2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex
);
33 static LIST_HEAD(all_q_list
);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
44 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++)
45 if (hctx
->ctx_map
.map
[i
].word
)
51 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
52 struct blk_mq_ctx
*ctx
)
54 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
64 struct blk_mq_ctx
*ctx
)
66 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
68 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
69 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
73 struct blk_mq_ctx
*ctx
)
75 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
77 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
80 static int blk_mq_queue_enter(struct request_queue
*q
, gfp_t gfp
)
85 if (percpu_ref_tryget_live(&q
->mq_usage_counter
))
88 if (!(gfp
& __GFP_WAIT
))
91 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
92 !atomic_read(&q
->mq_freeze_depth
) ||
94 if (blk_queue_dying(q
))
101 static void blk_mq_queue_exit(struct request_queue
*q
)
103 percpu_ref_put(&q
->mq_usage_counter
);
106 static void blk_mq_usage_counter_release(struct percpu_ref
*ref
)
108 struct request_queue
*q
=
109 container_of(ref
, struct request_queue
, mq_usage_counter
);
111 wake_up_all(&q
->mq_freeze_wq
);
114 void blk_mq_freeze_queue_start(struct request_queue
*q
)
118 freeze_depth
= atomic_inc_return(&q
->mq_freeze_depth
);
119 if (freeze_depth
== 1) {
120 percpu_ref_kill(&q
->mq_usage_counter
);
121 blk_mq_run_hw_queues(q
, false);
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
126 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
128 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->mq_usage_counter
));
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
135 void blk_mq_freeze_queue(struct request_queue
*q
)
137 blk_mq_freeze_queue_start(q
);
138 blk_mq_freeze_queue_wait(q
);
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
142 void blk_mq_unfreeze_queue(struct request_queue
*q
)
146 freeze_depth
= atomic_dec_return(&q
->mq_freeze_depth
);
147 WARN_ON_ONCE(freeze_depth
< 0);
149 percpu_ref_reinit(&q
->mq_usage_counter
);
150 wake_up_all(&q
->mq_freeze_wq
);
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
155 void blk_mq_wake_waiters(struct request_queue
*q
)
157 struct blk_mq_hw_ctx
*hctx
;
160 queue_for_each_hw_ctx(q
, hctx
, i
)
161 if (blk_mq_hw_queue_mapped(hctx
))
162 blk_mq_tag_wakeup_all(hctx
->tags
, true);
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
169 wake_up_all(&q
->mq_freeze_wq
);
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
174 return blk_mq_has_free_tags(hctx
->tags
);
176 EXPORT_SYMBOL(blk_mq_can_queue
);
178 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
179 struct request
*rq
, unsigned int rw_flags
)
181 if (blk_queue_io_stat(q
))
182 rw_flags
|= REQ_IO_STAT
;
184 INIT_LIST_HEAD(&rq
->queuelist
);
185 /* csd/requeue_work/fifo_time is initialized before use */
188 rq
->cmd_flags
|= rw_flags
;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
191 INIT_HLIST_NODE(&rq
->hash
);
192 RB_CLEAR_NODE(&rq
->rb_node
);
195 rq
->start_time
= jiffies
;
196 #ifdef CONFIG_BLK_CGROUP
198 set_start_time_ns(rq
);
199 rq
->io_start_time_ns
= 0;
201 rq
->nr_phys_segments
= 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq
->nr_integrity_segments
= 0;
206 /* tag was already set */
216 INIT_LIST_HEAD(&rq
->timeout_list
);
220 rq
->end_io_data
= NULL
;
223 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
226 static struct request
*
227 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
232 tag
= blk_mq_get_tag(data
);
233 if (tag
!= BLK_MQ_TAG_FAIL
) {
234 rq
= data
->hctx
->tags
->rqs
[tag
];
236 if (blk_mq_tag_busy(data
->hctx
)) {
237 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
238 atomic_inc(&data
->hctx
->nr_active
);
242 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
249 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
252 struct blk_mq_ctx
*ctx
;
253 struct blk_mq_hw_ctx
*hctx
;
255 struct blk_mq_alloc_data alloc_data
;
258 ret
= blk_mq_queue_enter(q
, gfp
);
262 ctx
= blk_mq_get_ctx(q
);
263 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
264 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
265 reserved
, ctx
, hctx
);
267 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
268 if (!rq
&& (gfp
& __GFP_WAIT
)) {
269 __blk_mq_run_hw_queue(hctx
);
272 ctx
= blk_mq_get_ctx(q
);
273 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
274 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
276 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
277 ctx
= alloc_data
.ctx
;
281 blk_mq_queue_exit(q
);
282 return ERR_PTR(-EWOULDBLOCK
);
286 EXPORT_SYMBOL(blk_mq_alloc_request
);
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
289 struct blk_mq_ctx
*ctx
, struct request
*rq
)
291 const int tag
= rq
->tag
;
292 struct request_queue
*q
= rq
->q
;
294 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
295 atomic_dec(&hctx
->nr_active
);
298 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
299 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
300 blk_mq_queue_exit(q
);
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
305 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
307 ctx
->rq_completed
[rq_is_sync(rq
)]++;
308 __blk_mq_free_request(hctx
, ctx
, rq
);
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
313 void blk_mq_free_request(struct request
*rq
)
315 struct blk_mq_hw_ctx
*hctx
;
316 struct request_queue
*q
= rq
->q
;
318 hctx
= q
->mq_ops
->map_queue(q
, rq
->mq_ctx
->cpu
);
319 blk_mq_free_hctx_request(hctx
, rq
);
321 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
323 inline void __blk_mq_end_request(struct request
*rq
, int error
)
325 blk_account_io_done(rq
);
328 rq
->end_io(rq
, error
);
330 if (unlikely(blk_bidi_rq(rq
)))
331 blk_mq_free_request(rq
->next_rq
);
332 blk_mq_free_request(rq
);
335 EXPORT_SYMBOL(__blk_mq_end_request
);
337 void blk_mq_end_request(struct request
*rq
, int error
)
339 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
341 __blk_mq_end_request(rq
, error
);
343 EXPORT_SYMBOL(blk_mq_end_request
);
345 static void __blk_mq_complete_request_remote(void *data
)
347 struct request
*rq
= data
;
349 rq
->q
->softirq_done_fn(rq
);
352 static void blk_mq_ipi_complete_request(struct request
*rq
)
354 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
358 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
359 rq
->q
->softirq_done_fn(rq
);
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
365 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
367 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
368 rq
->csd
.func
= __blk_mq_complete_request_remote
;
371 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
373 rq
->q
->softirq_done_fn(rq
);
378 void __blk_mq_complete_request(struct request
*rq
)
380 struct request_queue
*q
= rq
->q
;
382 if (!q
->softirq_done_fn
)
383 blk_mq_end_request(rq
, rq
->errors
);
385 blk_mq_ipi_complete_request(rq
);
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
396 void blk_mq_complete_request(struct request
*rq
)
398 struct request_queue
*q
= rq
->q
;
400 if (unlikely(blk_should_fake_timeout(q
)))
402 if (!blk_mark_rq_complete(rq
))
403 __blk_mq_complete_request(rq
);
405 EXPORT_SYMBOL(blk_mq_complete_request
);
407 int blk_mq_request_started(struct request
*rq
)
409 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
411 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
413 void blk_mq_start_request(struct request
*rq
)
415 struct request_queue
*q
= rq
->q
;
417 trace_block_rq_issue(q
, rq
);
419 rq
->resid_len
= blk_rq_bytes(rq
);
420 if (unlikely(blk_bidi_rq(rq
)))
421 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
429 smp_mb__before_atomic();
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
437 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
438 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
439 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
440 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
442 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
448 rq
->nr_phys_segments
++;
451 EXPORT_SYMBOL(blk_mq_start_request
);
453 static void __blk_mq_requeue_request(struct request
*rq
)
455 struct request_queue
*q
= rq
->q
;
457 trace_block_rq_requeue(q
, rq
);
459 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
460 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
461 rq
->nr_phys_segments
--;
465 void blk_mq_requeue_request(struct request
*rq
)
467 __blk_mq_requeue_request(rq
);
469 BUG_ON(blk_queued_rq(rq
));
470 blk_mq_add_to_requeue_list(rq
, true);
472 EXPORT_SYMBOL(blk_mq_requeue_request
);
474 static void blk_mq_requeue_work(struct work_struct
*work
)
476 struct request_queue
*q
=
477 container_of(work
, struct request_queue
, requeue_work
);
479 struct request
*rq
, *next
;
482 spin_lock_irqsave(&q
->requeue_lock
, flags
);
483 list_splice_init(&q
->requeue_list
, &rq_list
);
484 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
486 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
487 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
490 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
491 list_del_init(&rq
->queuelist
);
492 blk_mq_insert_request(rq
, true, false, false);
495 while (!list_empty(&rq_list
)) {
496 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
497 list_del_init(&rq
->queuelist
);
498 blk_mq_insert_request(rq
, false, false, false);
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
505 blk_mq_start_hw_queues(q
);
508 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
510 struct request_queue
*q
= rq
->q
;
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
517 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
519 spin_lock_irqsave(&q
->requeue_lock
, flags
);
521 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
522 list_add(&rq
->queuelist
, &q
->requeue_list
);
524 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
526 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
530 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
532 cancel_work_sync(&q
->requeue_work
);
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
536 void blk_mq_kick_requeue_list(struct request_queue
*q
)
538 kblockd_schedule_work(&q
->requeue_work
);
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
542 void blk_mq_abort_requeue_list(struct request_queue
*q
)
547 spin_lock_irqsave(&q
->requeue_lock
, flags
);
548 list_splice_init(&q
->requeue_list
, &rq_list
);
549 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
551 while (!list_empty(&rq_list
)) {
554 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
555 list_del_init(&rq
->queuelist
);
557 blk_mq_end_request(rq
, rq
->errors
);
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
562 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
564 return tags
->rqs
[tag
];
566 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
568 struct blk_mq_timeout_data
{
570 unsigned int next_set
;
573 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
575 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
576 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
579 * We know that complete is set at this point. If STARTED isn't set
580 * anymore, then the request isn't active and the "timeout" should
581 * just be ignored. This can happen due to the bitflag ordering.
582 * Timeout first checks if STARTED is set, and if it is, assumes
583 * the request is active. But if we race with completion, then
584 * we both flags will get cleared. So check here again, and ignore
585 * a timeout event with a request that isn't active.
587 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
591 ret
= ops
->timeout(req
, reserved
);
595 __blk_mq_complete_request(req
);
597 case BLK_EH_RESET_TIMER
:
599 blk_clear_rq_complete(req
);
601 case BLK_EH_NOT_HANDLED
:
604 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
609 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
610 struct request
*rq
, void *priv
, bool reserved
)
612 struct blk_mq_timeout_data
*data
= priv
;
614 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
616 * If a request wasn't started before the queue was
617 * marked dying, kill it here or it'll go unnoticed.
619 if (unlikely(blk_queue_dying(rq
->q
))) {
621 blk_mq_complete_request(rq
);
625 if (rq
->cmd_flags
& REQ_NO_TIMEOUT
)
628 if (time_after_eq(jiffies
, rq
->deadline
)) {
629 if (!blk_mark_rq_complete(rq
))
630 blk_mq_rq_timed_out(rq
, reserved
);
631 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
632 data
->next
= rq
->deadline
;
637 static void blk_mq_rq_timer(unsigned long priv
)
639 struct request_queue
*q
= (struct request_queue
*)priv
;
640 struct blk_mq_timeout_data data
= {
644 struct blk_mq_hw_ctx
*hctx
;
647 queue_for_each_hw_ctx(q
, hctx
, i
) {
649 * If not software queues are currently mapped to this
650 * hardware queue, there's nothing to check
652 if (!blk_mq_hw_queue_mapped(hctx
))
655 blk_mq_tag_busy_iter(hctx
, blk_mq_check_expired
, &data
);
659 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
660 mod_timer(&q
->timeout
, data
.next
);
662 queue_for_each_hw_ctx(q
, hctx
, i
) {
663 /* the hctx may be unmapped, so check it here */
664 if (blk_mq_hw_queue_mapped(hctx
))
665 blk_mq_tag_idle(hctx
);
671 * Reverse check our software queue for entries that we could potentially
672 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
673 * too much time checking for merges.
675 static bool blk_mq_attempt_merge(struct request_queue
*q
,
676 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
681 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
687 if (!blk_rq_merge_ok(rq
, bio
))
690 el_ret
= blk_try_merge(rq
, bio
);
691 if (el_ret
== ELEVATOR_BACK_MERGE
) {
692 if (bio_attempt_back_merge(q
, rq
, bio
)) {
697 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
698 if (bio_attempt_front_merge(q
, rq
, bio
)) {
710 * Process software queues that have been marked busy, splicing them
711 * to the for-dispatch
713 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
715 struct blk_mq_ctx
*ctx
;
718 for (i
= 0; i
< hctx
->ctx_map
.size
; i
++) {
719 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
720 unsigned int off
, bit
;
726 off
= i
* hctx
->ctx_map
.bits_per_word
;
728 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
729 if (bit
>= bm
->depth
)
732 ctx
= hctx
->ctxs
[bit
+ off
];
733 clear_bit(bit
, &bm
->word
);
734 spin_lock(&ctx
->lock
);
735 list_splice_tail_init(&ctx
->rq_list
, list
);
736 spin_unlock(&ctx
->lock
);
744 * Run this hardware queue, pulling any software queues mapped to it in.
745 * Note that this function currently has various problems around ordering
746 * of IO. In particular, we'd like FIFO behaviour on handling existing
747 * items on the hctx->dispatch list. Ignore that for now.
749 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
751 struct request_queue
*q
= hctx
->queue
;
754 LIST_HEAD(driver_list
);
755 struct list_head
*dptr
;
758 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
760 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
766 * Touch any software queue that has pending entries.
768 flush_busy_ctxs(hctx
, &rq_list
);
771 * If we have previous entries on our dispatch list, grab them
772 * and stuff them at the front for more fair dispatch.
774 if (!list_empty_careful(&hctx
->dispatch
)) {
775 spin_lock(&hctx
->lock
);
776 if (!list_empty(&hctx
->dispatch
))
777 list_splice_init(&hctx
->dispatch
, &rq_list
);
778 spin_unlock(&hctx
->lock
);
782 * Start off with dptr being NULL, so we start the first request
783 * immediately, even if we have more pending.
788 * Now process all the entries, sending them to the driver.
791 while (!list_empty(&rq_list
)) {
792 struct blk_mq_queue_data bd
;
795 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
796 list_del_init(&rq
->queuelist
);
800 bd
.last
= list_empty(&rq_list
);
802 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
804 case BLK_MQ_RQ_QUEUE_OK
:
807 case BLK_MQ_RQ_QUEUE_BUSY
:
808 list_add(&rq
->queuelist
, &rq_list
);
809 __blk_mq_requeue_request(rq
);
812 pr_err("blk-mq: bad return on queue: %d\n", ret
);
813 case BLK_MQ_RQ_QUEUE_ERROR
:
815 blk_mq_end_request(rq
, rq
->errors
);
819 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
823 * We've done the first request. If we have more than 1
824 * left in the list, set dptr to defer issue.
826 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
831 hctx
->dispatched
[0]++;
832 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
833 hctx
->dispatched
[ilog2(queued
) + 1]++;
836 * Any items that need requeuing? Stuff them into hctx->dispatch,
837 * that is where we will continue on next queue run.
839 if (!list_empty(&rq_list
)) {
840 spin_lock(&hctx
->lock
);
841 list_splice(&rq_list
, &hctx
->dispatch
);
842 spin_unlock(&hctx
->lock
);
844 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
845 * it's possible the queue is stopped and restarted again
846 * before this. Queue restart will dispatch requests. And since
847 * requests in rq_list aren't added into hctx->dispatch yet,
848 * the requests in rq_list might get lost.
850 * blk_mq_run_hw_queue() already checks the STOPPED bit
852 blk_mq_run_hw_queue(hctx
, true);
857 * It'd be great if the workqueue API had a way to pass
858 * in a mask and had some smarts for more clever placement.
859 * For now we just round-robin here, switching for every
860 * BLK_MQ_CPU_WORK_BATCH queued items.
862 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
864 if (hctx
->queue
->nr_hw_queues
== 1)
865 return WORK_CPU_UNBOUND
;
867 if (--hctx
->next_cpu_batch
<= 0) {
868 int cpu
= hctx
->next_cpu
, next_cpu
;
870 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
871 if (next_cpu
>= nr_cpu_ids
)
872 next_cpu
= cpumask_first(hctx
->cpumask
);
874 hctx
->next_cpu
= next_cpu
;
875 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
880 return hctx
->next_cpu
;
883 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
885 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
886 !blk_mq_hw_queue_mapped(hctx
)))
891 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
892 __blk_mq_run_hw_queue(hctx
);
900 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
904 void blk_mq_run_hw_queues(struct request_queue
*q
, bool async
)
906 struct blk_mq_hw_ctx
*hctx
;
909 queue_for_each_hw_ctx(q
, hctx
, i
) {
910 if ((!blk_mq_hctx_has_pending(hctx
) &&
911 list_empty_careful(&hctx
->dispatch
)) ||
912 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
915 blk_mq_run_hw_queue(hctx
, async
);
918 EXPORT_SYMBOL(blk_mq_run_hw_queues
);
920 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
922 cancel_delayed_work(&hctx
->run_work
);
923 cancel_delayed_work(&hctx
->delay_work
);
924 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
926 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
928 void blk_mq_stop_hw_queues(struct request_queue
*q
)
930 struct blk_mq_hw_ctx
*hctx
;
933 queue_for_each_hw_ctx(q
, hctx
, i
)
934 blk_mq_stop_hw_queue(hctx
);
936 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
938 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
940 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
942 blk_mq_run_hw_queue(hctx
, false);
944 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
946 void blk_mq_start_hw_queues(struct request_queue
*q
)
948 struct blk_mq_hw_ctx
*hctx
;
951 queue_for_each_hw_ctx(q
, hctx
, i
)
952 blk_mq_start_hw_queue(hctx
);
954 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
956 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
958 struct blk_mq_hw_ctx
*hctx
;
961 queue_for_each_hw_ctx(q
, hctx
, i
) {
962 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
965 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
966 blk_mq_run_hw_queue(hctx
, async
);
969 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
971 static void blk_mq_run_work_fn(struct work_struct
*work
)
973 struct blk_mq_hw_ctx
*hctx
;
975 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
977 __blk_mq_run_hw_queue(hctx
);
980 static void blk_mq_delay_work_fn(struct work_struct
*work
)
982 struct blk_mq_hw_ctx
*hctx
;
984 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
986 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
987 __blk_mq_run_hw_queue(hctx
);
990 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
992 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
995 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
996 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
998 EXPORT_SYMBOL(blk_mq_delay_queue
);
1000 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
1001 struct request
*rq
, bool at_head
)
1003 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1005 trace_block_rq_insert(hctx
->queue
, rq
);
1008 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1010 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1012 blk_mq_hctx_mark_pending(hctx
, ctx
);
1015 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1018 struct request_queue
*q
= rq
->q
;
1019 struct blk_mq_hw_ctx
*hctx
;
1020 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
1022 current_ctx
= blk_mq_get_ctx(q
);
1023 if (!cpu_online(ctx
->cpu
))
1024 rq
->mq_ctx
= ctx
= current_ctx
;
1026 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1028 spin_lock(&ctx
->lock
);
1029 __blk_mq_insert_request(hctx
, rq
, at_head
);
1030 spin_unlock(&ctx
->lock
);
1033 blk_mq_run_hw_queue(hctx
, async
);
1035 blk_mq_put_ctx(current_ctx
);
1038 static void blk_mq_insert_requests(struct request_queue
*q
,
1039 struct blk_mq_ctx
*ctx
,
1040 struct list_head
*list
,
1045 struct blk_mq_hw_ctx
*hctx
;
1046 struct blk_mq_ctx
*current_ctx
;
1048 trace_block_unplug(q
, depth
, !from_schedule
);
1050 current_ctx
= blk_mq_get_ctx(q
);
1052 if (!cpu_online(ctx
->cpu
))
1054 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1057 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1060 spin_lock(&ctx
->lock
);
1061 while (!list_empty(list
)) {
1064 rq
= list_first_entry(list
, struct request
, queuelist
);
1065 list_del_init(&rq
->queuelist
);
1067 __blk_mq_insert_request(hctx
, rq
, false);
1069 spin_unlock(&ctx
->lock
);
1071 blk_mq_run_hw_queue(hctx
, from_schedule
);
1072 blk_mq_put_ctx(current_ctx
);
1075 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1077 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1078 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1080 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1081 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1082 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1085 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1087 struct blk_mq_ctx
*this_ctx
;
1088 struct request_queue
*this_q
;
1091 LIST_HEAD(ctx_list
);
1094 list_splice_init(&plug
->mq_list
, &list
);
1096 list_sort(NULL
, &list
, plug_ctx_cmp
);
1102 while (!list_empty(&list
)) {
1103 rq
= list_entry_rq(list
.next
);
1104 list_del_init(&rq
->queuelist
);
1106 if (rq
->mq_ctx
!= this_ctx
) {
1108 blk_mq_insert_requests(this_q
, this_ctx
,
1113 this_ctx
= rq
->mq_ctx
;
1119 list_add_tail(&rq
->queuelist
, &ctx_list
);
1123 * If 'this_ctx' is set, we know we have entries to complete
1124 * on 'ctx_list'. Do those.
1127 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1132 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1134 init_request_from_bio(rq
, bio
);
1136 if (blk_do_io_stat(rq
))
1137 blk_account_io_start(rq
, 1);
1140 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1142 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1143 !blk_queue_nomerges(hctx
->queue
);
1146 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1147 struct blk_mq_ctx
*ctx
,
1148 struct request
*rq
, struct bio
*bio
)
1150 if (!hctx_allow_merges(hctx
)) {
1151 blk_mq_bio_to_request(rq
, bio
);
1152 spin_lock(&ctx
->lock
);
1154 __blk_mq_insert_request(hctx
, rq
, false);
1155 spin_unlock(&ctx
->lock
);
1158 struct request_queue
*q
= hctx
->queue
;
1160 spin_lock(&ctx
->lock
);
1161 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1162 blk_mq_bio_to_request(rq
, bio
);
1166 spin_unlock(&ctx
->lock
);
1167 __blk_mq_free_request(hctx
, ctx
, rq
);
1172 struct blk_map_ctx
{
1173 struct blk_mq_hw_ctx
*hctx
;
1174 struct blk_mq_ctx
*ctx
;
1177 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1179 struct blk_map_ctx
*data
)
1181 struct blk_mq_hw_ctx
*hctx
;
1182 struct blk_mq_ctx
*ctx
;
1184 int rw
= bio_data_dir(bio
);
1185 struct blk_mq_alloc_data alloc_data
;
1187 if (unlikely(blk_mq_queue_enter(q
, GFP_KERNEL
))) {
1192 ctx
= blk_mq_get_ctx(q
);
1193 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1195 if (rw_is_sync(bio
->bi_rw
))
1198 trace_block_getrq(q
, bio
, rw
);
1199 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1201 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1202 if (unlikely(!rq
)) {
1203 __blk_mq_run_hw_queue(hctx
);
1204 blk_mq_put_ctx(ctx
);
1205 trace_block_sleeprq(q
, bio
, rw
);
1207 ctx
= blk_mq_get_ctx(q
);
1208 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1209 blk_mq_set_alloc_data(&alloc_data
, q
,
1210 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1211 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1212 ctx
= alloc_data
.ctx
;
1213 hctx
= alloc_data
.hctx
;
1222 static int blk_mq_direct_issue_request(struct request
*rq
)
1225 struct request_queue
*q
= rq
->q
;
1226 struct blk_mq_hw_ctx
*hctx
= q
->mq_ops
->map_queue(q
,
1228 struct blk_mq_queue_data bd
= {
1235 * For OK queue, we are done. For error, kill it. Any other
1236 * error (busy), just add it to our list as we previously
1239 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
1240 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1243 __blk_mq_requeue_request(rq
);
1245 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1247 blk_mq_end_request(rq
, rq
->errors
);
1255 * Multiple hardware queue variant. This will not use per-process plugs,
1256 * but will attempt to bypass the hctx queueing if we can go straight to
1257 * hardware for SYNC IO.
1259 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1261 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1262 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1263 struct blk_map_ctx data
;
1265 unsigned int request_count
= 0;
1266 struct blk_plug
*plug
;
1267 struct request
*same_queue_rq
= NULL
;
1269 blk_queue_bounce(q
, &bio
);
1271 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1276 blk_queue_split(q
, &bio
, q
->bio_split
);
1278 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1279 blk_attempt_plug_merge(q
, bio
, &request_count
, &same_queue_rq
))
1282 rq
= blk_mq_map_request(q
, bio
, &data
);
1286 if (unlikely(is_flush_fua
)) {
1287 blk_mq_bio_to_request(rq
, bio
);
1288 blk_insert_flush(rq
);
1292 plug
= current
->plug
;
1294 * If the driver supports defer issued based on 'last', then
1295 * queue it up like normal since we can potentially save some
1298 if (((plug
&& !blk_queue_nomerges(q
)) || is_sync
) &&
1299 !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1300 struct request
*old_rq
= NULL
;
1302 blk_mq_bio_to_request(rq
, bio
);
1305 * we do limited pluging. If bio can be merged, do merge.
1306 * Otherwise the existing request in the plug list will be
1307 * issued. So the plug list will have one request at most
1311 * The plug list might get flushed before this. If that
1312 * happens, same_queue_rq is invalid and plug list is empty
1314 if (same_queue_rq
&& !list_empty(&plug
->mq_list
)) {
1315 old_rq
= same_queue_rq
;
1316 list_del_init(&old_rq
->queuelist
);
1318 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1319 } else /* is_sync */
1321 blk_mq_put_ctx(data
.ctx
);
1324 if (!blk_mq_direct_issue_request(old_rq
))
1326 blk_mq_insert_request(old_rq
, false, true, true);
1330 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1332 * For a SYNC request, send it to the hardware immediately. For
1333 * an ASYNC request, just ensure that we run it later on. The
1334 * latter allows for merging opportunities and more efficient
1338 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1340 blk_mq_put_ctx(data
.ctx
);
1344 * Single hardware queue variant. This will attempt to use any per-process
1345 * plug for merging and IO deferral.
1347 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1349 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1350 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1351 struct blk_plug
*plug
;
1352 unsigned int request_count
= 0;
1353 struct blk_map_ctx data
;
1356 blk_queue_bounce(q
, &bio
);
1358 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1363 blk_queue_split(q
, &bio
, q
->bio_split
);
1365 if (!is_flush_fua
&& !blk_queue_nomerges(q
) &&
1366 blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1369 rq
= blk_mq_map_request(q
, bio
, &data
);
1373 if (unlikely(is_flush_fua
)) {
1374 blk_mq_bio_to_request(rq
, bio
);
1375 blk_insert_flush(rq
);
1380 * A task plug currently exists. Since this is completely lockless,
1381 * utilize that to temporarily store requests until the task is
1382 * either done or scheduled away.
1384 plug
= current
->plug
;
1386 blk_mq_bio_to_request(rq
, bio
);
1387 if (list_empty(&plug
->mq_list
))
1388 trace_block_plug(q
);
1389 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1390 blk_flush_plug_list(plug
, false);
1391 trace_block_plug(q
);
1393 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1394 blk_mq_put_ctx(data
.ctx
);
1398 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1400 * For a SYNC request, send it to the hardware immediately. For
1401 * an ASYNC request, just ensure that we run it later on. The
1402 * latter allows for merging opportunities and more efficient
1406 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1409 blk_mq_put_ctx(data
.ctx
);
1413 * Default mapping to a software queue, since we use one per CPU.
1415 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1417 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1419 EXPORT_SYMBOL(blk_mq_map_queue
);
1421 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1422 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1426 if (tags
->rqs
&& set
->ops
->exit_request
) {
1429 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1432 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1434 tags
->rqs
[i
] = NULL
;
1438 while (!list_empty(&tags
->page_list
)) {
1439 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1440 list_del_init(&page
->lru
);
1441 __free_pages(page
, page
->private);
1446 blk_mq_free_tags(tags
);
1449 static size_t order_to_size(unsigned int order
)
1451 return (size_t)PAGE_SIZE
<< order
;
1454 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1455 unsigned int hctx_idx
)
1457 struct blk_mq_tags
*tags
;
1458 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1459 size_t rq_size
, left
;
1461 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1463 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1467 INIT_LIST_HEAD(&tags
->page_list
);
1469 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1470 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1473 blk_mq_free_tags(tags
);
1478 * rq_size is the size of the request plus driver payload, rounded
1479 * to the cacheline size
1481 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1483 left
= rq_size
* set
->queue_depth
;
1485 for (i
= 0; i
< set
->queue_depth
; ) {
1486 int this_order
= max_order
;
1491 while (left
< order_to_size(this_order
- 1) && this_order
)
1495 page
= alloc_pages_node(set
->numa_node
,
1496 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1502 if (order_to_size(this_order
) < rq_size
)
1509 page
->private = this_order
;
1510 list_add_tail(&page
->lru
, &tags
->page_list
);
1512 p
= page_address(page
);
1513 entries_per_page
= order_to_size(this_order
) / rq_size
;
1514 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1515 left
-= to_do
* rq_size
;
1516 for (j
= 0; j
< to_do
; j
++) {
1518 if (set
->ops
->init_request
) {
1519 if (set
->ops
->init_request(set
->driver_data
,
1520 tags
->rqs
[i
], hctx_idx
, i
,
1522 tags
->rqs
[i
] = NULL
;
1534 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1538 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1543 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1545 unsigned int bpw
= 8, total
, num_maps
, i
;
1547 bitmap
->bits_per_word
= bpw
;
1549 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1550 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1556 for (i
= 0; i
< num_maps
; i
++) {
1557 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1558 total
-= bitmap
->map
[i
].depth
;
1564 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1566 struct request_queue
*q
= hctx
->queue
;
1567 struct blk_mq_ctx
*ctx
;
1571 * Move ctx entries to new CPU, if this one is going away.
1573 ctx
= __blk_mq_get_ctx(q
, cpu
);
1575 spin_lock(&ctx
->lock
);
1576 if (!list_empty(&ctx
->rq_list
)) {
1577 list_splice_init(&ctx
->rq_list
, &tmp
);
1578 blk_mq_hctx_clear_pending(hctx
, ctx
);
1580 spin_unlock(&ctx
->lock
);
1582 if (list_empty(&tmp
))
1585 ctx
= blk_mq_get_ctx(q
);
1586 spin_lock(&ctx
->lock
);
1588 while (!list_empty(&tmp
)) {
1591 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1593 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1596 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1597 blk_mq_hctx_mark_pending(hctx
, ctx
);
1599 spin_unlock(&ctx
->lock
);
1601 blk_mq_run_hw_queue(hctx
, true);
1602 blk_mq_put_ctx(ctx
);
1606 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1609 struct blk_mq_hw_ctx
*hctx
= data
;
1611 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1612 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1615 * In case of CPU online, tags may be reallocated
1616 * in blk_mq_map_swqueue() after mapping is updated.
1622 /* hctx->ctxs will be freed in queue's release handler */
1623 static void blk_mq_exit_hctx(struct request_queue
*q
,
1624 struct blk_mq_tag_set
*set
,
1625 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1627 unsigned flush_start_tag
= set
->queue_depth
;
1629 blk_mq_tag_idle(hctx
);
1631 if (set
->ops
->exit_request
)
1632 set
->ops
->exit_request(set
->driver_data
,
1633 hctx
->fq
->flush_rq
, hctx_idx
,
1634 flush_start_tag
+ hctx_idx
);
1636 if (set
->ops
->exit_hctx
)
1637 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1639 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1640 blk_free_flush_queue(hctx
->fq
);
1641 blk_mq_free_bitmap(&hctx
->ctx_map
);
1644 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1645 struct blk_mq_tag_set
*set
, int nr_queue
)
1647 struct blk_mq_hw_ctx
*hctx
;
1650 queue_for_each_hw_ctx(q
, hctx
, i
) {
1653 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1657 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1658 struct blk_mq_tag_set
*set
)
1660 struct blk_mq_hw_ctx
*hctx
;
1663 queue_for_each_hw_ctx(q
, hctx
, i
)
1664 free_cpumask_var(hctx
->cpumask
);
1667 static int blk_mq_init_hctx(struct request_queue
*q
,
1668 struct blk_mq_tag_set
*set
,
1669 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1672 unsigned flush_start_tag
= set
->queue_depth
;
1674 node
= hctx
->numa_node
;
1675 if (node
== NUMA_NO_NODE
)
1676 node
= hctx
->numa_node
= set
->numa_node
;
1678 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1679 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1680 spin_lock_init(&hctx
->lock
);
1681 INIT_LIST_HEAD(&hctx
->dispatch
);
1683 hctx
->queue_num
= hctx_idx
;
1684 hctx
->flags
= set
->flags
;
1686 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1687 blk_mq_hctx_notify
, hctx
);
1688 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1690 hctx
->tags
= set
->tags
[hctx_idx
];
1693 * Allocate space for all possible cpus to avoid allocation at
1696 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1699 goto unregister_cpu_notifier
;
1701 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1706 if (set
->ops
->init_hctx
&&
1707 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1710 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1714 if (set
->ops
->init_request
&&
1715 set
->ops
->init_request(set
->driver_data
,
1716 hctx
->fq
->flush_rq
, hctx_idx
,
1717 flush_start_tag
+ hctx_idx
, node
))
1725 if (set
->ops
->exit_hctx
)
1726 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1728 blk_mq_free_bitmap(&hctx
->ctx_map
);
1731 unregister_cpu_notifier
:
1732 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1737 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1738 struct blk_mq_tag_set
*set
)
1740 struct blk_mq_hw_ctx
*hctx
;
1744 * Initialize hardware queues
1746 queue_for_each_hw_ctx(q
, hctx
, i
) {
1747 if (blk_mq_init_hctx(q
, set
, hctx
, i
))
1751 if (i
== q
->nr_hw_queues
)
1757 blk_mq_exit_hw_queues(q
, set
, i
);
1762 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1763 unsigned int nr_hw_queues
)
1767 for_each_possible_cpu(i
) {
1768 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1769 struct blk_mq_hw_ctx
*hctx
;
1771 memset(__ctx
, 0, sizeof(*__ctx
));
1773 spin_lock_init(&__ctx
->lock
);
1774 INIT_LIST_HEAD(&__ctx
->rq_list
);
1777 /* If the cpu isn't online, the cpu is mapped to first hctx */
1781 hctx
= q
->mq_ops
->map_queue(q
, i
);
1784 * Set local node, IFF we have more than one hw queue. If
1785 * not, we remain on the home node of the device
1787 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1788 hctx
->numa_node
= cpu_to_node(i
);
1792 static void blk_mq_map_swqueue(struct request_queue
*q
)
1795 struct blk_mq_hw_ctx
*hctx
;
1796 struct blk_mq_ctx
*ctx
;
1797 struct blk_mq_tag_set
*set
= q
->tag_set
;
1799 queue_for_each_hw_ctx(q
, hctx
, i
) {
1800 cpumask_clear(hctx
->cpumask
);
1805 * Map software to hardware queues
1807 queue_for_each_ctx(q
, ctx
, i
) {
1808 /* If the cpu isn't online, the cpu is mapped to first hctx */
1812 hctx
= q
->mq_ops
->map_queue(q
, i
);
1813 cpumask_set_cpu(i
, hctx
->cpumask
);
1814 cpumask_set_cpu(i
, hctx
->tags
->cpumask
);
1815 ctx
->index_hw
= hctx
->nr_ctx
;
1816 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1819 queue_for_each_hw_ctx(q
, hctx
, i
) {
1820 struct blk_mq_ctxmap
*map
= &hctx
->ctx_map
;
1823 * If no software queues are mapped to this hardware queue,
1824 * disable it and free the request entries.
1826 if (!hctx
->nr_ctx
) {
1828 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1829 set
->tags
[i
] = NULL
;
1835 /* unmapped hw queue can be remapped after CPU topo changed */
1837 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1838 hctx
->tags
= set
->tags
[i
];
1839 WARN_ON(!hctx
->tags
);
1842 * Set the map size to the number of mapped software queues.
1843 * This is more accurate and more efficient than looping
1844 * over all possibly mapped software queues.
1846 map
->size
= DIV_ROUND_UP(hctx
->nr_ctx
, map
->bits_per_word
);
1849 * Initialize batch roundrobin counts
1851 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1852 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1856 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1858 struct blk_mq_hw_ctx
*hctx
;
1859 struct request_queue
*q
;
1863 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1868 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1869 blk_mq_freeze_queue(q
);
1871 queue_for_each_hw_ctx(q
, hctx
, i
) {
1873 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1875 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1877 blk_mq_unfreeze_queue(q
);
1881 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1883 struct blk_mq_tag_set
*set
= q
->tag_set
;
1885 mutex_lock(&set
->tag_list_lock
);
1886 list_del_init(&q
->tag_set_list
);
1887 blk_mq_update_tag_set_depth(set
);
1888 mutex_unlock(&set
->tag_list_lock
);
1891 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1892 struct request_queue
*q
)
1896 mutex_lock(&set
->tag_list_lock
);
1897 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1898 blk_mq_update_tag_set_depth(set
);
1899 mutex_unlock(&set
->tag_list_lock
);
1903 * It is the actual release handler for mq, but we do it from
1904 * request queue's release handler for avoiding use-after-free
1905 * and headache because q->mq_kobj shouldn't have been introduced,
1906 * but we can't group ctx/kctx kobj without it.
1908 void blk_mq_release(struct request_queue
*q
)
1910 struct blk_mq_hw_ctx
*hctx
;
1913 /* hctx kobj stays in hctx */
1914 queue_for_each_hw_ctx(q
, hctx
, i
) {
1921 kfree(q
->queue_hw_ctx
);
1923 /* ctx kobj stays in queue_ctx */
1924 free_percpu(q
->queue_ctx
);
1927 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1929 struct request_queue
*uninit_q
, *q
;
1931 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1933 return ERR_PTR(-ENOMEM
);
1935 q
= blk_mq_init_allocated_queue(set
, uninit_q
);
1937 blk_cleanup_queue(uninit_q
);
1941 EXPORT_SYMBOL(blk_mq_init_queue
);
1943 struct request_queue
*blk_mq_init_allocated_queue(struct blk_mq_tag_set
*set
,
1944 struct request_queue
*q
)
1946 struct blk_mq_hw_ctx
**hctxs
;
1947 struct blk_mq_ctx __percpu
*ctx
;
1951 ctx
= alloc_percpu(struct blk_mq_ctx
);
1953 return ERR_PTR(-ENOMEM
);
1955 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1961 map
= blk_mq_make_queue_map(set
);
1965 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1966 int node
= blk_mq_hw_queue_to_node(map
, i
);
1968 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1973 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1977 atomic_set(&hctxs
[i
]->nr_active
, 0);
1978 hctxs
[i
]->numa_node
= node
;
1979 hctxs
[i
]->queue_num
= i
;
1983 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1984 * See blk_register_queue() for details.
1986 if (percpu_ref_init(&q
->mq_usage_counter
, blk_mq_usage_counter_release
,
1987 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1990 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1991 blk_queue_rq_timeout(q
, set
->timeout
? set
->timeout
: 30 * HZ
);
1993 q
->nr_queues
= nr_cpu_ids
;
1994 q
->nr_hw_queues
= set
->nr_hw_queues
;
1998 q
->queue_hw_ctx
= hctxs
;
2000 q
->mq_ops
= set
->ops
;
2001 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
2003 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
2004 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
2006 q
->sg_reserved_size
= INT_MAX
;
2008 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
2009 INIT_LIST_HEAD(&q
->requeue_list
);
2010 spin_lock_init(&q
->requeue_lock
);
2012 if (q
->nr_hw_queues
> 1)
2013 blk_queue_make_request(q
, blk_mq_make_request
);
2015 blk_queue_make_request(q
, blk_sq_make_request
);
2018 * Do this after blk_queue_make_request() overrides it...
2020 q
->nr_requests
= set
->queue_depth
;
2022 if (set
->ops
->complete
)
2023 blk_queue_softirq_done(q
, set
->ops
->complete
);
2025 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
2027 if (blk_mq_init_hw_queues(q
, set
))
2030 mutex_lock(&all_q_mutex
);
2031 list_add_tail(&q
->all_q_node
, &all_q_list
);
2032 mutex_unlock(&all_q_mutex
);
2034 blk_mq_add_queue_tag_set(set
, q
);
2036 blk_mq_map_swqueue(q
);
2042 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2045 free_cpumask_var(hctxs
[i
]->cpumask
);
2052 return ERR_PTR(-ENOMEM
);
2054 EXPORT_SYMBOL(blk_mq_init_allocated_queue
);
2056 void blk_mq_free_queue(struct request_queue
*q
)
2058 struct blk_mq_tag_set
*set
= q
->tag_set
;
2060 blk_mq_del_queue_tag_set(q
);
2062 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2063 blk_mq_free_hw_queues(q
, set
);
2065 percpu_ref_exit(&q
->mq_usage_counter
);
2071 mutex_lock(&all_q_mutex
);
2072 list_del_init(&q
->all_q_node
);
2073 mutex_unlock(&all_q_mutex
);
2076 /* Basically redo blk_mq_init_queue with queue frozen */
2077 static void blk_mq_queue_reinit(struct request_queue
*q
)
2079 WARN_ON_ONCE(!atomic_read(&q
->mq_freeze_depth
));
2081 blk_mq_sysfs_unregister(q
);
2083 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
2086 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2087 * we should change hctx numa_node according to new topology (this
2088 * involves free and re-allocate memory, worthy doing?)
2091 blk_mq_map_swqueue(q
);
2093 blk_mq_sysfs_register(q
);
2096 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
2097 unsigned long action
, void *hcpu
)
2099 struct request_queue
*q
;
2102 * Before new mappings are established, hotadded cpu might already
2103 * start handling requests. This doesn't break anything as we map
2104 * offline CPUs to first hardware queue. We will re-init the queue
2105 * below to get optimal settings.
2107 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
2108 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
2111 mutex_lock(&all_q_mutex
);
2114 * We need to freeze and reinit all existing queues. Freezing
2115 * involves synchronous wait for an RCU grace period and doing it
2116 * one by one may take a long time. Start freezing all queues in
2117 * one swoop and then wait for the completions so that freezing can
2118 * take place in parallel.
2120 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2121 blk_mq_freeze_queue_start(q
);
2122 list_for_each_entry(q
, &all_q_list
, all_q_node
) {
2123 blk_mq_freeze_queue_wait(q
);
2126 * timeout handler can't touch hw queue during the
2129 del_timer_sync(&q
->timeout
);
2132 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2133 blk_mq_queue_reinit(q
);
2135 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2136 blk_mq_unfreeze_queue(q
);
2138 mutex_unlock(&all_q_mutex
);
2142 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2146 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2147 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2156 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2162 * Allocate the request maps associated with this tag_set. Note that this
2163 * may reduce the depth asked for, if memory is tight. set->queue_depth
2164 * will be updated to reflect the allocated depth.
2166 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2171 depth
= set
->queue_depth
;
2173 err
= __blk_mq_alloc_rq_maps(set
);
2177 set
->queue_depth
>>= 1;
2178 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2182 } while (set
->queue_depth
);
2184 if (!set
->queue_depth
|| err
) {
2185 pr_err("blk-mq: failed to allocate request map\n");
2189 if (depth
!= set
->queue_depth
)
2190 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2191 depth
, set
->queue_depth
);
2196 struct cpumask
*blk_mq_tags_cpumask(struct blk_mq_tags
*tags
)
2198 return tags
->cpumask
;
2200 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask
);
2203 * Alloc a tag set to be associated with one or more request queues.
2204 * May fail with EINVAL for various error conditions. May adjust the
2205 * requested depth down, if if it too large. In that case, the set
2206 * value will be stored in set->queue_depth.
2208 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2210 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2212 if (!set
->nr_hw_queues
)
2214 if (!set
->queue_depth
)
2216 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2219 if (!set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2222 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2223 pr_info("blk-mq: reduced tag depth to %u\n",
2225 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2229 * If a crashdump is active, then we are potentially in a very
2230 * memory constrained environment. Limit us to 1 queue and
2231 * 64 tags to prevent using too much memory.
2233 if (is_kdump_kernel()) {
2234 set
->nr_hw_queues
= 1;
2235 set
->queue_depth
= min(64U, set
->queue_depth
);
2238 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
2239 sizeof(struct blk_mq_tags
*),
2240 GFP_KERNEL
, set
->numa_node
);
2244 if (blk_mq_alloc_rq_maps(set
))
2247 mutex_init(&set
->tag_list_lock
);
2248 INIT_LIST_HEAD(&set
->tag_list
);
2256 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2258 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2262 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2264 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2265 free_cpumask_var(set
->tags
[i
]->cpumask
);
2272 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2274 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2276 struct blk_mq_tag_set
*set
= q
->tag_set
;
2277 struct blk_mq_hw_ctx
*hctx
;
2280 if (!set
|| nr
> set
->queue_depth
)
2284 queue_for_each_hw_ctx(q
, hctx
, i
) {
2285 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2291 q
->nr_requests
= nr
;
2296 void blk_mq_disable_hotplug(void)
2298 mutex_lock(&all_q_mutex
);
2301 void blk_mq_enable_hotplug(void)
2303 mutex_unlock(&all_q_mutex
);
2306 static int __init
blk_mq_init(void)
2310 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2314 subsys_initcall(blk_mq_init
);