2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm-generic/sections.h>
28 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
29 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
34 struct memblock memblock __initdata_memblock
= {
35 .memory
.regions
= memblock_memory_init_regions
,
36 .memory
.cnt
= 1, /* empty dummy entry */
37 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
39 .reserved
.regions
= memblock_reserved_init_regions
,
40 .reserved
.cnt
= 1, /* empty dummy entry */
41 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem
.regions
= memblock_physmem_init_regions
,
45 .physmem
.cnt
= 1, /* empty dummy entry */
46 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
50 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
53 int memblock_debug __initdata_memblock
;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock
= false;
57 static bool system_has_some_mirror __initdata_memblock
= false;
58 static int memblock_can_resize __initdata_memblock
;
59 static int memblock_memory_in_slab __initdata_memblock
= 0;
60 static int memblock_reserved_in_slab __initdata_memblock
= 0;
62 ulong __init_memblock
choose_memblock_flags(void)
64 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock
const char *
69 memblock_type_name(struct memblock_type
*type
)
71 if (type
== &memblock
.memory
)
73 else if (type
== &memblock
.reserved
)
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
82 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
86 * Address comparison utilities
88 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
89 phys_addr_t base2
, phys_addr_t size2
)
91 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
94 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
95 phys_addr_t base
, phys_addr_t size
)
99 for (i
= 0; i
< type
->cnt
; i
++)
100 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
101 type
->regions
[i
].size
))
103 return i
< type
->cnt
;
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
113 * @flags: pick from blocks based on memory attributes
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
118 * Found address on success, 0 on failure.
120 static phys_addr_t __init_memblock
121 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
122 phys_addr_t size
, phys_addr_t align
, int nid
,
125 phys_addr_t this_start
, this_end
, cand
;
128 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
129 this_start
= clamp(this_start
, start
, end
);
130 this_end
= clamp(this_end
, start
, end
);
132 cand
= round_up(this_start
, align
);
133 if (cand
< this_end
&& this_end
- cand
>= size
)
141 * __memblock_find_range_top_down - find free area utility, in top-down
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
147 * @flags: pick from blocks based on memory attributes
149 * Utility called from memblock_find_in_range_node(), find free area top-down.
152 * Found address on success, 0 on failure.
154 static phys_addr_t __init_memblock
155 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
156 phys_addr_t size
, phys_addr_t align
, int nid
,
159 phys_addr_t this_start
, this_end
, cand
;
162 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
164 this_start
= clamp(this_start
, start
, end
);
165 this_end
= clamp(this_end
, start
, end
);
170 cand
= round_down(this_end
- size
, align
);
171 if (cand
>= this_start
)
179 * memblock_find_in_range_node - find free area in given range and node
180 * @size: size of free area to find
181 * @align: alignment of free area to find
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
185 * @flags: pick from blocks based on memory attributes
187 * Find @size free area aligned to @align in the specified range and node.
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
195 * If bottom-up allocation failed, will try to allocate memory top-down.
198 * Found address on success, 0 on failure.
200 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
201 phys_addr_t align
, phys_addr_t start
,
202 phys_addr_t end
, int nid
, ulong flags
)
204 phys_addr_t kernel_end
, ret
;
207 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
208 end
= memblock
.current_limit
;
210 /* avoid allocating the first page */
211 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
212 end
= max(start
, end
);
213 kernel_end
= __pa_symbol(_end
);
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
219 if (memblock_bottom_up() && end
> kernel_end
) {
220 phys_addr_t bottom_up_start
;
222 /* make sure we will allocate above the kernel */
223 bottom_up_start
= max(start
, kernel_end
);
225 /* ok, try bottom-up allocation first */
226 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
227 size
, align
, nid
, flags
);
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
244 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
255 * Find @size free area aligned to @align in the specified range.
258 * Found address on success, 0 on failure.
260 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
261 phys_addr_t end
, phys_addr_t size
,
265 ulong flags
= choose_memblock_flags();
268 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
269 NUMA_NO_NODE
, flags
);
271 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
274 flags
&= ~MEMBLOCK_MIRROR
;
281 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
283 type
->total_size
-= type
->regions
[r
].size
;
284 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
285 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
288 /* Special case for empty arrays */
289 if (type
->cnt
== 0) {
290 WARN_ON(type
->total_size
!= 0);
292 type
->regions
[0].base
= 0;
293 type
->regions
[0].size
= 0;
294 type
->regions
[0].flags
= 0;
295 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
299 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
301 phys_addr_t __init_memblock
get_allocated_memblock_reserved_regions_info(
304 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
307 *addr
= __pa(memblock
.reserved
.regions
);
309 return PAGE_ALIGN(sizeof(struct memblock_region
) *
310 memblock
.reserved
.max
);
313 phys_addr_t __init_memblock
get_allocated_memblock_memory_regions_info(
316 if (memblock
.memory
.regions
== memblock_memory_init_regions
)
319 *addr
= __pa(memblock
.memory
.regions
);
321 return PAGE_ALIGN(sizeof(struct memblock_region
) *
322 memblock
.memory
.max
);
328 * memblock_double_array - double the size of the memblock regions array
329 * @type: memblock type of the regions array being doubled
330 * @new_area_start: starting address of memory range to avoid overlap with
331 * @new_area_size: size of memory range to avoid overlap with
333 * Double the size of the @type regions array. If memblock is being used to
334 * allocate memory for a new reserved regions array and there is a previously
335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336 * waiting to be reserved, ensure the memory used by the new array does
340 * 0 on success, -1 on failure.
342 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
343 phys_addr_t new_area_start
,
344 phys_addr_t new_area_size
)
346 struct memblock_region
*new_array
, *old_array
;
347 phys_addr_t old_alloc_size
, new_alloc_size
;
348 phys_addr_t old_size
, new_size
, addr
;
349 int use_slab
= slab_is_available();
352 /* We don't allow resizing until we know about the reserved regions
353 * of memory that aren't suitable for allocation
355 if (!memblock_can_resize
)
358 /* Calculate new doubled size */
359 old_size
= type
->max
* sizeof(struct memblock_region
);
360 new_size
= old_size
<< 1;
362 * We need to allocated new one align to PAGE_SIZE,
363 * so we can free them completely later.
365 old_alloc_size
= PAGE_ALIGN(old_size
);
366 new_alloc_size
= PAGE_ALIGN(new_size
);
368 /* Retrieve the slab flag */
369 if (type
== &memblock
.memory
)
370 in_slab
= &memblock_memory_in_slab
;
372 in_slab
= &memblock_reserved_in_slab
;
374 /* Try to find some space for it.
376 * WARNING: We assume that either slab_is_available() and we use it or
377 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 * use when bootmem is currently active (unless bootmem itself is
379 * implemented on top of MEMBLOCK which isn't the case yet)
381 * This should however not be an issue for now, as we currently only
382 * call into MEMBLOCK while it's still active, or much later when slab
383 * is active for memory hotplug operations
386 new_array
= kmalloc(new_size
, GFP_KERNEL
);
387 addr
= new_array
? __pa(new_array
) : 0;
389 /* only exclude range when trying to double reserved.regions */
390 if (type
!= &memblock
.reserved
)
391 new_area_start
= new_area_size
= 0;
393 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
394 memblock
.current_limit
,
395 new_alloc_size
, PAGE_SIZE
);
396 if (!addr
&& new_area_size
)
397 addr
= memblock_find_in_range(0,
398 min(new_area_start
, memblock
.current_limit
),
399 new_alloc_size
, PAGE_SIZE
);
401 new_array
= addr
? __va(addr
) : NULL
;
404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 memblock_type_name(type
), type
->max
, type
->max
* 2);
409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 memblock_type_name(type
), type
->max
* 2, (u64
)addr
,
411 (u64
)addr
+ new_size
- 1);
414 * Found space, we now need to move the array over before we add the
415 * reserved region since it may be our reserved array itself that is
418 memcpy(new_array
, type
->regions
, old_size
);
419 memset(new_array
+ type
->max
, 0, old_size
);
420 old_array
= type
->regions
;
421 type
->regions
= new_array
;
424 /* Free old array. We needn't free it if the array is the static one */
427 else if (old_array
!= memblock_memory_init_regions
&&
428 old_array
!= memblock_reserved_init_regions
)
429 memblock_free(__pa(old_array
), old_alloc_size
);
432 * Reserve the new array if that comes from the memblock. Otherwise, we
436 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
438 /* Update slab flag */
445 * memblock_merge_regions - merge neighboring compatible regions
446 * @type: memblock type to scan
448 * Scan @type and merge neighboring compatible regions.
450 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
454 /* cnt never goes below 1 */
455 while (i
< type
->cnt
- 1) {
456 struct memblock_region
*this = &type
->regions
[i
];
457 struct memblock_region
*next
= &type
->regions
[i
+ 1];
459 if (this->base
+ this->size
!= next
->base
||
460 memblock_get_region_node(this) !=
461 memblock_get_region_node(next
) ||
462 this->flags
!= next
->flags
) {
463 BUG_ON(this->base
+ this->size
> next
->base
);
468 this->size
+= next
->size
;
469 /* move forward from next + 1, index of which is i + 2 */
470 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
476 * memblock_insert_region - insert new memblock region
477 * @type: memblock type to insert into
478 * @idx: index for the insertion point
479 * @base: base address of the new region
480 * @size: size of the new region
481 * @nid: node id of the new region
482 * @flags: flags of the new region
484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
485 * @type must already have extra room to accomodate the new region.
487 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
488 int idx
, phys_addr_t base
,
490 int nid
, unsigned long flags
)
492 struct memblock_region
*rgn
= &type
->regions
[idx
];
494 BUG_ON(type
->cnt
>= type
->max
);
495 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
499 memblock_set_region_node(rgn
, nid
);
501 type
->total_size
+= size
;
505 * memblock_add_range - add new memblock region
506 * @type: memblock type to add new region into
507 * @base: base address of the new region
508 * @size: size of the new region
509 * @nid: nid of the new region
510 * @flags: flags of the new region
512 * Add new memblock region [@base,@base+@size) into @type. The new region
513 * is allowed to overlap with existing ones - overlaps don't affect already
514 * existing regions. @type is guaranteed to be minimal (all neighbouring
515 * compatible regions are merged) after the addition.
518 * 0 on success, -errno on failure.
520 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
521 phys_addr_t base
, phys_addr_t size
,
522 int nid
, unsigned long flags
)
525 phys_addr_t obase
= base
;
526 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
528 struct memblock_region
*rgn
;
533 /* special case for empty array */
534 if (type
->regions
[0].size
== 0) {
535 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
536 type
->regions
[0].base
= base
;
537 type
->regions
[0].size
= size
;
538 type
->regions
[0].flags
= flags
;
539 memblock_set_region_node(&type
->regions
[0], nid
);
540 type
->total_size
= size
;
545 * The following is executed twice. Once with %false @insert and
546 * then with %true. The first counts the number of regions needed
547 * to accomodate the new area. The second actually inserts them.
552 for_each_memblock_type(type
, rgn
) {
553 phys_addr_t rbase
= rgn
->base
;
554 phys_addr_t rend
= rbase
+ rgn
->size
;
561 * @rgn overlaps. If it separates the lower part of new
562 * area, insert that portion.
565 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 WARN_ON(nid
!= memblock_get_region_node(rgn
));
568 WARN_ON(flags
!= rgn
->flags
);
571 memblock_insert_region(type
, idx
++, base
,
575 /* area below @rend is dealt with, forget about it */
576 base
= min(rend
, end
);
579 /* insert the remaining portion */
583 memblock_insert_region(type
, idx
, base
, end
- base
,
588 * If this was the first round, resize array and repeat for actual
589 * insertions; otherwise, merge and return.
592 while (type
->cnt
+ nr_new
> type
->max
)
593 if (memblock_double_array(type
, obase
, size
) < 0)
598 memblock_merge_regions(type
);
603 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
606 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
609 static int __init_memblock
memblock_add_region(phys_addr_t base
,
614 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
615 (unsigned long long)base
,
616 (unsigned long long)base
+ size
- 1,
617 flags
, (void *)_RET_IP_
);
619 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, flags
);
622 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
624 return memblock_add_region(base
, size
, MAX_NUMNODES
, 0);
628 * memblock_isolate_range - isolate given range into disjoint memblocks
629 * @type: memblock type to isolate range for
630 * @base: base of range to isolate
631 * @size: size of range to isolate
632 * @start_rgn: out parameter for the start of isolated region
633 * @end_rgn: out parameter for the end of isolated region
635 * Walk @type and ensure that regions don't cross the boundaries defined by
636 * [@base,@base+@size). Crossing regions are split at the boundaries,
637 * which may create at most two more regions. The index of the first
638 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
641 * 0 on success, -errno on failure.
643 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
644 phys_addr_t base
, phys_addr_t size
,
645 int *start_rgn
, int *end_rgn
)
647 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
649 struct memblock_region
*rgn
;
651 *start_rgn
= *end_rgn
= 0;
656 /* we'll create at most two more regions */
657 while (type
->cnt
+ 2 > type
->max
)
658 if (memblock_double_array(type
, base
, size
) < 0)
661 for_each_memblock_type(type
, rgn
) {
662 phys_addr_t rbase
= rgn
->base
;
663 phys_addr_t rend
= rbase
+ rgn
->size
;
672 * @rgn intersects from below. Split and continue
673 * to process the next region - the new top half.
676 rgn
->size
-= base
- rbase
;
677 type
->total_size
-= base
- rbase
;
678 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
679 memblock_get_region_node(rgn
),
681 } else if (rend
> end
) {
683 * @rgn intersects from above. Split and redo the
684 * current region - the new bottom half.
687 rgn
->size
-= end
- rbase
;
688 type
->total_size
-= end
- rbase
;
689 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
690 memblock_get_region_node(rgn
),
693 /* @rgn is fully contained, record it */
703 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
704 phys_addr_t base
, phys_addr_t size
)
706 int start_rgn
, end_rgn
;
709 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
713 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
714 memblock_remove_region(type
, i
);
718 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
720 return memblock_remove_range(&memblock
.memory
, base
, size
);
724 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
726 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
727 (unsigned long long)base
,
728 (unsigned long long)base
+ size
- 1,
731 kmemleak_free_part(__va(base
), size
);
732 return memblock_remove_range(&memblock
.reserved
, base
, size
);
735 static int __init_memblock
memblock_reserve_region(phys_addr_t base
,
740 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
741 (unsigned long long)base
,
742 (unsigned long long)base
+ size
- 1,
743 flags
, (void *)_RET_IP_
);
745 return memblock_add_range(&memblock
.reserved
, base
, size
, nid
, flags
);
748 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
750 return memblock_reserve_region(base
, size
, MAX_NUMNODES
, 0);
755 * This function isolates region [@base, @base + @size), and sets/clears flag
757 * Return 0 on success, -errno on failure.
759 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
760 phys_addr_t size
, int set
, int flag
)
762 struct memblock_type
*type
= &memblock
.memory
;
763 int i
, ret
, start_rgn
, end_rgn
;
765 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
769 for (i
= start_rgn
; i
< end_rgn
; i
++)
771 memblock_set_region_flags(&type
->regions
[i
], flag
);
773 memblock_clear_region_flags(&type
->regions
[i
], flag
);
775 memblock_merge_regions(type
);
780 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
781 * @base: the base phys addr of the region
782 * @size: the size of the region
784 * Return 0 on success, -errno on failure.
786 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
788 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
792 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
793 * @base: the base phys addr of the region
794 * @size: the size of the region
796 * Return 0 on success, -errno on failure.
798 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
800 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
804 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
805 * @base: the base phys addr of the region
806 * @size: the size of the region
808 * Return 0 on success, -errno on failure.
810 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
812 system_has_some_mirror
= true;
814 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
818 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
819 * @base: the base phys addr of the region
820 * @size: the size of the region
822 * Return 0 on success, -errno on failure.
824 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
826 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
830 * __next_reserved_mem_region - next function for for_each_reserved_region()
831 * @idx: pointer to u64 loop variable
832 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
833 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
835 * Iterate over all reserved memory regions.
837 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
838 phys_addr_t
*out_start
,
839 phys_addr_t
*out_end
)
841 struct memblock_type
*type
= &memblock
.reserved
;
843 if (*idx
>= 0 && *idx
< type
->cnt
) {
844 struct memblock_region
*r
= &type
->regions
[*idx
];
845 phys_addr_t base
= r
->base
;
846 phys_addr_t size
= r
->size
;
851 *out_end
= base
+ size
- 1;
857 /* signal end of iteration */
862 * __next__mem_range - next function for for_each_free_mem_range() etc.
863 * @idx: pointer to u64 loop variable
864 * @nid: node selector, %NUMA_NO_NODE for all nodes
865 * @flags: pick from blocks based on memory attributes
866 * @type_a: pointer to memblock_type from where the range is taken
867 * @type_b: pointer to memblock_type which excludes memory from being taken
868 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
869 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
870 * @out_nid: ptr to int for nid of the range, can be %NULL
872 * Find the first area from *@idx which matches @nid, fill the out
873 * parameters, and update *@idx for the next iteration. The lower 32bit of
874 * *@idx contains index into type_a and the upper 32bit indexes the
875 * areas before each region in type_b. For example, if type_b regions
876 * look like the following,
878 * 0:[0-16), 1:[32-48), 2:[128-130)
880 * The upper 32bit indexes the following regions.
882 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
884 * As both region arrays are sorted, the function advances the two indices
885 * in lockstep and returns each intersection.
887 void __init_memblock
__next_mem_range(u64
*idx
, int nid
, ulong flags
,
888 struct memblock_type
*type_a
,
889 struct memblock_type
*type_b
,
890 phys_addr_t
*out_start
,
891 phys_addr_t
*out_end
, int *out_nid
)
893 int idx_a
= *idx
& 0xffffffff;
894 int idx_b
= *idx
>> 32;
896 if (WARN_ONCE(nid
== MAX_NUMNODES
,
897 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
900 for (; idx_a
< type_a
->cnt
; idx_a
++) {
901 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
903 phys_addr_t m_start
= m
->base
;
904 phys_addr_t m_end
= m
->base
+ m
->size
;
905 int m_nid
= memblock_get_region_node(m
);
907 /* only memory regions are associated with nodes, check it */
908 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
911 /* skip hotpluggable memory regions if needed */
912 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
915 /* if we want mirror memory skip non-mirror memory regions */
916 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
919 /* skip nomap memory unless we were asked for it explicitly */
920 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
925 *out_start
= m_start
;
931 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
935 /* scan areas before each reservation */
936 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
937 struct memblock_region
*r
;
941 r
= &type_b
->regions
[idx_b
];
942 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
943 r_end
= idx_b
< type_b
->cnt
?
944 r
->base
: ULLONG_MAX
;
947 * if idx_b advanced past idx_a,
948 * break out to advance idx_a
950 if (r_start
>= m_end
)
952 /* if the two regions intersect, we're done */
953 if (m_start
< r_end
) {
956 max(m_start
, r_start
);
958 *out_end
= min(m_end
, r_end
);
962 * The region which ends first is
963 * advanced for the next iteration.
969 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
975 /* signal end of iteration */
980 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
982 * Finds the next range from type_a which is not marked as unsuitable
985 * @idx: pointer to u64 loop variable
986 * @nid: node selector, %NUMA_NO_NODE for all nodes
987 * @flags: pick from blocks based on memory attributes
988 * @type_a: pointer to memblock_type from where the range is taken
989 * @type_b: pointer to memblock_type which excludes memory from being taken
990 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
991 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
992 * @out_nid: ptr to int for nid of the range, can be %NULL
994 * Reverse of __next_mem_range().
996 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
, ulong flags
,
997 struct memblock_type
*type_a
,
998 struct memblock_type
*type_b
,
999 phys_addr_t
*out_start
,
1000 phys_addr_t
*out_end
, int *out_nid
)
1002 int idx_a
= *idx
& 0xffffffff;
1003 int idx_b
= *idx
>> 32;
1005 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1008 if (*idx
== (u64
)ULLONG_MAX
) {
1009 idx_a
= type_a
->cnt
- 1;
1010 idx_b
= type_b
->cnt
;
1013 for (; idx_a
>= 0; idx_a
--) {
1014 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1016 phys_addr_t m_start
= m
->base
;
1017 phys_addr_t m_end
= m
->base
+ m
->size
;
1018 int m_nid
= memblock_get_region_node(m
);
1020 /* only memory regions are associated with nodes, check it */
1021 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
1024 /* skip hotpluggable memory regions if needed */
1025 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
1028 /* if we want mirror memory skip non-mirror memory regions */
1029 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
1032 /* skip nomap memory unless we were asked for it explicitly */
1033 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1038 *out_start
= m_start
;
1044 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1048 /* scan areas before each reservation */
1049 for (; idx_b
>= 0; idx_b
--) {
1050 struct memblock_region
*r
;
1051 phys_addr_t r_start
;
1054 r
= &type_b
->regions
[idx_b
];
1055 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1056 r_end
= idx_b
< type_b
->cnt
?
1057 r
->base
: ULLONG_MAX
;
1059 * if idx_b advanced past idx_a,
1060 * break out to advance idx_a
1063 if (r_end
<= m_start
)
1065 /* if the two regions intersect, we're done */
1066 if (m_end
> r_start
) {
1068 *out_start
= max(m_start
, r_start
);
1070 *out_end
= min(m_end
, r_end
);
1073 if (m_start
>= r_start
)
1077 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1082 /* signal end of iteration */
1086 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1088 * Common iterator interface used to define for_each_mem_range().
1090 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1091 unsigned long *out_start_pfn
,
1092 unsigned long *out_end_pfn
, int *out_nid
)
1094 struct memblock_type
*type
= &memblock
.memory
;
1095 struct memblock_region
*r
;
1097 while (++*idx
< type
->cnt
) {
1098 r
= &type
->regions
[*idx
];
1100 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1102 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1105 if (*idx
>= type
->cnt
) {
1111 *out_start_pfn
= PFN_UP(r
->base
);
1113 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1119 * memblock_set_node - set node ID on memblock regions
1120 * @base: base of area to set node ID for
1121 * @size: size of area to set node ID for
1122 * @type: memblock type to set node ID for
1123 * @nid: node ID to set
1125 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1126 * Regions which cross the area boundaries are split as necessary.
1129 * 0 on success, -errno on failure.
1131 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1132 struct memblock_type
*type
, int nid
)
1134 int start_rgn
, end_rgn
;
1137 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1141 for (i
= start_rgn
; i
< end_rgn
; i
++)
1142 memblock_set_region_node(&type
->regions
[i
], nid
);
1144 memblock_merge_regions(type
);
1147 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1149 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1150 phys_addr_t align
, phys_addr_t start
,
1151 phys_addr_t end
, int nid
, ulong flags
)
1156 align
= SMP_CACHE_BYTES
;
1158 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1160 if (found
&& !memblock_reserve(found
, size
)) {
1162 * The min_count is set to 0 so that memblock allocations are
1163 * never reported as leaks.
1165 kmemleak_alloc(__va(found
), size
, 0, 0);
1171 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1172 phys_addr_t start
, phys_addr_t end
,
1175 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1179 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1180 phys_addr_t align
, phys_addr_t max_addr
,
1181 int nid
, ulong flags
)
1183 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
, flags
);
1186 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1188 ulong flags
= choose_memblock_flags();
1192 ret
= memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
,
1195 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
1196 flags
&= ~MEMBLOCK_MIRROR
;
1202 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1204 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
,
1208 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1212 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1215 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1216 (unsigned long long) size
, (unsigned long long) max_addr
);
1221 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1223 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1226 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1228 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1232 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1236 * memblock_virt_alloc_internal - allocate boot memory block
1237 * @size: size of memory block to be allocated in bytes
1238 * @align: alignment of the region and block's size
1239 * @min_addr: the lower bound of the memory region to allocate (phys address)
1240 * @max_addr: the upper bound of the memory region to allocate (phys address)
1241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1243 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1244 * will fall back to memory below @min_addr. Also, allocation may fall back
1245 * to any node in the system if the specified node can not
1246 * hold the requested memory.
1248 * The allocation is performed from memory region limited by
1249 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1251 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1253 * The phys address of allocated boot memory block is converted to virtual and
1254 * allocated memory is reset to 0.
1256 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1257 * allocated boot memory block, so that it is never reported as leaks.
1260 * Virtual address of allocated memory block on success, NULL on failure.
1262 static void * __init
memblock_virt_alloc_internal(
1263 phys_addr_t size
, phys_addr_t align
,
1264 phys_addr_t min_addr
, phys_addr_t max_addr
,
1269 ulong flags
= choose_memblock_flags();
1271 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1275 * Detect any accidental use of these APIs after slab is ready, as at
1276 * this moment memblock may be deinitialized already and its
1277 * internal data may be destroyed (after execution of free_all_bootmem)
1279 if (WARN_ON_ONCE(slab_is_available()))
1280 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1283 align
= SMP_CACHE_BYTES
;
1285 if (max_addr
> memblock
.current_limit
)
1286 max_addr
= memblock
.current_limit
;
1289 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1294 if (nid
!= NUMA_NO_NODE
) {
1295 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1296 max_addr
, NUMA_NO_NODE
,
1307 if (flags
& MEMBLOCK_MIRROR
) {
1308 flags
&= ~MEMBLOCK_MIRROR
;
1309 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1316 memblock_reserve(alloc
, size
);
1317 ptr
= phys_to_virt(alloc
);
1318 memset(ptr
, 0, size
);
1321 * The min_count is set to 0 so that bootmem allocated blocks
1322 * are never reported as leaks. This is because many of these blocks
1323 * are only referred via the physical address which is not
1324 * looked up by kmemleak.
1326 kmemleak_alloc(ptr
, size
, 0, 0);
1332 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @min_addr: the lower bound of the memory region from where the allocation
1336 * is preferred (phys address)
1337 * @max_addr: the upper bound of the memory region from where the allocation
1338 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1339 * allocate only from memory limited by memblock.current_limit value
1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1342 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1343 * additional debug information (including caller info), if enabled.
1346 * Virtual address of allocated memory block on success, NULL on failure.
1348 void * __init
memblock_virt_alloc_try_nid_nopanic(
1349 phys_addr_t size
, phys_addr_t align
,
1350 phys_addr_t min_addr
, phys_addr_t max_addr
,
1353 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1354 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1355 (u64
)max_addr
, (void *)_RET_IP_
);
1356 return memblock_virt_alloc_internal(size
, align
, min_addr
,
1361 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @min_addr: the lower bound of the memory region from where the allocation
1365 * is preferred (phys address)
1366 * @max_addr: the upper bound of the memory region from where the allocation
1367 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368 * allocate only from memory limited by memblock.current_limit value
1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1371 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1372 * which provides debug information (including caller info), if enabled,
1373 * and panics if the request can not be satisfied.
1376 * Virtual address of allocated memory block on success, NULL on failure.
1378 void * __init
memblock_virt_alloc_try_nid(
1379 phys_addr_t size
, phys_addr_t align
,
1380 phys_addr_t min_addr
, phys_addr_t max_addr
,
1385 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1386 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1387 (u64
)max_addr
, (void *)_RET_IP_
);
1388 ptr
= memblock_virt_alloc_internal(size
, align
,
1389 min_addr
, max_addr
, nid
);
1393 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1394 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1400 * __memblock_free_early - free boot memory block
1401 * @base: phys starting address of the boot memory block
1402 * @size: size of the boot memory block in bytes
1404 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1405 * The freeing memory will not be released to the buddy allocator.
1407 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1409 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1410 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1412 kmemleak_free_part(__va(base
), size
);
1413 memblock_remove_range(&memblock
.reserved
, base
, size
);
1417 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1418 * @addr: phys starting address of the boot memory block
1419 * @size: size of the boot memory block in bytes
1421 * This is only useful when the bootmem allocator has already been torn
1422 * down, but we are still initializing the system. Pages are released directly
1423 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1425 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1429 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1430 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1432 kmemleak_free_part(__va(base
), size
);
1433 cursor
= PFN_UP(base
);
1434 end
= PFN_DOWN(base
+ size
);
1436 for (; cursor
< end
; cursor
++) {
1437 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1443 * Remaining API functions
1446 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1448 return memblock
.memory
.total_size
;
1451 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1453 unsigned long pages
= 0;
1454 struct memblock_region
*r
;
1455 unsigned long start_pfn
, end_pfn
;
1457 for_each_memblock(memory
, r
) {
1458 start_pfn
= memblock_region_memory_base_pfn(r
);
1459 end_pfn
= memblock_region_memory_end_pfn(r
);
1460 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1461 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1462 pages
+= end_pfn
- start_pfn
;
1465 return PFN_PHYS(pages
);
1468 /* lowest address */
1469 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1471 return memblock
.memory
.regions
[0].base
;
1474 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1476 int idx
= memblock
.memory
.cnt
- 1;
1478 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1481 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1483 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1484 struct memblock_region
*r
;
1489 /* find out max address */
1490 for_each_memblock(memory
, r
) {
1491 if (limit
<= r
->size
) {
1492 max_addr
= r
->base
+ limit
;
1498 /* truncate both memory and reserved regions */
1499 memblock_remove_range(&memblock
.memory
, max_addr
,
1500 (phys_addr_t
)ULLONG_MAX
);
1501 memblock_remove_range(&memblock
.reserved
, max_addr
,
1502 (phys_addr_t
)ULLONG_MAX
);
1505 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1507 unsigned int left
= 0, right
= type
->cnt
;
1510 unsigned int mid
= (right
+ left
) / 2;
1512 if (addr
< type
->regions
[mid
].base
)
1514 else if (addr
>= (type
->regions
[mid
].base
+
1515 type
->regions
[mid
].size
))
1519 } while (left
< right
);
1523 bool __init
memblock_is_reserved(phys_addr_t addr
)
1525 return memblock_search(&memblock
.reserved
, addr
) != -1;
1528 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1530 return memblock_search(&memblock
.memory
, addr
) != -1;
1533 int __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1535 int i
= memblock_search(&memblock
.memory
, addr
);
1539 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1542 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1543 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1544 unsigned long *start_pfn
, unsigned long *end_pfn
)
1546 struct memblock_type
*type
= &memblock
.memory
;
1547 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1552 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1553 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1555 return type
->regions
[mid
].nid
;
1560 * memblock_is_region_memory - check if a region is a subset of memory
1561 * @base: base of region to check
1562 * @size: size of region to check
1564 * Check if the region [@base, @base+@size) is a subset of a memory block.
1567 * 0 if false, non-zero if true
1569 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1571 int idx
= memblock_search(&memblock
.memory
, base
);
1572 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1576 return memblock
.memory
.regions
[idx
].base
<= base
&&
1577 (memblock
.memory
.regions
[idx
].base
+
1578 memblock
.memory
.regions
[idx
].size
) >= end
;
1582 * memblock_is_region_reserved - check if a region intersects reserved memory
1583 * @base: base of region to check
1584 * @size: size of region to check
1586 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1589 * True if they intersect, false if not.
1591 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1593 memblock_cap_size(base
, &size
);
1594 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1597 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1599 phys_addr_t start
, end
, orig_start
, orig_end
;
1600 struct memblock_region
*r
;
1602 for_each_memblock(memory
, r
) {
1603 orig_start
= r
->base
;
1604 orig_end
= r
->base
+ r
->size
;
1605 start
= round_up(orig_start
, align
);
1606 end
= round_down(orig_end
, align
);
1608 if (start
== orig_start
&& end
== orig_end
)
1613 r
->size
= end
- start
;
1615 memblock_remove_region(&memblock
.memory
,
1616 r
- memblock
.memory
.regions
);
1622 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1624 memblock
.current_limit
= limit
;
1627 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1629 return memblock
.current_limit
;
1632 static void __init_memblock
memblock_dump(struct memblock_type
*type
, char *name
)
1634 unsigned long long base
, size
;
1635 unsigned long flags
;
1637 struct memblock_region
*rgn
;
1639 pr_info(" %s.cnt = 0x%lx\n", name
, type
->cnt
);
1641 for_each_memblock_type(type
, rgn
) {
1642 char nid_buf
[32] = "";
1647 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1648 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1649 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1650 memblock_get_region_node(rgn
));
1652 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1653 name
, idx
, base
, base
+ size
- 1, size
, nid_buf
, flags
);
1657 void __init_memblock
__memblock_dump_all(void)
1659 pr_info("MEMBLOCK configuration:\n");
1660 pr_info(" memory size = %#llx reserved size = %#llx\n",
1661 (unsigned long long)memblock
.memory
.total_size
,
1662 (unsigned long long)memblock
.reserved
.total_size
);
1664 memblock_dump(&memblock
.memory
, "memory");
1665 memblock_dump(&memblock
.reserved
, "reserved");
1668 void __init
memblock_allow_resize(void)
1670 memblock_can_resize
= 1;
1673 static int __init
early_memblock(char *p
)
1675 if (p
&& strstr(p
, "debug"))
1679 early_param("memblock", early_memblock
);
1681 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1683 static int memblock_debug_show(struct seq_file
*m
, void *private)
1685 struct memblock_type
*type
= m
->private;
1686 struct memblock_region
*reg
;
1689 for (i
= 0; i
< type
->cnt
; i
++) {
1690 reg
= &type
->regions
[i
];
1691 seq_printf(m
, "%4d: ", i
);
1692 if (sizeof(phys_addr_t
) == 4)
1693 seq_printf(m
, "0x%08lx..0x%08lx\n",
1694 (unsigned long)reg
->base
,
1695 (unsigned long)(reg
->base
+ reg
->size
- 1));
1697 seq_printf(m
, "0x%016llx..0x%016llx\n",
1698 (unsigned long long)reg
->base
,
1699 (unsigned long long)(reg
->base
+ reg
->size
- 1));
1705 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1707 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1710 static const struct file_operations memblock_debug_fops
= {
1711 .open
= memblock_debug_open
,
1713 .llseek
= seq_lseek
,
1714 .release
= single_release
,
1717 static int __init
memblock_init_debugfs(void)
1719 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1722 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1723 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1724 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1725 debugfs_create_file("physmem", S_IRUGO
, root
, &memblock
.physmem
, &memblock_debug_fops
);
1730 __initcall(memblock_init_debugfs
);
1732 #endif /* CONFIG_DEBUG_FS */