mic: vop: Fix use-after-free on remove
[linux/fpc-iii.git] / drivers / of / address.c
blob2270373b30ab5c9660eef42a6f8425771a23cb8f
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) "OF: " fmt
4 #include <linux/device.h>
5 #include <linux/fwnode.h>
6 #include <linux/io.h>
7 #include <linux/ioport.h>
8 #include <linux/logic_pio.h>
9 #include <linux/module.h>
10 #include <linux/of_address.h>
11 #include <linux/pci.h>
12 #include <linux/pci_regs.h>
13 #include <linux/sizes.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
17 /* Max address size we deal with */
18 #define OF_MAX_ADDR_CELLS 4
19 #define OF_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
20 #define OF_CHECK_COUNTS(na, ns) (OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
22 static struct of_bus *of_match_bus(struct device_node *np);
23 static int __of_address_to_resource(struct device_node *dev,
24 const __be32 *addrp, u64 size, unsigned int flags,
25 const char *name, struct resource *r);
27 /* Debug utility */
28 #ifdef DEBUG
29 static void of_dump_addr(const char *s, const __be32 *addr, int na)
31 pr_debug("%s", s);
32 while (na--)
33 pr_cont(" %08x", be32_to_cpu(*(addr++)));
34 pr_cont("\n");
36 #else
37 static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
38 #endif
40 /* Callbacks for bus specific translators */
41 struct of_bus {
42 const char *name;
43 const char *addresses;
44 int (*match)(struct device_node *parent);
45 void (*count_cells)(struct device_node *child,
46 int *addrc, int *sizec);
47 u64 (*map)(__be32 *addr, const __be32 *range,
48 int na, int ns, int pna);
49 int (*translate)(__be32 *addr, u64 offset, int na);
50 unsigned int (*get_flags)(const __be32 *addr);
54 * Default translator (generic bus)
57 static void of_bus_default_count_cells(struct device_node *dev,
58 int *addrc, int *sizec)
60 if (addrc)
61 *addrc = of_n_addr_cells(dev);
62 if (sizec)
63 *sizec = of_n_size_cells(dev);
66 static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
67 int na, int ns, int pna)
69 u64 cp, s, da;
71 cp = of_read_number(range, na);
72 s = of_read_number(range + na + pna, ns);
73 da = of_read_number(addr, na);
75 pr_debug("default map, cp=%llx, s=%llx, da=%llx\n",
76 (unsigned long long)cp, (unsigned long long)s,
77 (unsigned long long)da);
79 if (da < cp || da >= (cp + s))
80 return OF_BAD_ADDR;
81 return da - cp;
84 static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
86 u64 a = of_read_number(addr, na);
87 memset(addr, 0, na * 4);
88 a += offset;
89 if (na > 1)
90 addr[na - 2] = cpu_to_be32(a >> 32);
91 addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
93 return 0;
96 static unsigned int of_bus_default_get_flags(const __be32 *addr)
98 return IORESOURCE_MEM;
101 #ifdef CONFIG_PCI
103 * PCI bus specific translator
106 static int of_bus_pci_match(struct device_node *np)
109 * "pciex" is PCI Express
110 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
111 * "ht" is hypertransport
113 return of_node_is_type(np, "pci") || of_node_is_type(np, "pciex") ||
114 of_node_is_type(np, "vci") || of_node_is_type(np, "ht");
117 static void of_bus_pci_count_cells(struct device_node *np,
118 int *addrc, int *sizec)
120 if (addrc)
121 *addrc = 3;
122 if (sizec)
123 *sizec = 2;
126 static unsigned int of_bus_pci_get_flags(const __be32 *addr)
128 unsigned int flags = 0;
129 u32 w = be32_to_cpup(addr);
131 switch((w >> 24) & 0x03) {
132 case 0x01:
133 flags |= IORESOURCE_IO;
134 break;
135 case 0x02: /* 32 bits */
136 case 0x03: /* 64 bits */
137 flags |= IORESOURCE_MEM;
138 break;
140 if (w & 0x40000000)
141 flags |= IORESOURCE_PREFETCH;
142 return flags;
145 static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
146 int pna)
148 u64 cp, s, da;
149 unsigned int af, rf;
151 af = of_bus_pci_get_flags(addr);
152 rf = of_bus_pci_get_flags(range);
154 /* Check address type match */
155 if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
156 return OF_BAD_ADDR;
158 /* Read address values, skipping high cell */
159 cp = of_read_number(range + 1, na - 1);
160 s = of_read_number(range + na + pna, ns);
161 da = of_read_number(addr + 1, na - 1);
163 pr_debug("PCI map, cp=%llx, s=%llx, da=%llx\n",
164 (unsigned long long)cp, (unsigned long long)s,
165 (unsigned long long)da);
167 if (da < cp || da >= (cp + s))
168 return OF_BAD_ADDR;
169 return da - cp;
172 static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
174 return of_bus_default_translate(addr + 1, offset, na - 1);
177 const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
178 unsigned int *flags)
180 const __be32 *prop;
181 unsigned int psize;
182 struct device_node *parent;
183 struct of_bus *bus;
184 int onesize, i, na, ns;
186 /* Get parent & match bus type */
187 parent = of_get_parent(dev);
188 if (parent == NULL)
189 return NULL;
190 bus = of_match_bus(parent);
191 if (strcmp(bus->name, "pci")) {
192 of_node_put(parent);
193 return NULL;
195 bus->count_cells(dev, &na, &ns);
196 of_node_put(parent);
197 if (!OF_CHECK_ADDR_COUNT(na))
198 return NULL;
200 /* Get "reg" or "assigned-addresses" property */
201 prop = of_get_property(dev, bus->addresses, &psize);
202 if (prop == NULL)
203 return NULL;
204 psize /= 4;
206 onesize = na + ns;
207 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
208 u32 val = be32_to_cpu(prop[0]);
209 if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
210 if (size)
211 *size = of_read_number(prop + na, ns);
212 if (flags)
213 *flags = bus->get_flags(prop);
214 return prop;
217 return NULL;
219 EXPORT_SYMBOL(of_get_pci_address);
221 int of_pci_address_to_resource(struct device_node *dev, int bar,
222 struct resource *r)
224 const __be32 *addrp;
225 u64 size;
226 unsigned int flags;
228 addrp = of_get_pci_address(dev, bar, &size, &flags);
229 if (addrp == NULL)
230 return -EINVAL;
231 return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
233 EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
235 static int parser_init(struct of_pci_range_parser *parser,
236 struct device_node *node, const char *name)
238 const int na = 3, ns = 2;
239 int rlen;
241 parser->node = node;
242 parser->pna = of_n_addr_cells(node);
243 parser->np = parser->pna + na + ns;
245 parser->range = of_get_property(node, name, &rlen);
246 if (parser->range == NULL)
247 return -ENOENT;
249 parser->end = parser->range + rlen / sizeof(__be32);
251 return 0;
254 int of_pci_range_parser_init(struct of_pci_range_parser *parser,
255 struct device_node *node)
257 return parser_init(parser, node, "ranges");
259 EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
261 int of_pci_dma_range_parser_init(struct of_pci_range_parser *parser,
262 struct device_node *node)
264 return parser_init(parser, node, "dma-ranges");
266 EXPORT_SYMBOL_GPL(of_pci_dma_range_parser_init);
268 struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
269 struct of_pci_range *range)
271 const int na = 3, ns = 2;
273 if (!range)
274 return NULL;
276 if (!parser->range || parser->range + parser->np > parser->end)
277 return NULL;
279 range->pci_space = be32_to_cpup(parser->range);
280 range->flags = of_bus_pci_get_flags(parser->range);
281 range->pci_addr = of_read_number(parser->range + 1, ns);
282 range->cpu_addr = of_translate_address(parser->node,
283 parser->range + na);
284 range->size = of_read_number(parser->range + parser->pna + na, ns);
286 parser->range += parser->np;
288 /* Now consume following elements while they are contiguous */
289 while (parser->range + parser->np <= parser->end) {
290 u32 flags;
291 u64 pci_addr, cpu_addr, size;
293 flags = of_bus_pci_get_flags(parser->range);
294 pci_addr = of_read_number(parser->range + 1, ns);
295 cpu_addr = of_translate_address(parser->node,
296 parser->range + na);
297 size = of_read_number(parser->range + parser->pna + na, ns);
299 if (flags != range->flags)
300 break;
301 if (pci_addr != range->pci_addr + range->size ||
302 cpu_addr != range->cpu_addr + range->size)
303 break;
305 range->size += size;
306 parser->range += parser->np;
309 return range;
311 EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
314 * of_pci_range_to_resource - Create a resource from an of_pci_range
315 * @range: the PCI range that describes the resource
316 * @np: device node where the range belongs to
317 * @res: pointer to a valid resource that will be updated to
318 * reflect the values contained in the range.
320 * Returns EINVAL if the range cannot be converted to resource.
322 * Note that if the range is an IO range, the resource will be converted
323 * using pci_address_to_pio() which can fail if it is called too early or
324 * if the range cannot be matched to any host bridge IO space (our case here).
325 * To guard against that we try to register the IO range first.
326 * If that fails we know that pci_address_to_pio() will do too.
328 int of_pci_range_to_resource(struct of_pci_range *range,
329 struct device_node *np, struct resource *res)
331 int err;
332 res->flags = range->flags;
333 res->parent = res->child = res->sibling = NULL;
334 res->name = np->full_name;
336 if (res->flags & IORESOURCE_IO) {
337 unsigned long port;
338 err = pci_register_io_range(&np->fwnode, range->cpu_addr,
339 range->size);
340 if (err)
341 goto invalid_range;
342 port = pci_address_to_pio(range->cpu_addr);
343 if (port == (unsigned long)-1) {
344 err = -EINVAL;
345 goto invalid_range;
347 res->start = port;
348 } else {
349 if ((sizeof(resource_size_t) < 8) &&
350 upper_32_bits(range->cpu_addr)) {
351 err = -EINVAL;
352 goto invalid_range;
355 res->start = range->cpu_addr;
357 res->end = res->start + range->size - 1;
358 return 0;
360 invalid_range:
361 res->start = (resource_size_t)OF_BAD_ADDR;
362 res->end = (resource_size_t)OF_BAD_ADDR;
363 return err;
365 EXPORT_SYMBOL(of_pci_range_to_resource);
366 #endif /* CONFIG_PCI */
369 * ISA bus specific translator
372 static int of_bus_isa_match(struct device_node *np)
374 return of_node_name_eq(np, "isa");
377 static void of_bus_isa_count_cells(struct device_node *child,
378 int *addrc, int *sizec)
380 if (addrc)
381 *addrc = 2;
382 if (sizec)
383 *sizec = 1;
386 static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
387 int pna)
389 u64 cp, s, da;
391 /* Check address type match */
392 if ((addr[0] ^ range[0]) & cpu_to_be32(1))
393 return OF_BAD_ADDR;
395 /* Read address values, skipping high cell */
396 cp = of_read_number(range + 1, na - 1);
397 s = of_read_number(range + na + pna, ns);
398 da = of_read_number(addr + 1, na - 1);
400 pr_debug("ISA map, cp=%llx, s=%llx, da=%llx\n",
401 (unsigned long long)cp, (unsigned long long)s,
402 (unsigned long long)da);
404 if (da < cp || da >= (cp + s))
405 return OF_BAD_ADDR;
406 return da - cp;
409 static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
411 return of_bus_default_translate(addr + 1, offset, na - 1);
414 static unsigned int of_bus_isa_get_flags(const __be32 *addr)
416 unsigned int flags = 0;
417 u32 w = be32_to_cpup(addr);
419 if (w & 1)
420 flags |= IORESOURCE_IO;
421 else
422 flags |= IORESOURCE_MEM;
423 return flags;
427 * Array of bus specific translators
430 static struct of_bus of_busses[] = {
431 #ifdef CONFIG_PCI
432 /* PCI */
434 .name = "pci",
435 .addresses = "assigned-addresses",
436 .match = of_bus_pci_match,
437 .count_cells = of_bus_pci_count_cells,
438 .map = of_bus_pci_map,
439 .translate = of_bus_pci_translate,
440 .get_flags = of_bus_pci_get_flags,
442 #endif /* CONFIG_PCI */
443 /* ISA */
445 .name = "isa",
446 .addresses = "reg",
447 .match = of_bus_isa_match,
448 .count_cells = of_bus_isa_count_cells,
449 .map = of_bus_isa_map,
450 .translate = of_bus_isa_translate,
451 .get_flags = of_bus_isa_get_flags,
453 /* Default */
455 .name = "default",
456 .addresses = "reg",
457 .match = NULL,
458 .count_cells = of_bus_default_count_cells,
459 .map = of_bus_default_map,
460 .translate = of_bus_default_translate,
461 .get_flags = of_bus_default_get_flags,
465 static struct of_bus *of_match_bus(struct device_node *np)
467 int i;
469 for (i = 0; i < ARRAY_SIZE(of_busses); i++)
470 if (!of_busses[i].match || of_busses[i].match(np))
471 return &of_busses[i];
472 BUG();
473 return NULL;
476 static int of_empty_ranges_quirk(struct device_node *np)
478 if (IS_ENABLED(CONFIG_PPC)) {
479 /* To save cycles, we cache the result for global "Mac" setting */
480 static int quirk_state = -1;
482 /* PA-SEMI sdc DT bug */
483 if (of_device_is_compatible(np, "1682m-sdc"))
484 return true;
486 /* Make quirk cached */
487 if (quirk_state < 0)
488 quirk_state =
489 of_machine_is_compatible("Power Macintosh") ||
490 of_machine_is_compatible("MacRISC");
491 return quirk_state;
493 return false;
496 static int of_translate_one(struct device_node *parent, struct of_bus *bus,
497 struct of_bus *pbus, __be32 *addr,
498 int na, int ns, int pna, const char *rprop)
500 const __be32 *ranges;
501 unsigned int rlen;
502 int rone;
503 u64 offset = OF_BAD_ADDR;
506 * Normally, an absence of a "ranges" property means we are
507 * crossing a non-translatable boundary, and thus the addresses
508 * below the current cannot be converted to CPU physical ones.
509 * Unfortunately, while this is very clear in the spec, it's not
510 * what Apple understood, and they do have things like /uni-n or
511 * /ht nodes with no "ranges" property and a lot of perfectly
512 * useable mapped devices below them. Thus we treat the absence of
513 * "ranges" as equivalent to an empty "ranges" property which means
514 * a 1:1 translation at that level. It's up to the caller not to try
515 * to translate addresses that aren't supposed to be translated in
516 * the first place. --BenH.
518 * As far as we know, this damage only exists on Apple machines, so
519 * This code is only enabled on powerpc. --gcl
521 ranges = of_get_property(parent, rprop, &rlen);
522 if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
523 pr_debug("no ranges; cannot translate\n");
524 return 1;
526 if (ranges == NULL || rlen == 0) {
527 offset = of_read_number(addr, na);
528 memset(addr, 0, pna * 4);
529 pr_debug("empty ranges; 1:1 translation\n");
530 goto finish;
533 pr_debug("walking ranges...\n");
535 /* Now walk through the ranges */
536 rlen /= 4;
537 rone = na + pna + ns;
538 for (; rlen >= rone; rlen -= rone, ranges += rone) {
539 offset = bus->map(addr, ranges, na, ns, pna);
540 if (offset != OF_BAD_ADDR)
541 break;
543 if (offset == OF_BAD_ADDR) {
544 pr_debug("not found !\n");
545 return 1;
547 memcpy(addr, ranges + na, 4 * pna);
549 finish:
550 of_dump_addr("parent translation for:", addr, pna);
551 pr_debug("with offset: %llx\n", (unsigned long long)offset);
553 /* Translate it into parent bus space */
554 return pbus->translate(addr, offset, pna);
558 * Translate an address from the device-tree into a CPU physical address,
559 * this walks up the tree and applies the various bus mappings on the
560 * way.
562 * Note: We consider that crossing any level with #size-cells == 0 to mean
563 * that translation is impossible (that is we are not dealing with a value
564 * that can be mapped to a cpu physical address). This is not really specified
565 * that way, but this is traditionally the way IBM at least do things
567 * Whenever the translation fails, the *host pointer will be set to the
568 * device that had registered logical PIO mapping, and the return code is
569 * relative to that node.
571 static u64 __of_translate_address(struct device_node *dev,
572 const __be32 *in_addr, const char *rprop,
573 struct device_node **host)
575 struct device_node *parent = NULL;
576 struct of_bus *bus, *pbus;
577 __be32 addr[OF_MAX_ADDR_CELLS];
578 int na, ns, pna, pns;
579 u64 result = OF_BAD_ADDR;
581 pr_debug("** translation for device %pOF **\n", dev);
583 /* Increase refcount at current level */
584 of_node_get(dev);
586 *host = NULL;
587 /* Get parent & match bus type */
588 parent = of_get_parent(dev);
589 if (parent == NULL)
590 goto bail;
591 bus = of_match_bus(parent);
593 /* Count address cells & copy address locally */
594 bus->count_cells(dev, &na, &ns);
595 if (!OF_CHECK_COUNTS(na, ns)) {
596 pr_debug("Bad cell count for %pOF\n", dev);
597 goto bail;
599 memcpy(addr, in_addr, na * 4);
601 pr_debug("bus is %s (na=%d, ns=%d) on %pOF\n",
602 bus->name, na, ns, parent);
603 of_dump_addr("translating address:", addr, na);
605 /* Translate */
606 for (;;) {
607 struct logic_pio_hwaddr *iorange;
609 /* Switch to parent bus */
610 of_node_put(dev);
611 dev = parent;
612 parent = of_get_parent(dev);
614 /* If root, we have finished */
615 if (parent == NULL) {
616 pr_debug("reached root node\n");
617 result = of_read_number(addr, na);
618 break;
622 * For indirectIO device which has no ranges property, get
623 * the address from reg directly.
625 iorange = find_io_range_by_fwnode(&dev->fwnode);
626 if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
627 result = of_read_number(addr + 1, na - 1);
628 pr_debug("indirectIO matched(%pOF) 0x%llx\n",
629 dev, result);
630 *host = of_node_get(dev);
631 break;
634 /* Get new parent bus and counts */
635 pbus = of_match_bus(parent);
636 pbus->count_cells(dev, &pna, &pns);
637 if (!OF_CHECK_COUNTS(pna, pns)) {
638 pr_err("Bad cell count for %pOF\n", dev);
639 break;
642 pr_debug("parent bus is %s (na=%d, ns=%d) on %pOF\n",
643 pbus->name, pna, pns, parent);
645 /* Apply bus translation */
646 if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
647 break;
649 /* Complete the move up one level */
650 na = pna;
651 ns = pns;
652 bus = pbus;
654 of_dump_addr("one level translation:", addr, na);
656 bail:
657 of_node_put(parent);
658 of_node_put(dev);
660 return result;
663 u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
665 struct device_node *host;
666 u64 ret;
668 ret = __of_translate_address(dev, in_addr, "ranges", &host);
669 if (host) {
670 of_node_put(host);
671 return OF_BAD_ADDR;
674 return ret;
676 EXPORT_SYMBOL(of_translate_address);
678 u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
680 struct device_node *host;
681 u64 ret;
683 ret = __of_translate_address(dev, in_addr, "dma-ranges", &host);
685 if (host) {
686 of_node_put(host);
687 return OF_BAD_ADDR;
690 return ret;
692 EXPORT_SYMBOL(of_translate_dma_address);
694 const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
695 unsigned int *flags)
697 const __be32 *prop;
698 unsigned int psize;
699 struct device_node *parent;
700 struct of_bus *bus;
701 int onesize, i, na, ns;
703 /* Get parent & match bus type */
704 parent = of_get_parent(dev);
705 if (parent == NULL)
706 return NULL;
707 bus = of_match_bus(parent);
708 bus->count_cells(dev, &na, &ns);
709 of_node_put(parent);
710 if (!OF_CHECK_ADDR_COUNT(na))
711 return NULL;
713 /* Get "reg" or "assigned-addresses" property */
714 prop = of_get_property(dev, bus->addresses, &psize);
715 if (prop == NULL)
716 return NULL;
717 psize /= 4;
719 onesize = na + ns;
720 for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
721 if (i == index) {
722 if (size)
723 *size = of_read_number(prop + na, ns);
724 if (flags)
725 *flags = bus->get_flags(prop);
726 return prop;
728 return NULL;
730 EXPORT_SYMBOL(of_get_address);
732 static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
733 u64 size)
735 u64 taddr;
736 unsigned long port;
737 struct device_node *host;
739 taddr = __of_translate_address(dev, in_addr, "ranges", &host);
740 if (host) {
741 /* host-specific port access */
742 port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
743 of_node_put(host);
744 } else {
745 /* memory-mapped I/O range */
746 port = pci_address_to_pio(taddr);
749 if (port == (unsigned long)-1)
750 return OF_BAD_ADDR;
752 return port;
755 static int __of_address_to_resource(struct device_node *dev,
756 const __be32 *addrp, u64 size, unsigned int flags,
757 const char *name, struct resource *r)
759 u64 taddr;
761 if (flags & IORESOURCE_MEM)
762 taddr = of_translate_address(dev, addrp);
763 else if (flags & IORESOURCE_IO)
764 taddr = of_translate_ioport(dev, addrp, size);
765 else
766 return -EINVAL;
768 if (taddr == OF_BAD_ADDR)
769 return -EINVAL;
770 memset(r, 0, sizeof(struct resource));
772 r->start = taddr;
773 r->end = taddr + size - 1;
774 r->flags = flags;
775 r->name = name ? name : dev->full_name;
777 return 0;
781 * of_address_to_resource - Translate device tree address and return as resource
783 * Note that if your address is a PIO address, the conversion will fail if
784 * the physical address can't be internally converted to an IO token with
785 * pci_address_to_pio(), that is because it's either called too early or it
786 * can't be matched to any host bridge IO space
788 int of_address_to_resource(struct device_node *dev, int index,
789 struct resource *r)
791 const __be32 *addrp;
792 u64 size;
793 unsigned int flags;
794 const char *name = NULL;
796 addrp = of_get_address(dev, index, &size, &flags);
797 if (addrp == NULL)
798 return -EINVAL;
800 /* Get optional "reg-names" property to add a name to a resource */
801 of_property_read_string_index(dev, "reg-names", index, &name);
803 return __of_address_to_resource(dev, addrp, size, flags, name, r);
805 EXPORT_SYMBOL_GPL(of_address_to_resource);
807 struct device_node *of_find_matching_node_by_address(struct device_node *from,
808 const struct of_device_id *matches,
809 u64 base_address)
811 struct device_node *dn = of_find_matching_node(from, matches);
812 struct resource res;
814 while (dn) {
815 if (!of_address_to_resource(dn, 0, &res) &&
816 res.start == base_address)
817 return dn;
819 dn = of_find_matching_node(dn, matches);
822 return NULL;
827 * of_iomap - Maps the memory mapped IO for a given device_node
828 * @device: the device whose io range will be mapped
829 * @index: index of the io range
831 * Returns a pointer to the mapped memory
833 void __iomem *of_iomap(struct device_node *np, int index)
835 struct resource res;
837 if (of_address_to_resource(np, index, &res))
838 return NULL;
840 return ioremap(res.start, resource_size(&res));
842 EXPORT_SYMBOL(of_iomap);
845 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
846 * for a given device_node
847 * @device: the device whose io range will be mapped
848 * @index: index of the io range
849 * @name: name "override" for the memory region request or NULL
851 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
852 * error code on failure. Usage example:
854 * base = of_io_request_and_map(node, 0, "foo");
855 * if (IS_ERR(base))
856 * return PTR_ERR(base);
858 void __iomem *of_io_request_and_map(struct device_node *np, int index,
859 const char *name)
861 struct resource res;
862 void __iomem *mem;
864 if (of_address_to_resource(np, index, &res))
865 return IOMEM_ERR_PTR(-EINVAL);
867 if (!name)
868 name = res.name;
869 if (!request_mem_region(res.start, resource_size(&res), name))
870 return IOMEM_ERR_PTR(-EBUSY);
872 mem = ioremap(res.start, resource_size(&res));
873 if (!mem) {
874 release_mem_region(res.start, resource_size(&res));
875 return IOMEM_ERR_PTR(-ENOMEM);
878 return mem;
880 EXPORT_SYMBOL(of_io_request_and_map);
883 * of_dma_get_range - Get DMA range info
884 * @np: device node to get DMA range info
885 * @dma_addr: pointer to store initial DMA address of DMA range
886 * @paddr: pointer to store initial CPU address of DMA range
887 * @size: pointer to store size of DMA range
889 * Look in bottom up direction for the first "dma-ranges" property
890 * and parse it.
891 * dma-ranges format:
892 * DMA addr (dma_addr) : naddr cells
893 * CPU addr (phys_addr_t) : pna cells
894 * size : nsize cells
896 * It returns -ENODEV if "dma-ranges" property was not found
897 * for this device in DT.
899 int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
901 struct device_node *node = of_node_get(np);
902 const __be32 *ranges = NULL;
903 int len, naddr, nsize, pna;
904 int ret = 0;
905 u64 dmaaddr;
907 if (!node)
908 return -EINVAL;
910 while (1) {
911 naddr = of_n_addr_cells(node);
912 nsize = of_n_size_cells(node);
913 node = of_get_next_parent(node);
914 if (!node)
915 break;
917 ranges = of_get_property(node, "dma-ranges", &len);
919 /* Ignore empty ranges, they imply no translation required */
920 if (ranges && len > 0)
921 break;
924 * At least empty ranges has to be defined for parent node if
925 * DMA is supported
927 if (!ranges)
928 break;
931 if (!ranges) {
932 pr_debug("no dma-ranges found for node(%pOF)\n", np);
933 ret = -ENODEV;
934 goto out;
937 len /= sizeof(u32);
939 pna = of_n_addr_cells(node);
941 /* dma-ranges format:
942 * DMA addr : naddr cells
943 * CPU addr : pna cells
944 * size : nsize cells
946 dmaaddr = of_read_number(ranges, naddr);
947 *paddr = of_translate_dma_address(np, ranges);
948 if (*paddr == OF_BAD_ADDR) {
949 pr_err("translation of DMA address(%pad) to CPU address failed node(%pOF)\n",
950 dma_addr, np);
951 ret = -EINVAL;
952 goto out;
954 *dma_addr = dmaaddr;
956 *size = of_read_number(ranges + naddr + pna, nsize);
958 pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
959 *dma_addr, *paddr, *size);
961 out:
962 of_node_put(node);
964 return ret;
966 EXPORT_SYMBOL_GPL(of_dma_get_range);
969 * of_dma_is_coherent - Check if device is coherent
970 * @np: device node
972 * It returns true if "dma-coherent" property was found
973 * for this device in DT.
975 bool of_dma_is_coherent(struct device_node *np)
977 struct device_node *node = of_node_get(np);
979 while (node) {
980 if (of_property_read_bool(node, "dma-coherent")) {
981 of_node_put(node);
982 return true;
984 node = of_get_next_parent(node);
986 of_node_put(node);
987 return false;
989 EXPORT_SYMBOL_GPL(of_dma_is_coherent);