clk: qcom: Add MSM8916 audio clocks
[linux/fpc-iii.git] / block / blk-mq.c
blobf2d67b4047a04d7015c3c2af16871972c3b5a720
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 unsigned int i;
44 for (i = 0; i < hctx->ctx_map.size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
48 return false;
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
82 while (true) {
83 int ret;
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
88 if (!(gfp & __GFP_WAIT))
89 return -EBUSY;
91 ret = wait_event_interruptible(q->mq_freeze_wq,
92 !atomic_read(&q->mq_freeze_depth) ||
93 blk_queue_dying(q));
94 if (blk_queue_dying(q))
95 return -ENODEV;
96 if (ret)
97 return ret;
101 static void blk_mq_queue_exit(struct request_queue *q)
103 percpu_ref_put(&q->mq_usage_counter);
106 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
108 struct request_queue *q =
109 container_of(ref, struct request_queue, mq_usage_counter);
111 wake_up_all(&q->mq_freeze_wq);
114 void blk_mq_freeze_queue_start(struct request_queue *q)
116 int freeze_depth;
118 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119 if (freeze_depth == 1) {
120 percpu_ref_kill(&q->mq_usage_counter);
121 blk_mq_run_hw_queues(q, false);
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
135 void blk_mq_freeze_queue(struct request_queue *q)
137 blk_mq_freeze_queue_start(q);
138 blk_mq_freeze_queue_wait(q);
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142 void blk_mq_unfreeze_queue(struct request_queue *q)
144 int freeze_depth;
146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 WARN_ON_ONCE(freeze_depth < 0);
148 if (!freeze_depth) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155 void blk_mq_wake_waiters(struct request_queue *q)
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
169 wake_up_all(&q->mq_freeze_wq);
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
174 return blk_mq_has_free_tags(hctx->tags);
176 EXPORT_SYMBOL(blk_mq_can_queue);
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
187 rq->mq_ctx = ctx;
188 rq->cmd_flags |= rw_flags;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
193 rq->rq_disk = NULL;
194 rq->part = NULL;
195 rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
198 set_start_time_ns(rq);
199 rq->io_start_time_ns = 0;
200 #endif
201 rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204 #endif
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
209 rq->cmd = rq->__cmd;
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
229 struct request *rq;
230 unsigned int tag;
232 tag = blk_mq_get_tag(data);
233 if (tag != BLK_MQ_TAG_FAIL) {
234 rq = data->hctx->tags->rqs[tag];
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->cmd_flags = REQ_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
241 rq->tag = tag;
242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 return rq;
246 return NULL;
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
254 struct request *rq;
255 struct blk_mq_alloc_data alloc_data;
256 int ret;
258 ret = blk_mq_queue_enter(q, gfp);
259 if (ret)
260 return ERR_PTR(ret);
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
267 rq = __blk_mq_alloc_request(&alloc_data, rw);
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
279 blk_mq_put_ctx(ctx);
280 if (!rq) {
281 blk_mq_queue_exit(q);
282 return ERR_PTR(-EWOULDBLOCK);
284 return rq;
286 EXPORT_SYMBOL(blk_mq_alloc_request);
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
296 rq->cmd_flags = 0;
298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 blk_mq_queue_exit(q);
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
307 ctx->rq_completed[rq_is_sync(rq)]++;
308 __blk_mq_free_request(hctx, ctx, rq);
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
313 void blk_mq_free_request(struct request *rq)
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
323 inline void __blk_mq_end_request(struct request *rq, int error)
325 blk_account_io_done(rq);
327 if (rq->end_io) {
328 rq->end_io(rq, error);
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
332 blk_mq_free_request(rq);
335 EXPORT_SYMBOL(__blk_mq_end_request);
337 void blk_mq_end_request(struct request *rq, int error)
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
341 __blk_mq_end_request(rq, error);
343 EXPORT_SYMBOL(blk_mq_end_request);
345 static void __blk_mq_complete_request_remote(void *data)
347 struct request *rq = data;
349 rq->q->softirq_done_fn(rq);
352 static void blk_mq_ipi_complete_request(struct request *rq)
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
355 bool shared = false;
356 int cpu;
358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 rq->q->softirq_done_fn(rq);
360 return;
363 cpu = get_cpu();
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 rq->csd.func = __blk_mq_complete_request_remote;
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
371 smp_call_function_single_async(ctx->cpu, &rq->csd);
372 } else {
373 rq->q->softirq_done_fn(rq);
375 put_cpu();
378 void __blk_mq_complete_request(struct request *rq)
380 struct request_queue *q = rq->q;
382 if (!q->softirq_done_fn)
383 blk_mq_end_request(rq, rq->errors);
384 else
385 blk_mq_ipi_complete_request(rq);
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
396 void blk_mq_complete_request(struct request *rq)
398 struct request_queue *q = rq->q;
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
405 EXPORT_SYMBOL(blk_mq_complete_request);
407 int blk_mq_request_started(struct request *rq)
409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
413 void blk_mq_start_request(struct request *rq)
415 struct request_queue *q = rq->q;
417 trace_block_rq_issue(q, rq);
419 rq->resid_len = blk_rq_bytes(rq);
420 if (unlikely(blk_bidi_rq(rq)))
421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
423 blk_add_timer(rq);
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
429 smp_mb__before_atomic();
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
442 if (q->dma_drain_size && blk_rq_bytes(rq)) {
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
448 rq->nr_phys_segments++;
451 EXPORT_SYMBOL(blk_mq_start_request);
453 static void __blk_mq_requeue_request(struct request *rq)
455 struct request_queue *q = rq->q;
457 trace_block_rq_requeue(q, rq);
459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
465 void blk_mq_requeue_request(struct request *rq)
467 __blk_mq_requeue_request(rq);
469 BUG_ON(blk_queued_rq(rq));
470 blk_mq_add_to_requeue_list(rq, true);
472 EXPORT_SYMBOL(blk_mq_requeue_request);
474 static void blk_mq_requeue_work(struct work_struct *work)
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
505 blk_mq_start_hw_queues(q);
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
510 struct request_queue *q = rq->q;
511 unsigned long flags;
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
519 spin_lock_irqsave(&q->requeue_lock, flags);
520 if (at_head) {
521 rq->cmd_flags |= REQ_SOFTBARRIER;
522 list_add(&rq->queuelist, &q->requeue_list);
523 } else {
524 list_add_tail(&rq->queuelist, &q->requeue_list);
526 spin_unlock_irqrestore(&q->requeue_lock, flags);
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
532 cancel_work_sync(&q->requeue_work);
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
536 void blk_mq_kick_requeue_list(struct request_queue *q)
538 kblockd_schedule_work(&q->requeue_work);
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
542 void blk_mq_abort_requeue_list(struct request_queue *q)
544 unsigned long flags;
545 LIST_HEAD(rq_list);
547 spin_lock_irqsave(&q->requeue_lock, flags);
548 list_splice_init(&q->requeue_list, &rq_list);
549 spin_unlock_irqrestore(&q->requeue_lock, flags);
551 while (!list_empty(&rq_list)) {
552 struct request *rq;
554 rq = list_first_entry(&rq_list, struct request, queuelist);
555 list_del_init(&rq->queuelist);
556 rq->errors = -EIO;
557 blk_mq_end_request(rq, rq->errors);
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
562 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
564 return tags->rqs[tag];
566 EXPORT_SYMBOL(blk_mq_tag_to_rq);
568 struct blk_mq_timeout_data {
569 unsigned long next;
570 unsigned int next_set;
573 void blk_mq_rq_timed_out(struct request *req, bool reserved)
575 struct blk_mq_ops *ops = req->q->mq_ops;
576 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
579 * We know that complete is set at this point. If STARTED isn't set
580 * anymore, then the request isn't active and the "timeout" should
581 * just be ignored. This can happen due to the bitflag ordering.
582 * Timeout first checks if STARTED is set, and if it is, assumes
583 * the request is active. But if we race with completion, then
584 * we both flags will get cleared. So check here again, and ignore
585 * a timeout event with a request that isn't active.
587 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
588 return;
590 if (ops->timeout)
591 ret = ops->timeout(req, reserved);
593 switch (ret) {
594 case BLK_EH_HANDLED:
595 __blk_mq_complete_request(req);
596 break;
597 case BLK_EH_RESET_TIMER:
598 blk_add_timer(req);
599 blk_clear_rq_complete(req);
600 break;
601 case BLK_EH_NOT_HANDLED:
602 break;
603 default:
604 printk(KERN_ERR "block: bad eh return: %d\n", ret);
605 break;
609 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
610 struct request *rq, void *priv, bool reserved)
612 struct blk_mq_timeout_data *data = priv;
614 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
616 * If a request wasn't started before the queue was
617 * marked dying, kill it here or it'll go unnoticed.
619 if (unlikely(blk_queue_dying(rq->q))) {
620 rq->errors = -EIO;
621 blk_mq_complete_request(rq);
623 return;
625 if (rq->cmd_flags & REQ_NO_TIMEOUT)
626 return;
628 if (time_after_eq(jiffies, rq->deadline)) {
629 if (!blk_mark_rq_complete(rq))
630 blk_mq_rq_timed_out(rq, reserved);
631 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
632 data->next = rq->deadline;
633 data->next_set = 1;
637 static void blk_mq_rq_timer(unsigned long priv)
639 struct request_queue *q = (struct request_queue *)priv;
640 struct blk_mq_timeout_data data = {
641 .next = 0,
642 .next_set = 0,
644 struct blk_mq_hw_ctx *hctx;
645 int i;
647 queue_for_each_hw_ctx(q, hctx, i) {
649 * If not software queues are currently mapped to this
650 * hardware queue, there's nothing to check
652 if (!blk_mq_hw_queue_mapped(hctx))
653 continue;
655 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
658 if (data.next_set) {
659 data.next = blk_rq_timeout(round_jiffies_up(data.next));
660 mod_timer(&q->timeout, data.next);
661 } else {
662 queue_for_each_hw_ctx(q, hctx, i) {
663 /* the hctx may be unmapped, so check it here */
664 if (blk_mq_hw_queue_mapped(hctx))
665 blk_mq_tag_idle(hctx);
671 * Reverse check our software queue for entries that we could potentially
672 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
673 * too much time checking for merges.
675 static bool blk_mq_attempt_merge(struct request_queue *q,
676 struct blk_mq_ctx *ctx, struct bio *bio)
678 struct request *rq;
679 int checked = 8;
681 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
682 int el_ret;
684 if (!checked--)
685 break;
687 if (!blk_rq_merge_ok(rq, bio))
688 continue;
690 el_ret = blk_try_merge(rq, bio);
691 if (el_ret == ELEVATOR_BACK_MERGE) {
692 if (bio_attempt_back_merge(q, rq, bio)) {
693 ctx->rq_merged++;
694 return true;
696 break;
697 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
698 if (bio_attempt_front_merge(q, rq, bio)) {
699 ctx->rq_merged++;
700 return true;
702 break;
706 return false;
710 * Process software queues that have been marked busy, splicing them
711 * to the for-dispatch
713 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
715 struct blk_mq_ctx *ctx;
716 int i;
718 for (i = 0; i < hctx->ctx_map.size; i++) {
719 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
720 unsigned int off, bit;
722 if (!bm->word)
723 continue;
725 bit = 0;
726 off = i * hctx->ctx_map.bits_per_word;
727 do {
728 bit = find_next_bit(&bm->word, bm->depth, bit);
729 if (bit >= bm->depth)
730 break;
732 ctx = hctx->ctxs[bit + off];
733 clear_bit(bit, &bm->word);
734 spin_lock(&ctx->lock);
735 list_splice_tail_init(&ctx->rq_list, list);
736 spin_unlock(&ctx->lock);
738 bit++;
739 } while (1);
744 * Run this hardware queue, pulling any software queues mapped to it in.
745 * Note that this function currently has various problems around ordering
746 * of IO. In particular, we'd like FIFO behaviour on handling existing
747 * items on the hctx->dispatch list. Ignore that for now.
749 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
751 struct request_queue *q = hctx->queue;
752 struct request *rq;
753 LIST_HEAD(rq_list);
754 LIST_HEAD(driver_list);
755 struct list_head *dptr;
756 int queued;
758 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
760 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
761 return;
763 hctx->run++;
766 * Touch any software queue that has pending entries.
768 flush_busy_ctxs(hctx, &rq_list);
771 * If we have previous entries on our dispatch list, grab them
772 * and stuff them at the front for more fair dispatch.
774 if (!list_empty_careful(&hctx->dispatch)) {
775 spin_lock(&hctx->lock);
776 if (!list_empty(&hctx->dispatch))
777 list_splice_init(&hctx->dispatch, &rq_list);
778 spin_unlock(&hctx->lock);
782 * Start off with dptr being NULL, so we start the first request
783 * immediately, even if we have more pending.
785 dptr = NULL;
788 * Now process all the entries, sending them to the driver.
790 queued = 0;
791 while (!list_empty(&rq_list)) {
792 struct blk_mq_queue_data bd;
793 int ret;
795 rq = list_first_entry(&rq_list, struct request, queuelist);
796 list_del_init(&rq->queuelist);
798 bd.rq = rq;
799 bd.list = dptr;
800 bd.last = list_empty(&rq_list);
802 ret = q->mq_ops->queue_rq(hctx, &bd);
803 switch (ret) {
804 case BLK_MQ_RQ_QUEUE_OK:
805 queued++;
806 continue;
807 case BLK_MQ_RQ_QUEUE_BUSY:
808 list_add(&rq->queuelist, &rq_list);
809 __blk_mq_requeue_request(rq);
810 break;
811 default:
812 pr_err("blk-mq: bad return on queue: %d\n", ret);
813 case BLK_MQ_RQ_QUEUE_ERROR:
814 rq->errors = -EIO;
815 blk_mq_end_request(rq, rq->errors);
816 break;
819 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
820 break;
823 * We've done the first request. If we have more than 1
824 * left in the list, set dptr to defer issue.
826 if (!dptr && rq_list.next != rq_list.prev)
827 dptr = &driver_list;
830 if (!queued)
831 hctx->dispatched[0]++;
832 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
833 hctx->dispatched[ilog2(queued) + 1]++;
836 * Any items that need requeuing? Stuff them into hctx->dispatch,
837 * that is where we will continue on next queue run.
839 if (!list_empty(&rq_list)) {
840 spin_lock(&hctx->lock);
841 list_splice(&rq_list, &hctx->dispatch);
842 spin_unlock(&hctx->lock);
844 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
845 * it's possible the queue is stopped and restarted again
846 * before this. Queue restart will dispatch requests. And since
847 * requests in rq_list aren't added into hctx->dispatch yet,
848 * the requests in rq_list might get lost.
850 * blk_mq_run_hw_queue() already checks the STOPPED bit
852 blk_mq_run_hw_queue(hctx, true);
857 * It'd be great if the workqueue API had a way to pass
858 * in a mask and had some smarts for more clever placement.
859 * For now we just round-robin here, switching for every
860 * BLK_MQ_CPU_WORK_BATCH queued items.
862 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
864 if (hctx->queue->nr_hw_queues == 1)
865 return WORK_CPU_UNBOUND;
867 if (--hctx->next_cpu_batch <= 0) {
868 int cpu = hctx->next_cpu, next_cpu;
870 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
871 if (next_cpu >= nr_cpu_ids)
872 next_cpu = cpumask_first(hctx->cpumask);
874 hctx->next_cpu = next_cpu;
875 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
877 return cpu;
880 return hctx->next_cpu;
883 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
885 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
886 !blk_mq_hw_queue_mapped(hctx)))
887 return;
889 if (!async) {
890 int cpu = get_cpu();
891 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
892 __blk_mq_run_hw_queue(hctx);
893 put_cpu();
894 return;
897 put_cpu();
900 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
901 &hctx->run_work, 0);
904 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
906 struct blk_mq_hw_ctx *hctx;
907 int i;
909 queue_for_each_hw_ctx(q, hctx, i) {
910 if ((!blk_mq_hctx_has_pending(hctx) &&
911 list_empty_careful(&hctx->dispatch)) ||
912 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
913 continue;
915 blk_mq_run_hw_queue(hctx, async);
918 EXPORT_SYMBOL(blk_mq_run_hw_queues);
920 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
922 cancel_delayed_work(&hctx->run_work);
923 cancel_delayed_work(&hctx->delay_work);
924 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
926 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
928 void blk_mq_stop_hw_queues(struct request_queue *q)
930 struct blk_mq_hw_ctx *hctx;
931 int i;
933 queue_for_each_hw_ctx(q, hctx, i)
934 blk_mq_stop_hw_queue(hctx);
936 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
938 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
940 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
942 blk_mq_run_hw_queue(hctx, false);
944 EXPORT_SYMBOL(blk_mq_start_hw_queue);
946 void blk_mq_start_hw_queues(struct request_queue *q)
948 struct blk_mq_hw_ctx *hctx;
949 int i;
951 queue_for_each_hw_ctx(q, hctx, i)
952 blk_mq_start_hw_queue(hctx);
954 EXPORT_SYMBOL(blk_mq_start_hw_queues);
956 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
958 struct blk_mq_hw_ctx *hctx;
959 int i;
961 queue_for_each_hw_ctx(q, hctx, i) {
962 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
963 continue;
965 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
966 blk_mq_run_hw_queue(hctx, async);
969 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
971 static void blk_mq_run_work_fn(struct work_struct *work)
973 struct blk_mq_hw_ctx *hctx;
975 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
977 __blk_mq_run_hw_queue(hctx);
980 static void blk_mq_delay_work_fn(struct work_struct *work)
982 struct blk_mq_hw_ctx *hctx;
984 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
986 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
987 __blk_mq_run_hw_queue(hctx);
990 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
992 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
993 return;
995 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
996 &hctx->delay_work, msecs_to_jiffies(msecs));
998 EXPORT_SYMBOL(blk_mq_delay_queue);
1000 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1001 struct request *rq, bool at_head)
1003 struct blk_mq_ctx *ctx = rq->mq_ctx;
1005 trace_block_rq_insert(hctx->queue, rq);
1007 if (at_head)
1008 list_add(&rq->queuelist, &ctx->rq_list);
1009 else
1010 list_add_tail(&rq->queuelist, &ctx->rq_list);
1012 blk_mq_hctx_mark_pending(hctx, ctx);
1015 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1016 bool async)
1018 struct request_queue *q = rq->q;
1019 struct blk_mq_hw_ctx *hctx;
1020 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1022 current_ctx = blk_mq_get_ctx(q);
1023 if (!cpu_online(ctx->cpu))
1024 rq->mq_ctx = ctx = current_ctx;
1026 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1028 spin_lock(&ctx->lock);
1029 __blk_mq_insert_request(hctx, rq, at_head);
1030 spin_unlock(&ctx->lock);
1032 if (run_queue)
1033 blk_mq_run_hw_queue(hctx, async);
1035 blk_mq_put_ctx(current_ctx);
1038 static void blk_mq_insert_requests(struct request_queue *q,
1039 struct blk_mq_ctx *ctx,
1040 struct list_head *list,
1041 int depth,
1042 bool from_schedule)
1045 struct blk_mq_hw_ctx *hctx;
1046 struct blk_mq_ctx *current_ctx;
1048 trace_block_unplug(q, depth, !from_schedule);
1050 current_ctx = blk_mq_get_ctx(q);
1052 if (!cpu_online(ctx->cpu))
1053 ctx = current_ctx;
1054 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1057 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1058 * offline now
1060 spin_lock(&ctx->lock);
1061 while (!list_empty(list)) {
1062 struct request *rq;
1064 rq = list_first_entry(list, struct request, queuelist);
1065 list_del_init(&rq->queuelist);
1066 rq->mq_ctx = ctx;
1067 __blk_mq_insert_request(hctx, rq, false);
1069 spin_unlock(&ctx->lock);
1071 blk_mq_run_hw_queue(hctx, from_schedule);
1072 blk_mq_put_ctx(current_ctx);
1075 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1077 struct request *rqa = container_of(a, struct request, queuelist);
1078 struct request *rqb = container_of(b, struct request, queuelist);
1080 return !(rqa->mq_ctx < rqb->mq_ctx ||
1081 (rqa->mq_ctx == rqb->mq_ctx &&
1082 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1085 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1087 struct blk_mq_ctx *this_ctx;
1088 struct request_queue *this_q;
1089 struct request *rq;
1090 LIST_HEAD(list);
1091 LIST_HEAD(ctx_list);
1092 unsigned int depth;
1094 list_splice_init(&plug->mq_list, &list);
1096 list_sort(NULL, &list, plug_ctx_cmp);
1098 this_q = NULL;
1099 this_ctx = NULL;
1100 depth = 0;
1102 while (!list_empty(&list)) {
1103 rq = list_entry_rq(list.next);
1104 list_del_init(&rq->queuelist);
1105 BUG_ON(!rq->q);
1106 if (rq->mq_ctx != this_ctx) {
1107 if (this_ctx) {
1108 blk_mq_insert_requests(this_q, this_ctx,
1109 &ctx_list, depth,
1110 from_schedule);
1113 this_ctx = rq->mq_ctx;
1114 this_q = rq->q;
1115 depth = 0;
1118 depth++;
1119 list_add_tail(&rq->queuelist, &ctx_list);
1123 * If 'this_ctx' is set, we know we have entries to complete
1124 * on 'ctx_list'. Do those.
1126 if (this_ctx) {
1127 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1128 from_schedule);
1132 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1134 init_request_from_bio(rq, bio);
1136 if (blk_do_io_stat(rq))
1137 blk_account_io_start(rq, 1);
1140 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1142 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1143 !blk_queue_nomerges(hctx->queue);
1146 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1147 struct blk_mq_ctx *ctx,
1148 struct request *rq, struct bio *bio)
1150 if (!hctx_allow_merges(hctx)) {
1151 blk_mq_bio_to_request(rq, bio);
1152 spin_lock(&ctx->lock);
1153 insert_rq:
1154 __blk_mq_insert_request(hctx, rq, false);
1155 spin_unlock(&ctx->lock);
1156 return false;
1157 } else {
1158 struct request_queue *q = hctx->queue;
1160 spin_lock(&ctx->lock);
1161 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1162 blk_mq_bio_to_request(rq, bio);
1163 goto insert_rq;
1166 spin_unlock(&ctx->lock);
1167 __blk_mq_free_request(hctx, ctx, rq);
1168 return true;
1172 struct blk_map_ctx {
1173 struct blk_mq_hw_ctx *hctx;
1174 struct blk_mq_ctx *ctx;
1177 static struct request *blk_mq_map_request(struct request_queue *q,
1178 struct bio *bio,
1179 struct blk_map_ctx *data)
1181 struct blk_mq_hw_ctx *hctx;
1182 struct blk_mq_ctx *ctx;
1183 struct request *rq;
1184 int rw = bio_data_dir(bio);
1185 struct blk_mq_alloc_data alloc_data;
1187 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1188 bio_io_error(bio);
1189 return NULL;
1192 ctx = blk_mq_get_ctx(q);
1193 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1195 if (rw_is_sync(bio->bi_rw))
1196 rw |= REQ_SYNC;
1198 trace_block_getrq(q, bio, rw);
1199 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1200 hctx);
1201 rq = __blk_mq_alloc_request(&alloc_data, rw);
1202 if (unlikely(!rq)) {
1203 __blk_mq_run_hw_queue(hctx);
1204 blk_mq_put_ctx(ctx);
1205 trace_block_sleeprq(q, bio, rw);
1207 ctx = blk_mq_get_ctx(q);
1208 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1209 blk_mq_set_alloc_data(&alloc_data, q,
1210 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1211 rq = __blk_mq_alloc_request(&alloc_data, rw);
1212 ctx = alloc_data.ctx;
1213 hctx = alloc_data.hctx;
1216 hctx->queued++;
1217 data->hctx = hctx;
1218 data->ctx = ctx;
1219 return rq;
1222 static int blk_mq_direct_issue_request(struct request *rq)
1224 int ret;
1225 struct request_queue *q = rq->q;
1226 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1227 rq->mq_ctx->cpu);
1228 struct blk_mq_queue_data bd = {
1229 .rq = rq,
1230 .list = NULL,
1231 .last = 1
1235 * For OK queue, we are done. For error, kill it. Any other
1236 * error (busy), just add it to our list as we previously
1237 * would have done
1239 ret = q->mq_ops->queue_rq(hctx, &bd);
1240 if (ret == BLK_MQ_RQ_QUEUE_OK)
1241 return 0;
1242 else {
1243 __blk_mq_requeue_request(rq);
1245 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1246 rq->errors = -EIO;
1247 blk_mq_end_request(rq, rq->errors);
1248 return 0;
1250 return -1;
1255 * Multiple hardware queue variant. This will not use per-process plugs,
1256 * but will attempt to bypass the hctx queueing if we can go straight to
1257 * hardware for SYNC IO.
1259 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1261 const int is_sync = rw_is_sync(bio->bi_rw);
1262 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1263 struct blk_map_ctx data;
1264 struct request *rq;
1265 unsigned int request_count = 0;
1266 struct blk_plug *plug;
1267 struct request *same_queue_rq = NULL;
1269 blk_queue_bounce(q, &bio);
1271 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1272 bio_io_error(bio);
1273 return;
1276 blk_queue_split(q, &bio, q->bio_split);
1278 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1279 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1280 return;
1282 rq = blk_mq_map_request(q, bio, &data);
1283 if (unlikely(!rq))
1284 return;
1286 if (unlikely(is_flush_fua)) {
1287 blk_mq_bio_to_request(rq, bio);
1288 blk_insert_flush(rq);
1289 goto run_queue;
1292 plug = current->plug;
1294 * If the driver supports defer issued based on 'last', then
1295 * queue it up like normal since we can potentially save some
1296 * CPU this way.
1298 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1299 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1300 struct request *old_rq = NULL;
1302 blk_mq_bio_to_request(rq, bio);
1305 * we do limited pluging. If bio can be merged, do merge.
1306 * Otherwise the existing request in the plug list will be
1307 * issued. So the plug list will have one request at most
1309 if (plug) {
1311 * The plug list might get flushed before this. If that
1312 * happens, same_queue_rq is invalid and plug list is empty
1314 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1315 old_rq = same_queue_rq;
1316 list_del_init(&old_rq->queuelist);
1318 list_add_tail(&rq->queuelist, &plug->mq_list);
1319 } else /* is_sync */
1320 old_rq = rq;
1321 blk_mq_put_ctx(data.ctx);
1322 if (!old_rq)
1323 return;
1324 if (!blk_mq_direct_issue_request(old_rq))
1325 return;
1326 blk_mq_insert_request(old_rq, false, true, true);
1327 return;
1330 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1332 * For a SYNC request, send it to the hardware immediately. For
1333 * an ASYNC request, just ensure that we run it later on. The
1334 * latter allows for merging opportunities and more efficient
1335 * dispatching.
1337 run_queue:
1338 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1340 blk_mq_put_ctx(data.ctx);
1344 * Single hardware queue variant. This will attempt to use any per-process
1345 * plug for merging and IO deferral.
1347 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1349 const int is_sync = rw_is_sync(bio->bi_rw);
1350 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1351 struct blk_plug *plug;
1352 unsigned int request_count = 0;
1353 struct blk_map_ctx data;
1354 struct request *rq;
1356 blk_queue_bounce(q, &bio);
1358 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1359 bio_io_error(bio);
1360 return;
1363 blk_queue_split(q, &bio, q->bio_split);
1365 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1366 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1367 return;
1369 rq = blk_mq_map_request(q, bio, &data);
1370 if (unlikely(!rq))
1371 return;
1373 if (unlikely(is_flush_fua)) {
1374 blk_mq_bio_to_request(rq, bio);
1375 blk_insert_flush(rq);
1376 goto run_queue;
1380 * A task plug currently exists. Since this is completely lockless,
1381 * utilize that to temporarily store requests until the task is
1382 * either done or scheduled away.
1384 plug = current->plug;
1385 if (plug) {
1386 blk_mq_bio_to_request(rq, bio);
1387 if (list_empty(&plug->mq_list))
1388 trace_block_plug(q);
1389 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1390 blk_flush_plug_list(plug, false);
1391 trace_block_plug(q);
1393 list_add_tail(&rq->queuelist, &plug->mq_list);
1394 blk_mq_put_ctx(data.ctx);
1395 return;
1398 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1400 * For a SYNC request, send it to the hardware immediately. For
1401 * an ASYNC request, just ensure that we run it later on. The
1402 * latter allows for merging opportunities and more efficient
1403 * dispatching.
1405 run_queue:
1406 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1409 blk_mq_put_ctx(data.ctx);
1413 * Default mapping to a software queue, since we use one per CPU.
1415 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1417 return q->queue_hw_ctx[q->mq_map[cpu]];
1419 EXPORT_SYMBOL(blk_mq_map_queue);
1421 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1422 struct blk_mq_tags *tags, unsigned int hctx_idx)
1424 struct page *page;
1426 if (tags->rqs && set->ops->exit_request) {
1427 int i;
1429 for (i = 0; i < tags->nr_tags; i++) {
1430 if (!tags->rqs[i])
1431 continue;
1432 set->ops->exit_request(set->driver_data, tags->rqs[i],
1433 hctx_idx, i);
1434 tags->rqs[i] = NULL;
1438 while (!list_empty(&tags->page_list)) {
1439 page = list_first_entry(&tags->page_list, struct page, lru);
1440 list_del_init(&page->lru);
1441 __free_pages(page, page->private);
1444 kfree(tags->rqs);
1446 blk_mq_free_tags(tags);
1449 static size_t order_to_size(unsigned int order)
1451 return (size_t)PAGE_SIZE << order;
1454 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1455 unsigned int hctx_idx)
1457 struct blk_mq_tags *tags;
1458 unsigned int i, j, entries_per_page, max_order = 4;
1459 size_t rq_size, left;
1461 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1462 set->numa_node,
1463 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1464 if (!tags)
1465 return NULL;
1467 INIT_LIST_HEAD(&tags->page_list);
1469 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1470 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1471 set->numa_node);
1472 if (!tags->rqs) {
1473 blk_mq_free_tags(tags);
1474 return NULL;
1478 * rq_size is the size of the request plus driver payload, rounded
1479 * to the cacheline size
1481 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1482 cache_line_size());
1483 left = rq_size * set->queue_depth;
1485 for (i = 0; i < set->queue_depth; ) {
1486 int this_order = max_order;
1487 struct page *page;
1488 int to_do;
1489 void *p;
1491 while (left < order_to_size(this_order - 1) && this_order)
1492 this_order--;
1494 do {
1495 page = alloc_pages_node(set->numa_node,
1496 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1497 this_order);
1498 if (page)
1499 break;
1500 if (!this_order--)
1501 break;
1502 if (order_to_size(this_order) < rq_size)
1503 break;
1504 } while (1);
1506 if (!page)
1507 goto fail;
1509 page->private = this_order;
1510 list_add_tail(&page->lru, &tags->page_list);
1512 p = page_address(page);
1513 entries_per_page = order_to_size(this_order) / rq_size;
1514 to_do = min(entries_per_page, set->queue_depth - i);
1515 left -= to_do * rq_size;
1516 for (j = 0; j < to_do; j++) {
1517 tags->rqs[i] = p;
1518 if (set->ops->init_request) {
1519 if (set->ops->init_request(set->driver_data,
1520 tags->rqs[i], hctx_idx, i,
1521 set->numa_node)) {
1522 tags->rqs[i] = NULL;
1523 goto fail;
1527 p += rq_size;
1528 i++;
1531 return tags;
1533 fail:
1534 blk_mq_free_rq_map(set, tags, hctx_idx);
1535 return NULL;
1538 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1540 kfree(bitmap->map);
1543 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1545 unsigned int bpw = 8, total, num_maps, i;
1547 bitmap->bits_per_word = bpw;
1549 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1550 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1551 GFP_KERNEL, node);
1552 if (!bitmap->map)
1553 return -ENOMEM;
1555 total = nr_cpu_ids;
1556 for (i = 0; i < num_maps; i++) {
1557 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1558 total -= bitmap->map[i].depth;
1561 return 0;
1564 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1566 struct request_queue *q = hctx->queue;
1567 struct blk_mq_ctx *ctx;
1568 LIST_HEAD(tmp);
1571 * Move ctx entries to new CPU, if this one is going away.
1573 ctx = __blk_mq_get_ctx(q, cpu);
1575 spin_lock(&ctx->lock);
1576 if (!list_empty(&ctx->rq_list)) {
1577 list_splice_init(&ctx->rq_list, &tmp);
1578 blk_mq_hctx_clear_pending(hctx, ctx);
1580 spin_unlock(&ctx->lock);
1582 if (list_empty(&tmp))
1583 return NOTIFY_OK;
1585 ctx = blk_mq_get_ctx(q);
1586 spin_lock(&ctx->lock);
1588 while (!list_empty(&tmp)) {
1589 struct request *rq;
1591 rq = list_first_entry(&tmp, struct request, queuelist);
1592 rq->mq_ctx = ctx;
1593 list_move_tail(&rq->queuelist, &ctx->rq_list);
1596 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1597 blk_mq_hctx_mark_pending(hctx, ctx);
1599 spin_unlock(&ctx->lock);
1601 blk_mq_run_hw_queue(hctx, true);
1602 blk_mq_put_ctx(ctx);
1603 return NOTIFY_OK;
1606 static int blk_mq_hctx_notify(void *data, unsigned long action,
1607 unsigned int cpu)
1609 struct blk_mq_hw_ctx *hctx = data;
1611 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1612 return blk_mq_hctx_cpu_offline(hctx, cpu);
1615 * In case of CPU online, tags may be reallocated
1616 * in blk_mq_map_swqueue() after mapping is updated.
1619 return NOTIFY_OK;
1622 /* hctx->ctxs will be freed in queue's release handler */
1623 static void blk_mq_exit_hctx(struct request_queue *q,
1624 struct blk_mq_tag_set *set,
1625 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1627 unsigned flush_start_tag = set->queue_depth;
1629 blk_mq_tag_idle(hctx);
1631 if (set->ops->exit_request)
1632 set->ops->exit_request(set->driver_data,
1633 hctx->fq->flush_rq, hctx_idx,
1634 flush_start_tag + hctx_idx);
1636 if (set->ops->exit_hctx)
1637 set->ops->exit_hctx(hctx, hctx_idx);
1639 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1640 blk_free_flush_queue(hctx->fq);
1641 blk_mq_free_bitmap(&hctx->ctx_map);
1644 static void blk_mq_exit_hw_queues(struct request_queue *q,
1645 struct blk_mq_tag_set *set, int nr_queue)
1647 struct blk_mq_hw_ctx *hctx;
1648 unsigned int i;
1650 queue_for_each_hw_ctx(q, hctx, i) {
1651 if (i == nr_queue)
1652 break;
1653 blk_mq_exit_hctx(q, set, hctx, i);
1657 static void blk_mq_free_hw_queues(struct request_queue *q,
1658 struct blk_mq_tag_set *set)
1660 struct blk_mq_hw_ctx *hctx;
1661 unsigned int i;
1663 queue_for_each_hw_ctx(q, hctx, i)
1664 free_cpumask_var(hctx->cpumask);
1667 static int blk_mq_init_hctx(struct request_queue *q,
1668 struct blk_mq_tag_set *set,
1669 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1671 int node;
1672 unsigned flush_start_tag = set->queue_depth;
1674 node = hctx->numa_node;
1675 if (node == NUMA_NO_NODE)
1676 node = hctx->numa_node = set->numa_node;
1678 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1679 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1680 spin_lock_init(&hctx->lock);
1681 INIT_LIST_HEAD(&hctx->dispatch);
1682 hctx->queue = q;
1683 hctx->queue_num = hctx_idx;
1684 hctx->flags = set->flags;
1686 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1687 blk_mq_hctx_notify, hctx);
1688 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1690 hctx->tags = set->tags[hctx_idx];
1693 * Allocate space for all possible cpus to avoid allocation at
1694 * runtime
1696 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1697 GFP_KERNEL, node);
1698 if (!hctx->ctxs)
1699 goto unregister_cpu_notifier;
1701 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1702 goto free_ctxs;
1704 hctx->nr_ctx = 0;
1706 if (set->ops->init_hctx &&
1707 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1708 goto free_bitmap;
1710 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1711 if (!hctx->fq)
1712 goto exit_hctx;
1714 if (set->ops->init_request &&
1715 set->ops->init_request(set->driver_data,
1716 hctx->fq->flush_rq, hctx_idx,
1717 flush_start_tag + hctx_idx, node))
1718 goto free_fq;
1720 return 0;
1722 free_fq:
1723 kfree(hctx->fq);
1724 exit_hctx:
1725 if (set->ops->exit_hctx)
1726 set->ops->exit_hctx(hctx, hctx_idx);
1727 free_bitmap:
1728 blk_mq_free_bitmap(&hctx->ctx_map);
1729 free_ctxs:
1730 kfree(hctx->ctxs);
1731 unregister_cpu_notifier:
1732 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1734 return -1;
1737 static int blk_mq_init_hw_queues(struct request_queue *q,
1738 struct blk_mq_tag_set *set)
1740 struct blk_mq_hw_ctx *hctx;
1741 unsigned int i;
1744 * Initialize hardware queues
1746 queue_for_each_hw_ctx(q, hctx, i) {
1747 if (blk_mq_init_hctx(q, set, hctx, i))
1748 break;
1751 if (i == q->nr_hw_queues)
1752 return 0;
1755 * Init failed
1757 blk_mq_exit_hw_queues(q, set, i);
1759 return 1;
1762 static void blk_mq_init_cpu_queues(struct request_queue *q,
1763 unsigned int nr_hw_queues)
1765 unsigned int i;
1767 for_each_possible_cpu(i) {
1768 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1769 struct blk_mq_hw_ctx *hctx;
1771 memset(__ctx, 0, sizeof(*__ctx));
1772 __ctx->cpu = i;
1773 spin_lock_init(&__ctx->lock);
1774 INIT_LIST_HEAD(&__ctx->rq_list);
1775 __ctx->queue = q;
1777 /* If the cpu isn't online, the cpu is mapped to first hctx */
1778 if (!cpu_online(i))
1779 continue;
1781 hctx = q->mq_ops->map_queue(q, i);
1784 * Set local node, IFF we have more than one hw queue. If
1785 * not, we remain on the home node of the device
1787 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1788 hctx->numa_node = cpu_to_node(i);
1792 static void blk_mq_map_swqueue(struct request_queue *q)
1794 unsigned int i;
1795 struct blk_mq_hw_ctx *hctx;
1796 struct blk_mq_ctx *ctx;
1797 struct blk_mq_tag_set *set = q->tag_set;
1799 queue_for_each_hw_ctx(q, hctx, i) {
1800 cpumask_clear(hctx->cpumask);
1801 hctx->nr_ctx = 0;
1805 * Map software to hardware queues
1807 queue_for_each_ctx(q, ctx, i) {
1808 /* If the cpu isn't online, the cpu is mapped to first hctx */
1809 if (!cpu_online(i))
1810 continue;
1812 hctx = q->mq_ops->map_queue(q, i);
1813 cpumask_set_cpu(i, hctx->cpumask);
1814 cpumask_set_cpu(i, hctx->tags->cpumask);
1815 ctx->index_hw = hctx->nr_ctx;
1816 hctx->ctxs[hctx->nr_ctx++] = ctx;
1819 queue_for_each_hw_ctx(q, hctx, i) {
1820 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1823 * If no software queues are mapped to this hardware queue,
1824 * disable it and free the request entries.
1826 if (!hctx->nr_ctx) {
1827 if (set->tags[i]) {
1828 blk_mq_free_rq_map(set, set->tags[i], i);
1829 set->tags[i] = NULL;
1831 hctx->tags = NULL;
1832 continue;
1835 /* unmapped hw queue can be remapped after CPU topo changed */
1836 if (!set->tags[i])
1837 set->tags[i] = blk_mq_init_rq_map(set, i);
1838 hctx->tags = set->tags[i];
1839 WARN_ON(!hctx->tags);
1842 * Set the map size to the number of mapped software queues.
1843 * This is more accurate and more efficient than looping
1844 * over all possibly mapped software queues.
1846 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1849 * Initialize batch roundrobin counts
1851 hctx->next_cpu = cpumask_first(hctx->cpumask);
1852 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1856 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1858 struct blk_mq_hw_ctx *hctx;
1859 struct request_queue *q;
1860 bool shared;
1861 int i;
1863 if (set->tag_list.next == set->tag_list.prev)
1864 shared = false;
1865 else
1866 shared = true;
1868 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1869 blk_mq_freeze_queue(q);
1871 queue_for_each_hw_ctx(q, hctx, i) {
1872 if (shared)
1873 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1874 else
1875 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1877 blk_mq_unfreeze_queue(q);
1881 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1883 struct blk_mq_tag_set *set = q->tag_set;
1885 mutex_lock(&set->tag_list_lock);
1886 list_del_init(&q->tag_set_list);
1887 blk_mq_update_tag_set_depth(set);
1888 mutex_unlock(&set->tag_list_lock);
1891 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1892 struct request_queue *q)
1894 q->tag_set = set;
1896 mutex_lock(&set->tag_list_lock);
1897 list_add_tail(&q->tag_set_list, &set->tag_list);
1898 blk_mq_update_tag_set_depth(set);
1899 mutex_unlock(&set->tag_list_lock);
1903 * It is the actual release handler for mq, but we do it from
1904 * request queue's release handler for avoiding use-after-free
1905 * and headache because q->mq_kobj shouldn't have been introduced,
1906 * but we can't group ctx/kctx kobj without it.
1908 void blk_mq_release(struct request_queue *q)
1910 struct blk_mq_hw_ctx *hctx;
1911 unsigned int i;
1913 /* hctx kobj stays in hctx */
1914 queue_for_each_hw_ctx(q, hctx, i) {
1915 if (!hctx)
1916 continue;
1917 kfree(hctx->ctxs);
1918 kfree(hctx);
1921 kfree(q->queue_hw_ctx);
1923 /* ctx kobj stays in queue_ctx */
1924 free_percpu(q->queue_ctx);
1927 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1929 struct request_queue *uninit_q, *q;
1931 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1932 if (!uninit_q)
1933 return ERR_PTR(-ENOMEM);
1935 q = blk_mq_init_allocated_queue(set, uninit_q);
1936 if (IS_ERR(q))
1937 blk_cleanup_queue(uninit_q);
1939 return q;
1941 EXPORT_SYMBOL(blk_mq_init_queue);
1943 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1944 struct request_queue *q)
1946 struct blk_mq_hw_ctx **hctxs;
1947 struct blk_mq_ctx __percpu *ctx;
1948 unsigned int *map;
1949 int i;
1951 ctx = alloc_percpu(struct blk_mq_ctx);
1952 if (!ctx)
1953 return ERR_PTR(-ENOMEM);
1955 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1956 set->numa_node);
1958 if (!hctxs)
1959 goto err_percpu;
1961 map = blk_mq_make_queue_map(set);
1962 if (!map)
1963 goto err_map;
1965 for (i = 0; i < set->nr_hw_queues; i++) {
1966 int node = blk_mq_hw_queue_to_node(map, i);
1968 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1969 GFP_KERNEL, node);
1970 if (!hctxs[i])
1971 goto err_hctxs;
1973 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1974 node))
1975 goto err_hctxs;
1977 atomic_set(&hctxs[i]->nr_active, 0);
1978 hctxs[i]->numa_node = node;
1979 hctxs[i]->queue_num = i;
1983 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1984 * See blk_register_queue() for details.
1986 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1987 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1988 goto err_hctxs;
1990 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1991 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
1993 q->nr_queues = nr_cpu_ids;
1994 q->nr_hw_queues = set->nr_hw_queues;
1995 q->mq_map = map;
1997 q->queue_ctx = ctx;
1998 q->queue_hw_ctx = hctxs;
2000 q->mq_ops = set->ops;
2001 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2003 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2004 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2006 q->sg_reserved_size = INT_MAX;
2008 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2009 INIT_LIST_HEAD(&q->requeue_list);
2010 spin_lock_init(&q->requeue_lock);
2012 if (q->nr_hw_queues > 1)
2013 blk_queue_make_request(q, blk_mq_make_request);
2014 else
2015 blk_queue_make_request(q, blk_sq_make_request);
2018 * Do this after blk_queue_make_request() overrides it...
2020 q->nr_requests = set->queue_depth;
2022 if (set->ops->complete)
2023 blk_queue_softirq_done(q, set->ops->complete);
2025 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2027 if (blk_mq_init_hw_queues(q, set))
2028 goto err_hctxs;
2030 mutex_lock(&all_q_mutex);
2031 list_add_tail(&q->all_q_node, &all_q_list);
2032 mutex_unlock(&all_q_mutex);
2034 blk_mq_add_queue_tag_set(set, q);
2036 blk_mq_map_swqueue(q);
2038 return q;
2040 err_hctxs:
2041 kfree(map);
2042 for (i = 0; i < set->nr_hw_queues; i++) {
2043 if (!hctxs[i])
2044 break;
2045 free_cpumask_var(hctxs[i]->cpumask);
2046 kfree(hctxs[i]);
2048 err_map:
2049 kfree(hctxs);
2050 err_percpu:
2051 free_percpu(ctx);
2052 return ERR_PTR(-ENOMEM);
2054 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2056 void blk_mq_free_queue(struct request_queue *q)
2058 struct blk_mq_tag_set *set = q->tag_set;
2060 blk_mq_del_queue_tag_set(q);
2062 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2063 blk_mq_free_hw_queues(q, set);
2065 percpu_ref_exit(&q->mq_usage_counter);
2067 kfree(q->mq_map);
2069 q->mq_map = NULL;
2071 mutex_lock(&all_q_mutex);
2072 list_del_init(&q->all_q_node);
2073 mutex_unlock(&all_q_mutex);
2076 /* Basically redo blk_mq_init_queue with queue frozen */
2077 static void blk_mq_queue_reinit(struct request_queue *q)
2079 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2081 blk_mq_sysfs_unregister(q);
2083 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2086 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2087 * we should change hctx numa_node according to new topology (this
2088 * involves free and re-allocate memory, worthy doing?)
2091 blk_mq_map_swqueue(q);
2093 blk_mq_sysfs_register(q);
2096 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2097 unsigned long action, void *hcpu)
2099 struct request_queue *q;
2102 * Before new mappings are established, hotadded cpu might already
2103 * start handling requests. This doesn't break anything as we map
2104 * offline CPUs to first hardware queue. We will re-init the queue
2105 * below to get optimal settings.
2107 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2108 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2109 return NOTIFY_OK;
2111 mutex_lock(&all_q_mutex);
2114 * We need to freeze and reinit all existing queues. Freezing
2115 * involves synchronous wait for an RCU grace period and doing it
2116 * one by one may take a long time. Start freezing all queues in
2117 * one swoop and then wait for the completions so that freezing can
2118 * take place in parallel.
2120 list_for_each_entry(q, &all_q_list, all_q_node)
2121 blk_mq_freeze_queue_start(q);
2122 list_for_each_entry(q, &all_q_list, all_q_node) {
2123 blk_mq_freeze_queue_wait(q);
2126 * timeout handler can't touch hw queue during the
2127 * reinitialization
2129 del_timer_sync(&q->timeout);
2132 list_for_each_entry(q, &all_q_list, all_q_node)
2133 blk_mq_queue_reinit(q);
2135 list_for_each_entry(q, &all_q_list, all_q_node)
2136 blk_mq_unfreeze_queue(q);
2138 mutex_unlock(&all_q_mutex);
2139 return NOTIFY_OK;
2142 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2144 int i;
2146 for (i = 0; i < set->nr_hw_queues; i++) {
2147 set->tags[i] = blk_mq_init_rq_map(set, i);
2148 if (!set->tags[i])
2149 goto out_unwind;
2152 return 0;
2154 out_unwind:
2155 while (--i >= 0)
2156 blk_mq_free_rq_map(set, set->tags[i], i);
2158 return -ENOMEM;
2162 * Allocate the request maps associated with this tag_set. Note that this
2163 * may reduce the depth asked for, if memory is tight. set->queue_depth
2164 * will be updated to reflect the allocated depth.
2166 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2168 unsigned int depth;
2169 int err;
2171 depth = set->queue_depth;
2172 do {
2173 err = __blk_mq_alloc_rq_maps(set);
2174 if (!err)
2175 break;
2177 set->queue_depth >>= 1;
2178 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2179 err = -ENOMEM;
2180 break;
2182 } while (set->queue_depth);
2184 if (!set->queue_depth || err) {
2185 pr_err("blk-mq: failed to allocate request map\n");
2186 return -ENOMEM;
2189 if (depth != set->queue_depth)
2190 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2191 depth, set->queue_depth);
2193 return 0;
2196 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2198 return tags->cpumask;
2200 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2203 * Alloc a tag set to be associated with one or more request queues.
2204 * May fail with EINVAL for various error conditions. May adjust the
2205 * requested depth down, if if it too large. In that case, the set
2206 * value will be stored in set->queue_depth.
2208 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2210 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2212 if (!set->nr_hw_queues)
2213 return -EINVAL;
2214 if (!set->queue_depth)
2215 return -EINVAL;
2216 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2217 return -EINVAL;
2219 if (!set->ops->queue_rq || !set->ops->map_queue)
2220 return -EINVAL;
2222 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2223 pr_info("blk-mq: reduced tag depth to %u\n",
2224 BLK_MQ_MAX_DEPTH);
2225 set->queue_depth = BLK_MQ_MAX_DEPTH;
2229 * If a crashdump is active, then we are potentially in a very
2230 * memory constrained environment. Limit us to 1 queue and
2231 * 64 tags to prevent using too much memory.
2233 if (is_kdump_kernel()) {
2234 set->nr_hw_queues = 1;
2235 set->queue_depth = min(64U, set->queue_depth);
2238 set->tags = kmalloc_node(set->nr_hw_queues *
2239 sizeof(struct blk_mq_tags *),
2240 GFP_KERNEL, set->numa_node);
2241 if (!set->tags)
2242 return -ENOMEM;
2244 if (blk_mq_alloc_rq_maps(set))
2245 goto enomem;
2247 mutex_init(&set->tag_list_lock);
2248 INIT_LIST_HEAD(&set->tag_list);
2250 return 0;
2251 enomem:
2252 kfree(set->tags);
2253 set->tags = NULL;
2254 return -ENOMEM;
2256 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2258 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2260 int i;
2262 for (i = 0; i < set->nr_hw_queues; i++) {
2263 if (set->tags[i]) {
2264 blk_mq_free_rq_map(set, set->tags[i], i);
2265 free_cpumask_var(set->tags[i]->cpumask);
2269 kfree(set->tags);
2270 set->tags = NULL;
2272 EXPORT_SYMBOL(blk_mq_free_tag_set);
2274 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2276 struct blk_mq_tag_set *set = q->tag_set;
2277 struct blk_mq_hw_ctx *hctx;
2278 int i, ret;
2280 if (!set || nr > set->queue_depth)
2281 return -EINVAL;
2283 ret = 0;
2284 queue_for_each_hw_ctx(q, hctx, i) {
2285 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2286 if (ret)
2287 break;
2290 if (!ret)
2291 q->nr_requests = nr;
2293 return ret;
2296 void blk_mq_disable_hotplug(void)
2298 mutex_lock(&all_q_mutex);
2301 void blk_mq_enable_hotplug(void)
2303 mutex_unlock(&all_q_mutex);
2306 static int __init blk_mq_init(void)
2308 blk_mq_cpu_init();
2310 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2312 return 0;
2314 subsys_initcall(blk_mq_init);