4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/smp_lock.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
38 #include "delegation.h"
41 #define NFS_PARANOIA 1
42 /* #define NFS_DEBUG_VERBOSE 1 */
44 static int nfs_opendir(struct inode
*, struct file
*);
45 static int nfs_readdir(struct file
*, void *, filldir_t
);
46 static struct dentry
*nfs_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
47 static int nfs_create(struct inode
*, struct dentry
*, int, struct nameidata
*);
48 static int nfs_mkdir(struct inode
*, struct dentry
*, int);
49 static int nfs_rmdir(struct inode
*, struct dentry
*);
50 static int nfs_unlink(struct inode
*, struct dentry
*);
51 static int nfs_symlink(struct inode
*, struct dentry
*, const char *);
52 static int nfs_link(struct dentry
*, struct inode
*, struct dentry
*);
53 static int nfs_mknod(struct inode
*, struct dentry
*, int, dev_t
);
54 static int nfs_rename(struct inode
*, struct dentry
*,
55 struct inode
*, struct dentry
*);
56 static int nfs_fsync_dir(struct file
*, struct dentry
*, int);
57 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
59 const struct file_operations nfs_dir_operations
= {
60 .llseek
= nfs_llseek_dir
,
61 .read
= generic_read_dir
,
62 .readdir
= nfs_readdir
,
64 .release
= nfs_release
,
65 .fsync
= nfs_fsync_dir
,
68 struct inode_operations nfs_dir_inode_operations
= {
73 .symlink
= nfs_symlink
,
78 .permission
= nfs_permission
,
79 .getattr
= nfs_getattr
,
80 .setattr
= nfs_setattr
,
84 struct inode_operations nfs3_dir_inode_operations
= {
89 .symlink
= nfs_symlink
,
94 .permission
= nfs_permission
,
95 .getattr
= nfs_getattr
,
96 .setattr
= nfs_setattr
,
97 .listxattr
= nfs3_listxattr
,
98 .getxattr
= nfs3_getxattr
,
99 .setxattr
= nfs3_setxattr
,
100 .removexattr
= nfs3_removexattr
,
102 #endif /* CONFIG_NFS_V3 */
106 static struct dentry
*nfs_atomic_lookup(struct inode
*, struct dentry
*, struct nameidata
*);
107 struct inode_operations nfs4_dir_inode_operations
= {
108 .create
= nfs_create
,
109 .lookup
= nfs_atomic_lookup
,
111 .unlink
= nfs_unlink
,
112 .symlink
= nfs_symlink
,
116 .rename
= nfs_rename
,
117 .permission
= nfs_permission
,
118 .getattr
= nfs_getattr
,
119 .setattr
= nfs_setattr
,
120 .getxattr
= nfs4_getxattr
,
121 .setxattr
= nfs4_setxattr
,
122 .listxattr
= nfs4_listxattr
,
125 #endif /* CONFIG_NFS_V4 */
131 nfs_opendir(struct inode
*inode
, struct file
*filp
)
135 dfprintk(VFS
, "NFS: opendir(%s/%ld)\n",
136 inode
->i_sb
->s_id
, inode
->i_ino
);
139 /* Call generic open code in order to cache credentials */
140 res
= nfs_open(inode
, filp
);
145 typedef __be32
* (*decode_dirent_t
)(__be32
*, struct nfs_entry
*, int);
149 unsigned long page_index
;
152 loff_t current_index
;
153 struct nfs_entry
*entry
;
154 decode_dirent_t decode
;
157 } nfs_readdir_descriptor_t
;
159 /* Now we cache directories properly, by stuffing the dirent
160 * data directly in the page cache.
162 * Inode invalidation due to refresh etc. takes care of
163 * _everything_, no sloppy entry flushing logic, no extraneous
164 * copying, network direct to page cache, the way it was meant
167 * NOTE: Dirent information verification is done always by the
168 * page-in of the RPC reply, nowhere else, this simplies
169 * things substantially.
172 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
*page
)
174 struct file
*file
= desc
->file
;
175 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
176 struct rpc_cred
*cred
= nfs_file_cred(file
);
177 unsigned long timestamp
;
180 dfprintk(DIRCACHE
, "NFS: %s: reading cookie %Lu into page %lu\n",
181 __FUNCTION__
, (long long)desc
->entry
->cookie
,
186 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, desc
->entry
->cookie
, page
,
187 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
189 /* We requested READDIRPLUS, but the server doesn't grok it */
190 if (error
== -ENOTSUPP
&& desc
->plus
) {
191 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
192 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
198 SetPageUptodate(page
);
199 spin_lock(&inode
->i_lock
);
200 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATIME
;
201 spin_unlock(&inode
->i_lock
);
202 /* Ensure consistent page alignment of the data.
203 * Note: assumes we have exclusive access to this mapping either
204 * through inode->i_mutex or some other mechanism.
206 if (page
->index
== 0 && invalidate_inode_pages2_range(inode
->i_mapping
, PAGE_CACHE_SIZE
, -1) < 0) {
207 /* Should never happen */
208 nfs_zap_mapping(inode
, inode
->i_mapping
);
215 nfs_zap_caches(inode
);
221 int dir_decode(nfs_readdir_descriptor_t
*desc
)
223 __be32
*p
= desc
->ptr
;
224 p
= desc
->decode(p
, desc
->entry
, desc
->plus
);
232 void dir_page_release(nfs_readdir_descriptor_t
*desc
)
235 page_cache_release(desc
->page
);
241 * Given a pointer to a buffer that has already been filled by a call
242 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
244 * If the end of the buffer has been reached, return -EAGAIN, if not,
245 * return the offset within the buffer of the next entry to be
249 int find_dirent(nfs_readdir_descriptor_t
*desc
)
251 struct nfs_entry
*entry
= desc
->entry
;
255 while((status
= dir_decode(desc
)) == 0) {
256 dfprintk(DIRCACHE
, "NFS: %s: examining cookie %Lu\n",
257 __FUNCTION__
, (unsigned long long)entry
->cookie
);
258 if (entry
->prev_cookie
== *desc
->dir_cookie
)
260 if (loop_count
++ > 200) {
269 * Given a pointer to a buffer that has already been filled by a call
270 * to readdir, find the entry at offset 'desc->file->f_pos'.
272 * If the end of the buffer has been reached, return -EAGAIN, if not,
273 * return the offset within the buffer of the next entry to be
277 int find_dirent_index(nfs_readdir_descriptor_t
*desc
)
279 struct nfs_entry
*entry
= desc
->entry
;
284 status
= dir_decode(desc
);
288 dfprintk(DIRCACHE
, "NFS: found cookie %Lu at index %Ld\n",
289 (unsigned long long)entry
->cookie
, desc
->current_index
);
291 if (desc
->file
->f_pos
== desc
->current_index
) {
292 *desc
->dir_cookie
= entry
->cookie
;
295 desc
->current_index
++;
296 if (loop_count
++ > 200) {
305 * Find the given page, and call find_dirent() or find_dirent_index in
306 * order to try to return the next entry.
309 int find_dirent_page(nfs_readdir_descriptor_t
*desc
)
311 struct inode
*inode
= desc
->file
->f_path
.dentry
->d_inode
;
315 dfprintk(DIRCACHE
, "NFS: %s: searching page %ld for target %Lu\n",
316 __FUNCTION__
, desc
->page_index
,
317 (long long) *desc
->dir_cookie
);
319 page
= read_cache_page(inode
->i_mapping
, desc
->page_index
,
320 (filler_t
*)nfs_readdir_filler
, desc
);
322 status
= PTR_ERR(page
);
325 if (!PageUptodate(page
))
328 /* NOTE: Someone else may have changed the READDIRPLUS flag */
330 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
331 if (*desc
->dir_cookie
!= 0)
332 status
= find_dirent(desc
);
334 status
= find_dirent_index(desc
);
336 dir_page_release(desc
);
338 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, status
);
341 page_cache_release(page
);
346 * Recurse through the page cache pages, and return a
347 * filled nfs_entry structure of the next directory entry if possible.
349 * The target for the search is '*desc->dir_cookie' if non-0,
350 * 'desc->file->f_pos' otherwise
353 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
358 /* Always search-by-index from the beginning of the cache */
359 if (*desc
->dir_cookie
== 0) {
360 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
361 (long long)desc
->file
->f_pos
);
362 desc
->page_index
= 0;
363 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
364 desc
->entry
->eof
= 0;
365 desc
->current_index
= 0;
367 dfprintk(DIRCACHE
, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
368 (unsigned long long)*desc
->dir_cookie
);
371 res
= find_dirent_page(desc
);
374 /* Align to beginning of next page */
376 if (loop_count
++ > 200) {
382 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n", __FUNCTION__
, res
);
386 static inline unsigned int dt_type(struct inode
*inode
)
388 return (inode
->i_mode
>> 12) & 15;
391 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
);
394 * Once we've found the start of the dirent within a page: fill 'er up...
397 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
400 struct file
*file
= desc
->file
;
401 struct nfs_entry
*entry
= desc
->entry
;
402 struct dentry
*dentry
= NULL
;
403 unsigned long fileid
;
407 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
408 (unsigned long long)entry
->cookie
);
411 unsigned d_type
= DT_UNKNOWN
;
412 /* Note: entry->prev_cookie contains the cookie for
413 * retrieving the current dirent on the server */
414 fileid
= nfs_fileid_to_ino_t(entry
->ino
);
416 /* Get a dentry if we have one */
419 dentry
= nfs_readdir_lookup(desc
);
421 /* Use readdirplus info */
422 if (dentry
!= NULL
&& dentry
->d_inode
!= NULL
) {
423 d_type
= dt_type(dentry
->d_inode
);
424 fileid
= dentry
->d_inode
->i_ino
;
427 res
= filldir(dirent
, entry
->name
, entry
->len
,
428 file
->f_pos
, fileid
, d_type
);
432 *desc
->dir_cookie
= entry
->cookie
;
433 if (dir_decode(desc
) != 0) {
437 if (loop_count
++ > 200) {
442 dir_page_release(desc
);
445 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
446 (unsigned long long)*desc
->dir_cookie
, res
);
451 * If we cannot find a cookie in our cache, we suspect that this is
452 * because it points to a deleted file, so we ask the server to return
453 * whatever it thinks is the next entry. We then feed this to filldir.
454 * If all goes well, we should then be able to find our way round the
455 * cache on the next call to readdir_search_pagecache();
457 * NOTE: we cannot add the anonymous page to the pagecache because
458 * the data it contains might not be page aligned. Besides,
459 * we should already have a complete representation of the
460 * directory in the page cache by the time we get here.
463 int uncached_readdir(nfs_readdir_descriptor_t
*desc
, void *dirent
,
466 struct file
*file
= desc
->file
;
467 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
468 struct rpc_cred
*cred
= nfs_file_cred(file
);
469 struct page
*page
= NULL
;
472 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
473 (unsigned long long)*desc
->dir_cookie
);
475 page
= alloc_page(GFP_HIGHUSER
);
480 desc
->error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, *desc
->dir_cookie
,
482 NFS_SERVER(inode
)->dtsize
,
484 spin_lock(&inode
->i_lock
);
485 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATIME
;
486 spin_unlock(&inode
->i_lock
);
488 desc
->ptr
= kmap(page
); /* matching kunmap in nfs_do_filldir */
489 if (desc
->error
>= 0) {
490 if ((status
= dir_decode(desc
)) == 0)
491 desc
->entry
->prev_cookie
= *desc
->dir_cookie
;
497 status
= nfs_do_filldir(desc
, dirent
, filldir
);
499 /* Reset read descriptor so it searches the page cache from
500 * the start upon the next call to readdir_search_pagecache() */
501 desc
->page_index
= 0;
502 desc
->entry
->cookie
= desc
->entry
->prev_cookie
= 0;
503 desc
->entry
->eof
= 0;
505 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
506 __FUNCTION__
, status
);
509 dir_page_release(desc
);
513 /* The file offset position represents the dirent entry number. A
514 last cookie cache takes care of the common case of reading the
517 static int nfs_readdir(struct file
*filp
, void *dirent
, filldir_t filldir
)
519 struct dentry
*dentry
= filp
->f_path
.dentry
;
520 struct inode
*inode
= dentry
->d_inode
;
521 nfs_readdir_descriptor_t my_desc
,
523 struct nfs_entry my_entry
;
525 struct nfs_fattr fattr
;
528 dfprintk(VFS
, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
529 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
530 (long long)filp
->f_pos
);
531 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
535 res
= nfs_revalidate_mapping_nolock(inode
, filp
->f_mapping
);
542 * filp->f_pos points to the dirent entry number.
543 * *desc->dir_cookie has the cookie for the next entry. We have
544 * to either find the entry with the appropriate number or
545 * revalidate the cookie.
547 memset(desc
, 0, sizeof(*desc
));
550 desc
->dir_cookie
= &((struct nfs_open_context
*)filp
->private_data
)->dir_cookie
;
551 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
552 desc
->plus
= NFS_USE_READDIRPLUS(inode
);
554 my_entry
.cookie
= my_entry
.prev_cookie
= 0;
557 my_entry
.fattr
= &fattr
;
558 nfs_fattr_init(&fattr
);
559 desc
->entry
= &my_entry
;
561 while(!desc
->entry
->eof
) {
562 res
= readdir_search_pagecache(desc
);
564 if (res
== -EBADCOOKIE
) {
565 /* This means either end of directory */
566 if (*desc
->dir_cookie
&& desc
->entry
->cookie
!= *desc
->dir_cookie
) {
567 /* Or that the server has 'lost' a cookie */
568 res
= uncached_readdir(desc
, dirent
, filldir
);
575 if (res
== -ETOOSMALL
&& desc
->plus
) {
576 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_FLAGS(inode
));
577 nfs_zap_caches(inode
);
579 desc
->entry
->eof
= 0;
585 res
= nfs_do_filldir(desc
, dirent
, filldir
);
594 dfprintk(VFS
, "NFS: readdir(%s/%s) returns %ld\n",
595 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
600 loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int origin
)
602 mutex_lock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
605 offset
+= filp
->f_pos
;
613 if (offset
!= filp
->f_pos
) {
614 filp
->f_pos
= offset
;
615 ((struct nfs_open_context
*)filp
->private_data
)->dir_cookie
= 0;
618 mutex_unlock(&filp
->f_path
.dentry
->d_inode
->i_mutex
);
623 * All directory operations under NFS are synchronous, so fsync()
624 * is a dummy operation.
626 int nfs_fsync_dir(struct file
*filp
, struct dentry
*dentry
, int datasync
)
628 dfprintk(VFS
, "NFS: fsync_dir(%s/%s) datasync %d\n",
629 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
636 * A check for whether or not the parent directory has changed.
637 * In the case it has, we assume that the dentries are untrustworthy
638 * and may need to be looked up again.
640 static inline int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
)
644 if ((NFS_I(dir
)->cache_validity
& NFS_INO_INVALID_ATTR
) != 0
645 || nfs_attribute_timeout(dir
))
647 return nfs_verify_change_attribute(dir
, (unsigned long)dentry
->d_fsdata
);
650 static inline void nfs_set_verifier(struct dentry
* dentry
, unsigned long verf
)
652 dentry
->d_fsdata
= (void *)verf
;
656 * Whenever an NFS operation succeeds, we know that the dentry
657 * is valid, so we update the revalidation timestamp.
659 static inline void nfs_renew_times(struct dentry
* dentry
)
661 dentry
->d_time
= jiffies
;
665 * Return the intent data that applies to this particular path component
667 * Note that the current set of intents only apply to the very last
668 * component of the path.
669 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
671 static inline unsigned int nfs_lookup_check_intent(struct nameidata
*nd
, unsigned int mask
)
673 if (nd
->flags
& (LOOKUP_CONTINUE
|LOOKUP_PARENT
))
675 return nd
->flags
& mask
;
679 * Inode and filehandle revalidation for lookups.
681 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
682 * or if the intent information indicates that we're about to open this
683 * particular file and the "nocto" mount flag is not set.
687 int nfs_lookup_verify_inode(struct inode
*inode
, struct nameidata
*nd
)
689 struct nfs_server
*server
= NFS_SERVER(inode
);
692 /* VFS wants an on-the-wire revalidation */
693 if (nd
->flags
& LOOKUP_REVAL
)
695 /* This is an open(2) */
696 if (nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) != 0 &&
697 !(server
->flags
& NFS_MOUNT_NOCTO
) &&
698 (S_ISREG(inode
->i_mode
) ||
699 S_ISDIR(inode
->i_mode
)))
702 return nfs_revalidate_inode(server
, inode
);
704 return __nfs_revalidate_inode(server
, inode
);
708 * We judge how long we want to trust negative
709 * dentries by looking at the parent inode mtime.
711 * If parent mtime has changed, we revalidate, else we wait for a
712 * period corresponding to the parent's attribute cache timeout value.
715 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
716 struct nameidata
*nd
)
718 /* Don't revalidate a negative dentry if we're creating a new file */
719 if (nd
!= NULL
&& nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) != 0)
721 return !nfs_check_verifier(dir
, dentry
);
725 * This is called every time the dcache has a lookup hit,
726 * and we should check whether we can really trust that
729 * NOTE! The hit can be a negative hit too, don't assume
732 * If the parent directory is seen to have changed, we throw out the
733 * cached dentry and do a new lookup.
735 static int nfs_lookup_revalidate(struct dentry
* dentry
, struct nameidata
*nd
)
739 struct dentry
*parent
;
741 struct nfs_fh fhandle
;
742 struct nfs_fattr fattr
;
743 unsigned long verifier
;
745 parent
= dget_parent(dentry
);
747 dir
= parent
->d_inode
;
748 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
749 inode
= dentry
->d_inode
;
752 if (nfs_neg_need_reval(dir
, dentry
, nd
))
757 if (is_bad_inode(inode
)) {
758 dfprintk(LOOKUPCACHE
, "%s: %s/%s has dud inode\n",
759 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
760 dentry
->d_name
.name
);
764 /* Revalidate parent directory attribute cache */
765 if (nfs_revalidate_inode(NFS_SERVER(dir
), dir
) < 0)
768 /* Force a full look up iff the parent directory has changed */
769 if (nfs_check_verifier(dir
, dentry
)) {
770 if (nfs_lookup_verify_inode(inode
, nd
))
775 if (NFS_STALE(inode
))
778 verifier
= nfs_save_change_attribute(dir
);
779 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
782 if (nfs_compare_fh(NFS_FH(inode
), &fhandle
))
784 if ((error
= nfs_refresh_inode(inode
, &fattr
)) != 0)
787 nfs_renew_times(dentry
);
788 nfs_set_verifier(dentry
, verifier
);
792 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is valid\n",
793 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
794 dentry
->d_name
.name
);
800 if (inode
&& S_ISDIR(inode
->i_mode
)) {
801 /* Purge readdir caches. */
802 nfs_zap_caches(inode
);
803 /* If we have submounts, don't unhash ! */
804 if (have_submounts(dentry
))
806 shrink_dcache_parent(dentry
);
811 dfprintk(LOOKUPCACHE
, "NFS: %s(%s/%s) is invalid\n",
812 __FUNCTION__
, dentry
->d_parent
->d_name
.name
,
813 dentry
->d_name
.name
);
818 * This is called from dput() when d_count is going to 0.
820 static int nfs_dentry_delete(struct dentry
*dentry
)
822 dfprintk(VFS
, "NFS: dentry_delete(%s/%s, %x)\n",
823 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
826 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
827 /* Unhash it, so that ->d_iput() would be called */
830 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
831 /* Unhash it, so that ancestors of killed async unlink
832 * files will be cleaned up during umount */
840 * Called when the dentry loses inode.
841 * We use it to clean up silly-renamed files.
843 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
845 nfs_inode_return_delegation(inode
);
846 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
849 nfs_complete_unlink(dentry
);
852 /* When creating a negative dentry, we want to renew d_time */
853 nfs_renew_times(dentry
);
857 struct dentry_operations nfs_dentry_operations
= {
858 .d_revalidate
= nfs_lookup_revalidate
,
859 .d_delete
= nfs_dentry_delete
,
860 .d_iput
= nfs_dentry_iput
,
864 * Use intent information to check whether or not we're going to do
865 * an O_EXCL create using this path component.
868 int nfs_is_exclusive_create(struct inode
*dir
, struct nameidata
*nd
)
870 if (NFS_PROTO(dir
)->version
== 2)
872 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_CREATE
) == 0)
874 return (nd
->intent
.open
.flags
& O_EXCL
) != 0;
877 static inline int nfs_reval_fsid(struct vfsmount
*mnt
, struct inode
*dir
,
878 struct nfs_fh
*fh
, struct nfs_fattr
*fattr
)
880 struct nfs_server
*server
= NFS_SERVER(dir
);
882 if (!nfs_fsid_equal(&server
->fsid
, &fattr
->fsid
))
883 /* Revalidate fsid on root dir */
884 return __nfs_revalidate_inode(server
, mnt
->mnt_root
->d_inode
);
888 static struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, struct nameidata
*nd
)
891 struct inode
*inode
= NULL
;
893 struct nfs_fh fhandle
;
894 struct nfs_fattr fattr
;
896 dfprintk(VFS
, "NFS: lookup(%s/%s)\n",
897 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
898 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
900 res
= ERR_PTR(-ENAMETOOLONG
);
901 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
904 res
= ERR_PTR(-ENOMEM
);
905 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
910 * If we're doing an exclusive create, optimize away the lookup
911 * but don't hash the dentry.
913 if (nfs_is_exclusive_create(dir
, nd
)) {
914 d_instantiate(dentry
, NULL
);
919 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, &fhandle
, &fattr
);
920 if (error
== -ENOENT
)
923 res
= ERR_PTR(error
);
926 error
= nfs_reval_fsid(nd
->mnt
, dir
, &fhandle
, &fattr
);
928 res
= ERR_PTR(error
);
931 inode
= nfs_fhget(dentry
->d_sb
, &fhandle
, &fattr
);
932 res
= (struct dentry
*)inode
;
937 res
= d_materialise_unique(dentry
, inode
);
939 struct dentry
*parent
;
942 /* Was a directory renamed! */
943 parent
= dget_parent(res
);
944 if (!IS_ROOT(parent
))
945 nfs_mark_for_revalidate(parent
->d_inode
);
949 nfs_renew_times(dentry
);
950 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
958 static int nfs_open_revalidate(struct dentry
*, struct nameidata
*);
960 struct dentry_operations nfs4_dentry_operations
= {
961 .d_revalidate
= nfs_open_revalidate
,
962 .d_delete
= nfs_dentry_delete
,
963 .d_iput
= nfs_dentry_iput
,
967 * Use intent information to determine whether we need to substitute
968 * the NFSv4-style stateful OPEN for the LOOKUP call
970 static int is_atomic_open(struct inode
*dir
, struct nameidata
*nd
)
972 if (nd
== NULL
|| nfs_lookup_check_intent(nd
, LOOKUP_OPEN
) == 0)
974 /* NFS does not (yet) have a stateful open for directories */
975 if (nd
->flags
& LOOKUP_DIRECTORY
)
977 /* Are we trying to write to a read only partition? */
978 if (IS_RDONLY(dir
) && (nd
->intent
.open
.flags
& (O_CREAT
|O_TRUNC
|FMODE_WRITE
)))
983 static struct dentry
*nfs_atomic_lookup(struct inode
*dir
, struct dentry
*dentry
, struct nameidata
*nd
)
985 struct dentry
*res
= NULL
;
988 dfprintk(VFS
, "NFS: atomic_lookup(%s/%ld), %s\n",
989 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
991 /* Check that we are indeed trying to open this file */
992 if (!is_atomic_open(dir
, nd
))
995 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
) {
996 res
= ERR_PTR(-ENAMETOOLONG
);
999 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1001 /* Let vfs_create() deal with O_EXCL */
1002 if (nd
->intent
.open
.flags
& O_EXCL
) {
1003 d_add(dentry
, NULL
);
1007 /* Open the file on the server */
1009 /* Revalidate parent directory attribute cache */
1010 error
= nfs_revalidate_inode(NFS_SERVER(dir
), dir
);
1012 res
= ERR_PTR(error
);
1017 if (nd
->intent
.open
.flags
& O_CREAT
) {
1018 nfs_begin_data_update(dir
);
1019 res
= nfs4_atomic_open(dir
, dentry
, nd
);
1020 nfs_end_data_update(dir
);
1022 res
= nfs4_atomic_open(dir
, dentry
, nd
);
1025 error
= PTR_ERR(res
);
1027 /* Make a negative dentry */
1031 /* This turned out not to be a regular file */
1036 if (!(nd
->intent
.open
.flags
& O_NOFOLLOW
))
1042 } else if (res
!= NULL
)
1044 nfs_renew_times(dentry
);
1045 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1049 return nfs_lookup(dir
, dentry
, nd
);
1052 static int nfs_open_revalidate(struct dentry
*dentry
, struct nameidata
*nd
)
1054 struct dentry
*parent
= NULL
;
1055 struct inode
*inode
= dentry
->d_inode
;
1057 unsigned long verifier
;
1058 int openflags
, ret
= 0;
1060 parent
= dget_parent(dentry
);
1061 dir
= parent
->d_inode
;
1062 if (!is_atomic_open(dir
, nd
))
1064 /* We can't create new files in nfs_open_revalidate(), so we
1065 * optimize away revalidation of negative dentries.
1069 /* NFS only supports OPEN on regular files */
1070 if (!S_ISREG(inode
->i_mode
))
1072 openflags
= nd
->intent
.open
.flags
;
1073 /* We cannot do exclusive creation on a positive dentry */
1074 if ((openflags
& (O_CREAT
|O_EXCL
)) == (O_CREAT
|O_EXCL
))
1076 /* We can't create new files, or truncate existing ones here */
1077 openflags
&= ~(O_CREAT
|O_TRUNC
);
1080 * Note: we're not holding inode->i_mutex and so may be racing with
1081 * operations that change the directory. We therefore save the
1082 * change attribute *before* we do the RPC call.
1085 verifier
= nfs_save_change_attribute(dir
);
1086 ret
= nfs4_open_revalidate(dir
, dentry
, openflags
, nd
);
1088 nfs_set_verifier(dentry
, verifier
);
1097 if (inode
!= NULL
&& nfs_have_delegation(inode
, FMODE_READ
))
1099 return nfs_lookup_revalidate(dentry
, nd
);
1101 #endif /* CONFIG_NFSV4 */
1103 static struct dentry
*nfs_readdir_lookup(nfs_readdir_descriptor_t
*desc
)
1105 struct dentry
*parent
= desc
->file
->f_path
.dentry
;
1106 struct inode
*dir
= parent
->d_inode
;
1107 struct nfs_entry
*entry
= desc
->entry
;
1108 struct dentry
*dentry
, *alias
;
1109 struct qstr name
= {
1110 .name
= entry
->name
,
1113 struct inode
*inode
;
1117 if (name
.name
[0] == '.' && name
.name
[1] == '.')
1118 return dget_parent(parent
);
1121 if (name
.name
[0] == '.')
1122 return dget(parent
);
1124 name
.hash
= full_name_hash(name
.name
, name
.len
);
1125 dentry
= d_lookup(parent
, &name
);
1128 if (!desc
->plus
|| !(entry
->fattr
->valid
& NFS_ATTR_FATTR
))
1130 /* Note: caller is already holding the dir->i_mutex! */
1131 dentry
= d_alloc(parent
, &name
);
1134 dentry
->d_op
= NFS_PROTO(dir
)->dentry_ops
;
1135 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
);
1136 if (IS_ERR(inode
)) {
1141 alias
= d_materialise_unique(dentry
, inode
);
1142 if (alias
!= NULL
) {
1149 nfs_renew_times(dentry
);
1150 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1155 * Code common to create, mkdir, and mknod.
1157 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1158 struct nfs_fattr
*fattr
)
1160 struct inode
*inode
;
1161 int error
= -EACCES
;
1163 /* We may have been initialized further down */
1164 if (dentry
->d_inode
)
1166 if (fhandle
->size
== 0) {
1167 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1168 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
);
1172 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1173 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1174 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
);
1178 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
);
1179 error
= PTR_ERR(inode
);
1182 d_instantiate(dentry
, inode
);
1183 if (d_unhashed(dentry
))
1189 * Following a failed create operation, we drop the dentry rather
1190 * than retain a negative dentry. This avoids a problem in the event
1191 * that the operation succeeded on the server, but an error in the
1192 * reply path made it appear to have failed.
1194 static int nfs_create(struct inode
*dir
, struct dentry
*dentry
, int mode
,
1195 struct nameidata
*nd
)
1201 dfprintk(VFS
, "NFS: create(%s/%ld), %s\n",
1202 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1204 attr
.ia_mode
= mode
;
1205 attr
.ia_valid
= ATTR_MODE
;
1207 if (nd
&& (nd
->flags
& LOOKUP_CREATE
))
1208 open_flags
= nd
->intent
.open
.flags
;
1211 nfs_begin_data_update(dir
);
1212 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
, nd
);
1213 nfs_end_data_update(dir
);
1216 nfs_renew_times(dentry
);
1217 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1227 * See comments for nfs_proc_create regarding failed operations.
1230 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, int mode
, dev_t rdev
)
1235 dfprintk(VFS
, "NFS: mknod(%s/%ld), %s\n",
1236 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1238 if (!new_valid_dev(rdev
))
1241 attr
.ia_mode
= mode
;
1242 attr
.ia_valid
= ATTR_MODE
;
1245 nfs_begin_data_update(dir
);
1246 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1247 nfs_end_data_update(dir
);
1250 nfs_renew_times(dentry
);
1251 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1261 * See comments for nfs_proc_create regarding failed operations.
1263 static int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
1268 dfprintk(VFS
, "NFS: mkdir(%s/%ld), %s\n",
1269 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1271 attr
.ia_valid
= ATTR_MODE
;
1272 attr
.ia_mode
= mode
| S_IFDIR
;
1275 nfs_begin_data_update(dir
);
1276 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1277 nfs_end_data_update(dir
);
1280 nfs_renew_times(dentry
);
1281 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1290 static int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1294 dfprintk(VFS
, "NFS: rmdir(%s/%ld), %s\n",
1295 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
->d_name
.name
);
1298 nfs_begin_data_update(dir
);
1299 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1300 /* Ensure the VFS deletes this inode */
1301 if (error
== 0 && dentry
->d_inode
!= NULL
)
1302 clear_nlink(dentry
->d_inode
);
1303 nfs_end_data_update(dir
);
1309 static int nfs_sillyrename(struct inode
*dir
, struct dentry
*dentry
)
1311 static unsigned int sillycounter
;
1312 const int i_inosize
= sizeof(dir
->i_ino
)*2;
1313 const int countersize
= sizeof(sillycounter
)*2;
1314 const int slen
= sizeof(".nfs") + i_inosize
+ countersize
- 1;
1317 struct dentry
*sdentry
;
1320 dfprintk(VFS
, "NFS: silly-rename(%s/%s, ct=%d)\n",
1321 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
,
1322 atomic_read(&dentry
->d_count
));
1323 nfs_inc_stats(dir
, NFSIOS_SILLYRENAME
);
1326 if (!dentry
->d_inode
)
1327 printk("NFS: silly-renaming %s/%s, negative dentry??\n",
1328 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1331 * We don't allow a dentry to be silly-renamed twice.
1334 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1337 sprintf(silly
, ".nfs%*.*lx",
1338 i_inosize
, i_inosize
, dentry
->d_inode
->i_ino
);
1340 /* Return delegation in anticipation of the rename */
1341 nfs_inode_return_delegation(dentry
->d_inode
);
1345 char *suffix
= silly
+ slen
- countersize
;
1349 sprintf(suffix
, "%*.*x", countersize
, countersize
, sillycounter
);
1351 dfprintk(VFS
, "NFS: trying to rename %s to %s\n",
1352 dentry
->d_name
.name
, silly
);
1354 sdentry
= lookup_one_len(silly
, dentry
->d_parent
, slen
);
1356 * N.B. Better to return EBUSY here ... it could be
1357 * dangerous to delete the file while it's in use.
1359 if (IS_ERR(sdentry
))
1361 } while(sdentry
->d_inode
!= NULL
); /* need negative lookup */
1363 qsilly
.name
= silly
;
1364 qsilly
.len
= strlen(silly
);
1365 nfs_begin_data_update(dir
);
1366 if (dentry
->d_inode
) {
1367 nfs_begin_data_update(dentry
->d_inode
);
1368 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1370 nfs_mark_for_revalidate(dentry
->d_inode
);
1371 nfs_end_data_update(dentry
->d_inode
);
1373 error
= NFS_PROTO(dir
)->rename(dir
, &dentry
->d_name
,
1375 nfs_end_data_update(dir
);
1377 nfs_renew_times(dentry
);
1378 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1379 d_move(dentry
, sdentry
);
1380 error
= nfs_async_unlink(dentry
);
1381 /* If we return 0 we don't unlink */
1389 * Remove a file after making sure there are no pending writes,
1390 * and after checking that the file has only one user.
1392 * We invalidate the attribute cache and free the inode prior to the operation
1393 * to avoid possible races if the server reuses the inode.
1395 static int nfs_safe_remove(struct dentry
*dentry
)
1397 struct inode
*dir
= dentry
->d_parent
->d_inode
;
1398 struct inode
*inode
= dentry
->d_inode
;
1401 dfprintk(VFS
, "NFS: safe_remove(%s/%s)\n",
1402 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1404 /* If the dentry was sillyrenamed, we simply call d_delete() */
1405 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1410 nfs_begin_data_update(dir
);
1411 if (inode
!= NULL
) {
1412 nfs_inode_return_delegation(inode
);
1413 nfs_begin_data_update(inode
);
1414 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1415 /* The VFS may want to delete this inode */
1418 nfs_mark_for_revalidate(inode
);
1419 nfs_end_data_update(inode
);
1421 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1422 nfs_end_data_update(dir
);
1427 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1428 * belongs to an active ".nfs..." file and we return -EBUSY.
1430 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1432 static int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1435 int need_rehash
= 0;
1437 dfprintk(VFS
, "NFS: unlink(%s/%ld, %s)\n", dir
->i_sb
->s_id
,
1438 dir
->i_ino
, dentry
->d_name
.name
);
1441 spin_lock(&dcache_lock
);
1442 spin_lock(&dentry
->d_lock
);
1443 if (atomic_read(&dentry
->d_count
) > 1) {
1444 spin_unlock(&dentry
->d_lock
);
1445 spin_unlock(&dcache_lock
);
1446 error
= nfs_sillyrename(dir
, dentry
);
1450 if (!d_unhashed(dentry
)) {
1454 spin_unlock(&dentry
->d_lock
);
1455 spin_unlock(&dcache_lock
);
1456 error
= nfs_safe_remove(dentry
);
1458 nfs_renew_times(dentry
);
1459 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1460 } else if (need_rehash
)
1467 * To create a symbolic link, most file systems instantiate a new inode,
1468 * add a page to it containing the path, then write it out to the disk
1469 * using prepare_write/commit_write.
1471 * Unfortunately the NFS client can't create the in-core inode first
1472 * because it needs a file handle to create an in-core inode (see
1473 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1474 * symlink request has completed on the server.
1476 * So instead we allocate a raw page, copy the symname into it, then do
1477 * the SYMLINK request with the page as the buffer. If it succeeds, we
1478 * now have a new file handle and can instantiate an in-core NFS inode
1479 * and move the raw page into its mapping.
1481 static int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1483 struct pagevec lru_pvec
;
1487 unsigned int pathlen
= strlen(symname
);
1490 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s)\n", dir
->i_sb
->s_id
,
1491 dir
->i_ino
, dentry
->d_name
.name
, symname
);
1493 if (pathlen
> PAGE_SIZE
)
1494 return -ENAMETOOLONG
;
1496 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1497 attr
.ia_valid
= ATTR_MODE
;
1501 page
= alloc_page(GFP_KERNEL
);
1507 kaddr
= kmap_atomic(page
, KM_USER0
);
1508 memcpy(kaddr
, symname
, pathlen
);
1509 if (pathlen
< PAGE_SIZE
)
1510 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1511 kunmap_atomic(kaddr
, KM_USER0
);
1513 nfs_begin_data_update(dir
);
1514 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1515 nfs_end_data_update(dir
);
1517 dfprintk(VFS
, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1518 dir
->i_sb
->s_id
, dir
->i_ino
,
1519 dentry
->d_name
.name
, symname
, error
);
1527 * No big deal if we can't add this page to the page cache here.
1528 * READLINK will get the missing page from the server if needed.
1530 pagevec_init(&lru_pvec
, 0);
1531 if (!add_to_page_cache(page
, dentry
->d_inode
->i_mapping
, 0,
1533 pagevec_add(&lru_pvec
, page
);
1534 pagevec_lru_add(&lru_pvec
);
1535 SetPageUptodate(page
);
1545 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1547 struct inode
*inode
= old_dentry
->d_inode
;
1550 dfprintk(VFS
, "NFS: link(%s/%s -> %s/%s)\n",
1551 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1552 dentry
->d_parent
->d_name
.name
, dentry
->d_name
.name
);
1555 nfs_begin_data_update(dir
);
1556 nfs_begin_data_update(inode
);
1557 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1559 atomic_inc(&inode
->i_count
);
1560 d_instantiate(dentry
, inode
);
1562 nfs_end_data_update(inode
);
1563 nfs_end_data_update(dir
);
1570 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1571 * different file handle for the same inode after a rename (e.g. when
1572 * moving to a different directory). A fail-safe method to do so would
1573 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1574 * rename the old file using the sillyrename stuff. This way, the original
1575 * file in old_dir will go away when the last process iput()s the inode.
1579 * It actually works quite well. One needs to have the possibility for
1580 * at least one ".nfs..." file in each directory the file ever gets
1581 * moved or linked to which happens automagically with the new
1582 * implementation that only depends on the dcache stuff instead of
1583 * using the inode layer
1585 * Unfortunately, things are a little more complicated than indicated
1586 * above. For a cross-directory move, we want to make sure we can get
1587 * rid of the old inode after the operation. This means there must be
1588 * no pending writes (if it's a file), and the use count must be 1.
1589 * If these conditions are met, we can drop the dentries before doing
1592 static int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1593 struct inode
*new_dir
, struct dentry
*new_dentry
)
1595 struct inode
*old_inode
= old_dentry
->d_inode
;
1596 struct inode
*new_inode
= new_dentry
->d_inode
;
1597 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
1601 * To prevent any new references to the target during the rename,
1602 * we unhash the dentry and free the inode in advance.
1605 if (!d_unhashed(new_dentry
)) {
1607 rehash
= new_dentry
;
1610 dfprintk(VFS
, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1611 old_dentry
->d_parent
->d_name
.name
, old_dentry
->d_name
.name
,
1612 new_dentry
->d_parent
->d_name
.name
, new_dentry
->d_name
.name
,
1613 atomic_read(&new_dentry
->d_count
));
1616 * First check whether the target is busy ... we can't
1617 * safely do _any_ rename if the target is in use.
1619 * For files, make a copy of the dentry and then do a
1620 * silly-rename. If the silly-rename succeeds, the
1621 * copied dentry is hashed and becomes the new target.
1625 if (S_ISDIR(new_inode
->i_mode
)) {
1627 if (!S_ISDIR(old_inode
->i_mode
))
1629 } else if (atomic_read(&new_dentry
->d_count
) > 2) {
1631 /* copy the target dentry's name */
1632 dentry
= d_alloc(new_dentry
->d_parent
,
1633 &new_dentry
->d_name
);
1637 /* silly-rename the existing target ... */
1638 err
= nfs_sillyrename(new_dir
, new_dentry
);
1640 new_dentry
= rehash
= dentry
;
1642 /* instantiate the replacement target */
1643 d_instantiate(new_dentry
, NULL
);
1644 } else if (atomic_read(&new_dentry
->d_count
) > 1) {
1645 /* dentry still busy? */
1647 printk("nfs_rename: target %s/%s busy, d_count=%d\n",
1648 new_dentry
->d_parent
->d_name
.name
,
1649 new_dentry
->d_name
.name
,
1650 atomic_read(&new_dentry
->d_count
));
1655 drop_nlink(new_inode
);
1659 * ... prune child dentries and writebacks if needed.
1661 if (atomic_read(&old_dentry
->d_count
) > 1) {
1662 nfs_wb_all(old_inode
);
1663 shrink_dcache_parent(old_dentry
);
1665 nfs_inode_return_delegation(old_inode
);
1667 if (new_inode
!= NULL
) {
1668 nfs_inode_return_delegation(new_inode
);
1669 d_delete(new_dentry
);
1672 nfs_begin_data_update(old_dir
);
1673 nfs_begin_data_update(new_dir
);
1674 nfs_begin_data_update(old_inode
);
1675 error
= NFS_PROTO(old_dir
)->rename(old_dir
, &old_dentry
->d_name
,
1676 new_dir
, &new_dentry
->d_name
);
1677 nfs_mark_for_revalidate(old_inode
);
1678 nfs_end_data_update(old_inode
);
1679 nfs_end_data_update(new_dir
);
1680 nfs_end_data_update(old_dir
);
1685 d_move(old_dentry
, new_dentry
);
1686 nfs_renew_times(new_dentry
);
1687 nfs_set_verifier(new_dentry
, nfs_save_change_attribute(new_dir
));
1690 /* new dentry created? */
1697 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
1698 static LIST_HEAD(nfs_access_lru_list
);
1699 static atomic_long_t nfs_access_nr_entries
;
1701 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
1703 put_rpccred(entry
->cred
);
1705 smp_mb__before_atomic_dec();
1706 atomic_long_dec(&nfs_access_nr_entries
);
1707 smp_mb__after_atomic_dec();
1710 int nfs_access_cache_shrinker(int nr_to_scan
, gfp_t gfp_mask
)
1713 struct nfs_inode
*nfsi
;
1714 struct nfs_access_entry
*cache
;
1716 spin_lock(&nfs_access_lru_lock
);
1718 list_for_each_entry(nfsi
, &nfs_access_lru_list
, access_cache_inode_lru
) {
1719 struct inode
*inode
;
1721 if (nr_to_scan
-- == 0)
1723 inode
= igrab(&nfsi
->vfs_inode
);
1726 spin_lock(&inode
->i_lock
);
1727 if (list_empty(&nfsi
->access_cache_entry_lru
))
1728 goto remove_lru_entry
;
1729 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
1730 struct nfs_access_entry
, lru
);
1731 list_move(&cache
->lru
, &head
);
1732 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1733 if (!list_empty(&nfsi
->access_cache_entry_lru
))
1734 list_move_tail(&nfsi
->access_cache_inode_lru
,
1735 &nfs_access_lru_list
);
1738 list_del_init(&nfsi
->access_cache_inode_lru
);
1739 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
1741 spin_unlock(&inode
->i_lock
);
1745 spin_unlock(&nfs_access_lru_lock
);
1746 while (!list_empty(&head
)) {
1747 cache
= list_entry(head
.next
, struct nfs_access_entry
, lru
);
1748 list_del(&cache
->lru
);
1749 nfs_access_free_entry(cache
);
1751 return (atomic_long_read(&nfs_access_nr_entries
) / 100) * sysctl_vfs_cache_pressure
;
1754 static void __nfs_access_zap_cache(struct inode
*inode
)
1756 struct nfs_inode
*nfsi
= NFS_I(inode
);
1757 struct rb_root
*root_node
= &nfsi
->access_cache
;
1758 struct rb_node
*n
, *dispose
= NULL
;
1759 struct nfs_access_entry
*entry
;
1761 /* Unhook entries from the cache */
1762 while ((n
= rb_first(root_node
)) != NULL
) {
1763 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1764 rb_erase(n
, root_node
);
1765 list_del(&entry
->lru
);
1766 n
->rb_left
= dispose
;
1769 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
1770 spin_unlock(&inode
->i_lock
);
1772 /* Now kill them all! */
1773 while (dispose
!= NULL
) {
1775 dispose
= n
->rb_left
;
1776 nfs_access_free_entry(rb_entry(n
, struct nfs_access_entry
, rb_node
));
1780 void nfs_access_zap_cache(struct inode
*inode
)
1782 /* Remove from global LRU init */
1783 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1784 spin_lock(&nfs_access_lru_lock
);
1785 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
1786 spin_unlock(&nfs_access_lru_lock
);
1789 spin_lock(&inode
->i_lock
);
1790 /* This will release the spinlock */
1791 __nfs_access_zap_cache(inode
);
1794 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
1796 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
1797 struct nfs_access_entry
*entry
;
1800 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
1802 if (cred
< entry
->cred
)
1804 else if (cred
> entry
->cred
)
1812 int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
1814 struct nfs_inode
*nfsi
= NFS_I(inode
);
1815 struct nfs_access_entry
*cache
;
1818 spin_lock(&inode
->i_lock
);
1819 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
1821 cache
= nfs_access_search_rbtree(inode
, cred
);
1824 if (time_after(jiffies
, cache
->jiffies
+ NFS_ATTRTIMEO(inode
)))
1826 res
->jiffies
= cache
->jiffies
;
1827 res
->cred
= cache
->cred
;
1828 res
->mask
= cache
->mask
;
1829 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
1832 spin_unlock(&inode
->i_lock
);
1835 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
1836 list_del(&cache
->lru
);
1837 spin_unlock(&inode
->i_lock
);
1838 nfs_access_free_entry(cache
);
1841 /* This will release the spinlock */
1842 __nfs_access_zap_cache(inode
);
1846 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
1848 struct nfs_inode
*nfsi
= NFS_I(inode
);
1849 struct rb_root
*root_node
= &nfsi
->access_cache
;
1850 struct rb_node
**p
= &root_node
->rb_node
;
1851 struct rb_node
*parent
= NULL
;
1852 struct nfs_access_entry
*entry
;
1854 spin_lock(&inode
->i_lock
);
1855 while (*p
!= NULL
) {
1857 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
1859 if (set
->cred
< entry
->cred
)
1860 p
= &parent
->rb_left
;
1861 else if (set
->cred
> entry
->cred
)
1862 p
= &parent
->rb_right
;
1866 rb_link_node(&set
->rb_node
, parent
, p
);
1867 rb_insert_color(&set
->rb_node
, root_node
);
1868 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1869 spin_unlock(&inode
->i_lock
);
1872 rb_replace_node(parent
, &set
->rb_node
, root_node
);
1873 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
1874 list_del(&entry
->lru
);
1875 spin_unlock(&inode
->i_lock
);
1876 nfs_access_free_entry(entry
);
1879 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
1881 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
1884 RB_CLEAR_NODE(&cache
->rb_node
);
1885 cache
->jiffies
= set
->jiffies
;
1886 cache
->cred
= get_rpccred(set
->cred
);
1887 cache
->mask
= set
->mask
;
1889 nfs_access_add_rbtree(inode
, cache
);
1891 /* Update accounting */
1892 smp_mb__before_atomic_inc();
1893 atomic_long_inc(&nfs_access_nr_entries
);
1894 smp_mb__after_atomic_inc();
1896 /* Add inode to global LRU list */
1897 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_FLAGS(inode
))) {
1898 spin_lock(&nfs_access_lru_lock
);
1899 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
, &nfs_access_lru_list
);
1900 spin_unlock(&nfs_access_lru_lock
);
1904 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
1906 struct nfs_access_entry cache
;
1909 status
= nfs_access_get_cached(inode
, cred
, &cache
);
1913 /* Be clever: ask server to check for all possible rights */
1914 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
1916 cache
.jiffies
= jiffies
;
1917 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
1920 nfs_access_add_cache(inode
, &cache
);
1922 if ((cache
.mask
& mask
) == mask
)
1927 int nfs_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1929 struct rpc_cred
*cred
;
1932 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
1936 /* Is this sys_access() ? */
1937 if (nd
!= NULL
&& (nd
->flags
& LOOKUP_ACCESS
))
1940 switch (inode
->i_mode
& S_IFMT
) {
1944 /* NFSv4 has atomic_open... */
1945 if (nfs_server_capable(inode
, NFS_CAP_ATOMIC_OPEN
)
1947 && (nd
->flags
& LOOKUP_OPEN
))
1952 * Optimize away all write operations, since the server
1953 * will check permissions when we perform the op.
1955 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
1962 if (!NFS_PROTO(inode
)->access
)
1965 cred
= rpcauth_lookupcred(NFS_CLIENT(inode
)->cl_auth
, 0);
1966 if (!IS_ERR(cred
)) {
1967 res
= nfs_do_access(inode
, cred
, mask
);
1970 res
= PTR_ERR(cred
);
1973 dfprintk(VFS
, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1974 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
1977 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1979 res
= generic_permission(inode
, mask
, NULL
);
1986 * version-control: t
1987 * kept-new-versions: 5