrupt - Interrupt handler for receive processing
2622 * Assumption, Rcv spinlock has been acquired.
2624 static void et131x_handle_recv_interrupt(struct et131x_adapter *adapter)
2626 struct rfd *rfd = NULL;
2627 u32 count = 0;
2628 bool done = true;
2629 struct rx_ring *rx_ring = &adapter->rx_ring;
2631 /* Process up to available RFD's */
2632 while (count < NUM_PACKETS_HANDLED) {
2633 if (list_empty(&rx_ring->recv_list)) {
2634 WARN_ON(rx_ring->num_ready_recv != 0);
2635 done = false;
2636 break;
2639 rfd = nic_rx_pkts(adapter);
2641 if (rfd == NULL)
2642 break;
2644 /* Do not receive any packets until a filter has been set.
2645 * Do not receive any packets until we have link.
2646 * If length is zero, return the RFD in order to advance the
2647 * Free buffer ring.
2649 if (!adapter->packet_filter ||
2650 !netif_carrier_ok(adapter->netdev) ||
2651 rfd->len == 0)
2652 continue;
2654 /* Increment the number of packets we received */
2655 adapter->net_stats.rx_packets++;
2657 /* Set the status on the packet, either resources or success */
2658 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2659 dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2661 count++;
2664 if (count == NUM_PACKETS_HANDLED || !done) {
2665 rx_ring->unfinished_receives = true;
2666 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2667 &adapter->regs->global.watchdog_timer);
2668 } else
2669 /* Watchdog timer will disable itself if appropriate. */
2670 rx_ring->unfinished_receives = false;
2673 /* et131x_tx_dma_memory_alloc
2675 * Allocates memory that will be visible both to the device and to the CPU.
2676 * The OS will pass us packets, pointers to which we will insert in the Tx
2677 * Descriptor queue. The device will read this queue to find the packets in
2678 * memory. The device will update the "status" in memory each time it xmits a
2679 * packet.
2681 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2683 int desc_size = 0;
2684 struct tx_ring *tx_ring = &adapter->tx_ring;
2686 /* Allocate memory for the TCB's (Transmit Control Block) */
2687 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2688 GFP_ATOMIC | GFP_DMA);
2689 if (!tx_ring->tcb_ring)
2690 return -ENOMEM;
2692 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2693 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2694 desc_size,
2695 &tx_ring->tx_desc_ring_pa,
2696 GFP_KERNEL);
2697 if (!tx_ring->tx_desc_ring) {
2698 dev_err(&adapter->pdev->dev,
2699 "Cannot alloc memory for Tx Ring\n");
2700 return -ENOMEM;
2703 /* Save physical address
2705 * NOTE: dma_alloc_coherent(), used above to alloc DMA regions,
2706 * ALWAYS returns SAC (32-bit) addresses. If DAC (64-bit) addresses
2707 * are ever returned, make sure the high part is retrieved here before
2708 * storing the adjusted address.
2710 /* Allocate memory for the Tx status block */
2711 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2712 sizeof(u32),
2713 &tx_ring->tx_status_pa,
2714 GFP_KERNEL);
2715 if (!tx_ring->tx_status_pa) {
2716 dev_err(&adapter->pdev->dev,
2717 "Cannot alloc memory for Tx status block\n");
2718 return -ENOMEM;
2720 return 0;
2723 /* et131x_tx_dma_memory_free - Free all memory allocated within this module */
2724 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2726 int desc_size = 0;
2727 struct tx_ring *tx_ring = &adapter->tx_ring;
2729 if (tx_ring->tx_desc_ring) {
2730 /* Free memory relating to Tx rings here */
2731 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2732 dma_free_coherent(&adapter->pdev->dev,
2733 desc_size,
2734 tx_ring->tx_desc_ring,
2735 tx_ring->tx_desc_ring_pa);
2736 tx_ring->tx_desc_ring = NULL;
2739 /* Free memory for the Tx status block */
2740 if (tx_ring->tx_status) {
2741 dma_free_coherent(&adapter->pdev->dev,
2742 sizeof(u32),
2743 tx_ring->tx_status,
2744 tx_ring->tx_status_pa);
2746 tx_ring->tx_status = NULL;
2748 /* Free the memory for the tcb structures */
2749 kfree(tx_ring->tcb_ring);
2752 /* nic_send_packet - NIC specific send handler for version B silicon.
2753 * @adapter: pointer to our adapter
2754 * @tcb: pointer to struct tcb
2756 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2758 u32 i;
2759 struct tx_desc desc[24]; /* 24 x 16 byte */
2760 u32 frag = 0;
2761 u32 thiscopy, remainder;
2762 struct sk_buff *skb = tcb->skb;
2763 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2764 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2765 unsigned long flags;
2766 struct phy_device *phydev = adapter->phydev;
2767 dma_addr_t dma_addr;
2768 struct tx_ring *tx_ring = &adapter->tx_ring;
2770 /* Part of the optimizations of this send routine restrict us to
2771 * sending 24 fragments at a pass. In practice we should never see
2772 * more than 5 fragments.
2774 * NOTE: The older version of this function (below) can handle any
2775 * number of fragments. If needed, we can call this function,
2776 * although it is less efficient.
2779 /* nr_frags should be no more than 18. */
2780 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2782 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2784 for (i = 0; i < nr_frags; i++) {
2785 /* If there is something in this element, lets get a
2786 * descriptor from the ring and get the necessary data
2788 if (i == 0) {
2789 /* If the fragments are smaller than a standard MTU,
2790 * then map them to a single descriptor in the Tx
2791 * Desc ring. However, if they're larger, as is
2792 * possible with support for jumbo packets, then
2793 * split them each across 2 descriptors.
2795 * This will work until we determine why the hardware
2796 * doesn't seem to like large fragments.
2798 if (skb_headlen(skb) <= 1514) {
2799 /* Low 16bits are length, high is vlan and
2800 * unused currently so zero
2802 desc[frag].len_vlan = skb_headlen(skb);
2803 dma_addr = dma_map_single(&adapter->pdev->dev,
2804 skb->data,
2805 skb_headlen(skb),
2806 DMA_TO_DEVICE);
2807 desc[frag].addr_lo = lower_32_bits(dma_addr);
2808 desc[frag].addr_hi = upper_32_bits(dma_addr);
2809 frag++;
2810 } else {
2811 desc[frag].len_vlan = skb_headlen(skb) / 2;
2812 dma_addr = dma_map_single(&adapter->pdev->dev,
2813 skb->data,
2814 (skb_headlen(skb) / 2),
2815 DMA_TO_DEVICE);
2816 desc[frag].addr_lo = lower_32_bits(dma_addr);
2817 desc[frag].addr_hi = upper_32_bits(dma_addr);
2818 frag++;
2820 desc[frag].len_vlan = skb_headlen(skb) / 2;
2821 dma_addr = dma_map_single(&adapter->pdev->dev,
2822 skb->data +
2823 (skb_headlen(skb) / 2),
2824 (skb_headlen(skb) / 2),
2825 DMA_TO_DEVICE);
2826 desc[frag].addr_lo = lower_32_bits(dma_addr);
2827 desc[frag].addr_hi = upper_32_bits(dma_addr);
2828 frag++;
2830 } else {
2831 desc[frag].len_vlan = frags[i - 1].size;
2832 dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2833 &frags[i - 1],
2835 frags[i - 1].size,
2836 DMA_TO_DEVICE);
2837 desc[frag].addr_lo = lower_32_bits(dma_addr);
2838 desc[frag].addr_hi = upper_32_bits(dma_addr);
2839 frag++;
2843 if (phydev && phydev->speed == SPEED_1000) {
2844 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2845 /* Last element & Interrupt flag */
2846 desc[frag - 1].flags =
2847 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2848 tx_ring->since_irq = 0;
2849 } else { /* Last element */
2850 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2852 } else
2853 desc[frag - 1].flags =
2854 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2856 desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2858 tcb->index_start = tx_ring->send_idx;
2859 tcb->stale = 0;
2861 spin_lock_irqsave(&adapter->send_hw_lock, flags);
2863 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2865 if (thiscopy >= frag) {
2866 remainder = 0;
2867 thiscopy = frag;
2868 } else {
2869 remainder = frag - thiscopy;
2872 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2873 desc,
2874 sizeof(struct tx_desc) * thiscopy);
2876 add_10bit(&tx_ring->send_idx, thiscopy);
2878 if (INDEX10(tx_ring->send_idx) == 0 ||
2879 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2880 tx_ring->send_idx &= ~ET_DMA10_MASK;
2881 tx_ring->send_idx ^= ET_DMA10_WRAP;
2884 if (remainder) {
2885 memcpy(tx_ring->tx_desc_ring,
2886 desc + thiscopy,
2887 sizeof(struct tx_desc) * remainder);
2889 add_10bit(&tx_ring->send_idx, remainder);
2892 if (INDEX10(tx_ring->send_idx) == 0) {
2893 if (tx_ring->send_idx)
2894 tcb->index = NUM_DESC_PER_RING_TX - 1;
2895 else
2896 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2897 } else
2898 tcb->index = tx_ring->send_idx - 1;
2900 spin_lock(&adapter->tcb_send_qlock);
2902 if (tx_ring->send_tail)
2903 tx_ring->send_tail->next = tcb;
2904 else
2905 tx_ring->send_head = tcb;
2907 tx_ring->send_tail = tcb;
2909 WARN_ON(tcb->next != NULL);
2911 tx_ring->used++;
2913 spin_unlock(&adapter->tcb_send_qlock);
2915 /* Write the new write pointer back to the device. */
2916 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2918 /* For Gig only, we use Tx Interrupt coalescing. Enable the software
2919 * timer to wake us up if this packet isn't followed by N more.
2921 if (phydev && phydev->speed == SPEED_1000) {
2922 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2923 &adapter->regs->global.watchdog_timer);
2925 spin_unlock_irqrestore(&adapter->send_hw_lock, flags);
2927 return 0;
2930 /* send_packet - Do the work to send a packet
2932 * Assumption: Send spinlock has been acquired
2934 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2936 int status;
2937 struct tcb *tcb;
2938 u16 *shbufva;
2939 unsigned long flags;
2940 struct tx_ring *tx_ring = &adapter->tx_ring;
2942 /* All packets must have at least a MAC address and a protocol type */
2943 if (skb->len < ETH_HLEN)
2944 return -EIO;
2946 /* Get a TCB for this packet */
2947 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2949 tcb = tx_ring->tcb_qhead;
2951 if (tcb == NULL) {
2952 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2953 return -ENOMEM;
2956 tx_ring->tcb_qhead = tcb->next;
2958 if (tx_ring->tcb_qhead == NULL)
2959 tx_ring->tcb_qtail = NULL;
2961 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2963 tcb->skb = skb;
2965 if (skb->data != NULL && skb_headlen(skb) >= 6) {
2966 shbufva = (u16 *) skb->data;
2968 if ((shbufva[0] == 0xffff) &&
2969 (shbufva[1] == 0xffff) && (shbufva[2] == 0xffff))
2970 tcb->flags |= FMP_DEST_BROAD;
2971 else if ((shbufva[0] & 0x3) == 0x0001)
2972 tcb->flags |= FMP_DEST_MULTI;
2975 tcb->next = NULL;
2977 /* Call the NIC specific send handler. */
2978 status = nic_send_packet(adapter, tcb);
2980 if (status != 0) {
2981 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2983 if (tx_ring->tcb_qtail)
2984 tx_ring->tcb_qtail->next = tcb;
2985 else
2986 /* Apparently ready Q is empty. */
2987 tx_ring->tcb_qhead = tcb;
2989 tx_ring->tcb_qtail = tcb;
2990 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2991 return status;
2993 WARN_ON(tx_ring->used > NUM_TCB);
2994 return 0;
2997 /* et131x_send_packets - This function is called by the OS to send packets */
2998 static int et131x_send_packets(struct sk_buff *skb, struct net_device *netdev)
3000 int status = 0;
3001 struct et131x_adapter *adapter = netdev_priv(netdev);
3002 struct tx_ring *tx_ring = &adapter->tx_ring;
3004 /* Send these packets
3006 * NOTE: The Linux Tx entry point is only given one packet at a time
3007 * to Tx, so the PacketCount and it's array used makes no sense here
3010 /* TCB is not available */
3011 if (tx_ring->used >= NUM_TCB) {
3012 /* NOTE: If there's an error on send, no need to queue the
3013 * packet under Linux; if we just send an error up to the
3014 * netif layer, it will resend the skb to us.
3016 status = -ENOMEM;
3017 } else {
3018 /* We need to see if the link is up; if it's not, make the
3019 * netif layer think we're good and drop the packet
3021 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3022 !netif_carrier_ok(netdev)) {
3023 dev_kfree_skb_any(skb);
3024 skb = NULL;
3026 adapter->net_stats.tx_dropped++;
3027 } else {
3028 status = send_packet(skb, adapter);
3029 if (status != 0 && status != -ENOMEM) {
3030 /* On any other error, make netif think we're
3031 * OK and drop the packet
3033 dev_kfree_skb_any(skb);
3034 skb = NULL;
3035 adapter->net_stats.tx_dropped++;
3039 return status;
3042 /* free_send_packet - Recycle a struct tcb
3043 * @adapter: pointer to our adapter
3044 * @tcb: pointer to struct tcb
3046 * Complete the packet if necessary
3047 * Assumption - Send spinlock has been acquired
3049 static inline void free_send_packet(struct et131x_adapter *adapter,
3050 struct tcb *tcb)
3052 unsigned long flags;
3053 struct tx_desc *desc = NULL;
3054 struct net_device_stats *stats = &adapter->net_stats;
3055 struct tx_ring *tx_ring = &adapter->tx_ring;
3056 u64 dma_addr;
3058 if (tcb->flags & FMP_DEST_BROAD)
3059 atomic_inc(&adapter->stats.broadcast_pkts_xmtd);
3060 else if (tcb->flags & FMP_DEST_MULTI)
3061 atomic_inc(&adapter->stats.multicast_pkts_xmtd);
3062 else
3063 atomic_inc(&adapter->stats.unicast_pkts_xmtd);
3065 if (tcb->skb) {
3066 stats->tx_bytes += tcb->skb->len;
3068 /* Iterate through the TX descriptors on the ring
3069 * corresponding to this packet and umap the fragments
3070 * they point to
3072 do {
3073 desc = tx_ring->tx_desc_ring +
3074 INDEX10(tcb->index_start);
3076 dma_addr = desc->addr_lo;
3077 dma_addr |= (u64)desc->addr_hi << 32;
3079 dma_unmap_single(&adapter->pdev->dev,
3080 dma_addr,
3081 desc->len_vlan, DMA_TO_DEVICE);
3083 add_10bit(&tcb->index_start, 1);
3084 if (INDEX10(tcb->index_start) >=
3085 NUM_DESC_PER_RING_TX) {
3086 tcb->index_start &= ~ET_DMA10_MASK;
3087 tcb->index_start ^= ET_DMA10_WRAP;
3089 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
3091 dev_kfree_skb_any(tcb->skb);
3094 memset(tcb, 0, sizeof(struct tcb));
3096 /* Add the TCB to the Ready Q */
3097 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
3099 adapter->net_stats.tx_packets++;
3101 if (tx_ring->tcb_qtail)
3102 tx_ring->tcb_qtail->next = tcb;
3103 else
3104 /* Apparently ready Q is empty. */
3105 tx_ring->tcb_qhead = tcb;
3107 tx_ring->tcb_qtail = tcb;
3109 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
3110 WARN_ON(tx_ring->used < 0);
3113 /* et131x_free_busy_send_packets - Free and complete the stopped active sends
3115 * Assumption - Send spinlock has been acquired
3117 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
3119 struct tcb *tcb;
3120 unsigned long flags;
3121 u32 freed = 0;
3122 struct tx_ring *tx_ring = &adapter->tx_ring;
3124 /* Any packets being sent? Check the first TCB on the send list */
3125 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3127 tcb = tx_ring->send_head;
3129 while (tcb != NULL && freed < NUM_TCB) {
3130 struct tcb *next = tcb->next;
3132 tx_ring->send_head = next;
3134 if (next == NULL)
3135 tx_ring->send_tail = NULL;
3137 tx_ring->used--;
3139 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3141 freed++;
3142 free_send_packet(adapter, tcb);
3144 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3146 tcb = tx_ring->send_head;
3149 WARN_ON(freed == NUM_TCB);
3151 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3153 tx_ring->used = 0;
3156 /* et131x_handle_send_interrupt - Interrupt handler for sending processing
3158 * Re-claim the send resources, complete sends and get more to send from
3159 * the send wait queue.
3161 * Assumption - Send spinlock has been acquired
3163 static void et131x_handle_send_interrupt(struct et131x_adapter *adapter)
3165 unsigned long flags;
3166 u32 serviced;
3167 struct tcb *tcb;
3168 u32 index;
3169 struct tx_ring *tx_ring = &adapter->tx_ring;
3171 serviced = readl(&adapter->regs->txdma.new_service_complete);
3172 index = INDEX10(serviced);
3174 /* Has the ring wrapped? Process any descriptors that do not have
3175 * the same "wrap" indicator as the current completion indicator
3177 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3179 tcb = tx_ring->send_head;
3181 while (tcb &&
3182 ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
3183 index < INDEX10(tcb->index)) {
3184 tx_ring->used--;
3185 tx_ring->send_head = tcb->next;
3186 if (tcb->next == NULL)
3187 tx_ring->send_tail = NULL;
3189 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3190 free_send_packet(adapter, tcb);
3191 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3193 /* Goto the next packet */
3194 tcb = tx_ring->send_head;
3196 while (tcb &&
3197 !((serviced ^ tcb->index) & ET_DMA10_WRAP)
3198 && index > (tcb->index & ET_DMA10_MASK)) {
3199 tx_ring->used--;
3200 tx_ring->send_head = tcb->next;
3201 if (tcb->next == NULL)
3202 tx_ring->send_tail = NULL;
3204 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3205 free_send_packet(adapter, tcb);
3206 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3208 /* Goto the next packet */
3209 tcb = tx_ring->send_head;
3212 /* Wake up the queue when we hit a low-water mark */
3213 if (tx_ring->used <= NUM_TCB / 3)
3214 netif_wake_queue(adapter->netdev);
3216 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3219 static int et131x_get_settings(struct net_device *netdev,
3220 struct ethtool_cmd *cmd)
3222 struct et131x_adapter *adapter = netdev_priv(netdev);
3224 return phy_ethtool_gset(adapter->phydev, cmd);
3227 static int et131x_set_settings(struct net_device *netdev,
3228 struct ethtool_cmd *cmd)
3230 struct et131x_adapter *adapter = netdev_priv(netdev);
3232 return phy_ethtool_sset(adapter->phydev, cmd);
3235 static int et131x_get_regs_len(struct net_device *netdev)
3237 #define ET131X_REGS_LEN 256
3238 return ET131X_REGS_LEN * sizeof(u32);
3241 static void et131x_get_regs(struct net_device *netdev,
3242 struct ethtool_regs *regs, void *regs_data)
3244 struct et131x_adapter *adapter = netdev_priv(netdev);
3245 struct address_map __iomem *aregs = adapter->regs;
3246 u32 *regs_buff = regs_data;
3247 u32 num = 0;
3248 u16 tmp;
3250 memset(regs_data, 0, et131x_get_regs_len(netdev));
3252 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
3253 adapter->pdev->device;
3255 /* PHY regs */
3256 et131x_mii_read(adapter, MII_BMCR, &tmp);
3257 regs_buff[num++] = tmp;
3258 et131x_mii_read(adapter, MII_BMSR, &tmp);
3259 regs_buff[num++] = tmp;
3260 et131x_mii_read(adapter, MII_PHYSID1, &tmp);
3261 regs_buff[num++] = tmp;
3262 et131x_mii_read(adapter, MII_PHYSID2, &tmp);
3263 regs_buff[num++] = tmp;
3264 et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
3265 regs_buff[num++] = tmp;
3266 et131x_mii_read(adapter, MII_LPA, &tmp);
3267 regs_buff[num++] = tmp;
3268 et131x_mii_read(adapter, MII_EXPANSION, &tmp);
3269 regs_buff[num++] = tmp;
3270 /* Autoneg next page transmit reg */
3271 et131x_mii_read(adapter, 0x07, &tmp);
3272 regs_buff[num++] = tmp;
3273 /* Link partner next page reg */
3274 et131x_mii_read(adapter, 0x08, &tmp);
3275 regs_buff[num++] = tmp;
3276 et131x_mii_read(adapter, MII_CTRL1000, &tmp);
3277 regs_buff[num++] = tmp;
3278 et131x_mii_read(adapter, MII_STAT1000, &tmp);
3279 regs_buff[num++] = tmp;
3280 et131x_mii_read(adapter, 0x0b, &tmp);
3281 regs_buff[num++] = tmp;
3282 et131x_mii_read(adapter, 0x0c, &tmp);
3283 regs_buff[num++] = tmp;
3284 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
3285 regs_buff[num++] = tmp;
3286 et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
3287 regs_buff[num++] = tmp;
3288 et131x_mii_read(adapter, MII_ESTATUS, &tmp);
3289 regs_buff[num++] = tmp;
3291 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
3292 regs_buff[num++] = tmp;
3293 et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
3294 regs_buff[num++] = tmp;
3295 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
3296 regs_buff[num++] = tmp;
3297 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
3298 regs_buff[num++] = tmp;
3299 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
3300 regs_buff[num++] = tmp;
3302 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
3303 regs_buff[num++] = tmp;
3304 et131x_mii_read(adapter, PHY_CONFIG, &tmp);
3305 regs_buff[num++] = tmp;
3306 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
3307 regs_buff[num++] = tmp;
3308 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
3309 regs_buff[num++] = tmp;
3310 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
3311 regs_buff[num++] = tmp;
3312 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
3313 regs_buff[num++] = tmp;
3314 et131x_mii_read(adapter, PHY_LED_1, &tmp);
3315 regs_buff[num++] = tmp;
3316 et131x_mii_read(adapter, PHY_LED_2, &tmp);
3317 regs_buff[num++] = tmp;
3319 /* Global regs */
3320 regs_buff[num++] = readl(&aregs->global.txq_start_addr);
3321 regs_buff[num++] = readl(&aregs->global.txq_end_addr);
3322 regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
3323 regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
3324 regs_buff[num++] = readl(&aregs->global.pm_csr);
3325 regs_buff[num++] = adapter->stats.interrupt_status;
3326 regs_buff[num++] = readl(&aregs->global.int_mask);
3327 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
3328 regs_buff[num++] = readl(&aregs->global.int_status_alias);
3329 regs_buff[num++] = readl(&aregs->global.sw_reset);
3330 regs_buff[num++] = readl(&aregs->global.slv_timer);
3331 regs_buff[num++] = readl(&aregs->global.msi_config);
3332 regs_buff[num++] = readl(&aregs->global.loopback);
3333 regs_buff[num++] = readl(&aregs->global.watchdog_timer);
3335 /* TXDMA regs */
3336 regs_buff[num++] = readl(&aregs->txdma.csr);
3337 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
3338 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
3339 regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
3340 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
3341 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
3342 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
3343 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
3344 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
3345 regs_buff[num++] = readl(&aregs->txdma.service_request);
3346 regs_buff[num++] = readl(&aregs->txdma.service_complete);
3347 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
3348 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
3349 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
3350 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
3351 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
3352 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
3353 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
3354 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
3355 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
3356 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
3357 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
3358 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
3359 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
3360 regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
3361 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
3363 /* RXDMA regs */
3364 regs_buff[num++] = readl(&aregs->rxdma.csr);
3365 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
3366 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
3367 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
3368 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
3369 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
3370 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
3371 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
3372 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
3373 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
3374 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
3375 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
3376 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
3377 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
3378 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
3379 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
3380 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
3381 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
3382 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
3383 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
3384 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
3385 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
3386 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
3387 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
3388 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
3389 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
3390 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
3391 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
3392 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
3395 static void et131x_get_drvinfo(struct net_device *netdev,
3396 struct ethtool_drvinfo *info)
3398 struct et131x_adapter *adapter = netdev_priv(netdev);
3400 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
3401 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
3402 strlcpy(info->bus_info, pci_name(adapter->pdev),
3403 sizeof(info->bus_info));
3406 static struct ethtool_ops et131x_ethtool_ops = {
3407 .get_settings = et131x_get_settings,
3408 .set_settings = et131x_set_settings,
3409 .get_drvinfo = et131x_get_drvinfo,
3410 .get_regs_len = et131x_get_regs_len,
3411 .get_regs = et131x_get_regs,
3412 .get_link = ethtool_op_get_link,
3415 /* et131x_hwaddr_init - set up the MAC Address on the ET1310 */
3416 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
3418 /* If have our default mac from init and no mac address from
3419 * EEPROM then we need to generate the last octet and set it on the
3420 * device
3422 if (is_zero_ether_addr(adapter->rom_addr)) {
3423 /* We need to randomly generate the last octet so we
3424 * decrease our chances of setting the mac address to
3425 * same as another one of our cards in the system
3427 get_random_bytes(&adapter->addr[5], 1);
3428 /* We have the default value in the register we are
3429 * working with so we need to copy the current
3430 * address into the permanent address
3432 memcpy(adapter->rom_addr,
3433 adapter->addr, ETH_ALEN);
3434 } else {
3435 /* We do not have an override address, so set the
3436 * current address to the permanent address and add
3437 * it to the device
3439 memcpy(adapter->addr,
3440 adapter->rom_addr, ETH_ALEN);
3444 /* et131x_pci_init - initial PCI setup
3446 * Perform the initial setup of PCI registers and if possible initialise
3447 * the MAC address. At this point the I/O registers have yet to be mapped
3449 static int et131x_pci_init(struct et131x_adapter *adapter,
3450 struct pci_dev *pdev)
3452 u16 max_payload;
3453 int i, rc;
3455 rc = et131x_init_eeprom(adapter);
3456 if (rc < 0)
3457 goto out;
3459 if (!pci_is_pcie(pdev)) {
3460 dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3461 goto err_out;
3464 /* Let's set up the PORT LOGIC Register. */
3466 /* Program the Ack/Nak latency and replay timers */
3467 max_payload = pdev->pcie_mpss;
3469 if (max_payload < 2) {
3470 static const u16 acknak[2] = { 0x76, 0xD0 };
3471 static const u16 replay[2] = { 0x1E0, 0x2ED };
3473 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3474 acknak[max_payload])) {
3475 dev_err(&pdev->dev,
3476 "Could not write PCI config space for ACK/NAK\n");
3477 goto err_out;
3479 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3480 replay[max_payload])) {
3481 dev_err(&pdev->dev,
3482 "Could not write PCI config space for Replay Timer\n");
3483 goto err_out;
3487 /* l0s and l1 latency timers. We are using default values.
3488 * Representing 001 for L0s and 010 for L1
3490 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3491 dev_err(&pdev->dev,
3492 "Could not write PCI config space for Latency Timers\n");
3493 goto err_out;
3496 /* Change the max read size to 2k */
3497 if (pcie_set_readrq(pdev, 2048)) {
3498 dev_err(&pdev->dev,
3499 "Couldn't change PCI config space for Max read size\n");
3500 goto err_out;
3503 /* Get MAC address from config space if an eeprom exists, otherwise
3504 * the MAC address there will not be valid
3506 if (!adapter->has_eeprom) {
3507 et131x_hwaddr_init(adapter);
3508 return 0;
3511 for (i = 0; i < ETH_ALEN; i++) {
3512 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3513 adapter->rom_addr + i)) {
3514 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3515 goto err_out;
3518 ether_addr_copy(adapter->addr, adapter->rom_addr);
3519 out:
3520 return rc;
3521 err_out:
3522 rc = -EIO;
3523 goto out;
3526 /* et131x_error_timer_handler
3527 * @data: timer-specific variable; here a pointer to our adapter structure
3529 * The routine called when the error timer expires, to track the number of
3530 * recurring errors.
3532 static void et131x_error_timer_handler(unsigned long data)
3534 struct et131x_adapter *adapter = (struct et131x_adapter *) data;
3535 struct phy_device *phydev = adapter->phydev;
3537 if (et1310_in_phy_coma(adapter)) {
3538 /* Bring the device immediately out of coma, to
3539 * prevent it from sleeping indefinitely, this
3540 * mechanism could be improved!
3542 et1310_disable_phy_coma(adapter);
3543 adapter->boot_coma = 20;
3544 } else {
3545 et1310_update_macstat_host_counters(adapter);
3548 if (!phydev->link && adapter->boot_coma < 11)
3549 adapter->boot_coma++;
3551 if (adapter->boot_coma == 10) {
3552 if (!phydev->link) {
3553 if (!et1310_in_phy_coma(adapter)) {
3554 /* NOTE - This was originally a 'sync with
3555 * interrupt'. How to do that under Linux?
3557 et131x_enable_interrupts(adapter);
3558 et1310_enable_phy_coma(adapter);
3563 /* This is a periodic timer, so reschedule */
3564 mod_timer(&adapter->error_timer, jiffies + TX_ERROR_PERIOD * HZ / 1000);
3567 /* et131x_adapter_memory_free - Free all memory allocated for use by Tx & Rx */
3568 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3570 et131x_tx_dma_memory_free(adapter);
3571 et131x_rx_dma_memory_free(adapter);
3574 /* et131x_adapter_memory_alloc
3575 * Allocate all the memory blocks for send, receive and others.
3577 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3579 int status;
3581 /* Allocate memory for the Tx Ring */
3582 status = et131x_tx_dma_memory_alloc(adapter);
3583 if (status) {
3584 dev_err(&adapter->pdev->dev,
3585 "et131x_tx_dma_memory_alloc FAILED\n");
3586 et131x_tx_dma_memory_free(adapter);
3587 return status;
3589 /* Receive buffer memory allocation */
3590 status = et131x_rx_dma_memory_alloc(adapter);
3591 if (status) {
3592 dev_err(&adapter->pdev->dev,
3593 "et131x_rx_dma_memory_alloc FAILED\n");
3594 et131x_adapter_memory_free(adapter);
3595 return status;
3598 /* Init receive data structures */
3599 status = et131x_init_recv(adapter);
3600 if (status) {
3601 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3602 et131x_adapter_memory_free(adapter);
3604 return status;
3607 static void et131x_adjust_link(struct net_device *netdev)
3609 struct et131x_adapter *adapter = netdev_priv(netdev);
3610 struct phy_device *phydev = adapter->phydev;
3612 if (!phydev)
3613 return;
3614 if (phydev->link == adapter->link)
3615 return;
3617 /* Check to see if we are in coma mode and if
3618 * so, disable it because we will not be able
3619 * to read PHY values until we are out.
3621 if (et1310_in_phy_coma(adapter))
3622 et1310_disable_phy_coma(adapter);
3624 adapter->link = phydev->link;
3625 phy_print_status(phydev);
3627 if (phydev->link) {
3628 adapter->boot_coma = 20;
3629 if (phydev->speed == SPEED_10) {
3630 u16 register18;
3632 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3633 &register18);
3634 et131x_mii_write(adapter, phydev->addr,
3635 PHY_MPHY_CONTROL_REG, register18 | 0x4);
3636 et131x_mii_write(adapter, phydev->addr, PHY_INDEX_REG,
3637 register18 | 0x8402);
3638 et131x_mii_write(adapter, phydev->addr, PHY_DATA_REG,
3639 register18 | 511);
3640 et131x_mii_write(adapter, phydev->addr,
3641 PHY_MPHY_CONTROL_REG, register18);
3644 et1310_config_flow_control(adapter);
3646 if (phydev->speed == SPEED_1000 &&
3647 adapter->registry_jumbo_packet > 2048) {
3648 u16 reg;
3650 et131x_mii_read(adapter, PHY_CONFIG, &reg);
3651 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3652 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3653 et131x_mii_write(adapter, phydev->addr, PHY_CONFIG,
3654 reg);
3657 et131x_set_rx_dma_timer(adapter);
3658 et1310_config_mac_regs2(adapter);
3659 } else {
3660 adapter->boot_coma = 0;
3662 if (phydev->speed == SPEED_10) {
3663 u16 register18;
3665 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3666 &register18);
3667 et131x_mii_write(adapter, phydev->addr,
3668 PHY_MPHY_CONTROL_REG, register18 | 0x4);
3669 et131x_mii_write(adapter, phydev->addr,
3670 PHY_INDEX_REG, register18 | 0x8402);
3671 et131x_mii_write(adapter, phydev->addr,
3672 PHY_DATA_REG, register18 | 511);
3673 et131x_mii_write(adapter, phydev->addr,
3674 PHY_MPHY_CONTROL_REG, register18);
3677 /* Free the packets being actively sent & stopped */
3678 et131x_free_busy_send_packets(adapter);
3680 /* Re-initialize the send structures */
3681 et131x_init_send(adapter);
3683 /* Bring the device back to the state it was during
3684 * init prior to autonegotiation being complete. This
3685 * way, when we get the auto-neg complete interrupt,
3686 * we can complete init by calling config_mac_regs2.
3688 et131x_soft_reset(adapter);
3690 /* Setup ET1310 as per the documentation */
3691 et131x_adapter_setup(adapter);
3693 /* perform reset of tx/rx */
3694 et131x_disable_txrx(netdev);
3695 et131x_enable_txrx(netdev);
3699 static int et131x_mii_probe(struct net_device *netdev)
3701 struct et131x_adapter *adapter = netdev_priv(netdev);
3702 struct phy_device *phydev = NULL;
3704 phydev = phy_find_first(adapter->mii_bus);
3705 if (!phydev) {
3706 dev_err(&adapter->pdev->dev, "no PHY found\n");
3707 return -ENODEV;
3710 phydev = phy_connect(netdev, dev_name(&phydev->dev),
3711 &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3713 if (IS_ERR(phydev)) {
3714 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3715 return PTR_ERR(phydev);
3718 phydev->supported &= (SUPPORTED_10baseT_Half
3719 | SUPPORTED_10baseT_Full
3720 | SUPPORTED_100baseT_Half
3721 | SUPPORTED_100baseT_Full
3722 | SUPPORTED_Autoneg
3723 | SUPPORTED_MII
3724 | SUPPORTED_TP);
3726 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3727 phydev->supported |= SUPPORTED_1000baseT_Full;
3729 phydev->advertising = phydev->supported;
3730 adapter->phydev = phydev;
3732 dev_info(&adapter->pdev->dev,
3733 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n",
3734 phydev->drv->name, dev_name(&phydev->dev));
3736 return 0;
3739 /* et131x_adapter_init
3741 * Initialize the data structures for the et131x_adapter object and link
3742 * them together with the platform provided device structures.
3744 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3745 struct pci_dev *pdev)
3747 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3749 struct et131x_adapter *adapter;
3751 /* Allocate private adapter struct and copy in relevant information */
3752 adapter = netdev_priv(netdev);
3753 adapter->pdev = pci_dev_get(pdev);
3754 adapter->netdev = netdev;
3756 /* Initialize spinlocks here */
3757 spin_lock_init(&adapter->tcb_send_qlock);
3758 spin_lock_init(&adapter->tcb_ready_qlock);
3759 spin_lock_init(&adapter->send_hw_lock);
3760 spin_lock_init(&adapter->rcv_lock);
3761 spin_lock_init(&adapter->fbr_lock);
3763 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */
3765 /* Set the MAC address to a default */
3766 ether_addr_copy(adapter->addr, default_mac);
3768 return adapter;
3771 /* et131x_pci_remove
3773 * Registered in the pci_driver structure, this function is called when the
3774 * PCI subsystem detects that a PCI device which matches the information
3775 * contained in the pci_device_id table has been removed.
3777 static void et131x_pci_remove(struct pci_dev *pdev)
3779 struct net_device *netdev = pci_get_drvdata(pdev);
3780 struct et131x_adapter *adapter = netdev_priv(netdev);
3782 unregister_netdev(netdev);
3783 phy_disconnect(adapter->phydev);
3784 mdiobus_unregister(adapter->mii_bus);
3785 cancel_work_sync(&adapter->task);
3786 kfree(adapter->mii_bus->irq);
3787 mdiobus_free(adapter->mii_bus);
3789 et131x_adapter_memory_free(adapter);
3790 iounmap(adapter->regs);
3791 pci_dev_put(pdev);
3793 free_netdev(netdev);
3794 pci_release_regions(pdev);
3795 pci_disable_device(pdev);
3798 /* et131x_up - Bring up a device for use. */
3799 static void et131x_up(struct net_device *netdev)
3801 struct et131x_adapter *adapter = netdev_priv(netdev);
3803 et131x_enable_txrx(netdev);
3804 phy_start(adapter->phydev);
3807 /* et131x_down - Bring down the device */
3808 static void et131x_down(struct net_device *netdev)
3810 struct et131x_adapter *adapter = netdev_priv(netdev);
3812 /* Save the timestamp for the TX watchdog, prevent a timeout */
3813 netdev->trans_start = jiffies;
3815 phy_stop(adapter->phydev);
3816 et131x_disable_txrx(netdev);
3819 #ifdef CONFIG_PM_SLEEP
3820 static int et131x_suspend(struct device *dev)
3822 struct pci_dev *pdev = to_pci_dev(dev);
3823 struct net_device *netdev = pci_get_drvdata(pdev);
3825 if (netif_running(netdev)) {
3826 netif_device_detach(netdev);
3827 et131x_down(netdev);
3828 pci_save_state(pdev);
3831 return 0;
3834 static int et131x_resume(struct device *dev)
3836 struct pci_dev *pdev = to_pci_dev(dev);
3837 struct net_device *netdev = pci_get_drvdata(pdev);
3839 if (netif_running(netdev)) {
3840 pci_restore_state(pdev);
3841 et131x_up(netdev);
3842 netif_device_attach(netdev);
3845 return 0;
3848 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3849 #define ET131X_PM_OPS (&et131x_pm_ops)
3850 #else
3851 #define ET131X_PM_OPS NULL
3852 #endif
3854 /* et131x_isr - The Interrupt Service Routine for the driver.
3855 * @irq: the IRQ on which the interrupt was received.
3856 * @dev_id: device-specific info (here a pointer to a net_device struct)
3858 * Returns a value indicating if the interrupt was handled.
3860 static irqreturn_t et131x_isr(int irq, void *dev_id)
3862 bool handled = true;
3863 struct net_device *netdev = (struct net_device *)dev_id;
3864 struct et131x_adapter *adapter = netdev_priv(netdev);
3865 struct rx_ring *rx_ring = &adapter->rx_ring;
3866 struct tx_ring *tx_ring = &adapter->tx_ring;
3867 u32 status;
3869 if (!netif_device_present(netdev)) {
3870 handled = false;
3871 goto out;
3874 /* If the adapter is in low power state, then it should not
3875 * recognize any interrupt
3878 /* Disable Device Interrupts */
3879 et131x_disable_interrupts(adapter);
3881 /* Get a copy of the value in the interrupt status register
3882 * so we can process the interrupting section
3884 status = readl(&adapter->regs->global.int_status);
3886 if (adapter->flowcontrol == FLOW_TXONLY ||
3887 adapter->flowcontrol == FLOW_BOTH) {
3888 status &= ~INT_MASK_ENABLE;
3889 } else {
3890 status &= ~INT_MASK_ENABLE_NO_FLOW;
3893 /* Make sure this is our interrupt */
3894 if (!status) {
3895 handled = false;
3896 et131x_enable_interrupts(adapter);
3897 goto out;
3900 /* This is our interrupt, so process accordingly */
3902 if (status & ET_INTR_WATCHDOG) {
3903 struct tcb *tcb = tx_ring->send_head;
3905 if (tcb)
3906 if (++tcb->stale > 1)
3907 status |= ET_INTR_TXDMA_ISR;
3909 if (rx_ring->unfinished_receives)
3910 status |= ET_INTR_RXDMA_XFR_DONE;
3911 else if (tcb == NULL)
3912 writel(0, &adapter->regs->global.watchdog_timer);
3914 status &= ~ET_INTR_WATCHDOG;
3917 if (!status) {
3918 /* This interrupt has in some way been "handled" by
3919 * the ISR. Either it was a spurious Rx interrupt, or
3920 * it was a Tx interrupt that has been filtered by
3921 * the ISR.
3923 et131x_enable_interrupts(adapter);
3924 goto out;
3927 /* We need to save the interrupt status value for use in our
3928 * DPC. We will clear the software copy of that in that
3929 * routine.
3931 adapter->stats.interrupt_status = status;
3933 /* Schedule the ISR handler as a bottom-half task in the
3934 * kernel's tq_immediate queue, and mark the queue for
3935 * execution
3937 schedule_work(&adapter->task);
3938 out:
3939 return IRQ_RETVAL(handled);
3942 /* et131x_isr_handler - The ISR handler
3944 * scheduled to run in a deferred context by the ISR. This is where the ISR's
3945 * work actually gets done.
3947 static void et131x_isr_handler(struct work_struct *work)
3949 struct et131x_adapter *adapter =
3950 container_of(work, struct et131x_adapter, task);
3951 u32 status = adapter->stats.interrupt_status;
3952 struct address_map __iomem *iomem = adapter->regs;
3954 /* These first two are by far the most common. Once handled, we clear
3955 * their two bits in the status word. If the word is now zero, we
3956 * exit.
3958 /* Handle all the completed Transmit interrupts */
3959 if (status & ET_INTR_TXDMA_ISR)
3960 et131x_handle_send_interrupt(adapter);
3962 /* Handle all the completed Receives interrupts */
3963 if (status & ET_INTR_RXDMA_XFR_DONE)
3964 et131x_handle_recv_interrupt(adapter);
3966 status &= ~(ET_INTR_TXDMA_ERR | ET_INTR_RXDMA_XFR_DONE);
3968 if (!status)
3969 goto out;
3971 /* Handle the TXDMA Error interrupt */
3972 if (status & ET_INTR_TXDMA_ERR) {
3973 /* Following read also clears the register (COR) */
3974 u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3976 dev_warn(&adapter->pdev->dev,
3977 "TXDMA_ERR interrupt, error = %d\n",
3978 txdma_err);
3981 /* Handle Free Buffer Ring 0 and 1 Low interrupt */
3982 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3983 /* This indicates the number of unused buffers in RXDMA free
3984 * buffer ring 0 is <= the limit you programmed. Free buffer
3985 * resources need to be returned. Free buffers are consumed as
3986 * packets are passed from the network to the host. The host
3987 * becomes aware of the packets from the contents of the packet
3988 * status ring. This ring is queried when the packet done
3989 * interrupt occurs. Packets are then passed to the OS. When
3990 * the OS is done with the packets the resources can be
3991 * returned to the ET1310 for re-use. This interrupt is one
3992 * method of returning resources.
3995 /* If the user has flow control on, then we will
3996 * send a pause packet, otherwise just exit
3998 if (adapter->flowcontrol == FLOW_TXONLY ||
3999 adapter->flowcontrol == FLOW_BOTH) {
4000 u32 pm_csr;
4002 /* Tell the device to send a pause packet via the back
4003 * pressure register (bp req and bp xon/xoff)
4005 pm_csr = readl(&iomem->global.pm_csr);
4006 if (!et1310_in_phy_coma(adapter))
4007 writel(3, &iomem->txmac.bp_ctrl);
4011 /* Handle Packet Status Ring Low Interrupt */
4012 if (status & ET_INTR_RXDMA_STAT_LOW) {
4013 /* Same idea as with the two Free Buffer Rings. Packets going
4014 * from the network to the host each consume a free buffer
4015 * resource and a packet status resource. These resoures are
4016 * passed to the OS. When the OS is done with the resources,
4017 * they need to be returned to the ET1310. This is one method
4018 * of returning the resources.
4022 /* Handle RXDMA Error Interrupt */
4023 if (status & ET_INTR_RXDMA_ERR) {
4024 /* The rxdma_error interrupt is sent when a time-out on a
4025 * request issued by the JAGCore has occurred or a completion is
4026 * returned with an un-successful status. In both cases the
4027 * request is considered complete. The JAGCore will
4028 * automatically re-try the request in question. Normally
4029 * information on events like these are sent to the host using
4030 * the "Advanced Error Reporting" capability. This interrupt is
4031 * another way of getting similar information. The only thing
4032 * required is to clear the interrupt by reading the ISR in the
4033 * global resources. The JAGCore will do a re-try on the
4034 * request. Normally you should never see this interrupt. If
4035 * you start to see this interrupt occurring frequently then
4036 * something bad has occurred. A reset might be the thing to do.
4038 /* TRAP();*/
4040 dev_warn(&adapter->pdev->dev,
4041 "RxDMA_ERR interrupt, error %x\n",
4042 readl(&iomem->txmac.tx_test));
4045 /* Handle the Wake on LAN Event */
4046 if (status & ET_INTR_WOL) {
4047 /* This is a secondary interrupt for wake on LAN. The driver
4048 * should never see this, if it does, something serious is
4049 * wrong. We will TRAP the message when we are in DBG mode,
4050 * otherwise we will ignore it.
4052 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
4055 /* Let's move on to the TxMac */
4056 if (status & ET_INTR_TXMAC) {
4057 u32 err = readl(&iomem->txmac.err);
4059 /* When any of the errors occur and TXMAC generates an
4060 * interrupt to report these errors, it usually means that
4061 * TXMAC has detected an error in the data stream retrieved
4062 * from the on-chip Tx Q. All of these errors are catastrophic
4063 * and TXMAC won't be able to recover data when these errors
4064 * occur. In a nutshell, the whole Tx path will have to be reset
4065 * and re-configured afterwards.
4067 dev_warn(&adapter->pdev->dev,
4068 "TXMAC interrupt, error 0x%08x\n",
4069 err);
4071 /* If we are debugging, we want to see this error, otherwise we
4072 * just want the device to be reset and continue
4076 /* Handle RXMAC Interrupt */
4077 if (status & ET_INTR_RXMAC) {
4078 /* These interrupts are catastrophic to the device, what we need
4079 * to do is disable the interrupts and set the flag to cause us
4080 * to reset so we can solve this issue.
4082 /* MP_SET_FLAG( adapter, FMP_ADAPTER_HARDWARE_ERROR); */
4084 dev_warn(&adapter->pdev->dev,
4085 "RXMAC interrupt, error 0x%08x. Requesting reset\n",
4086 readl(&iomem->rxmac.err_reg));
4088 dev_warn(&adapter->pdev->dev,
4089 "Enable 0x%08x, Diag 0x%08x\n",
4090 readl(&iomem->rxmac.ctrl),
4091 readl(&iomem->rxmac.rxq_diag));
4093 /* If we are debugging, we want to see this error, otherwise we
4094 * just want the device to be reset and continue
4098 /* Handle MAC_STAT Interrupt */
4099 if (status & ET_INTR_MAC_STAT) {
4100 /* This means at least one of the un-masked counters in the
4101 * MAC_STAT block has rolled over. Use this to maintain the top,
4102 * software managed bits of the counter(s).
4104 et1310_handle_macstat_interrupt(adapter);
4107 /* Handle SLV Timeout Interrupt */
4108 if (status & ET_INTR_SLV_TIMEOUT) {
4109 /* This means a timeout has occurred on a read or write request
4110 * to one of the JAGCore registers. The Global Resources block
4111 * has terminated the request and on a read request, returned a
4112 * "fake" value. The most likely reasons are: Bad Address or the
4113 * addressed module is in a power-down state and can't respond.
4116 out:
4117 et131x_enable_interrupts(adapter);
4120 /* et131x_stats - Return the current device statistics */
4121 static struct net_device_stats *et131x_stats(struct net_device *netdev)
4123 struct et131x_adapter *adapter = netdev_priv(netdev);
4124 struct net_device_stats *stats = &adapter->net_stats;
4125 struct ce_stats *devstat = &adapter->stats;
4127 stats->rx_errors = devstat->rx_length_errs +
4128 devstat->rx_align_errs +
4129 devstat->rx_crc_errs +
4130 devstat->rx_code_violations +
4131 devstat->rx_other_errs;
4132 stats->tx_errors = devstat->tx_max_pkt_errs;
4133 stats->multicast = devstat->multicast_pkts_rcvd;
4134 stats->collisions = devstat->tx_collisions;
4136 stats->rx_length_errors = devstat->rx_length_errs;
4137 stats->rx_over_errors = devstat->rx_overflows;
4138 stats->rx_crc_errors = devstat->rx_crc_errs;
4140 /* NOTE: These stats don't have corresponding values in CE_STATS,
4141 * so we're going to have to update these directly from within the
4142 * TX/RX code
4144 /* stats->rx_bytes = 20; devstat->; */
4145 /* stats->tx_bytes = 20; devstat->; */
4146 /* stats->rx_dropped = devstat->; */
4147 /* stats->tx_dropped = devstat->; */
4149 /* NOTE: Not used, can't find analogous statistics */
4150 /* stats->rx_frame_errors = devstat->; */
4151 /* stats->rx_fifo_errors = devstat->; */
4152 /* stats->rx_missed_errors = devstat->; */
4154 /* stats->tx_aborted_errors = devstat->; */
4155 /* stats->tx_carrier_errors = devstat->; */
4156 /* stats->tx_fifo_errors = devstat->; */
4157 /* stats->tx_heartbeat_errors = devstat->; */
4158 /* stats->tx_window_errors = devstat->; */
4159 return stats;
4162 /* et131x_open - Open the device for use. */
4163 static int et131x_open(struct net_device *netdev)
4165 struct et131x_adapter *adapter = netdev_priv(netdev);
4166 struct pci_dev *pdev = adapter->pdev;
4167 unsigned int irq = pdev->irq;
4168 int result;
4170 /* Start the timer to track NIC errors */
4171 init_timer(&adapter->error_timer);
4172 adapter->error_timer.expires = jiffies + TX_ERROR_PERIOD * HZ / 1000;
4173 adapter->error_timer.function = et131x_error_timer_handler;
4174 adapter->error_timer.data = (unsigned long)adapter;
4175 add_timer(&adapter->error_timer);
4177 result = request_irq(irq, et131x_isr,
4178 IRQF_SHARED, netdev->name, netdev);
4179 if (result) {
4180 dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
4181 return result;
4184 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
4186 et131x_up(netdev);
4188 return result;
4191 /* et131x_close - Close the device */
4192 static int et131x_close(struct net_device *netdev)
4194 struct et131x_adapter *adapter = netdev_priv(netdev);
4196 et131x_down(netdev);
4198 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
4199 free_irq(adapter->pdev->irq, netdev);
4201 /* Stop the error timer */
4202 return del_timer_sync(&adapter->error_timer);
4205 /* et131x_ioctl - The I/O Control handler for the driver
4206 * @netdev: device on which the control request is being made
4207 * @reqbuf: a pointer to the IOCTL request buffer
4208 * @cmd: the IOCTL command code
4210 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
4211 int cmd)
4213 struct et131x_adapter *adapter = netdev_priv(netdev);
4215 if (!adapter->phydev)
4216 return -EINVAL;
4218 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd);
4221 /* et131x_set_packet_filter - Configures the Rx Packet filtering on the device
4222 * @adapter: pointer to our private adapter structure
4224 * FIXME: lot of dups with MAC code
4226 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
4228 int filter = adapter->packet_filter;
4229 u32 ctrl;
4230 u32 pf_ctrl;
4232 ctrl = readl(&adapter->regs->rxmac.ctrl);
4233 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
4235 /* Default to disabled packet filtering. Enable it in the individual
4236 * case statements that require the device to filter something
4238 ctrl |= 0x04;
4240 /* Set us to be in promiscuous mode so we receive everything, this
4241 * is also true when we get a packet filter of 0
4243 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
4244 pf_ctrl &= ~7; /* Clear filter bits */
4245 else {
4246 /* Set us up with Multicast packet filtering. Three cases are
4247 * possible - (1) we have a multi-cast list, (2) we receive ALL
4248 * multicast entries or (3) we receive none.
4250 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
4251 pf_ctrl &= ~2; /* Multicast filter bit */
4252 else {
4253 et1310_setup_device_for_multicast(adapter);
4254 pf_ctrl |= 2;
4255 ctrl &= ~0x04;
4258 /* Set us up with Unicast packet filtering */
4259 if (filter & ET131X_PACKET_TYPE_DIRECTED) {
4260 et1310_setup_device_for_unicast(adapter);
4261 pf_ctrl |= 4;
4262 ctrl &= ~0x04;
4265 /* Set us up with Broadcast packet filtering */
4266 if (filter & ET131X_PACKET_TYPE_BROADCAST) {
4267 pf_ctrl |= 1; /* Broadcast filter bit */
4268 ctrl &= ~0x04;
4269 } else
4270 pf_ctrl &= ~1;
4272 /* Setup the receive mac configuration registers - Packet
4273 * Filter control + the enable / disable for packet filter
4274 * in the control reg.
4276 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
4277 writel(ctrl, &adapter->regs->rxmac.ctrl);
4279 return 0;
4282 /* et131x_multicast - The handler to configure multicasting on the interface */
4283 static void et131x_multicast(struct net_device *netdev)
4285 struct et131x_adapter *adapter = netdev_priv(netdev);
4286 int packet_filter;
4287 struct netdev_hw_addr *ha;
4288 int i;
4290 /* Before we modify the platform-independent filter flags, store them
4291 * locally. This allows us to determine if anything's changed and if
4292 * we even need to bother the hardware
4294 packet_filter = adapter->packet_filter;
4296 /* Clear the 'multicast' flag locally; because we only have a single
4297 * flag to check multicast, and multiple multicast addresses can be
4298 * set, this is the easiest way to determine if more than one
4299 * multicast address is being set.
4301 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4303 /* Check the net_device flags and set the device independent flags
4304 * accordingly
4307 if (netdev->flags & IFF_PROMISC)
4308 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
4309 else
4310 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
4312 if (netdev->flags & IFF_ALLMULTI)
4313 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4315 if (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)
4316 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
4318 if (netdev_mc_count(netdev) < 1) {
4319 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
4320 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
4321 } else
4322 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
4324 /* Set values in the private adapter struct */
4325 i = 0;
4326 netdev_for_each_mc_addr(ha, netdev) {
4327 if (i == NIC_MAX_MCAST_LIST)
4328 break;
4329 memcpy(adapter->multicast_list[i++], ha->addr, ETH_ALEN);
4331 adapter->multicast_addr_count = i;
4333 /* Are the new flags different from the previous ones? If not, then no
4334 * action is required
4336 * NOTE - This block will always update the multicast_list with the
4337 * hardware, even if the addresses aren't the same.
4339 if (packet_filter != adapter->packet_filter)
4340 et131x_set_packet_filter(adapter);
4343 /* et131x_tx - The handler to tx a packet on the device */
4344 static int et131x_tx(struct sk_buff *skb, struct net_device *netdev)
4346 int status = 0;
4347 struct et131x_adapter *adapter = netdev_priv(netdev);
4348 struct tx_ring *tx_ring = &adapter->tx_ring;
4350 /* stop the queue if it's getting full */
4351 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
4352 netif_stop_queue(netdev);
4354 /* Save the timestamp for the TX timeout watchdog */
4355 netdev->trans_start = jiffies;
4357 /* Call the device-specific data Tx routine */
4358 status = et131x_send_packets(skb, netdev);
4360 /* Check status and manage the netif queue if necessary */
4361 if (status != 0) {
4362 if (status == -ENOMEM)
4363 status = NETDEV_TX_BUSY;
4364 else
4365 status = NETDEV_TX_OK;
4367 return status;
4370 /* et131x_tx_timeout - Timeout handler
4372 * The handler called when a Tx request times out. The timeout period is
4373 * specified by the 'tx_timeo" element in the net_device structure (see
4374 * et131x_alloc_device() to see how this value is set).
4376 static void et131x_tx_timeout(struct net_device *netdev)
4378 struct et131x_adapter *adapter = netdev_priv(netdev);
4379 struct tx_ring *tx_ring = &adapter->tx_ring;
4380 struct tcb *tcb;
4381 unsigned long flags;
4383 /* If the device is closed, ignore the timeout */
4384 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
4385 return;
4387 /* Any nonrecoverable hardware error?
4388 * Checks adapter->flags for any failure in phy reading
4390 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
4391 return;
4393 /* Hardware failure? */
4394 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
4395 dev_err(&adapter->pdev->dev, "hardware error - reset\n");
4396 return;
4399 /* Is send stuck? */
4400 spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
4402 tcb = tx_ring->send_head;
4404 if (tcb != NULL) {
4405 tcb->count++;
4407 if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
4408 spin_unlock_irqrestore(&adapter->tcb_send_qlock,
4409 flags);
4411 dev_warn(&adapter->pdev->dev,
4412 "Send stuck - reset. tcb->WrIndex %x, flags 0x%08x\n",
4413 tcb->index,
4414 tcb->flags);
4416 adapter->net_stats.tx_errors++;
4418 /* perform reset of tx/rx */
4419 et131x_disable_txrx(netdev);
4420 et131x_enable_txrx(netdev);
4421 return;
4425 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
4428 /* et131x_change_mtu - The handler called to change the MTU for the device */
4429 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
4431 int result = 0;
4432 struct et131x_adapter *adapter = netdev_priv(netdev);
4434 /* Make sure the requested MTU is valid */
4435 if (new_mtu < 64 || new_mtu > 9216)
4436 return -EINVAL;
4438 et131x_disable_txrx(netdev);
4439 et131x_handle_send_interrupt(adapter);
4440 et131x_handle_recv_interrupt(adapter);
4442 /* Set the new MTU */
4443 netdev->mtu = new_mtu;
4445 /* Free Rx DMA memory */
4446 et131x_adapter_memory_free(adapter);
4448 /* Set the config parameter for Jumbo Packet support */
4449 adapter->registry_jumbo_packet = new_mtu + 14;
4450 et131x_soft_reset(adapter);
4452 /* Alloc and init Rx DMA memory */
4453 result = et131x_adapter_memory_alloc(adapter);
4454 if (result != 0) {
4455 dev_warn(&adapter->pdev->dev,
4456 "Change MTU failed; couldn't re-alloc DMA memory\n");
4457 return result;
4460 et131x_init_send(adapter);
4462 et131x_hwaddr_init(adapter);
4463 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4465 /* Init the device with the new settings */
4466 et131x_adapter_setup(adapter);
4468 et131x_enable_txrx(netdev);
4470 return result;
4473 /* et131x_set_mac_addr - handler to change the MAC address for the device */
4474 static int et131x_set_mac_addr(struct net_device *netdev, void *new_mac)
4476 int result = 0;
4477 struct et131x_adapter *adapter = netdev_priv(netdev);
4478 struct sockaddr *address = new_mac;
4480 if (adapter == NULL)
4481 return -ENODEV;
4483 /* Make sure the requested MAC is valid */
4484 if (!is_valid_ether_addr(address->sa_data))
4485 return -EADDRNOTAVAIL;
4487 et131x_disable_txrx(netdev);
4488 et131x_handle_send_interrupt(adapter);
4489 et131x_handle_recv_interrupt(adapter);
4491 /* Set the new MAC */
4492 /* netdev->set_mac_address = &new_mac; */
4494 memcpy(netdev->dev_addr, address->sa_data, netdev->addr_len);
4496 netdev_info(netdev, "Setting MAC address to %pM\n",
4497 netdev->dev_addr);
4499 /* Free Rx DMA memory */
4500 et131x_adapter_memory_free(adapter);
4502 et131x_soft_reset(adapter);
4504 /* Alloc and init Rx DMA memory */
4505 result = et131x_adapter_memory_alloc(adapter);
4506 if (result != 0) {
4507 dev_err(&adapter->pdev->dev,
4508 "Change MAC failed; couldn't re-alloc DMA memory\n");
4509 return result;
4512 et131x_init_send(adapter);
4514 et131x_hwaddr_init(adapter);
4516 /* Init the device with the new settings */
4517 et131x_adapter_setup(adapter);
4519 et131x_enable_txrx(netdev);
4521 return result;
4524 static const struct net_device_ops et131x_netdev_ops = {
4525 .ndo_open = et131x_open,
4526 .ndo_stop = et131x_close,
4527 .ndo_start_xmit = et131x_tx,
4528 .ndo_set_rx_mode = et131x_multicast,
4529 .ndo_tx_timeout = et131x_tx_timeout,
4530 .ndo_change_mtu = et131x_change_mtu,
4531 .ndo_set_mac_address = et131x_set_mac_addr,
4532 .ndo_validate_addr = eth_validate_addr,
4533 .ndo_get_stats = et131x_stats,
4534 .ndo_do_ioctl = et131x_ioctl,
4537 /* et131x_pci_setup - Perform device initialization
4538 * @pdev: a pointer to the device's pci_dev structure
4539 * @ent: this device's entry in the pci_device_id table
4541 * Registered in the pci_driver structure, this function is called when the
4542 * PCI subsystem finds a new PCI device which matches the information
4543 * contained in the pci_device_id table. This routine is the equivalent to
4544 * a device insertion routine.
4546 static int et131x_pci_setup(struct pci_dev *pdev,
4547 const struct pci_device_id *ent)
4549 struct net_device *netdev;
4550 struct et131x_adapter *adapter;
4551 int rc;
4552 int ii;
4554 rc = pci_enable_device(pdev);
4555 if (rc < 0) {
4556 dev_err(&pdev->dev, "pci_enable_device() failed\n");
4557 goto out;
4560 /* Perform some basic PCI checks */
4561 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4562 dev_err(&pdev->dev, "Can't find PCI device's base address\n");
4563 rc = -ENODEV;
4564 goto err_disable;
4567 rc = pci_request_regions(pdev, DRIVER_NAME);
4568 if (rc < 0) {
4569 dev_err(&pdev->dev, "Can't get PCI resources\n");
4570 goto err_disable;
4573 pci_set_master(pdev);
4575 /* Check the DMA addressing support of this device */
4576 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
4577 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
4578 dev_err(&pdev->dev, "No usable DMA addressing method\n");
4579 rc = -EIO;
4580 goto err_release_res;
4583 /* Allocate netdev and private adapter structs */
4584 netdev = alloc_etherdev(sizeof(struct et131x_adapter));
4585 if (!netdev) {
4586 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
4587 rc = -ENOMEM;
4588 goto err_release_res;
4591 netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
4592 netdev->netdev_ops = &et131x_netdev_ops;
4594 SET_NETDEV_DEV(netdev, &pdev->dev);
4595 netdev->ethtool_ops = &et131x_ethtool_ops;
4597 adapter = et131x_adapter_init(netdev, pdev);
4599 rc = et131x_pci_init(adapter, pdev);
4600 if (rc < 0)
4601 goto err_free_dev;
4603 /* Map the bus-relative registers to system virtual memory */
4604 adapter->regs = pci_ioremap_bar(pdev, 0);
4605 if (!adapter->regs) {
4606 dev_err(&pdev->dev, "Cannot map device registers\n");
4607 rc = -ENOMEM;
4608 goto err_free_dev;
4611 /* If Phy COMA mode was enabled when we went down, disable it here. */
4612 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr);
4614 /* Issue a global reset to the et1310 */
4615 et131x_soft_reset(adapter);
4617 /* Disable all interrupts (paranoid) */
4618 et131x_disable_interrupts(adapter);
4620 /* Allocate DMA memory */
4621 rc = et131x_adapter_memory_alloc(adapter);
4622 if (rc < 0) {
4623 dev_err(&pdev->dev, "Could not alloc adapater memory (DMA)\n");
4624 goto err_iounmap;
4627 /* Init send data structures */
4628 et131x_init_send(adapter);
4630 /* Set up the task structure for the ISR's deferred handler */
4631 INIT_WORK(&adapter->task, et131x_isr_handler);
4633 /* Copy address into the net_device struct */
4634 memcpy(netdev->dev_addr, adapter->addr, ETH_ALEN);
4636 rc = -ENOMEM;
4638 /* Setup the mii_bus struct */
4639 adapter->mii_bus = mdiobus_alloc();
4640 if (!adapter->mii_bus) {
4641 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4642 goto err_mem_free;
4645 adapter->mii_bus->name = "et131x_eth_mii";
4646 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4647 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4648 adapter->mii_bus->priv = netdev;
4649 adapter->mii_bus->read = et131x_mdio_read;
4650 adapter->mii_bus->write = et131x_mdio_write;
4651 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int),
4652 GFP_KERNEL);
4653 if (!adapter->mii_bus->irq)
4654 goto err_mdio_free;
4656 for (ii = 0; ii < PHY_MAX_ADDR; ii++)
4657 adapter->mii_bus->irq[ii] = PHY_POLL;
4659 rc = mdiobus_register(adapter->mii_bus);
4660 if (rc < 0) {
4661 dev_err(&pdev->dev, "failed to register MII bus\n");
4662 goto err_mdio_free_irq;
4665 rc = et131x_mii_probe(netdev);
4666 if (rc < 0) {
4667 dev_err(&pdev->dev, "failed to probe MII bus\n");
4668 goto err_mdio_unregister;
4671 /* Setup et1310 as per the documentation */
4672 et131x_adapter_setup(adapter);
4674 /* Init variable for counting how long we do not have link status */
4675 adapter->boot_coma = 0;
4676 et1310_disable_phy_coma(adapter);
4678 /* We can enable interrupts now
4680 * NOTE - Because registration of interrupt handler is done in the
4681 * device's open(), defer enabling device interrupts to that
4682 * point
4685 /* Register the net_device struct with the Linux network layer */
4686 rc = register_netdev(netdev);
4687 if (rc < 0) {
4688 dev_err(&pdev->dev, "register_netdev() failed\n");
4689 goto err_phy_disconnect;
4692 /* Register the net_device struct with the PCI subsystem. Save a copy
4693 * of the PCI config space for this device now that the device has
4694 * been initialized, just in case it needs to be quickly restored.
4696 pci_set_drvdata(pdev, netdev);
4697 out:
4698 return rc;
4700 err_phy_disconnect:
4701 phy_disconnect(adapter->phydev);
4702 err_mdio_unregister:
4703 mdiobus_unregister(adapter->mii_bus);
4704 err_mdio_free_irq:
4705 kfree(adapter->mii_bus->irq);
4706 err_mdio_free:
4707 mdiobus_free(adapter->mii_bus);
4708 err_mem_free:
4709 et131x_adapter_memory_free(adapter);
4710 err_iounmap:
4711 iounmap(adapter->regs);
4712 err_free_dev:
4713 pci_dev_put(pdev);
4714 free_netdev(netdev);
4715 err_release_res:
4716 pci_release_regions(pdev);
4717 err_disable:
4718 pci_disable_device(pdev);
4719 goto out;
4722 static const struct pci_device_id et131x_pci_table[] = {
4723 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4724 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4725 {0,}
4727 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4729 static struct pci_driver et131x_driver = {
4730 .name = DRIVER_NAME,
4731 .id_table = et131x_pci_table,
4732 .probe = et131x_pci_setup,
4733 .remove = et131x_pci_remove,
4734 .driver.pm = ET131X_PM_OPS,
4737 module_pci_driver(et131x_driver);